

A Medley for Computational Complexity. With Applications of Information
Theory, Learning Theory, and Ketan Mulmuley’s Parametric Complexity
Technique
B. Serra Loff Barreto

A Medley for
Computational Complexity

With applications of Information Theory, Learning Theory,
and Ketan Mulmuley’s Parametric Complexity Technique

Bruno Loff

Abstract 3

Samenvatting 5

Introduction for a general audience 7

Bibliography 11

Abstract

This thesis contains four parts. Each part studies a topic within computational
complexity by applying techniques from other fields in theoretical computer
science.

In Chapter 1 we will use Kolmogorov complexity to study probabilis-
tic polynomial-time algorithms. Let R denote the set of Kolmogorov-random
strings, which are those strings x whose Kolmogorov complexity K(x) is at
least as large as their length |x|. There are two main results. First, we show
that any bounded-error probabilistic polynomial-time algorithm can be sim-
ulated by a deterministic polynomial-time algorithm that is allowed to make
non-adaptive queries to R. Second, we show that for a time-bounded ana-
logue of R (defined using time-bounded Kolmogorov complexity), it holds that
any polynomial-time algorithm that makes non-adaptive queries to R can be
simulated both in polynomial space and by circuits of polynomial size.

This indicates that we are near to an alternative characterization of prob-
abilistic polynomial-time as being exactly deterministic polynomial-time with
non-adaptive queries to R. Such characterizations ultimately aim at using
techniques from Kolmogorov complexity and computability to study the rela-
tionship between different complexity classes. As can be expected, the proofs
in this chapter make essential use of such techniques.

In Chapter 2 we make an effort at extending Mahaney’s theorem [7] to
more general reductions, or — seen another way — strengthening the Karp-
Lipton theorem [5] to a stronger collapse of the polynomial-time hierarchy.
Mahaney’s theorem states that if Sat is m-reducible to a sparse set, then P =
NP, and the Karp-Lipton theorem (more precisely, the strengthened version of
Cai [2]) says that if Sat is Turing-reducible to a sparse set, then PH ⊆ ZPPNP.

We prove that if a class of functions C has a polynomial-time learning al-
gorithm in Angluin’s bounded error learning model, then if Sat is m-reducible
to C, it follows that PH ⊆ PNP.

Then from the existence of such an algorithm for linear-threshold functions,
we conclude that if Sat is m-reducible to a linear-threshold function, then
PH ⊆ PNP. It will be seen that both disjunctive and majority truth-table
(non-adaptive) reductions to sparse sets are a special case of m-reductions to
linear-threshold functions, and hence our results hold also for these kinds of
reductions.

3

We also prove a somewhat stronger result of independent interest. For such
a class of functions C, it holds that if Sat m-reduces to C, then we can answer
any number of Sat-queries of length n by asking only n (larger) queries to Sat.

There are two main results in Chapter 3. First, we prove a more refined
NP-hardness result for knapsack and related problems. We will construct a
reduction from the satisfiability of fan-in-2 circuits of size S with k input bits
to an instance of the subset-sum problem having bit-length O(S + k). A corol-
lary of this is a simple proof that there is no approximation algorithm for the
knapsack problem which gives a better-than-inverse-polynomial approximation
ratio, unless the exponential-time hypothesis of Impagliazzo and Paturi [3] fails
to hold.

Secondly, we will use the technique we just developed, together with Ketan
Mulmuley’s parametric complexity technique, in order to prove an uncondi-
tional lower bound in Mulmuley’s parallel semi-algebraic PRAM model [8].
We will show that, in that model, there is no algorithm for solving the knap-

sack problem in time o(x1/4) using 2o(n
1/4) processors, even when the bit-length

of the weights is restricted to n. The significance of this result follows from the
fact that pretty much every known parallel algorithm can be implemented in
this model.

