Natural Deduction

Paul J.E. Dekker
June, 2019

This document provides an outline of the proof-theoretic method of natural deduction.

Natural Deduction The method of natural deduction draws from a set of formally specified
rules that constrain and possibly guide the derivation of conclusions from (possibly empty)
series of premises, or assumptions.

Derivations A derivation is a (i) numbered and (ii) annotated (iii) list of (iv) formulas.
(iv) The formulas are for instance propositions from propositional logic.
(iii) The propositions are most convenitently listed vertically.
(ii) The annotations indicate the justification for the annotated propositions.
(i) The numbers allow one to refer back to the propositions so obtained.
Which lists constitute derivations is constrained by rules which are specified below.

Rules The rules of deduction tell one what proposition one may conclude on a line in a
derivation, mostly on the basis of what one already has established above that line.
e The rules have a label X, which must annotate any proposition so justified.
e If the rules require precedent material, the annotations must unambiguously specify the
lines where that has been established.
e Caveat: the precedently required material must still be available, and may not consist
of propositions that are, or are derived from, assumptions that have been withdrawn.

Example The following frame presents a partly schematic snapshot of a derivation.

1.

7. (pva)Ala—r) [6 13)

n.

The highlighted proposition is the 17-th formula in the framed derivation. It is said to be
justified by “Ix, 6, 13”7, which means by a rule named “I,” and with reference to the propo-
sitions appearing on the lines 6 en 13 in the list. The rule so-named (cf. below) requires line
6 to host the proposition (pV ¢) and line 13 to host the proposition (¢ —).

Assumptions One rule is that assumptions need no justification.
e One may always make whatever assumption.
e On any line you may enter any arbitrary formula.
e But you have to specify that it is an assumption.
e This is done by annotating it with “[ass.]”.

Withdrawing Assumptions Certain rules may involve the withdrawal of assumptions.

e They summarize the result of hypothetical reasoning. [E.g., that if something is shown
to entail the exclusion of everything, then that something is excluded.]

e The assumption that is withdrawn is always the last pending assumption in the pre-
ceding list, i.e., the last assumption that has not yet been withdrawn.

e Anything that has been deduced under an assumption that has been withdrawn, cannot
be used anymore once the assumption is withdrawn.

e [t is therefore good and common practice to bracket out withdrawn material, i.e., the
lines including the withdrawn assumption up to, but not including, the line where the
assumption is withdrawn.

Example The following frame shows the expansion of a derivation on the left with the
withdrawal on line n. of the assumption that r on line i.

i. r J[ass] Lo [ass.]

nl s nl s

n. (r—s) [I5]

Deductions
e If one has a derivation, one may list (horizontally) the pending assumptions, those that
have not been withdrawn, and these then count as your premises—e.g. ¢1,..., ¢n.
e Behind this one may write what is on the last line, as the conclusion—e.g. 1.
e One may put ‘+’ in between, as in

Qly vy O
e This last notation actually means:
There is a derivation of (the conclusion) % from (the premises) ¢1, ..., ¢p.
It means that ¢ can be validly inferred from ¢, ..., ¢y, i.e., that the conclusion follows

from the premises, according to the specified set of rules.
e Interestingly, and trivially, ¢ - ¢, for any proposition ¢, since

1. ¢ Jass]

is a derivation.

Propositional Logic
e The remainder of this document presents deduction rules for a language of propositional
logic, and a number of sample deductions.
e A language (Lp) of propositional logic is constructed in the usual way from a set (P)
of proposition letters (p,q,r,...,p1,p2,...) using logical constants ‘L’, ‘=", ‘A’ vV’ and
‘=’ and auxiliary devices ‘(” and ‘) .
e The following Bachus-Naur style definition specifies what is a formula ¢ of Lp:

(¢:=p L]0 (670) | (6Ve) (0 —9) IpcP]|

Rules for Propositional Logic

The derivation rules for propositional logic are displayed in a schematic form, the applica-
tion of which will be explained where needed. Notice that the set of rules presented here is
somewhat redundant, but it is easy to work with.

