TABLE OF CONTENTS

Preface ... vi

Overcoming Obsolescence: The Examination, Documentation, and Preservation of Nam June Paik’s TV Cello
LISA CONTE, CHRISTINE FROHNERT, LISA NELSON, AND JULIA SYBALSKY ... 1

Risk Assessment as a Tool in the Conservation of Software-Based Artworks
PATRICIA FALCAO ... 11

The Tree Decision-Making Model for the Preservation of Technological Equipment for Time-Based Media Art: A DOCAM Research Tool Outcome
RICHARD GAGNIER ... 21

Acquisition and Installation of Time-Based Art at The Hirshhorn Museum: Lending Electronic Media
SARA GORDON ... 23

Versions, Variations, and Variability: Ethical Considerations and Conservation Options for Computer-Based Art
HANNA BARBARA HOLLING .. 33

Developments in Tate in the Conservation of Artists’ Video as File-Based Data
PIP LAURENSON .. 47

Anatomy of the Analog: The Preservation of Frank Theys’s Video Installation
Oratorium for Prepared Video Players and Eight Monitors (1989)
EMANUEL LORRAIN .. 49

Restoration of Molded Videotapes: Research on Vacuum-Freeze-Drying of Water Damaged Videotapes
AGATHE JARCZYK .. 67

Acquisition and Installation of Time-Based Art at The Hirshhorn Museum: Changing Practices
JEFF MARTIN .. 77

Mass Migration of Archival Video Collections: Open Source Tools for Managing Digitization Projects
DONALD MENNERICH ... 79

Collaborative Conservation: Sharing Expertise at The Goodwill Computer Museum
 VIRGINIA LUEHRSEN AND KAREN L. PAVELKA ... 81

Moving Pictures: Restoring Roy Lichtenstein’s Foray Into Film
CLARE BELL .. 87

Rapid Identification of Sticky Shed Syndrome in Magnetic Tape Using ATR-FTIR and Multivariate Statistics
ERIC BREITUNG, SAMANTHA SKELETON, AND STEPHEN MORGAN .. 99

Conservation in Collections of Digital Works of Art
BEN FINO-RADIN ... 101

Conservation of Historic Cathode Ray Tube-Based Artworks from the 1960s
CHRISTINE FROHNERT .. 113

Geeks, Boffins, and Whiz-Kids: The Key Role of the Independent Expert in Time-Based Media Conservation
KATE JENNINGS AND TINA WEIDNER ... 119

Toward an Ontology of Audio Preservation
SARAH NORRIS .. 133

JOSHUA M. RANGER ... 135

Fundamentals of the Cathode Ray Tube Based Display and its Maintenance and Conservation Within Contemporary Artworks
CHI-TIEN LUI AND RAPHALE SHIRLEY .. 137

Capture Software Study for Preservation of Analog Videotape
LAUREN SORENSEN ... 143

Fading Out: The End of 35 MM Slide Transparencies
TINA WEIDNER ... 157

Guidelines for Authors ... 176

The Electronic Media Review • Volume Two 2013
VERSIONS, VARIATIONS, AND VARIABILITY: ETHICAL CONSIDERATIONS AND CONSERVATION OPTIONS FOR COMPUTER-BASED ART

HANNA BARBARA HÖLLING

ABSTRACT

Computer-based art has evolved considerably since the first implementation of computer graphics in the early 1970s. In the past three decades, there has been a radical change towards more sophisticated solutions that have modified our understanding of technological borderlines and the limits of display standards and aesthetics. Although the preservation of computer-based artifacts owes much to discourse and research done in the preservation of electronic and time-based media, the approach to computer-based installations still calls for more exploration. That this topic has attracted little attention so far is mainly due to the lack of specific expertise at various institutions. The conservation of these artworks distinguishes itself from conventional approaches to traditional media. A singular work in different states results in the emergence of variations and multi-locational instantiations that call into question established procedures. At times, an artwork’s recovery may lead to the fabrication of an additional version. In light of this, the ethics of conservation are subject to profound considerations. Moreover, it is not unusual that artists themselves act not only as creators, but also as caretakers. Most importantly, in reference to conservation discourse and the decision-making process—as is true with much of contemporary art (and in this paper)—the artist is not only alive, the artist is involved.
INTRODUCTION

Since the introduction of the Fluxus art movement in the 1960s and Nam June Paik’s coronation as one of the undisputed fathers of video art, audiovisual media have been evolving and taking over the art scene. In art today their ubiquitous presence is self-evident; it is difficult to picture art practices, museum displays, and commercial art gallery spaces without media works. With the development of new technologies and the ever-shorter life cycles of software and hardware equipment, a new approach to their implementation and maintenance has been sought. It is no surprise that the dissemination of new electronic media has inevitably introduced the topic of their preservation, followed by the much-debated dilemmas of migration, emulation, and reinterpretation of what could already be seen as historical instalations. Different discourses focused on maintaining the formats and forms rapidly becoming obsolete, in order to allow them to be viewed and appreciated by contemporary and future audiences. As a consequence, the complex issue of devising strategies for the preservation of technical heritage for future generations became the center of various initiatives. One of them—the Obsolete Equipment Project—rose to the author’s involvement in research on conservation of computer-based art and this paper (Obsolete Equipment 2009).