In Chapter 4, we turn to communication complexity and information com-
plexity [1]. We prove several theorems: (1) we show a “Reverse Newman’s
Theorem”, stating that a private-coin q-round protocol that reveals I bits of
information can be simulated by a public-coin q-round protocol that reveals
I + Õ(q) bits of information; (2) we show that public-coin protocols that reveal
I bits of information can be simulated by protocols that communicate only
Õ(I) bits (but possibly use many more rounds); (3) we prove a constant-round
two-way variant of the Slepian–Wolf theorem, and use it to show that q-round
public-coin protocols that reveal I bits of information can be simulated by pro-
tocols that communicate only O(I) + Õ(q) bits on average, and make use of
O(q) rounds, also on average; and (4) as a consequence of (1) and (3) we show
a direct-sum theorem for bounded-round protocols, which states that, for any
function f which needs C bits of (average) communication to be computed by
randomized protocols in O(q)-average-rounds, computing k copies of the func-
tion using a q-round protocol requires Ω(kC)− Õ(q) bits of communication.

Samenvatting

Dit proefschrift is opgebouwd uit vier delen. In elk deel wordt een onderwerp
binnen de computationele complexiteitstheorie bestudeerd door het toepassen
van technieken uit andere gebieden van de theoretische informatica.

In Hoofdstuk 1 zullen wij Kolmogorov-complexiteit gebruiken om proba-
bilistische polynomiale-tijd algoritmen te bestuderen. Neem R als de verza-
meling van Kolmogorov-willekeurige binaire sequenties, dat zijn die sequenties
x waarvan de Kolmogorov complexiteit K(x) minstens zo groot is als hun
lengte |x|. De twee belangrijkste resultaten in dit hoofdstuk zijn de volgende.
In de eerste plaats laten we zien dat elk probabilistisch polynomiale-tijd algo-
ritme met begrensde foutkans gesimuleerd kan worden door een deterministisch
polynomiale-tijd algoritme dat niet-adaptieve vragen aan R kan stellen. Ten
tweede laten we zien dat wanneer we een tijdsbegrensde variant van R gebrui-
ken (gedefinieerd met behulp van tijdsbegrensde Kolmogorov-complexiteit), elk
polynomiale-tijd algoritme dat niet-adaptieve vragen stelt aan R gesimuleerd
kan worden door zowel Turing machines met polynomiale ruimte als door cir-
cuits van polynomiale grootte.

Deze resultaten geven aan dat we in de buurt komen van een alternatieve
beschrijving van probabilistische polynomiale tijd, namelijk precies als deter-
ministische polynomiale-tijd berekeningen met niet-adaptieve vragen naar R.
Zulke beschrijvingen mikken uiteindelijk op het gebruik van technieken uit de
Kolmogorov-complexiteit en berenbaarheidstheorie om de onderlinge verhou-
dingen van verschillende complexiteitsklassen te bestuderen. Zoals te verwach-
ten maken de bewijzen in dit hoofdstuk sterk gebruik van zulke technieken.

In Hoofdstuk 2 doen we een aanzet om Mahaney’s stelling [7] uit te brei-
den naar algemenere reducties, of — anders bekeken — de ineenstorting van
de polynomiale-tijd hierarchie in de Karp-Lipton stelling [5] te versterken. Ma-
haney’s stelling zegt dat als Sat m-reduceerbaar is naar een ijle verzameling,
dan volgt P = NP, en de Karp-Lipton stelling (of preciezer, de sterkere variant
van Cai [2]) vertelt ons dat gegeven dat Sat Turing-reduceerbaar is naar een
ijle verzameling, er dan geldt dat PH ⊆ ZPPNP.

We bewijzen dat wanneer een functie-klasse C een polynomiale-tijd leer-
algoritme heeft in Angluin’s bounded error learning model, dan krijgen we Sat
is m-reduceerbaar naar C impliceert dat PH ⊆ PNP.

Vanuit het bestaan van zo een algoritme voor linear-threshold functies, con-

5

cluderen we dat als Sat m-reduceerbaar is naar een linear-threshold functie,
dan volgt PH ⊆ PNP. Het zal te zien dat dan zowel disjunctieve als majority
truth-table (niet-adaptieve) reducties naar ijle verzamelingen een specifieke in-
stantie van m-reducties naar linear-threshold functies zijn, en vandaar gelden
onze resultaten ook voor deze typen reducties.