Assumption

[Any assumption can be made any time.]
n. ¢ [ass.|]

This rule should be read as licensing one under any list (*:’) to state any assumption (‘¢’) as
the next (n-th) item on the list.

Reiteration

[Any proposition previously established can be reused.]

m¢ A

n. ¢> [reit., m]

The rule licenses one to conclude ¢ at line n if ¢ has already been established before. Note
that the proposition ¢ on line m may as a rule not be, or depend on, a withdrawn assumption.

Conjunction Elimination (/) Conjunction Elimination (r)
m ($Ay) A m. ($AY) A
n. ¢ [E/\la Hl] n. ¢ [E/\r7 m]

If a conjunction has been established before, say at some previous line m, then either conjunct
(‘left’ or ‘right’) can be inferred from it on the next line n. Of course, the previously established
conjunction may not be or depend on assumptions that are withdrawn.

Conjunction Introduction

n. (pAY) [Ia, m, m']

One may derive the conjunction (¢ A1) of any two previously established propositions ¢ and
1. Again, the previously established propositions may not be or depend on assumptions that
are withdrawn. (I will henceforth refrain from making this constraint explicit.)

Imolication Eliminati
mplication Elimination Implication Introduction
o .<¢ =) m. ¢ [ass.]
m'. ¢ :
_ n-1. 1
' I
n. w [E*), m, Hl/] n (¢ — ¢) [—>]

An implication (¢ — 1) established at some line m can be used if its antecedent ¢ has
been established as well, say, at line m’, and licenses one to conclude to its consequent 1),
at line n. This rule is generally known as ‘Modus Ponens’, and often taken to be the heart
of the propositional logical inference engine. How can we conclude to an implication? This
can be achieved after hypothetically assuming its antecedent ¢ on some line m, and then,
in the context of that proposition (i.e., in the context of the lines above m) validly derive
some conclusion 9, and then—withdrawing that assumption, and everything based on it—
concluding that (¢ — 1), in that very same context again.

Disjunction Elimination
m. :(qﬁ V)
. (6)
. (6 —)
n. x [Eyv, m, m’, m”|

If we have established a disjunction (¢ V ¢) on some previous line m, and perhaps we don’t
know which of either one of the two disjuncts (or perhaps even both of them), we can never-
theless draw some conclusion x at line n, provided that we have in addition established that
either one of the two disjuncts implies that conclusion Y, on some earlier lines m’ and m”.

Disjunction Introduction (/)

m.

n. (¢ \ w) [IVH m]

Disjunction Introduction (r)

m.

n. (¢Ve) [ly,, m]

Any one of two disjuncts entails the disjunction of them, because the disjunction is satisfied
by either one of them—mno matter which one of them, or even perhaps both.

N ion Eliminati
egat'lon imination Negation Introduction
m .ﬁ¢ m. ¢ [ass.]

/ :
m. ¢ n-1. L
: .- 1
n. L [E—\a m, m/} ! ¢ []

The hallmark of a negation —¢ is that it excludes that ¢, so if we establish both, say on
some lines m and m’, respectively, then we have reached a dead end, marked by the falsum
(‘L’) in the negation elimination rule. If the falsum (‘L’) marks the dead end of a line of
hypothetical reasoning, we may conclude to the negation of the assumption that it is built
on, as the negation introduction rule tells us.

The last rule effectively completes our set of rules and turns it into a classical logical system.

Double Negation

n. (;S [E--, m]

If it is excluded that ¢ is excluded, as =—¢ says, we cannot but agree to accept it, even if we
fail a direct proof of it. (For the latter reason the rule is not universally agreed upon.)

Reading a Proof
The following is a theorem of propositional logic.
(=p = q) F (¢ = p)

To prove it is to present a derivation of the conclusion (—g — p) from the premise (—p — q).
One derivation is presented here, unfolding it comics-strip style.

