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Abstract

CoCo’s (contingent convertible capital) are designed to convert from debt to equity when

banks need it most. Using a Diamond-Dybvig model cast in a global games framework, we

show that while the CoCo conversion of the issuing bank may bring the bank back into compli-

ance with capital requirements, it will nevertheless raise the probability of the bank being run,

because conversion is a negative signal to depositors about asset quality. Moreover, conversion

imposes a negative externality on other banks in the system in the likely case of correlated asset

returns, so bankruns elsewhere in the banking system become more probable too and systemic

risk will actually go up after conversion. CoCo’s thus lead to a direct conflict between micro- and

macroprudential objectives. We also highlight that ex ante incentives to raise capital to stave off

conversion depend critically on CoCo design. In many currently popular CoCo designs, wealth

transfers after conversion actually flow from debt holders to equity holders, destroying the lat-

ter’s incentives to provide additional capital in times of stress. Finally the link between CoCo

conversion and systemic risk highlights the tradeoffs that a regulator faces in deciding to convert

CoCo’s, providing a possible explanation of regulatory forbearance.
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1 Introduction and literature review

As early as 2002, Flannery proposed an early form of contingent convertible (CoCo) capital that

he called reverse convertible debentures 1. The idea was simple: whenever the bank issuing such

debentures reaches a market-based capital ratio which is below a pre-specified level (say, 8% of

assets), a sufficient number of said debentures would automatically convert to equity at the pre-

vailing market price of the bank’s shares. The automatic conversion feature frees the issuing bank

from having to raise additional capital immediately when its capital ratio is lower than the mini-

mum requirement. For larger shocks, conversion may not be enough to restore compliance with

capital requirements, but it would make banks merely undercapitalized instead of bankrupt.

Flannery’s initial CoCo design proposal was attractive as its automatic conversion feature had the

potential to avoid socially costly bailouts. After the 2007 financial crisis, regulators realized that

even though systemically important financial institutions (SIFIs) held Tier 2 Capital, that type of

capital failed to be loss-absorbing during the time of distress. Instead, some of the SIFIs were

bailed out while others were allowed to fail while in many cases for example subordinated loans

continued to be serviced. In response, the Basel Committee on Banking Supervision (BCBS) made a

number of changes to what is now known as the Basel 3 framework. Among the changes were the

redefinition of “gone concern” to include potential bailout situations, and the inclusion of CoCo-

like instruments as part of Additional Tier 1 Capital.2 Also, while not yet finalized, the Basel 3

document suggested that CoCo’s might play a role in ensuring that SIFIs would have higher loss

absorption capacities than regular financial institutions.

The inclusion of CoCo’s as part of Additional Tier 1 Capital is a likely factor in the increase of

CoCo issuance. CoCo issuances totaled $15bn in 2013, up from only $1.7bn in 2010.3 Also, this

year (2014) saw a number of banks issuing CoCo’s, including Deutsche Bank and Mizuho Financial

Group. Within the same period, the academic literature branched off in three different directions.

1Unlike ordinary convertible bonds, reverse convertible debentures expose the holder to the potential downside of
holding equity, as CoCo’s do too.

2which must meet several requirements as set forth in the Basel 3 framework
3Financial Times: Feb 20, 2014
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Flannery (2005) and McDonald (2013) were among those that dealt with design features such as

triggers and bases. Pennacchi (2010) dealt with the pricing and valuation of CoCo’s. Finally,

Martynova and Perotti (2012) and Berg and Kaserer (2014) consider the effect of CoCo’s on risk-

taking incentives of banks. Moreover, several survey articles have been written about CoCo’s.

Maes and Schoutens (2012) provide an overview of CoCo’s and enumerate the potential downside

of CoCo issuance such as contagion from the banking to the insurance sector, and the creation

of a “death spiral” where CoCo holders short-sell the stock of the issuing bank in order to profit

from potential conversion. Avdjiev et al. (2013) discuss the features of the CoCo trend - from the

reason why banks issue them to the main groups of investors that are interested in buying CoCo’s,

as well as the pricing of CoCo’s. Wilkens and Bethke (2014) summarize and empirically assess

some of the pricing models’ performance. There is disagreement in the literature in particular on

whether CoCo conversion should be triggered based on market prices or book values, like the

various capital ratios used in the Basel-III framework. On one side are authors like Sundaresan

and Wang (2014), who argue that using market prices in calculating trigger values might lead

to multiple equilibria problems and potentially destabilizing bear runs on bank stock. On the

other side, Calomiris and Herring (2013) argue that that problem can be mitigated by using 90-

day moving averages of the particular “quasi-market data” they propose to use (market value of

equity but book value of debt) while arguing that using book values actually leads to distorted

incentives, for example pressure to delay recognition of losses. We do not take a position in this

debate, our analysis applies to both types of triggers. Anyhow there are beyond doubt banks that

have no choice because they are not listed (for example in the Netherlands 2 of the largest four

banks are completely state owned (ABNAMRO and SNS Bank) while one of the remaining two

has no listing either, being a cooperative (RABO).

The effectiveness of CoCo’s hinges on bank failure being caused by banks having insufficient eq-

uity to absorb losses once they have occurred. However, the majority of bank assets is funded

by demand deposits. One cannot ignore the possibility that a bank may fail because depositors

run before losses actually occur in anticipation of what may happen once they do occur. Jacklin

and Bhattacharya (1988) and Chari and Jagannathan (1988) build on the Diamond and Dybvig
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(1983) model of bank runs to show that depositors who are able to update their information about

the realization of bank returns act accordingly. However, early variants of the Diamond-Dybvig

model have the disadvantage that runs are zero probability events, sunspot equilibria. That makes

it impossible to assess the impact of fundamentals on the probability of runs and the associated

bank collapse. Goldstein and Pauzner (2005) take the Diamond-Dybvig model a substantial step

further by casting the standard banking problem into a global games framework, allowing them

to obtain a measure for the probability of a bank run which can be linked to fundamentals.

In this paper, we argue that a CoCo conversion conveys information that will lead depositors to

update their beliefs in a manner that increases the probability of bank runs. Furthermore we ex-

amine three major types of CoCo’s and show that some designs are better than others in terms of

their effect on depositor run incentives. And we make a second point that is crucial for the rela-

tion between CoCo conversions and systemic risk. If different banks hold assets with correlated

returns, depositors of other banks will interpret the CoCo conversion as a negative signal on their

asset returns too, raising the probability of runs on banks that may not even have CoCo’s and

that would not have been under attack without the CoCo conversion. In other words, conversion

imposes an information externality on other banks, which raises systemic risk.

This contagion channel is a second reason why we expect CoCo’s to raise rather than reduce sys-

temic risks. This is worrisome also because CoCo’s are mentioned by Basel 3 as potentially useful

for increasing the loss absorption capacity of SIFIs. While it is true that conversion may keep the

issuing banks afloat in times of distress by immediately reducing their outstanding liability, con-

version also heightens the risk that the converting banks, and other banks to the extent that they

have correlated assets, will face a run.

While CoCo’s have different trigger points and conversion mechanisms, many of them have a

“point of nonviability” clause which effectively gives regulators control over when CoCo’s con-

vert. But regulators may end up having to make difficult choices in such circumstances. If conver-

sion actually raises systemic risk, microprudential and macroprudential considerations may well

be at variance, possibly leading to high pressure for regulatory forbearance.
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Finally, while it is sometimes argued that the consequences of CoCo conversion are such that

equity holders will always stave off their conversion by supplying additional capital, we show

that that critically depends on CoCo design. In fact we show that in several currently popular

CoCo designs, wealth transfers upon conversion actually go in the wrong direction, from junior

debtors to equity holders, leading to lower rather than higher incentives to supply capital in times

of distress. Only CoCo’s where existing equityholders are strongly diluted by a conversion provide

an incentive to supply additional capital to stave off conversion. Finally we also show that higher

trigger levels do not influence direction or size of post conversion wealth transfers, but do mitigate

the impact of conversion on financial fragility, although there is no trigger level at or above which

which the negative impact on fragility (from the regulator’s point of view, i.e. conversion increases

financial fragility) disappears or changes sign.

2 Basic Model

2.1 Setup

As in Diamond-Dybvig (henceforth DD), there are three periods (t = 0, 1, 2). There is a continuum

[0, 1] of agents who are each born with 1 unit of wealth at t = 0. The agents are risk-averse with

−cu′′(c)/u′(c) > 1. u(0) = 0 for all agents. A fraction λ of the agents are early consumers

who can only consume at t = 1 with corresponding utility u(c1) while the remaining 1− λ are

late consumers who may consume at either t = 1 or t = 2, with corresponding utility u(c1 +

c2). There is no aggregate uncertainty at t = 0 so the proportion of early (λ) and late (1 − λ )

consumers is known. However, only at t = 1 will the individual nature of an agent be revealed.

This information is known only to the agent, so agents face idiosyncratic risk.

We depart from DD by introducing a risky technology that generates a return of R > 1 with

probability p(θ) and 0 with probability 1− p(θ) after two periods, like in Goldstein and Pauzner

(2005, GP henceforward). The investment may be liquidated at t = 1 without any costs other than
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the foregone yield. θ is a measure of economic fundamentals such that p(θ) is strictly increasing

in θ. p(θ) ∈ [0, 1] for any θ, where θ ∼ U[0, 1].

Because the risky investment can be liquidated without cost, agents are better off investing their

endowment into the asset. Also, we assume that R is high enough so that Eθ p(θ)u(R) > u(1),

making it worthwhile for patient agents to wait until t = 2. Without any pooling of risk, the best

attainable utility levels are u(1) for the impatient consumers and p(θ)u(R) for the patient ones (in

state of nature θ).