Ook bewijzen we het volgende sterkere resultaat, wat van zelfstandig belang
is. Voor een klasse functies C geldt het dat wanneer Sat m-reduceerbaar is
naar C, dan kunnen we elk aantal Sat-vragen van lengte n beantwoorden door
slechts n (grotere) vragen aan Sat te stellen.

De twee voornaamste resultaten te vinden in Hoofdstuk 3 zijn de volgende.
Ten eerste bewijzen we een verfijnder NP-moeilijkheidsresultaat voor het knap-
sakprobleem en gerelateerde problemen. We construeren een reductie vanaf
vervulbaarheid van fan-in-2 circuits van grootte S met k invoer-bits naar een
instantie van het subset-sum probleem met bit-lengte O(S+k). Als corollarium
hiervan krijgen we een simpel bewijs dat er geen benaderings-algoritme voor
het knapzakprobleem is dat een beter-dan-reciproke-polynome benaderingsra-
tio geeft, tenzij de exponentiële-tijd hypothese van Impagliazzo en Paturi [3]
niet waar is.

Ten tweede zullen we de zojuist ontwikkelde methode gebruiken, samen met
Ketan Mulmuley’s parametrische complexiteitstechniek, om een onvoorwaarde-
lijke ondergrens te bewijzen in Mulmuley’s parallelle semi-algebräısche PRAM
model [8]. We zullen laten zien dat, in het betreffende model, er geen algoritme
bestaat wat het knapzakprobleem oplost in tijd o(x1/4), gebruik makend van

2o(n
1/4) processoren, zelfs wanneer de bit-lengte van de gewichten begrensd is

tot n. De significantie van dit resultaat komt voort uit het feit dat vrijwel elk
bekend parallel algoritme gëımplementeerd kan worden in dit model.

In Hoofdstuk 4 richten we ons op communicatie-complexiteit en informatie-
complexiteit [1]. We bewijzen verscheidene stellingen: (1) we geven een “Re-
verse Newman’s Theorem” (omgekeerde Newman’s stelling), deze stelt dat een
private-coin q-ronde protocol welke I bits aan informatie openbaart, gesimu-
leerd kan worden door een public-coin q-ronde protocol welke I + Õ(q) bits
aan informatie openbaart; (2) we laten zien dat public-coin protocollen welke
I bits aan informatie tonen gesimuleerd kunnen worden door procollen die
slechts Õ(I) bits communiceren (in mogelijk meer rondes); (3) we bewijzen een
constante-ronde two-way variant van de Slepian–Wolf stelling, en gebruiken
deze om te laten zien dat q-ronde public-coin protocollen die I bits informatie
openbaren, gesimuleerd kunnen worden door protocollen die slechts gemiddeld
O(I) + Õ(q) bits communiceren, en gemiddeld O(q) rondes gebruiken; en (4)
gebruik makend van (1) en (3) laten we een direct-sum stelling zien voor pro-
tocollen met een begrensd aantal rondes, welke zegt dat, voor elke functie f
die gemiddeld C bits communicatie nodig heeft om berekend te worden door
gerandomiseerde protocollen in gemiddeld O(q) rondes, er Ω(kC) − Õ(q) bits
aan communicatie nodig zijn om k kopieën van deze functie te berekenen met
een protocol wat q rondes gebruikt.

Introduction for a general audience

Computational complexity, also known as complexity theory, is the study of
how much of a given resource is necessary to solve a given mathematical prob-
lem. An example that everyone is likely to know is the following: suppose we
wish to multiply two integers x and y. We are given the digits of x and y in
decimal notation — suppose both x and y have n digits — and we wish to
obtain the digits of the number z = x × y. The typical primary-school multi-
plication method works as follows: we place the number x on top of y, aligning
the digits to the right, and then we proceed by multiplying the rightmost digit
y1 of y with x, and writing it down, then multiplying the second rightmost
digit y2 of y with x, and writing it below the previous number while shifting all
its digits one position to the left, and so on, for all n digits of y; this gives us n
numbers z(1), . . . , z(n), where each z(i) = yi× x is the i-th digit of y multiplied
by x, a number which could have up to n+ 1 digits. To end the multiplication,
we sum all of the z(i)’s, and this gives us the digits of z = x × y. When we
apply this method using paper divided into squares, like in a child’s arithmetic
book, we get something that looks like this:

xn . . . x1

× yn . . . y1

z
(1)
n+1 z

(1)
n . . . z

(1)
1

z
(2)
n+1 z

(2)
n . . . z

(2)
1

. .
.