Assume Assume Assume
1. (-p—gq) [ass] 1. ((p—gq) Jass] 1. (-p—yq) Jass]
2. 7q [ass.] 2. 7q [ass.]
3. -p [ass.]
Use the Implication Use the Negation
1. (-p—q) Jass] 1. (<p—gq) [ass]
2. —q [ass.] 2. —q [ass.]
3. —p [ass.] 3. p [ass.]
4. g [E, 1, 3] 4. g [E,, 1, 3]
5.1 [E., 2, 4]
Introduce a Negation Eliminate Double Negation
1. ((<p—gq) Jass] 1. ((<p—q) [ass]
2. g [ass.] 2. g [ass.]
3. —p [ass.] 3. —p [ass.]
5. 1 [E., 2, 4] 5. 1 [E., 2, 4]
6. =p (1] 6. =—p 1]
7. p [——, 6]

Introduce an Implication
1. ((p—gq) Jass]

— 2. g [ass.]
3. —p [ass.] -
4. g [E, 1, 3] Summarize what has been shown
5. L [E-, 2, 4] (p—=q F (mg—p)
6. ——p L] (assumption entails conclusion)
7.p [, 6]
8. (g —p) [I4]

Constructing a Proof

In the construction of a proof the derivation normally does not evolve step-wise. It is usually
guided by the attempt to make two extremes meet: (a) what is given and (b) what is to be
shown. If a certain inference is to be proven valid, what is given at the start are the premises
of the inference, and what is to be shown is the conclusion. If it has to be shown that, e.g.,
¢,y F x, then a proof-agent’s initial state is one of wondering how to fill the gap between the
premises ¢ and v and the conclusion %, as is displayed by the following aporetic snaphsot of
a derivation under construction.

1 [ass.]
. ass.|
?
n.x [7]

If the given (specified in green on the lines above ‘?’) and the goal (specified in red on the line
below ‘?’) match the format of one of the inference rules, then the agent is basically done. She
deletes the question line, adjusts the number (sets the number n to 3 above) and supplies the
annotation by adding the rule in charge. If the agent is not basically done she may go one of
three ways.

1. Use and expand the given.

2. Settle a required goal.

3. Go Absurd.
Adopting option 1. the agent uses what she has, and expands the list of givens above ‘7’ with
what the elimination rules tell her what she can use them for. Adopting option 2. the agent
attempts to settle a new goal below ‘7’, viz., a proposition required to license the original
goal according to the introduction rule governing its main logical constant. These two options
can be intertwined. To use a given disjunction (¢ V) in order to derive a goal x, one may
have to settle two additionally required goals: (¢ — x) and (¢ — x). If an implication
(¢ — 1) (or a negation —¢) is given, one may have to adopt a subsidiary and temporary
new goal of establishing the antecedent (or negated proposition) ¢, in order to be able to use
the corresponding elimination rule. Likewise, in case the goal is an implication (¢ — 1) (or
negation —¢), the given is expanded with the antecedent (or negated proposition) ¢, and the
new goal is to derive the consequent (¢ or the falsum).

If the iterated and intertwined application of options 1. and 2. does not produce a match
between the given and the goal, then one may have to resort to the Aristotelian option 3: to
show that the negation of the goal produces a dead end. The agent then takes the negation
of one’s original goal as a given and proceeds to show that it will lead to contradiction (the
falsum). All of these options are demonstrated in the following, constructively unfolding,
proofs of some theorems.

Consider the intuitively simple theorem:

(pV(gAr)k(pVr)

The initial aporetic state is displayed on the the left below, and invites us to try and employ
the given disjunction as displayed on the right.

Attempt to Use Disjunction 1.
Initial State. L gp VigAT)) [ass |
L fass. i (po (V) [
) ?
n. (V) " jo (lanr) = (pvr) [T
n (p\/?") [E\/> 17 i7 J]

(Experience teaches us that there are no prospects in trying to employ the introduction rule
for the goal (pVr).) From here we proceed as displayed below, without any further comments.

Attempt to Settle Implications i and j. Match: Settle Disjanction i1 — 3.
i ; (pV(gAT)) Ezz} 1. (pV(gAr)) [ass.]
‘ ' 2 p [ass.]
i-1 Vr) [7] 3. (pvr) Iy, 2]
4 (p—=(pVvr)) L]
i (p—=(pVvr)) 1] e . —
—i+1 ([ass.] ' gq AT) [ass.]
j-1. &p\/’r') 7] 1. (pVvr) [7]
; i (anr) = (pvr)) [5]
‘11‘. g)qv/\r?;)) Ej}ﬂv], 1,1, j] n. (pVr) [Ev, 1, 4, j]

Use Comjunction 5 Match: Settle Disjunction j-1 = 7.
L ;p V(gAT)) E::} 1. (pV (gAT)) fass.]