2.2 Bank

If there was a social planner with perfect information about agent types, he can offer higher utility

levels for the agents, because idiosyncratic risk averages out upon aggregation. The social planner

would offer r1 > 1 to the impatient agents, and 1−λr1
1−λ R < R (with probability p(θ)) to the patient

ones. We will refer to this contract as Diamond-Dybvig contracts or DD contracts. This way, risk

sharing is attained in the sense that consumers, who do not know their type yet at the moment

of depositing, can transfer some income from the risky stream towards the safe stream. This is

impossible in the autarkic case: because information about types is private, this solution cannot

be implemented in the absence of the omniscient social planner. But DD show that a bank can

mimic the socially optimal outcome by offering demand deposit contracts (which is to offer r1 at

t = 1 and 1−λr1
1−λ R with probability p(θ) at t = 2). Assuming r1 is chosen well, agents will not

lie about their types - only the impatient ones will withdraw at t = 1, so that risk sharing can be

implemented. With demand deposit contracts however, the bank is subject to a sequential service

constraint. It will give r1 to those who withdraw at t = 1 until the asset base is exhausted. Thus,

latecomers beyond the 1
r1

th withdrawing depositor will get nothing.

We depart from DD and GP by introducing two additional types of agents that also function as

sources of funding for the bank: CoCo holders and equity holders So there are only n̄ < 1 deposi-

tors . Depositors are still offered DD contracts. Let ē− n̄ be the measure of CoCo holders, and let

1− ē be the measure of equity holders such that the total measure of agents is 1. Figure 1 shows
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Figure 1: Agent Types and Measures

0 n̄ ē 1

1− ē
equity
holders

ē− n̄
coco

holders

n̄ depositors

the types of agents in the continuum.

In practice so far, issued CoCo’s fall into one of three types: convert-to-equity (CE), principal

writedowns (PWD), and principal writedowns coupled with a cash payout to the CoCo holders

at the time the write down occurs (CASH; RABO of the Netherlands is the only bank that has

issued CoCo’s of this type). In the first part of our paper the distinction does not matter yet,

and neither does the existence of equity because the focus is on the signal value of conversion to

depositors. In the second part of the paper, we explicitly consider different types of CoCo’s and the

wealth transfers they imply on conversion; then equity starts playing a role too. All three types

of CoCo’s are non-redeemable, so CoCo holders cannot stage a run at t = 1. Of course, equity

holders also cannot run at t = 1. The important thing to note is that CoCo’s that do not convert

are essentially long-term contracts which mature at t = 2, are illiquid at t=1 and subordinated to

deposits. However if the bank survives until t = 2, after conversion CoCo holders may share in

the gains depending on the type of CoCo issued: CE holders do and the other two types do not.) .

Even with long term funding without early withdrawal possibilities, runs are still possible as long

as 1
r1

< n which we assume to hold. We furthermore assume that the DD contracts offered by

the banks are such that the incentive compatibility constraint r1 > p(θ) 1−λr1
1−λ R continues to hold:

impatient consumers will always withdraw once they find out they are impatient. Finally, there is

no deposit insurance in this model.
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Table 1: Agent types, measures, and contributions at t = 0
Agent Type Measure/Contribution

Impatient Depositors λn̄
Patient Depositors (1− λ)n̄

CoCo Holders ē− n̄
Equity Holders 1− ē

Total 1

2.3 The Regulator

There is a regulator who is interested in preserving financial stability. We assume conversion

occurs when the regulator decides to trigger the conversion and so forces the bank’s leverage ratio

down in line with the terms of the CoCo design. Note that for CoCo’s to be counted as part of

regulatory capital of any class, they need to include such an option (PONV clause, for Point of

Non-Viability, at the discretion of the regulator). Thus CoCo’s convert if a regulator finds out at

t = 1 that asset returns at t = 2 will be lower than what is compatible with a capital ratio above

the CoCo’s trigger value: the regulator stages an on site inspection, finds out that asset returns will

be RL < R and this drop in asset value is enough to trigger conversion under the PONV clause.

The regulator obtains data about R at t = 1 with probability zero (i.e. the event is not anticipated)

and then decides whether or not to convert the CoCo’s. The regulator’s decision to intervene is

not modeled in this paper. But his decision to convert CoCo’s introduces a negative signal about

asset returns even though the economic fundamentals θ remain the same.

2.4 Timing

First, let us consider the situation prior to conversion. By assumption, at t = 0, a fraction ē − n̄

of agents has invested in CoCo’s and a fraction 1− ē has invested in equity. The remaining n̄ are

depositors. Depositor types are only revealed at t = 1. The resulting type distribution is shown in

Table 1.

At t = 0, the bank has a total of 1 unit of assets. The bank invests the entire amount in the risky

asset. It also promises a fixed return r1 > 1 to agents who withdraw at t = 1, and a stochastic
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return that in the absence of runs by patient depositors equals r̃2 = max
[

n−λnr1
n−λn R, 0

]
. Note that

this is a DD contract since n−λnr1
n−λn R = 1−λr1

1−λ R . Define n as the proportion of agents who withdraw

at t = 1. Since impatient agents always withdraw at t = 1 , n ≥ λn̄. And because the CoCo

holders and equity holders cannot withdraw early, we also have n ≤ n̄.

At t = 1, before agents can act, the regulator comes in and decides whether to convert CoCo’s

or not. If conversion occurs, the return must have been found to be some RL < R. Without

conversion, no information is revealed. Note that depositors’ return at t = 2 is scaled by R, i.e.

when the asset return is found to be RL < R, the interest rate on deposits will change accordingly.

Effectively, the depositors have a variable-rate contract with the bank. This still preserves the risk-

sharing feature of Diamond-Dybvig, which concerns not so much the interest rate risk but the risk

that there will not be a return at all.

Also at t = 1, depositor types are revealed. The bank gives r1 > 1 to agents/depositors with-

drawing at this time as long as it is able to do so. To this end, the bank must liquidate part of the

amount invested in the risky asset. This means that the bank can only serve at most n = 1
r1

agents

at t = 1. The period two payoffs to the depositors in the no-conversion case are summarized in

Table 2. Depositors who wait until t = 2 will receive a return rD =
(

1−λr1
1−λ

)
R with probability

p(θ) as long as the bank is in fact able to pay this out. CoCo holders, because they are junior to

depositors, will receive amounts only once all the depositors have been served.

The bank will be able to pay out something as long as n < 1
r1

, as in GP (see Eqn. 2 below), that is

as long as it survives into period 2 at all. If n stays at its minimum value λn̄, i.e. only impatient

depsitors withdraw early, depositors will receive rD with probability p(θ) and 0 with probability

1− p(θ), as in GP. As before, CoCo holders are junior claimants so they receive pay outs only when

the remaining (1− λ) n̄ depositors have been served in period 2. With probability p(θ), equity and

CoCo holders will then collectively receive R (1− n) . How that surplus is divided between them

depends on CoCo pricing and corresponding CoCo returns. With probability 1− p (θ), the return

(to creditors and equity holders alike) will be zero.

But for n in between λn̄ and 1
r1

the outcomes are different from what they are in GP because there
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Table 2: Time-dependent payoffs to each depositor
Withdrawal in if n < λn̄ if λn̄ < n < λn̄ + e′

r1
if λn̄ + e′

r1
< n < 1

r1
if n ≥ 1

r1

t = 1 r1 r1 r1

{
r1 w.p. 1

nr1

0 w.p. 1− 1
nr1

t = 2 rD = 1−λr1
1−λ R rD


1−nr1

1−(λn̄+ e′
r1
)r1

rD w.p. p(θ)

0 w.p. 1− p(θ)
0

now is both junior debt (the CoCo’s before conversion) and straight equity. For depositors it does

not matter how these losses are allocated over junior claimants, so let us define e′ as the measure

of all junior creditors plus equity holders: e′ = 1− n. 4As long as there is any capital left, junior

debtors and equity holders will absorb losses before depositor pay outs are affected, so, contrary

to GP, depositors still receive rD in that region. The results differ from GP because in their set up

there is no capital, GP banks have a leverage ratio equal to 1. Note that the region where money

paid out to early runners eats into equity returns (because the assets generating those returns have

to be liquidated) is shorter than e′ because runners get paid out r1 > 1 (see Figure 2 below).Once

equity and junior debt claims have evaporated (n > λn̄+ e′
r1

), depositors will increasingly see their

pay out shrink too until the bank has to liquidate all assets when n reaches 1
r1

so that the bank does

not survive into period 2. Figure 2 below shows the various regions and the corresponding good

state of nature period 2 returns.

If the good state of nature return on the risky asset (R) turns out to be lower, say RL = R− ∆ < R,

the pay out schedule to period 2 depositors shifts down to the slotted line in Figure 2. We return

to this below.

Throughout we are assuming that n̄ > 1
r1

. If there is a relatively small measure of depositors(
n̄ ≤ 1

r1

)
, then depositors know that if they all stage a run, all of them will receive r1. But since

the incentive compatibility constraint r1 > p(θ) 1−λr1
1−λ R holds, only the impatient depositors will

withdraw at t = 1, and there will be no run (in the sense that patient depositors also withdraw

4We return to the allocation of losses over junior creditors and equity holders in section 6 when we discuss CoCo design,
the wealth transfers that take place upon conversion between CoCo holders and equity holders, and the incentives these
transfers imply for equity holders before conversion.
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Figure 2: Depositor returns at t = 2
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early). This simply says that adequately capitalized banks (e′ > 1− 1
r1

) are in no danger of a run.

We will not consider this case any further.

At this point it is useful to define v (θ, n) as the difference in utility of waiting versus running for

given values of θ and n , comparable to GP equation 3:

v (θ, n) =


p(θ)u( 1−nr1

1−(λn̄+e′/r1)r1
rD)− u(r1) if λn̄ + e′

r1
< n < 1

r1

0− u(r1)
1

nr1
if 1

r1
< n < n

2.5 Probability of a Bank Run: DD in a Global Games Framework

From Table 2, one can see that n is of primary importance in the payoff of an agent. In the DD

paper, n is either only the impatient depositors, or all of the depositors (multiple equilibria). This

is because they have nothing to coordinate on except for sunspots or bad expectations. Goldstein

and Pauzner (2005) recast the DD bank run problem in a global games framework and in doing

so obtain unique Bayesian equilibria with well defined probabilities tied to fundamentals. We

follow their approach in this paper. In the global games framework, depositors obtain private

and imprecise information about the economic indicator θ. In particular, at t = 1, each depositor

obtains a private signal θi uniformly distributed along [θ − ε, θ + ε], where the distribution is

known to all. Clearly θi depends on the realization of θ. Thus depositors know that the true
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value of fundamentals is at most ε away from their own signal. Depositors’ decisions crucially

depend on their draw of θi and on what they can deduce from that draw on the likely signals

other depositors must have received and what they are therefore likely to do.