. .
.

. .
.

. .
.

+ z
(n)
n+1 z

(n)
n . . . z

(n)
1

z2n z2n−1 z1

Now let us look at the following resource: how many squares are we using
in order to multiply the two numbers? In our tally, let us ignore the squares
that we absolutely must use, namely the squares that hold the digits of x, the
digits of y, and those for the result x × y.1 How many additional squares do
we need to use?

1We do this because we are interested in comparing different methods for multiplication,
with respect to the use of squares... but any method for multiplication is forced to use at
least those squares required to write the input and the output. Hence counting these squares
would be superfluous.

7

For instance, the primary-school method which we have just seen uses n+1
squares for each z(i), and there are n such z(i). So, in total, the number of
squares used by this method is n× (n + 1) = n2 + n.

For the problem of multiplying two numbers, and for this particular re-
source, a complexity theorist is primarily interested in answering the following
question: What is the smallest number of squares that we need to use, in order
multiply two n-digit numbers x and y? The answer to this question depends
on n, and is given by a function f(n), which a complexity theorist would call
the space-complexity of multiplication. We have just shown that f(n) ≤ n2 +n.
But this is not the minimum! If we use a slightly more clever method, we can
show that f(n) ≤ 2n + 4 (can the reader figure out how? the method requires
the use of an erasor, in order to re-use the squares). The best method we know
achieves f(n) ≤ c log n for some fixed constant c that does not depend on n,2

and it can be shown that this is the best possible3.

Other problems can be studied. For instance, how much space do we need
in order to find the shortest path between two cities on a map having n cities in
total? How much space do we need to compute the number of different paths
that can be taken between two cities? Other resources can be studied as well,
such as time, or communication needed to solve a given problem. Interaction
between resources is also interesting: If we are allowed to use more space than
the strict minimum, can we do with less time? If we are given many computers
to do calculations in parallel, can we solve the problem using less time? Given
a method to recognize a solution to a problem using little time, can we devise
a procedure that finds such a solution in a comparable amount of time?4 ...
and so on.

This thesis is a collection of answers to a few questions in computational
complexity. We use a varied palette of mathematical techniques in order to
answer these questions. The general theme is that of solving a problem in
computational complexity by applying tools from a different field in theoretical
computer science, or at least from a different context within computational
complexity.

Chapter 1. In this chapter, we use techniques from Kolmogorov Complexity
and Computability in order to study the time complexity of randomized
algorithms.

Randomized algorithms are algorithms that are allowed to toss a fair coin
during their execution, and have their behavior depend on the outcome
of these coin tosses. Such an algorithm is said to solve some problem if it

2See wikipedia [9] for the algorithm. The quantity logn is approximately the number of
digits needed to write the number n in decimal notation. The number n itself is the number
of digits needed to write x and y.

3This is proven by means of a pumping lemma, as in [6, Lemma 3].
4For instance, it is easy to quickly recognize if a filled sudoku puzzle on n2-by-n2 boards

of n-by-n blocks is correct, just by going through each line, each row and each block making
sure that there are no repeated numbers (this takes time roughly n4). But is it possible to
actually solve such a sudoku puzzle — find a solution to a partially filled sudoku — in time
nc for some constant c? Answering this question amounts to solving the famous P versus
NP problem.

gives the correct answer with high (99%) probability. A normal (deter-
ministic, non-randomized) algorithm can be thought of as a randomized
algorithm that always gives the correct answer (with 100% probability),
so, in principle, it could be the case that randomized algorithms can solve
problems faster than deterministic algorithms, and whether this is the
case or not is a longstanding open question in computational complexity.