3. (pVvr) Ly, 2] B 3,: 1(?p . EjS]Q]
_ g EZ A—>r§p o E;S]] ;1 Ep — gp vV r)) {Iﬁ]]

— 9. (gAT ass.

o ? [En, 5] 6. rq [E/\7 5]

i1, (p vr) 7 7. (pVvr) Iy, 6]

j r r 8. ((gnr) = (pvr) [15]

Jli Ez(;]vAr)) s EE%V] 1,4, j] 9. (pVr) [Ev, 1, 4, 5]

Consider the somewhat more involved theorem:

(((=p—p) = —p) = —p

The initial aporetic state is displayed on the the left below, and invites us to try and introduce
the negation that is the goal, as is displayed on the right.

Attempt to Settle Negation n.
Initial State. L ((-=p—p) — —p) [ass]
1. [ass.] 2. [ass.]
? ?
n. —p [7] (n—l. 1
n. p [L-]

We obtain the falsum if we can obtain something contradicting something given, e.g., —p.
Note that, significantly, the task of deriving —p on line n-2 is different from that of deriving
—p on line n, because something more is given, viz., line 2. From there we proceed again
without any further comments.

Attempt to Settle Falsum n-1. Atltemlzfz tz ZS;)IIiph;?mOE;;S']
1. ((ﬁp — p) — —|p) [ass.] 2 D [ass‘]
2. p [ass.] B '
o 7
' n-3. (-p — p) [?]
n-2. —p [?]
n-2. —-p E_.., 1, n-3
nl L [E-, n-2, 2] n-l. 1 %E_) n-2 2]}
e P [I-] n. -p (L]
Attempt to Settle Implication n-3. Match: Reiteration nd — 4 — 2
1. ((—\p — p) — —\p) [ass.] 1. (.(_‘p N p) . _|p) [ass.] ’
— 2. P [ass.] 9y fass
3. , [ass.] 3 —p fass)
nd. p 7] (4. p [reit., 2]
5. (7p—=0p I
n-3. (—p — p) 1] 6. ip) {Eﬂ 1, n-3]
n-2. —p [E_,, 1, n-3] 3 L E n—72 2]
n-1. L [E-, n-2, 2] i I
8. - 1.
n i p [L-]

Here is classical theorem, and a major challenge for beginning proof theoreists.

= (pV-p)

Attempt to Go Absurd.

Initial State. L. [ass.]
? ?
n. (p \Vi _\])) [7] (n-1. |
n. (pv-p) [IL+E.]

Attempt to Settle Disjunction n-2

Attempt to Use Negation 1.

L. —=(pV-p)
)

n-2. (pVv-p)
n-1. L

n. (pV-p)

[ass.]

7]

[E-, 1, n-2]
I + E_-]

Attempt to Go Absurd

— 1. =(pV-p) Jass]
2. [ass.]

?

n-4 | [7]
n-3. p I + E_.]
n-2. (pv-p) [ly, n-3
n-1. L [E-, 1, n-2]
n. (pv-p) [+ E]

L. —(pV-p)
?

n-3. p
n-2. (pV -p)

[
[
n-1. L [
n. (pVv-p) |

[ass.]

Attempt to Use Negation 1.

— 1 ~(pV-p)
2. —p
?
n-5 (pV-p)
n-4 L

n-3. p

n-2. (pV-p)
n-1. L

n. (pV-p)

[ass.]
[ass.]

7]

[E-, 1, n-5]
- + E_-]
Iy, n-3]
[E-, 1, n-2]
- + E_]

Match: Settle Disjunction n-5 = 3.

— L =(pV -p)

2. —p
3 (pV-p)
4 1

5.p
6. (pV-p)
7. L

8. (pV-p)

10