There are two extreme regions where depositors’ decisions do not depend on what other agents

do. First one can define a θ = θ below which a patient depositor always finds it optimal to run

even if all other patient depositors were to wait. This assumption translates into n = λn̄. Thus θ

solves the equation u(r1) = p(θ)u
(

1−λr1
1−λ R

)
. GP call the region [0, θ) the lower dominance region.

There are always feasible values in the lower dominance region such that all signals will fall into

that region if θ > 2ε; for this to obtain it is sufficient if θ(1) > 2ε since θ(r1) is increasing in r1 as can

be seen by differentiating the implicit equation defining θ. θ(1) > 2ε in turn can be rewritten as

p−1
(

u(1)
u(R)

)
> 2ε, which shows that ε can always be chosen small enough for the lower dominance

region to be non-empty.

One can similarly define a θ̄ above which a patient depositor finds it optimal to wait even if all

other patient agents were to run (in GP’s terminology the upper dominance region). GP assume

that in the region (θ̄, 1], the investment is certain to yield R (p(θ) = 1 for θ > θ̄). Then it is never

optimal to run since R > r1. Alternatively one can assume a Central Bank standing ready to

provide liquidity in a run for high enough θ since in that case the bank is clearly solvent. Either

way, we follow GP in postulating the existence of such an upper dominance region. Since ε can

be chosen arbitrarily small, we can also safely assume that it is possible that all draws fall into the

upper dominance region, which requires θ̄ < 1− 2ε.

Within the region
[
θ, θ̄

]
, depositors must rely on equilibrium behavior of other depositors receiv-

ing nearby signals, which in turn depends on their nearby signals, and so on; continuity requires

that behavior smoothly pastes to the behavior in the extreme regions. Following GP, one can prove

that the unique equilibrium strategy is a switching strategy in which patient depositors run if they

receive a signal θi ≤ θ∗ and wait otherwise 5. θ∗ is defined such that a depositor receiving a sig-

nal θ∗ is indifferent between waiting and running at t = 1 over all possible outcomes of other

5Since the proof in our set up is almost identical to the corresponding proof in GP, we refer to GP for a detailed proof.
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depositors’ behavior:

ˆ 1
r1

n=λn̄+ e′
r1

[
p(θ = θ∗)u

(
1− nr1

1− (λn + e′
r1
)r1

rD

)
− u(r1)

]
dn−

ˆ n̄

n= 1
r1

1
nr1

u(r1)dn = 0(1)

⇒
ˆ 1

r1

n=λn̄+ e′
r1

[
p(θ = θ∗)u

(
1− nr1

1− (λn̄ + e′/r1)r1

1− λr1

1− λ
R
)
− u(r1)

]
dn−

ˆ n̄

n= 1
r1

1
nr1

u(r1)dn = 0

where Eqn. 1 defines θ∗ implicitly and is formed from the payoffs described in Table 2 and the

function v defined at the end of section 2.4.6 Because the depositors obtain signals θi from a uni-

form distribution around θ and θ is itself uniformly distributed over [0, 1], a higher θ∗ means

depositors run in a larger set of signals. For small ε, θ∗ can be interpreted as the probability of a

bank run. Also, each θ∗ corresponds to an n which is the measure of the number of runners at

t = 1 for given value of θ. This is7

n = λn̄ + (1− λ) n̄
[

1
2
+

θ∗ − θ

2ε

]
(2)

for θ∗ − ε ≤ θ ≤ θ∗ + ε. n = n̄ for θ < θ∗ − ε and n = λn̄ for θ > θ∗ + ε.

3 Effect of CoCo conversion on the probability of a run θ∗

Consider now the case when the regulator finds out that the return will be low. While θ∗ depends

on r1, it also depends on R and n̄. As mentioned in Section 2.3, we introduce the regulator action at

t = 1, before depositors can act. In the absence of CoCo conversion, depositors and other investors

believe that the return of the risky asset is R with probability p(θ) and 0 with probability 1− p(θ).

But when the regulator forces CoCo’s to convert, a signal is given that the return of the risky asset

is now some RL < R, without an accompanying change in the state of fundamentals θ. The impact

of a lower R on period 2 pay outs can be seen in Figure 2 (the shift from the solid to the slotted

6Eqn. 1 builds on the fact that θ is uniformly distributed. Since n is linear in its arguments, n must also be uniformly
distributed. The expression also assumes that p(θ) ≈ p (θ∗) for ε small enough, following GP.

7This is similar to the GP equilibrium n scaled down by n̄.
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Figure 3: Utility differential of waiting versus early withdrawal for different values of R
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line) and Figure 3 below. In Figure 3 we show the impact on the utility difference between waiting

and early withdrawal for given θ and n. From the diagram it should be clear that once integrated

over the entire range of n, the utility differential shifts against waiting, so the indifference point

in state space, θ∗, will have to shift up to restore balance. So the threshold θ∗ increases when the

return of the risky asset is reduced to RL.

To prove this formally, we compute the threshold θ∗ from the function that implicitly defines it .

This function was introduced in Section 2.5 as Eqn. 1. For convenience let us call this function as

f̂ (θ∗, r1, R)

f̂ (θ∗, r1, R) =
´ 1

r1

n=λn̄+ e′
r1

[
p(θ(θ∗, n))u

(
1−nr1

1−(λn̄+ e′
r1
)r1

1−λr1
1−λ R

)
− u(r1)

]
dn− ´ n̄

n= 1
r1

1
nr1

u(r1)dn = 0,

where θ was written as a function of n’s intermediate value (away from n = λn̄ or n = n̄), and θ

is assumed to be within ε−distance of θ∗. That is, θ = θ∗ + ε
[
1− 2

1−λ

( n
n̄ − λ

)]
(see Eqn. 2). At

θ = θ∗, a patient agent is indifferent between waiting or running, by definition of θ∗.

Note that since f̂ (·) is increasing in both R and θ, so in order to keep f̂ (·) = 0, a decrease in R

must be compensated by an increase in θ. From the implicit function theorem,

∂θ∗

∂R
= −

(
∂ f̂
∂R

)
÷
(

∂ f̂
∂θ∗

)
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It is easy to see that ∂ f̂
∂θ∗ > 0 : the dependence runs completely through θ(n, θ∗),while θ(n, θ∗) rises

in θ∗ and f̂ rises in θ because p′ (·) > 0 by construction. Now

∂ f̂
∂R

=

ˆ 1
r1

n=λn̄+ e′
r1

p(θ(θ∗, n))

∂u

(
1−nr1

1−(λn̄+ e′
r1
)r1

1−λr1
1−λ R

)
∂R

 dn

=

ˆ 1
r1

n=λn̄+ e′
r1

[
p(θ(θ∗, n))u′ (·)

(
1− nr1

1− (λn̄ + e′
r1
)r1

1− λr1

1− λ

)]
dn

> 0

since

[
1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
is positive over the entire interval of integration. And with f̂R > 0,

f̂θ∗ > 0 and ∂θ∗
∂R = − f̂R/ f̂θ∗ , Proposition 1 below follows:

Proposition 1. θ∗ is decreasing in R: ∂θ∗
∂R < 0 for all values of R

As a consequence, a negative signal on asset returns will lead to a higher run probability θ∗. This

holds for any negative signal that the depositors obtain about the return R. CoCo conversion

delivers a signal which is always negative because the conversion, which only takes place after

adverse events leading to a lower capitalization, is itself the signal. Upon learning this news, each

depositor will expect a lower differential payoff than its value before conversion, since RL < R (see

Figure 2). If for return R the depositors are just indifferent between running and waiting for a given

θ∗, then for return RL < R it must be that the depositors would prefer to run for the same value of

θ∗. In order to make the depositors once again indifferent between running and waiting for return

RL < R, they must obtain a higher signal about the fundamentals, that threshold value will go up:

θ∗L > θ∗ at the point of indifference, which is what Proposition 1 says. But since depositors’ θi are

uniformly distributed between [0, 1] , a greater measure of them will have θi < θ∗L, which implies

a higher probability of a run. Note that the increase in θ∗ also results in an increase in n for given

value of ε and θ.

Proposition 1 also has an important corollary on the impact of the trigger level of a CoCo. The
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basic point is that if a conversion is triggered at a low trigger level, the implied asset quality signal

is larger (i.e. more negative) than if the CoCo would have been triggered earlier, i.e. at a higher

capital ratio. Define the trigger ratio τ as the Capital to Asset ratio (CAR) threshold below which

a regulator will force conversion of the CoCo containing that trigger ratio upon finding out that

the actual CAR has fallen below τ. And define τH and τL as the trigger level of a high trigger level

H-CoCo and a low trigger level L-CoCo. Also define CAR0 as the CAR thought to apply before

the regulator’s on site inspection revealed a shortfall. It should be clear that conversion of the

L-CoCo gives a signal that is more negative than conversion of an H-CoCo would have given, by

CAR0 · (τH − τL) in absolute terms. Corollary 2 then follows immediately from Proposition 1:

Corollary 2. Conversion of a CoCo with a high trigger level will lead to a smaller increase in run probability

than conversion of a low trigger CoCo

Define θ∗H and θ∗L as the run probability that will obtain after conversion of a high (H) respectively

a low (L) trigger CoCo. Direct application of Proposition 1 with the definitions just introduced

shows that the following holds (exactly, since the derivative is positive for all R so we can apply

the Mean Value theorem):

θ∗L − θ∗H = −
(

∂θ∗

∂R

)
· (τH − τL) · CAR0 > 0

This result suggests that the BIS is right to insist on sufficiently high trigger levels before CoCo’s

are accepted as part of T1. According to the Basel committee (BCBS 2011), CoCo’s will be either

Tier 2 (T2) or Additional Tier 1 (AT1) capital, depending on their trigger ratio: a trigger above

5.125% satisfies the going concern requirement for AT1 and thus allows classification as AT1. Lower

triggers lead to a classification as gone concern instruments and consequently to a T2 status. The

impact of a conversion is that the CoCo holders change status from being subordinated debtors

to residual claimants. This lowers the issuing bank’s leverage ratio, and increases its common

equity tier 1 (CET1) capitalization. If the CoCo design did not satisfy Tier 1 (T1) requirements

(for example because of a trigger ratio that is too low to satisfy the going concern requirement,
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Figure 4: Change in the dominance regions due to a change in R
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conversion will increase the bank’s overall T1 capital requirement also.