Kolmogorov Complexity measures how complex a string of symbols is by
how large a program to output said string needs to be. A string of symbols
x is called Kolmogorov-random if there is no program that outputs x and
has a length smaller than the length of x. Computability is the study of
what can and cannot be solved by computers, regardless of the amount
of resources used, and an example of an uncomputable problem is that
of knowing whether a given string is Kolmogorov-random. We give some
evidence showing that a problem can be solved by a randomized algorithm
in polynomial-time if and only if it can be solved by a deterministic
polynomial-time algorithm that has an unusual extra ability: the ability
to know which strings have high Kolmogorov complexity, among a list
of strings which it produces after seeing the input (for a precise and
technical description of what this means see the technical overview, and
the introductory section of this chapter).

Chapter 2. In this chapter we use computational learning theory to prove
some results on circuit-size complexity.

Circuit-size complexity measures how big a circuit must be in order to
solve a given problem.5 It is easy to show that most functions are hard to
compute by small circuits, and it is widely believed that certain natural
problems are hard to solve by small circuits. However, thus far there is no
known natural example of such a hard problem, and coming up with such
an example — and proving that it cannot be computed by small circuits
— is regarded as the holy grail of the field. Complexity theorists have
tried to circumvent this difficult problem by showing conditional results,
of the form “if problem X can be solved by small circuits, then such and
such unlikely consequence must follow”; such results can be thought of
as evidence (but not proof) that problem X cannot be solved by small
circuits. The result presented in this chapter is a conditional result of
this form.

The proof makes use of computational learning theory. This field stud-
ies when and how computer programs can be taught to classify data.
Typically, the learning algorithm is fed a number examples (x, y) with
y = f(x), where f belongs to a restricted class F of functions, and has
to learn which function f was used in generating them. If this can be
done efficiently (for instance, if the number of counter-examples needed is
small, and/or if the learning algorithm is a polynomial-time algorithm),

5By circuit we mean a boolean circuit, which is a mathematical model of the digital
logic circuits used in modern computer hardware. For a precise description see http://en.

wikipedia.org/wiki/Boolean_circuit. We are interested in the size of circuits because if
the circuit is too big, then building it will be impossible, or too expensive.

then we say that F is “learnable”. In this chapter we show that if F is
“learnable,” then certain natural problems are unlikely to be solvable by
certain kinds of circuits that make use of functions from F (again, see
the technical overview for precision).

Chapter 3. Here we use a mix of techniques to show that a problem — called
the knapsack problem — cannot be solved by certain kinds of circuits,
i.e., that it has high complexity for a certain model of computation.

The model of computation in question is Ketan Mulmuley’s parallel PRAM
without bit operations. In this model there are several processors exe-
cuting instructions on a shared memory, which is somewhat similar to
a modern GPU (a Graphics Processing Unit, used in modern graphics
boards). In some ways, the model is much more powerful than a modern
GPU, because it is a multiple-instruction multiple-data (MIMD) model
where access to shared memory is instantaneous and conflict-free, and in
other ways it is less powerful, because the model is not allowed to operate
on the individual bits of the memory, and instead is only allowed to treat
numbers stored in memory as self-contained units to which the processors
apply given operations (such as addition and multiplication).

The knapsack problem is the problem of, when given a set of n (unbreak-
able) bars of gold of various sizes, having weights w1, . . . , wn, determine
the maximum amount of gold that we can carry in a bag which can hold
at most W units of weight.

We show that this problem cannot be solved with less than n1/4 time and

2n
1/4

processors, even when the given numbers have no more than n bits.
Because there is no known parallel algorithm that makes crucial use of
bit-access, we believe that our impossibility result also holds for general
parallel algorithms.

Chapter 4. In this chapter we use a mix of Information Theory and combi-
natorial properties of random graphs in order to transform private-coin
protocols into public coin protocols that reveal the same amount of infor-
mation, and prove new direct-sum results in communication complexity.

Communication complexity concerns itself with the following scenario:
two parties — customarily called Alice and Bob — are each given two
strings of length n as input — respectively x and y — and wish to com-
pute a joint function of this input, i.e., they wish to know f(x, y), for
some given f . The function f may depend on both inputs, and so Alice
and Bob are required to communicate with each other, which they do
according to a predefined set of rules called a protocol. We then define
the communication complexity of f (for length n) as the minimum num-
ber of bits of communication required for any protocol that allows the
two parties to compute f (on every input of length n). This scenario is
ubiquitous, we can think of Alice and Bob as two computers communi-
cating over a network, or as two pieces of hardware communicating over
a memory bus, etc.

A natural question in this setting is the following direct-sum question:
suppose that the communication complexity of f is C, i.e., that I need to
communicate C bits in order to jointly compute f on all inputs of length
n, then what is the communication complexity of computing k copies of
f simultaneously? Is it necessarily at least kC, or can we do something
smarter?

In a related subject, called “information complexity,” we have the same
scenario, Alice and Bob wanting to compute a function of their joint
input, but now instead of measuring the amount of bits that they need to
exchange, we measure the amount of information that those bits reveal
about their input. It could happen, for instance, that Alice’s part in the
protocol requires her to send to Bob the outcome of many random coin
tosses, and in this case Bob will receive many bits, but they are completely
uncorrelated with Alice’s input and hence reveal no information about it;
this is an example of (part of) a protocol that has high communication
but reveals no information. The information complexity of a function
f is the minimum number of bits of information that the parties must
necessarily reveal to each other about their inputs, when executing any
protocol that computes f .

At the meeting of these two subjects, we arrive at the following protocol
compression question: can we take a protocol that reveals little infor-
mation about the player’s inputs and convert it (“compress it”) into a
protocol that uses little communication?

When Alice and Bob are allowed to make private coin tosses, it some-
times happens that they are able to use the outcome of these tosses to
somehow “obfuscate” their inputs and compute f without revealing a lot
of information. However, if they are forced to share the outcome of their
coin tosses, it is not clear how to avoid revealing more information. In
the literature on the subject, the following question had been asked [4]:
whether or not private coin tosses confer any advantage over public coin
tosses in this setting.

We will show essentially that these last two questions are intimately re-
lated: modulo certain insignificant factors, protocol compression is possi-
ble if and only if any private-coin protocol can be simulated by a public-
coin protocol that reveals no additional information. We then show that
such a public-coin simulation is possible, in the case of bounded-round
protocols, and as a consequence we prove a direct-sum property for the
communication complexity of bounded-round protocols.

Bibliography

[1] Mark Braverman. Interactive information complexity. In Proceedings of the
45th STOC, pages 505–524, 2012.

[2] Jin-Yi Cai. Sp
2 ⊆ ZPPNP. Journal of Computer and System Sciences, 73

(1):25–35, 2002.

[3] Russel Impagliazzo and Ramamohan Paturi. The complexity of k-SAT. In
Proceedings of the 14th CCC, pages 237–240, 1999.

[4] Rahul Jain and Ashwin Nayak. The space complexity of recognizing well-
parenthesized expressions in the streaming model: the Index function re-
visited, 2010. URL http://arxiv.org/abs/1004.3165.

[5] Richard Karp and Richard Lipton. Some connections between nonuniform
and uniform complexity classes. In Proceedings of the 12th STOC, pages
302–309, 1980.

[6] Maciej Lískiewicz and Rüdiger Reischuk. The complexity world below log-
arithmic space. In Proceedings of the 9th CCC (then known as Structures
in Complexity Theory), pages 64–78, 1994.

[7] Stephen Mahaney. Sparse complete sets for NP: Solution of a conjecture of
Berman and Hartmanis. Journal of Computer and System Sciences, 25(2):
130–143, 1982.

[8] Ketan Mulmuley. Lower bounds in a parallel model without bit operations.
SIAM Journal on Computing, 28(4):1460–1509, 1999.

[9] Wikipedia. Multiplication algorithm. URL http://en.wikipedia.org/

wiki/Multiplication_algorithm.

13