It is also worth noting that a change from R to RL alters the dominance regions. Because the supre-

mum for the lower dominance region is determined by the equation u(r1) = p(θ)u
(

1−λr1
1−λ R

)
, a

change from R to RL necessarily increases θ. Also, the infimum of the upper dominance region

should not increase but may decline because if a minimum of θ̄ ensures that R will be obtained

with certainty, then there must at least as many θ-values that will ensure RL will be obtained with

certainty. This means that the post-conversion θ̄ must be no lower than the pre-conversion one.

Figure 4 shows the shift in the dominance regions and the effect on n.

To recapitulate: a CoCo conversion will increase a bank’s equity base or at least its T1 capital ratio,

depending on the type of CoCo, but the conversion nevertheless will increase the probability that

depositors will stage a run. The key intuitive point is that depositors were anyhow senior to the

CoCo holders, so conversion does not affect their position in situations of distress but does convey

a negative signal on asset returns. Conversion sets of wealth and risk transfers between classes

of creditors who are all junior to depositors so all depositors will pay attention to is the negative

signal.
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4 CoCo design and run probabilities after conversion

Until now we have left unspecified what specifically happens after conversion. What happens

after banks fall below the trigger value depends on the type of CoCo issued. For CoCo’s to qualify

as capital at all (whether that be T2 or AT1, see the preceding section for a detailed discussion),

they need to include a so called Point of No Viability trigger, i.e. the possibility for the regulator

to enforce conversion if the regulator decided that viability is threatened. Currently used CoCo

designs fall into 3 distinct types8.

First are convert-to-equity (CE) CoCo’s such as those issued for example by Lloyds recently. These

CoCo’s completely convert to equity at some conversion rate ψ. Most commentators and some aca-

demics (cf Martynova and Perotti (2012)) have this type of CoCo design in mind when discussing

CoCo’s in general.

Next are principal writedown (PWD) CoCo’s. Upon breaching the trigger value, these CoCo’s are

partially or entirely written down. In case of partial write down, the remaining part effectively

turns into subordinated debt. The effect is also a reduction in the issuing bank’s leverage ratio,

but without issuing new shares of equity. Japan’s Mizuho Financial Group9 has most recently

issued such CoCo’s. The impact of conversion on the various capital ratios is as discussed in the

preceding section.

Finally there are also principal writedown CoCo’s with cash outlays (CASH). Similar to the PWD

CoCo’s, CASH CoCo’s are also (partially) written off upon the bank’s breach of the trigger value.

The remaining value is paid out in cash. Notably, Rabobank of the Netherlands has issued this

type of CoCo. CASH CoCo’s may or may not reduce the leverage ratio of a converting bank

depending on the numerical value of the parameters (percentage writedown). The write down

works in the right direction, but the cash pay out undermines that effect. Since there is most likely

no capital requirement against highly liquid assets, CASH CoCo’s do not reduce risk-weighted

assets (RWA) upon conversion and so will improve the RWA-based CET1 capital ratio and the
8cf van den Berg et al. (2014) and Avdjiev et al. (2013)for an extensive description of all CoCo’s issued up until 2013 and

2014 respectively
9Financial Times: March 26, 2014
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Table 3: Depositor payoffs: regulatory forbearance (undisclosed low returns RL)
If n < 1

r1
If n ≥ 1

r1

t = 1 r1

{
r1 w.p. 1

nr1

0 w.p. 1− 1
nr1

t = 2


(

1−nr1

1−(λn̄+ e′
r1
)r1

)(
1−λr1
1−λ

)
RL w.p. p

0 w.p. 1− p
0

overall T1 ratio since the CASH CoCo presumably does not qualify as T1 before conversion. Of

course if the bank needs to sell risk assets to raise the cash to pay out on the CASH CoCo’s, there

is an impact on RWA and the impact on capital ratios is more complex. Also, having to sell risk

assets in the middle of a distress situation may trigger firesales with corresponding problems (see

Brunnermeier et al. (2013) for a discussion of firesale amplification cycles). A surprising feature of

this type of CoCo design is indeed that it implies a cash call in times of distress. Because of the

automatic cash pay out, this type of CoCo’s probably does not qualify as either AT1 or T2 capital

before conversion.

In this section, we examine the impact of CoCo design on the probability of a bank run after

conversion and on the equity position of the bank if partial runs do occur.

4.1 Baseline Case: Regulatory Forbearance (RF)

As a benchmark, we consider the case where the regulator finds out that returns will be low but

decides to not publicize this finding. The CoCo’s do not convert. Depositors base their behavior

on the belief that in good states of nature returns are R but in fact they will be RL. Table 3 shows

the payoffs to depositors.

Tables 2 and 3 are almost identical. However, in Table 3, we show the case when returns are found

out to be low. But if depositors do not know returns will be low, the differential payoff function
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remains the same as in Eqn. 3 .

vL =


p(θ)u

([
1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
R

)
− u(r1) if λn̄ + e′

r1
≤ n ≤ 1

r1

0− u(r1)
nr1

if 1
r1
≤ n ≤ n̄

(3)

The corresponding implicit function that determines θ∗r f is given by Eqn. 4.

f̂
(

θ∗r f , r1, R
)

=

ˆ 1
r1

n=λn̄+ e′
r1

[
p(θ(θ∗r f , n))u

([
1− nr1

1− (λn̄ + e′
r1
)r1

](
1− λr1

1− λ

)
R

)
− u(r1)

]
dn(4)

−
ˆ n̄

n= 1
r1

1
nr1

u(r1)dn = 0

Obviously, since the derivations of θ∗r f are based on the same set of beliefs as in our base case

without bad news, θ∗r f = θ∗. Depositors do not know that R has fallen to RL, so the run probability

θ∗ is not affected. In the event that n < 1
r1

at t = 1, then

(n̄− n)

[
1− nr1

1− (λn̄ + e′
r1
)r1

](
1− λr1

1− λ

)
RL

will be given to the remaining depositors who didn’t run at t = 1 (this amounts to n̄− n deposi-

tors), while what remains of the asset base

RL

(1− nr1)−
(n̄− n) (1− nr1) (1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)


will be used to first pay out the junior CoCo holders (who collectively have ē− n̄ worth of claims

that earn a return rcoco per unit10). Finally, anything that remains after that will go to equity hold-

ers.
10Here rcoco is an arbitrary return to CoCo holders. In this paper we are taking this return as a given, as we do not get

into the pricing of CoCos.
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Table 4: Depositor payoffs after CE CoCo’s conversion
If λn̄ + e′

r1
< n < 1

r1
If n ≥ 1

r1

t = 1 r1

{
r1 w.p. 1

nr1

0 w.p. 1− 1
nr1

t = 2


(

1−nr1

1−(λn̄+ e′
r1
)r1

)(
1−λr1
1−λ

)
RL w.p. p

0 w.p. 1− p
0

Thus, assuming that RL

[
(1− nr1)− (n̄−n)(1−nr1)(1−λr1)(

1−(λn̄+ e′
r1
)r1

)
(1−λ)

]
> 0, the remaining equity base under

regulatory forbearance
(

Er f

)
will be

Er f = max

RL

(1− nr1)−
(n̄− n) (1− nr1) (1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)

− rcoco (ē− n̄) , 0


Under regulatory forbearance, there is no way to reduce a bank’s liabilities, so any negative asset

development immediately eats into equity (and CoCo’s once limited liability becomes a binding

constraint on the decline in equity). We will come back to this point later.

4.2 Convert-to-equity (CE) CoCo’s

Consider now the case where the regulator does force conversion, CE CoCo holders turn into

equity holders upon conversion, and therefore, forfeit the right to receive the amount up to ē− n̄

but become entitled to a share in any residual income. In other words, only n̄− n agents have to

be paid out the promised amount at t = 2 . Table 4 shows the resulting payoffs to depositors. The

differential payoff function used by depositors is different now, since depositors do receive the

negative signal associated with CoCo conversion. Eqn. 5 is different from Eqn. 3, R is replaced by
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the lower value RL:

vce =


p(θ)u

([
1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL

)
− u(r1) if λn̄ + e′

r1
≤ n ≤ 1

r1

0− u(r1)
nr1

if 1
r1
≤ n ≤ n̄

(5)

As before, we can compute the threshold run value of the economic fundamental for a CE CoCo

implicitly. Denote by θ∗ce the probability of a run for the CE case. As before, the equation that

implicitly defines θ∗ce is given by Eqn. 6.

f̂ce(θ
∗
ce, r1, RL) =

ˆ 1
r1

n=λn̄+ e′
r1

[
p(θ(θ∗ce, n))u

([
1− nr1

1− (λn̄ + e′
r1
)r1

](
1− λr1

1− λ

)
RL

)
− u(r1)

]
dn(6)

−
ˆ n̄

n= 1
r1

1
nr1

u(r1)dn = 0

Then application of Proposition 1 immediately shows that θ∗ce > θ∗r f . This highlights the bind

regulators are in when they find out they should force CoCo’s to convert. The negative signal that

conveys to depositors actually increases financial fragility.

On the other hand, converting CE CoCo’s increases the equity at t = 2 relative to the RF case. This

is clear because when CE CoCo’s are converted, the CoCo holders do not have to be paid out at

t = 2 anymore. Let nce denote the number of runners implied by the probability of bank run θ∗ce.

We can actually see the beneficial effect of a CoCo conversion, because provided that θ∗ce yields

nce <
1
r1

, the bank survives until t = 2 with more capital as CoCo holders are no longer creditors.

We can denote by Ece the resulting equity upon conversion of the CE CoCo’s.

Ece = max

RL

(1− ncer1)−
(n̄− nce) (1− ncer1) (1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)

 , 0

 (7)

From Section 4.1, since θ∗r f < θ∗ce, it must also be true that nr f < nce. Ece differs from Er f by the

difference between nr f and nce, and also by the amount that must be paid to the CoCo holders
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(which disappears in the conversion of CE CoCo’s). Note that

Ece − Er f = rcoco (ē− n̄) + RL

(
nr f − nce

)
+
[(

nce − nr f

)
(1 + n̄r1) +

(
n̄2

r f − n̄2
ce

)]
ΓRL

= rcoco (ē− n̄) + RL

(
nce − nr f

)
(Γ (1 + n̄r1)− 1) +

(
n̄2

r f − n̄2
ce

)
ΓRL

nce − nRF > 0, and Γ(1 + nr1)− 1 = (1−λr1)(1+nr1)

(1−(λn̄+ e′
r1
)r1)(1−λ)

− 1 = (1−λr1)(1+nr1)
n(1−λr1)(1−λ)

− 1 = (1+nr1)
n̄(1−λ)

− 1 > 0,

using the definition of e′, so up to a first-order approximation (ignoring the quadratic terms in n),

the conversion indeed improves the equity base of the bank if at least it survives into the good

state of nature.

Proposition 3. Iff nce <
1
r1

(i.e. the bank survives period 1), conversion of CE CoCo’s ,improves the bank’s

equity position at t = 2 as the bank is able to eliminate up to rcoco (ē− n̄) worth of liabilities.

This result points to an incentive for regulators to actually force conversion once they find out

about lower returns RL. The regulator does face conflicting incentives when finding out about

RL. On the one hand, conversion increases the probability of a run because it conveys a negative

signal about asset returns. On the other hand, conversion also ensures that if runs occur, there

is a probability that there will be a surviving equity base, and that it will be higher than when

regulators are forbearing. Regulators thus are forced to choose between keeping fragility low at

the expense of worsening the consequences of a run if it does occur , and increasing the likelihood

of a run but leaving the bank better equipped to deal with one.

4.3 Principal Writedown (PWD) CoCo’s

We have previously described PWD CoCo’s as having a fraction written down upon conversion.

Let 1 − ϕ denote the fraction of CoCo’s that is written off when conversion occurs, so ϕ is the

fraction that is left, where 0 ≤ ϕ ≤ 1. We can then write the total creditor (i.e. non-equity)

claims at t = 2 as ϕ (ē− n̄) + (n̄− n), provided that the bank did not fail at t = 1. However, the

depositors (n̄− n) still get paid first. Table 5 describes the payoffs to depositors in the PWD case
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Table 5: Depositor payoffs after PWD CoCo’s conversion
If λn̄ + e′

r1
< n < 1

r1
If n ≥ 1

r1

t = 1 r1

{
r1 w.p. 1

nr1

0 w.p. 1− 1
nr1

t = 2


(

1−nr1

1−(λn̄+ e′
r1
)r1

)(
1−λr1
1−λ

)
RL w.p. p

0 w.p. 1− p
0

after conversion.

As in the CE CoCo case, the amount that each depositor would obtain is the same as that under

no conversion because depositors are senior to remaining CoCo holders. Therefore the differential

payoff function used by depositors here (Eqn. 5) is identical to what it is in the case of CE CoCo’s.

vpwd =


p(θ)u

([
1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL

)
− u(r1) if λn̄ + e′

r1
≤ n ≤ 1

r1

0− u(r1)
nr1

if 1
r1
≤ n ≤ n̄

(8)

Let θ∗pwd denote the threshold level of θ for the PWD case. We can again find θ∗pwd from the implicit

function in Eqn. 9.

f̂pwd(θ
∗
pwd, r1, RL) =

ˆ 1
r1

n=λn̄+ e′
r1

[
p(θ(θ∗pwd, n))u

([
1− nr1

1− (λn̄ + e′
r1
)r1

](
1− λr1

1− λ

)
RL

)
− u(r1)

]
dn(9)

−
ˆ n̄

n= 1
r1

1
nr1

u(r1)dn = 0

Since the differential pay off function is the same, it follows that θ∗pwd = θ∗ce. This means that PWD

CoCo’s are not an improvement over CE CoCo’s if evaluated for their impact on probability of

runs after a bad signal because neither type of CoCo changes the incentives for depositors. The

explanation is straightforward: PWD and CE CoCo’s imply different wealth transfers between

CoCo holders and equity holders, but since depositors are senior to both groups of claimants, they

do not care how losses are allocated between them.
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Figure 5: Depositor returns at t = 2 under a cash payout to coco holders
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Proposition 4. PWD CoCo’s have the same impact on the probability of bank runs as CE CoCo’s: θ∗pwd =

θ∗ce > θ∗RF.

4.4 Principal Writedown CoCo’s with Cash Outlays (CASH)

CASH CoCo’s are a variant of PWD where in addition to writing off a fraction of CoCo claims, the

remaining fraction is paid out in cash upon conversion. Formally, we can let δr1 represent the total

payout given to the CoCo holders at t = 1 conversion such that at most, 1
r1
− δ running depositors

at t = 1 can be accommodated. However, as a fraction of CoCo claims is written off, anything left

after serving depositors at t = 2 will be divided among the equity holders.

As long as there are only n = λn̄ + e′
r1

running depositors at t = 1, each depositor will receive rD.

However, once n exceeds λn̄ + e′
r1, , each depositor will receive less under CASH compared to any

of the other CoCo setups. This is because the maximum number of depositors that can be served

at t = 1 is reduced by δ. Figure 5 shows what happens under that case.

Clearly deposit returns will change after conversion of the CoCo’s. Instead of obtaining

[
1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL,

each depositor who waits would now only get

[
1−δr1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL. Notice the impact of the

cash payout δr1 on the amounts that the depositors receive. Table 6 shows the depositor payoffs

under the CASH design. Notice also the change in the thresholds of n.

Even though equity holders absorb δr1, depositors will still be affected: if δr1is paid out in cash
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Table 6: Payout to depositors after CASH CoCo’s conversion
If λn̄ + e′

r1
− δ < n < 1

r1
− δ If n ≥ 1

r1
− δ

t = 1 r1

r1 w.p. 1
n

(
1
r1
− δ
)

0 w.p. 1− 1
n

(
1
r1
− δ
)

t = 2


[

1−δr1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL w.p. p

0 w.p. 1− p
0

upon conversion, there is correspondingly less cash available to pay out in case of early with-

drawals. This will affect the differential pay off function, and therefore θ∗ and the corresponding

expected number of runners n. Consider first the impact of paying out cash on n. The cash payout

decreases the maximum value of n from 1
r1

to 1
r1
− δ. However, because we let the equity holders

and the coco holders absorb first losses, this also means that the value of n where the amount rD

is scaled by the number of runners is also pushed back by δ (from λn̄ + e′
r1

to λn̄ + e′
r1
− δ). This

means that the bounds of n change. Eqn. 10 shows the differential payoff function for the CASH

case.

vcash =


p(θ)u

([
1−δr1−nr1

1−(λn̄+ e′
r1
)r1

] (
1−λr1
1−λ

)
RL

)
− u(r1) if λn̄ + e′

r1
− δ ≤ n ≤ 1

r1
− δ

0− 1
n

(
1
r1
− δ
)

u(r1) if 1
r1
− δ ≤ n ≤ n̄

(10)

The equation that implicitly defines θ∗cash can be formed from the differential payoff equation. This

is given by Eqn. 11.

f̂cash(θ
∗
cash, r1, RL) =

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

[
p(θ(θ∗cash, n))u

([
1− δr1 − nr1

1− (λn̄ + e′
r1
)r1

](
1− λr1

1− λ

)
RL

)
− u(r1)

]
dn(11)

−
ˆ n̄

n= 1
r1
−δ

1
n

(
1
r1
− δ

)
u(r1)dn = 0

We can see that as δ→ 0, θ∗cash → θ∗pwd = θ∗ce. However, because the bounds of the integral change

along with the expression within the utility function, it is difficult to be precise unless we look at

the derivative of θ∗cash with respect to δ. A cash payout δr1 reduces the amount that is available
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Figure 6: Differential utility for different values of δ
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𝛿 ↑

to depositors who wait until t = 2 (see the reduction in the numerator of u (·)). However, by

choosing to wait, depositors forgo receiving r1 at t = 1. If n falls into the range 1
r1
− δ ≤ n ≤ n̄,

a depositor’s “expected opportunity loss” is only − 1
n

(
1
r1
− δ
)

u(r1) rather than − 1
nr1

u(r1). As

such, there is less to lose by waiting if n happens to be large, but one must note as well that the

range
[

1
r1
− δ, n̄

]
rises with δ. The ambiguity arises because both the gain from waiting and the

loss from waiting fall at the same time. Figure 6 illustrates the differential payoff functions for

different values of δ.

In this section, we follow the earlier procedures and calculate the derivatives of θ∗cash with respect

to δ explicitly using the implicit function theorem. The expressions are laborious and so relegated

to the Annex, but we can unambiguously sign the derivative: ∂θ∗cash
∂δ > 0 . The impact of δ on the

gain from waiting is higher than its impact on the expected opportunity loss from waiting. Thus,

a higher θ∗cash is needed to compensate for the impact of an increase in the cash component δ.

Proposition 5. θ∗cash is increasing in δ: ∂θ∗
∂δ > 0

For the proof see the Annex. Combining Proposition 5 with our earlier results allows us to give a

definitive ranking of the types of CoCos in terms of impact on probability of bank runs:

Corollary 6. For δ > 0, θ∗r f < θ∗ce = θ∗pwd < θ∗cash
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5 Contagion and Systemic Risk

5.1 Contagion

Banks may have correlated asset returns for several reasons. The most obvious one is that banks

often have cross-holdings of deposits (Allen and Gale (2000)). Another is when banks invest in

the same set of industries, either by intentionally herding (like in Acharya and Yorulmazer (2008,

2007); Farhi and Tirole (2012)) or as a result of their individual diversification policies as in Wagner

(2010). Banks also tend to invest in similar assets as a result of conforming to regulatory require-

ments by institutions such as BCBS (as in Iannotta and Pennacchi (2012)). Thus, negative informa-

tion about one bank may have an adverse impact on other financial institutions. This information

contagion effect has been well-documented (empirically) in the literature and is not confined to

the banking sector Aharony and Swary (1983, 1996); Lang and Stulz (1992). Thus, when CoCo’s

of one bank convert, they impose an information externality on the other banks who hold assets

with returns correlated to those of the converting bank. In this section we show how this could

happen.

To do so we consider a two-bank system. Let Bank 1 be a CoCo-issuing bank (as discussed in

Sections 4.2, 4.3 and 4.4) (at this stage, the type of CoCo doesn’t matter - only the conversion does)

and without loss of generality, let Bank 2 be an ordinary bank without CoCo’s. Similar to Bank 1,

Bank 2 also has a continuum of depositors who obtain private signals θ2i ∼ U[θ2 − ε, θ2 + ε], and

investments in risky technology with return R2 but no CoCo’s. Table 7 summarizes the setup for

the two-bank case.

As Bank 2 depositors also obtain private signals θ2i, its patient depositors also decide whether to

wait or to run at t = 1 depending on their posterior assessment of θ2. The decision is made by
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Table 7: Summary of Bank Features: Two-Bank System
Bank 1 Bank 2

Bank type CoCo-issuing ordinary
agents continuum from [0, 1] continuum from [0, 1]

CoCo holders ē− n̄ 0
equity holders 1− ē 1− ē

impatient depositors λn̄ λē
patient depositors (1− λ)n̄ (1− λ) ē
probability of run θ∗1 θ∗2
potential returns 0 or R1 ∈ {RL, R} 0 or R2 = {RL, R}

Figure 7: Depositor payouts at t = 2 for a non-coco bank
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using the differential payoff function for depositors of Bank 2, shown in Eqn. 12.

v2(θ, n) =


p(θ)u

((
1−nr1

1−
(

λē+ e′′
r1

)
r1

)(
1−λr1
1−λ

)
R2

)
− u(r1) if λē + e′′

r1
≤ n ≤ 1

r1

0− u(r1)
nr1

if 1
r1
≤ n ≤ ē

(12)

where e′′ = 1− ē (See Figure 7). As before, there is only one value of θ which makes them indif-

ferent between waiting and running. Call this value θ∗2 . As before, this can be interpreted as the

probability of a run in Bank 2, and is defined implicitly by its differential payoff function where

now λē ≤ n ≤ ē because Bank 2 did not issue CoCo’s.
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The function that implicitly defines Bank 2’s probability of a run is given by11

f̂ (θ∗2 , r1, R) =

ˆ 1
r1

n=λē+ e′′
r1

p(θ(θ∗2 , n))u

 1− nr1

1−
(

λē + e′′
r1

)
r1

(1− λr1

1− λ

)
R2

− u(r1)

 dn(13)

−
ˆ ē

n= 1
r1

1
nr1

u(r1)dn = 0

We now want to determine the impact of Bank 1’s CoCo conversion on Bank 2’s probability of a

bank run. Formally, we want to determine the sign of the derivative ∂θ∗2
∂R1

at t = 1. This can be

written as
∂θ∗2
∂R1

=
∂θ∗2
∂R2

∂R2

∂R1
(14)

where the first term is the impact of a change in the return of Bank 2 on the Bank 2’s run probability.

From Proposition 1, it is clear that ∂θ∗2
∂R2

< 0. The sign of ∂R2
∂R1

of course depends on the correlation

of R2 and R1. If they are positively correlated, ∂R2
∂R1

> 0. If not, then ∂R2
∂R1

= 0. Any information

about R1 (and therefore R2) is revealed only when CoCo’s convert. Otherwise, no information

is revealed. Thus, we have that in the event of a CoCo conversion and correlated asset returns,
∂θ∗2
∂R1

< 0.

Proposition 7. If bank returns are correlated, CoCo conversion in one bank leads to an increase in the run

probability of another bank. This is true regardless of the type of CoCo issued by the converting bank.

We have mentioned in Section 2 that when n̄ is small
(

n̄ < 1
r1

)
, depositors know that they will all

be served at t = 1 if they all withdraw. In this case only the impatient depositors withdraw, and

all the patient depositors wait until t = 2. However, this small n̄ does not preclude the possibility

that the regulator finds it necessary to force conversion of CoCos.

From Proposition 7, the knowledge of Bank 1’s conversion leads Bank 2 depositors to have a higher

required threshold θ∗∗2 > θ∗2 . This increases the proportion of depositors who obtain signals that

are lower than the new threshold. Thus while conversion in Bank 1 may not cause a run in Bank 1,

11This, along with Eqn. 12 is the θ∗ derivation in GP but scaled by ē (no CoCo’s).
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it raises the probability of runs in Bank 2. Moreover, it may even cause full runs in Bank 2 because

n ∈ [λē, ē] ⊇ [λn̄, n̄] such that when θ∗∗2 is high enough, the associated n2 exceeds 1
r1

.

Corollary 8. CoCo conversion of Bank 1 leads to a higher probability of bank runs in Bank 2 (and possibly

even failure), even if Bank 1 has small n̄.

5.2 Systemic Risk

From the above discussion, it is only a small step to show that CoCo conversion raises systemic

risk. In general, systemic risk can be described as a situation where the banks fail at the same time,

or if the failure of one bank spreads to other banks. While banks are not compelled under Basel 3

to issue CoCo’s, an increasing number of banks have been issuing them12. It is therefore natural

to examine the impact on systemic risk of having CoCo’s in the banking system. Since systemic

risk is the risk that banks fail jointly, and since in this paper, we define bank failure as being due

to bank runs, we quantify systemic risk to be the product of each bank’s probability of a run, as in

Ahnert and Georg (2012).

It is straightforward to show that systemic risk rises when CoCos convert, regardless of the type of

CoCo issued. To do this, we still work with the two-bank case, as with the discussion on contagion.

From Proposition 7, ∂θ∗2
∂R1

> 0. Let us call the raised value of θ∗2 due to a drop in the returns of Bank

1 as θ∗∗2 . Thus, θ∗∗2 > θ∗2 .

As a benchmark case, consider what would happen when the regulator exercises forbearance and

doesn’t convert CoCos of Bank 1 despite knowing that returns will be low. Then, Bank 2 depositors

would not obtain any signal about R, and they would not be affected. Systemic risk would then

be θ∗r f · θ∗2 .

Next, consider what would happen when the regulator decides to convert the CoCos of Bank 1.

Bank 2 depositors would infer that Bank 1 returns would be low. This has an impact on the returns

of Bank 2, which would also be lower. As a result, Proposition 7 applies and so the probability of

12Financial Times, May 26, 2014
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bank runs in Bank 2 is now θ∗∗2 . Systemic risk would then be θ∗convert · θ∗∗2 , where we use θ∗convert to

refer to the heightened θ∗ from any kind of converted CoCo. Note that we now have

θ∗convert · θ∗∗2 ≥ θ∗r f · θ∗2

The contagion effect becomes more obvious when we increase the number of banks. Suppose we

have n banks, where Bank 1 is a CoCo bank, while the remaining n − 1 banks are same-sized

regular banks (one could think there are n − 1 clones). Suppose also that bank asset returns are

correlated throughout the financial system. Systemic risk is then the product of the probability of

bank runs of all n banks:

θ∗1 × θ∗2 × · · · × θ∗n

Systemic risk under regulatory forbearance would be

θ∗r f · (θ∗2 )n−1

While systemic risk under a watchful regulator would be

θ∗convert · (θ∗∗2 )n−1

And as before

θ∗convert · (θ∗∗2 )n−1 > θ∗r f · (θ∗2 )n−1

As n → ∞, the difference becomes larger because θ∗∗2
θ∗2

> 1, which rises with n, while Bank 1’s θs

are not affected by n.

Proposition 9. When the regulator is forbearing, systemic risk due to bank runs at t = 1 perversely

remains low. On the other hand, when the regulator is not forbearing and forces CoCo conversion in one
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bank, systemic risk rises. Moreover, as the number of banks increase, systemic risk rises more.

6 Wealth transfer effects of CoCo conversions

In the discussion so far we have almost completely focused on how conversion and in particular

the signal that it conveys changes the incentives that depositors face. Conversion does not affect

depositors directly but their run incentives change nevertheless because the act of conversion con-

stitutes a negative signal on asset quality. But conversion in itself basically reallocates losses over

CoCo holders and equity holders, both of whom are junior to depositors, hence the lack of a direct

impact (other than the consequences of the signal conversion gives) on deposit holders. But there

generally will be a very direct impact on the junior claim holders, be they the CoCo holder or

equity holders. Which way that goes depends critically on the CoCo design, to which we turn in

this section. We measure wealth transfers by comparing what each original equity holder would

obtain after conversion of different types of CoCo’s to a benchmark case where teh bad signal is

given, but no conversion takes place. Note that only outcomes in the good state of nature (oc-

curring with probability p(θ)) are of interest because in the bad state of nature, occurring with

probability 1− p(θ)), equity holders and CoCo holders alike will be wiped out anyhow whether

there is conversion or not and whatever the CoCo design.

6.1 Benchmark case

To examine whether wealth transfers occur, we need to set up a benchmark case as defined: the

signal on deterioration of asset quality has gone out, so returns have been found out to be RL, but

cocos have not converted. The benchmark is chosen this way to isolate the direct impact of CoCo

conversion, separate from the indirect impact through the asset quality signal since that signal

will go out under all CoCo designs, and comparison between different designs is the focus of this

section. We have seen in Sections 3 and 4 that for CE and PWD CoCo’s, θ∗ responds to the asset

quality signal only, so in the benchmark case θ∗ rises to the same level, call it for convenience’ sake
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θ∗benchmark, as when the CoCos have converted:

θ∗benchmark = θ∗ce = θ∗pwd

nbenchmark = nce = npwd

However, in this benchmark case CoCos do not convert so CoCo holders still hold a claim ē− n̄

on the assets that is senior to equity. We have not discussed CoCo pricing, but assume they have a

return rcoco per unit of investment, then total liability to CoCo holders would be rcoco (ē− n̄). Since

equity holders are junior to holders of unconverted CoCo’s equity holders would each receive

RL

(1− nbenchmarkr1)−
(n̄− nbenchmark) (1− nbenchmarkr1) (1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)

− rcoco (ē− n̄)

× 1
(1− ē)

(15)

6.2 Convert-to-equity CoCo’s (CE)

Suppose returns were RL and CoCo’s converted to equity. Suppose also that the conversion rate

of CoCo’s is some ψ > 0. This allows for the general case where the conversion to equity is not

1 : 1.

Each equity holder now obtains

RL

(1− ncer1)−
(n̄− nce) (1− ncer1) (1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)

 [ 1
(1− ē) + ψ (ē− n̄)

]
(16)

We can see that the original equity holders may or may not be wiped out depending on the con-

version rate ψ. As ψ → 0, the original equity holders are not wiped out at all, on the contrary, the

CoCo holders are wiped out and the original become the sole residual claimants and obtain all the

benefits of the bank remaining afloat. But at the other extreme (ψ → ∞) old equity holders are

completely diluted and the CoCo-holders-turned-equityholders become de facto the sole residual
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claimants.

To determine whether a wealth transfer occurs when CoCos convert, we need to compare Eqns. 15

and 16. Since θ∗benchmark = θ∗ce and nbenchmark = nce = n′ and let A = (1− n′r1)− (n̄−n′)(1−n′r1)(1−λr1)(
1−(λn̄+ e′

r1
)r1

)
(1−λ)

.

There will be a wealth transfer from CoCo holders to the original equity holders if the original eq-

uity owners’ equity position after conversion is better than it is in the benchmark case:

RL A
[

1
(1− ē) + ψ (ē− n̄)

]
> {RL A− rcoco (ē− n̄)} × 1

(1− ē)
(17)

RL A
RL A− rcoco (ē− n̄)

>
(1− ē) + ψ (ē− n̄)

(1− ē)
RL A

RL A− rcoco (ē− n̄)
> 1 +

ψ (ē− n̄)
1− ē

ψ <

(
RL A

RL A− rcoco (ē− n̄)
− 1
)(

1− ē
ē− n̄

)
=

(
rcoco (ē− n̄)

RL A− rcoco (ē− n̄)

)(
1− ē
ē− n̄

)
=

rcoco (1− ē)
RL A− rcoco (ē− n̄)

Eqn. 17 allows us to define a conversion rate that leaves equity holders in the same position they

are in the benchmark case by defining ψeas the conversion rate for which Eqn. 17 holds with

equality:

ψe =

(
rcoco(1− e)

RL A− rcoco (ē− n̄)

)
(18)

If the conversion rate equals ψe, losses due to the asset deterioration are allocated over equity

holders and CoCo holders exactly in line with existing seniority. If ψ > ψe, a wealth transfer

takes place from equity holders to CoCo holders; if ψ < ψe, wealth transfers in fact go the other

way, then the original equity holders actually profit from conversion (given that the bad signal

has gone out), so the wealth transfer takes place from CoCo holders to the original equity holder.

ψe depends on both the ratio of unconverted CoCo obligations to the total remaining asset base

before CoCos are converted, and the ratio of equity holders to CoCo holders in an obvious way.
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Clearly, the direction of the wealth transfer has a major impact on the equityholders’ ex ante in-

centives to issue more shares to forestall conversion or on the contrary try to force conversion,

for example by organizing well-publicized short selling pressure, depending on whether they are

over- or underdiluted compared to the benchmark case. In particular, if ψ > ψe , the CE CoCo

is sufficiently dilutive for old equity holders to make it profitable for them to issue new shares

and raise more capital that way to forestall conversion13. We can summarize our results in the

following proposition:

Proposition 10. CoCo’s that convert to equity potentially effect a wealth transfer from equity holders to

the CoCo holders or vice versa depending on the conversion rate. When

• ψ < ψe = 1−ē
RL A−(ē−n̄) , there is insufficient dilution and consequently conversion implies a wealth

transfer from CoCo holders to original shareholders.

• ψ = ψe, conversion allocates losses strictly in line with seniority.

• ψ > ψe, CoCos are excessively dilutive, i.e. a wealth transfer from original equity holders to CoCo

holders takes place. As ψ→ ∞, CoCo holders wipe out the original shareholders.

10has major implications for the ex ante incentives shareholders and CoCO holders face to fore-

stall or encourage CoCo conversion. The basic idea behind CoCo’s is to induce shareholders to

issue more equity in times of distress, but the proposition clearly indicates that those incentives

may well be absent or even reversed unless CoCo ’s are properly designed. Calomiris and Her-

ring (2013) for example stress that CoCos should be properly designed in such a way that their

design provides an incentive to shareholders to issue additional equity early enough to forestall

conversion. They call for CoCo’s to be sufficiently dilutive and postulate that, if designed in that

manner, CoCo’s will reduce risk shifting pressure by equity holders. They argue that a CoCo, to

be sufficiently dilutive, should at least preserve the principal value of the CoCo, and proceed to

propose a premium on top of preservation of principal equal to 5% of shareholder value shared

out over the entire CoCo base.
13If there are costs of equity issuance the trigger level for ψ would change commensurately.
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Consider first the preservation of principal (PP) as a guiding principle in setting the conver-

sion ratio. Call the conversion rate that aims to preserve the value of the principal of CoCo’s

ψPP. The value of ψPP follows from equating the principal value of CoCos without a conver-

sion (ē− n̄) and with what the holders of CE CoCos would collectively obtain under conversion,

(RL A)
(

1
(1−ē)+ψ(ē−n̄)

)
ψ (ē− n̄), which after some algebra yields:

ψPP =
1− ē

RL A− (ē− n̄)
<

(
rcoco(1− e)

RL A− rcoco (ē− n̄)

)
→ψPP < ψe

if at least CoCo’s earn a positive return, i.e. if rcoco > 1. So the “Preserving Principal” benchmark

value for the conversion rate is very similar to our neutral transfer conversion rate ψe but not ex-

actly equal to it. If the net return on CoCo’s is zero (i.e. rcoco = 1), the two trigger rates become the

same. That also explains their difference: in the PP case, the original equity holders still manage

to appropriate the net return of the CoCo holders and so still obtain some benefits compared to

what strict seniority would imply. In our neutrality case where seniority is strictly imposed, CoCo

holders receive not only their original principal value but also the statutory returns before equity

holders get paid.

Calomiris and Herring (2013), presumably for that reason, propose to pay out a premium over

preservation of principal to CoCo holders upon conversion equal to 5% of the equity value at the

moment of conversion. We ignore for the moment the problem that for market based triggers

(which they prefer) the equity value may in fact reflect that possibility. But even if that is not

the case, for example because the trigger is based on book values and the resulting equity values

only reflect the residual value conditional on the pre-conversion situation, that rule may still not

set incentives in the desired direction. The problem is that the effective return on CoCo’s post

conversion then depends on the pre-conversion ratio between equity value and CoCO principal.

If CoCo’s are “large” in respect to equity, 5% of equity value may well not be enough compared to

the statutory return on CoCo’s rcoco. Under the Calomiris Herring proposal, the effective net return
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on CoCo’s post conversion equals: rCH − 1 = 0.05 ∗ (1−e)
(e−n) . For the Calomiris Herring proposal to

actually create ex ante incentives to issue more incentives in times of distress, the following needs

to hold:

ψCH > ψe ⇔ 0.05 ∗ (1− e)
(e− n)

> rcoco − 1 (19)

A priori there is no reason to expect this inequality to hold. Note moreover that the likelihood that

19actually holds goes down as CoCO’s become larger. Thus there may well be a conflict between

the 5% proposal of Calomiris and Herring and their other proposal, that CoCo’s should be “large”

in respect to equity. 19indicates that the larger CoCo’s are in relation to equity (i.e. the smaller the

ratio (1−e)
(e−n) ), the less likely it is that a 5% of total equity value premium to CoCo holders is high

enough to provide equity holders with incentives to issue new capital in times of distress. In a

sense larger CoCo holdings dilute the 5% equity value that CH want to see transferred to CoCO

holders upon conversion. If CoCo holdings become too large (i.e. if e−n
1−e > 0.05

rcoco−1 ), the ex ante

incentive for shareholders to issue more equity in times of distress turns perverse, i.e. they get an

interest in doing the opposite.

6.3 Principal Writedown CoCo’s (PWD)

In Section 4 we described PWD CoCo’s in terms of how much of the original CoCo holdings are left

after a conversion, as indicated by the remaining fraction ϕ. CoCo holders under this design have

to share what remains of their statutory gross return with the depositors who stayed until t = 2,

assuming the CoCo claim was not entirely written down (i.e. ϕ > 0). Note that the borderline

case ϕ = 1 corresponds to the benchmark case of section 6.1. Since any value ϕ < 1 immediately

implies a loss of wealth for the CoCo holder, it is immediately clear that conversion of non-trivial

PWD CoCo’s (i.e. PWDs with ϕ < 1) always implies a wealth transfer from CoCo holders to the

original equity holder. The existing equity holders do not have to share residual income, if any,
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since CoCo holders do not receive any equity under the PWD structure and CoCo holders receive

less than they would in the absence of conversion.

Proposition 11. Conversion of a PWD CoCo always results in a wealth transfer from the CoCo holders to

the original equity holders.

This has major implications for the ex ante incentives facing the original equity holders. Contrary

to the case of sufficiently dilutive CE CoCo’s, under PWD CoCo’s the original equity holders

always face the perverse incentive that conversion is actually in their interest. This may lead the

original equity holders to attempt to extract more dividends or exercise pressure on management

to take on more risk in times of distress instead of facing incentives to supply additional capital as

in the case of sufficiently dilutive CE CoCo’s. The BIS accepts PWD CoCo’s even as (Additional)

T1 capital (Basel Committee on Banking Supervision (2011)), but that decision should in the light

of these incentive problems arguably be reconsidered.

To see whether the original shareholders are better off under CE or PWD for arbitrary values of ψ

and ϕ, we need to compare what each equity holder would get under each case. After conversion

of a PWD CoCo, each equity holder now obtains

RL

(1− npwdr1

)
−

(
n̄− npwd

) (
1− npwdr1

)
(1− λr1)(

1− (λn̄ + e′
r1
)r1

)
(1− λ)

− ϕ (ē− n̄)


[

1
(1− ē)

]
(20)

Comparison with an insufficiently dilutive CE CoCo is made easy because we have established

that nce = npwd by virtue of θ∗ce = θ∗pwd. Thus equity holders are better off under PWD rela-

tive to CE in the sense of them preferring a PWD with retention rate ϕ over a CE CoCo with

dilution parameter ψ if Eqn. 20 is greater than Eqn. 16. Let n′ = nce = npwd and let A =
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RL

[
(1− n′r1)− (n̄−n′)(1−n′cer1)(1−λr1)(

1−(λn̄+ e′
r1
)r1

)
(1−λ)

]
, this inequality requires:

{A− ϕ (ē− n̄)}
[

1
(1− ē)

]
> A

[
1

(1− ē) + ψ (ē− n̄)

]
1− ϕ (ē− n̄)

A
>

1− ē
(1− ē) + ψ (ē− n̄)[

1− 1− ē
(1− ē) + ψ (ē− n̄)

]
A

ē− n̄
> ϕ

We know that 0 < 1− 1−ē
(1−ē)+ψ(ē−n̄) < 1 and that A

ē−n̄ > 1 (if we assume that there is equity left

over to distribute). Thus we can always find such a ϕ for any given value of ψ since 0 < ϕ < 1

such that the inequality holds, because ϕ can become very small if necessary. Thus as long as

ϕ <
[
1− 1−ē

(1−ē)+ψ(ē−n̄)

]
A

ē−n̄ , equity holders prefer a PWD CoCo with retention rate ϕ over a CE

CoCo with dilution parameter ψ. This is very intuitive because the less of the CoCo’s is retained,

the lower total liabilities become, and the more is left for the original shareholders. This also means

that if the CE CoCo is very dilutive, almost any PWD CoCo would be better for the original equity

holders than the CE CoCo.

More generally we can define a retention rate ϕe at which an equity holder would be just indifferent between

a PWD CoCo with that retention rate and a CE CoCo with dilution parameter ψ:

ϕe =

[
1− 1− ē

(1− ē) + ψ (ē− n̄)

]
A

ē− n̄
(21)

with ∂ϕe

∂ψ =
[

(1−ē)×(e−n)
((1−ē)+ψ(ē−n̄))2

]
A

ē−n̄ > 0

In words, a more dilutive CE CoCo will lead equity holders to accept a PWD CoCo with higher

retention rate as an alternative.
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7 Conclusion

We have written this paper in an effort to explore the effect of (converting) CoCo’s on systemic risk.

We have done this by adding CoCo holders to the agent types of an otherwise standard Diamond

and Dybvig (1983) setup recast in a global games framework as in Goldstein and Pauzner (2005).

Using this framework, we were able to show the impact of CoCo conversion on depositors, as well

as on regulators and equity holders. First we have shown that when an unanticipated decline in

asset returns leads to a CoCo conversion, that has the immediate effect of raising the probability

of a bank run. This is true regardless of the type of CoCo’s that are converted because they all

send the same signal (lowering of returns) which affects depositor incentives in the same manner.

Actually we show there is one exception where the CoCo design does matter for the impact on

fragility: CoCo’s which provide a cash payment to CoCoholders before writing them off (like the

RABO CoCo does) are actually worse than straight Principal Write Down (PWD) CoCo’s or Equity

Conversion (CE) CoCo’s in terms of raising the likelihood of a run. This is so because by paying

out cash in a distress situation they reduce the amount that may be distributed to the remaining

creditors of the bank after conversion occurs.

Therefore one of the main consequences of our analysis is that a regulator faces conflicting in-

centives when finding out about lower asset returns than expected (RL < R). On the one hand,

conversion increases the probability of a run because of the negative signal on asset returns that

conversion conveys. But on the other hand, conversion also ensures that if runs occur, there is a

higher probability that there will be a surviving equity base. Regulators thus are forced to choose

between keeping fragility low at the expense of making the consequences of a run if it does occur

worse, or increasing the likelihood of a run but leaving the bank better equipped to deal with one

if one occurs.

We then extend the analysis to a multibank framework to analyse the impact of CoCo conversion

on systemic risk. When different banks hold assets whose returns are correlated across those dif-

ferent banks, a signal indicating one bank’s asset quality deterioration has negative consequences

for the other banks to the extent that the other banks’ assets are positively correlated to those of
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the bank whose CoCo has been forced into conversion: conversion carries an information exter-

nality giving rise to contagion accross banks. And there is a variety of reasons to expect positive

correlation between asset returns of different banks. A very direct link leading to asset correla-

tion establishing a channel of contagion occurs when banks hold each other’s CoCo’s. Given the

obvious dangers of contagion such cross holdings give rise to, it is disturbing to see that about

50% of all CoCo’s issued sofar is in fact held by banks (Avdjiev et al. (2013)). Other mechanisms

leading to asset correlation maybe the predominance of a few large banks in a relatively small

country, industry specialisation of several banks into the same industry, or herding behavior, for

example to increas the pressure on regulators to bail out banks in distress if that situation arises.

We show unambiguously that in an environment of correlated risks, CoCo conversion, even in a

single bank, leads to higher systemic risk, defined as the joint probability of failure of banks. We

show that as long as bank assets are positively correlated, a CoCo conversion in one bank leads to

an increase in the probability of a run in the other bank, regardless of CoCo type. This implies that

systemic risk will increase when CoCo’s convert. So when regulators consider CoCo conversion,

microprudential and macroprudential objectives are likely to be in direct conflict.

Finally we examine the impact of CoCo conversion on wealth transfers between CoCo holders

and the original equity holders. This is important because these post-conversion wealth trans-

fers have a direct impact on the pre-conversion incentives for shareholders and CoCO holders to

either forestall or actually bring about conversion. From a systemic stability point of view, it is ob-

viously desirable that CoCO design should set incentives in favor of issuing more equity in times

of distress. But we show that if the CoCo conversion rate is too low in a well defined sense, i.e. be-

low an explicitly derived trigger level, conversion of CE CoCos actually leads to a wealth transfer

from the CoCo holders to the equity holders. This has the perverse consequence that equity hold-

ers have an interest in forcing conversion, for example by taking on more risk or extracting cash

through excessive dividends. Of course if the conversion rate is higher (more dilutive) than the

trigger level, wealth transfers due to conversion go the other way, from the original equity hold-

ers to the CoCo holders. So if the conversion rate is sufficiently dilutive in a manner we define

precisely, shareholders have an incentive to raise additional capital to forestall conversion. Finally
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we show that from the ex ante incentive point of view, Principal Write Down CoCo’s are strictly

inferior to CE CoCo’s: their conversion always implies a wealth transfer from CoCo holders to

the original equity holder, thereby violating seniority with consequent perverse ex ante incentives.

These results are important as they point at clear possibly destabilising ex ante incentives for equity

holders under CoCo design characteristics that are very often observed in practice so far. Our re-

sults therefore strongly suggest that the BIS rules governing the requirements CoCo design needs

to satisfy before CoCo’s are allowed as capital should be reconsidered, particularly for Principal

Write Down CoCo’s.
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8 Annex

Calculation of ∂θ∗
∂δ > 0

By the implicit function theorem, we can show ∂θ∗
∂δ > 0 if ∂ f̂ /∂θ∗ > 0, and ∂ f̂ /∂δ < 0. We already

know that ∂ f̂ /∂θ∗ > 0. We now only look at whether ∂ f̂ /∂δ > 0 (here we drop the subscript cash

46



for ease of exposition)

f̂ (θ, r1 δ) =

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

[
p(θ(θ∗, n))u

([
1− δr1 − nr1

1− (λn̄ + e′
r1
)r1

]
rL

D

)
− u(r1)

]
dn

−
ˆ n̄

n= 1
r1
−δ

u (r1)

(
1
r1
− δ

)(
1
n

)

=

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u

 1− δr1 − nr1

1−
(

λn̄ + e′
r1

)
r1

rL
D

 dn−
ˆ 1

r1
−δ

n=λn̄+ e′
r1
−δ

u (r1)

−
ˆ n̄

n= 1
r1
−δ

u (r1)

(
1
r1
− δ

)(
1
n

)

=

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u

 1− δr1 − nr1

1−
(

λn̄ + e′
r1

)
r1

rL
D

 dn

−u (r1)

[
1
r1
− λn̄− e′

r1

]
− u (r1)

(
1
r1
− δ

) [
ln n̄− ln

(
1
r1
− δ

)]

where rL
D = 1−λr1

1−λ RL.

The derivative of f̂ with respect to δ is

∂ f̂
∂δ

=
∂

∂δ

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u

 1− δr1 − nr1

1−
(

λn̄ + e′
r1

)
r1

rL
D

 dn

− u (r1)

[
1−

(
ln

n̄
1
r1
− δ

)]

where the last term is negative for as long as 0 < ln n̄
1

r1−δ

< 1

Now consider the first term:
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∂

∂δ

[ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u (A) dn

]

=

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n))
∂u (A)

∂δ
dn + p

(
θ

(
θ∗,

1
r1
− δ

))
u

1− δr1 −
(

1
r1
− δ
)

r1

1−
(

λn̄ + e′
r1

)
r1

rL
D

 (−1)

−p
(

θ

(
θ∗, λn̄ +

e′

r1
− δ

))
u

1−
(

λn̄ + e′
r1
− δ
)

r1

1−
(

λn̄ + e′
r1

)
r1

rL
D

 (−1)

=

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δr1

p (θ (θ∗, n))
∂u (A)

∂δ
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(
θ

(
θ∗, λn̄ +

e′

r1
− δ

))
u

1−
(

λn̄ + e′
r1
− δ
)

r1

1−
(

λn̄ + e′
r1

)
r1

rL
D



where A = 1−δr1−nr1

1−
(

λn̄+ e′
r1

)
r1

rL
D. But since ∂u(A)

∂δ = ∂u(A)
∂n , we can write ∂

∂δ

[´ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u (A) dn

]
in terms of ∂u(A)

∂n :

∂

∂δ

[ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

p (θ (θ∗, n)) u (A) dn

]

=

ˆ 1
r1
−δ

n=λn̄+ e′
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−δ

p (θ (θ∗, n))
∂u
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θ

(
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e′
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
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where we used integration by parts. The first term is clearly negative. The second term can be
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made arbitrarily small by letting ε→ 0.

Thus the derivative of f̂ with respect to δ is completely given by

∂ f̂
∂δ

= −p
(

θ

(
θ∗, λn̄ +

e′

r1
− δ

))u
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D


+2ε

ˆ 1
r1
−δ

n=λn̄+ e′
r1
−δ

u

 1− δr1 − nr1

1−
(

λn̄ + e′
r1

)
r1

rL
D

( p′ (θ (θ∗, n))
n̄ (1− λ)

) dn− u (r1)

[
1−

(
ln

n̄
1
r1
− δ

)]
< 0
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