Giving the example of the specific computer-based artwork, EYE (1993) by Bill Spinhoven van Oosten (b. 1956) distributed by the Netherlands Media Art Institute, Amsterdam (NIMk), this paper will discuss its technologically complex nature. The issues pertaining to its recovery, conservation, and presentation will be addressed. EYE became a particularly challenging case for analysis due to its unstable, processual nature, the recursive obsolence of its display apparatus, and the artist’s ongoing engagement in the artwork’s development. The initial setting of EYE when it entered the collection was complicated by the lack of clarity of its status, mainly due to the complexity of institutional distribution and acquisition procedures. In the early stages of dealing with media collections, at least four equipment versions and a number of site-specific variations of EYE were generated, an outcome triggered by technical obsolence and institutional maintenance habits. Most recently, a decision was made to recover the historical functionality of EYE by means of reenacting and presenting it to the audience in its initial, and additionally newer, virtualized form.

The following will lead the reader through the life of EYE, addressing its variable nature and main characteristics. I will explain the reasons why computer-based art has received little attention in the profession, how its transitory nature is being adapted to institutional constraints, and the way in which the emergence of versions challenges conservation ethics. One of the focal points of this essay will be EYE’s initial status at the point of its commission and subsequent acquisition. Finally, I will show how the recovery of EYE has been managed and what the possible options are for its future existence.

CHALLENGES OF COMPUTER-BASED ARTWORKS

The fact that the topic of conservation and presentation of computer-based art has attracted little notice so far is mainly due to the lack of specific expertise among institutions and caretakers. Curatorial and art historical knowledge about new media still has to be enhanced to encompass new sets of categories that involve intractability, connectivity, and computability (Graham and Cook 2010). The tendency to isolate these art forms from conventional art, or its "ghettoization" in the galleries, epitomizes the often difficult relationship that institutions maintain with them (Paul 2007, 251).

For some time, on a technical level, competence in maintaining and preserving computer-based works has been rare and unspecialized. At times it is their technical complexity that aggravates the access to and understanding of the functionality and specificity of these objects. As a result, only a small number of computer-based works find their way into public collections and emphasize on the implemented apparatus, network environment, or the language of the source code. In other words it involves the computing device as a technical support, which can—but does not necessarily need to—participate in the creation of the aesthetic content of the artwork. In the case of EYE, the aesthetic qualities of the visual output are not exclusively dependent on the employment of a specific technology. Still, the computing technology manages the rendition of the digital image content and constitutes the greater part of the core of the artwork, or its logic (Lukács 2010).

As a rule, computer-based artworks consist of files, an operating system, software, and hardware. When examined more closely, the software can consist of a source code of more than one generation, involving creator’s annotations, and, if authored by more than one person, technical correspondence within the source code files. Hardware may involve the computer with its processor(s) driven by machine code, possible modifications such as oscillator, motherboard, and, in older devices, a floppy disc reader and a disc, from which the system can be rebooted. Additional elements such as camera, digitizers, monitor(s), and, last but not least, the physical casing of the equipment (computer, camera, and monitor) are integral parts of these artworks, and play a crucial role in defining their properties.

In contrast to a large portion of traditional fine art, where the point of departure for the assessment of its status lies in defining the authenticity or originality of the artwork in question, the method for describing computer-based artworks is built on the complex term—integrity. The integrity of computer-based installations depends on hardware and software components. Conceptual integrity refers to the work’s relationship to the process or technology employed, and the social and cultural setting in which the work was created. Aesthetic integrity comprises the look and feel of displayed components and the outputs of the system such as sound, image, or both (Laurensen 2005). Hardware, with all its modific-
tions and supplements, may have functional, but also aesthetic value. In the case of *Eye*, there are both: the sculptural presence of technology and its attendant aesthetic value, as well as the functional value of the apparatus in a ratio. The latter seems to be variable, at least and performative) that are in constant constructing its multi-aspectual identity.

In the last decade, promoted by the Variable Media Initiative undertaken by the Solomon R. Guggenheim Museum in New York, the term variability has been used to characterize installations (modesty technology-based and performative) that are in constant flux and for which identity was constituted by each and every instantiation of the artwork at any given time of its lifespan (Depocas, Espósito, and Jones 2003). A range of possible values defined the core of the work, describing a closely clustered set of the artwork's data. These data could include the artistic idea, in the form of a score or instructions, sound or audio material, specific installation requirements/prescriptions, and modes of interaction. The remaining variables were subject to change, having a status of loosely prescribed specifications for peripheral elements, often soft- or hardware. Significant coordinates characterizing variable artworks—distant from the understanding of conventional artifacts in terms of their physical components and materials—constituted their behavior. The artwork's behavior was neither permanent nor fixed; it rather described the ephemeral qualities of the work.

THE ARTWORK

The object and the subject of this study

Eye is a freestanding installation. It comprises a black and white monitor (48 x 51 x 50 cm), a manipulated camera modified with a fish-eye lens placed in a metal tube on the top of the monitor (10 x 10 x 35 cm), a black plinth (125 x 50 x 50 cm), and technical playback equipment; the latter is not exposed to the audience. On the monitor, one can see a large eye that fills the format of the screen. The eye is active, gazing at the viewer in a continuous manner. Moreover, it reacts to the viewer's movements. The standard role of an artwork, to be looked at and admired, is peculiarly reversed here. The artwork looks at and registers the presence of the viewer: it is not the viewer who watches the artwork, it is the artwork that watches the viewer. It is a surveillance technique well-known from the many security monitoring techniques used in public spaces, but an artwork that, in an unexpected, astonishing way, is interactively involved in the process of watching and being watched. The artwork is slightly provocative, as the viewer is automatically personified. A phenomenon of the early electronic art—humanizing technology—results here in a vis-a-vis encounter of human and machine.

The interaction between the viewer and *Eye* is one of the central characteristics that define its behavior. In this case, the audience interaction with the installation comprises a doubling. On one hand, there is a viewer directly engaged with the artwork—the person standing in the range of the camera, experiencing a direct encounter with the eye that reacts to its movements—and, on the other, there is a more distant viewer, "the third actor," that observes the encounter of the "first degree."

Eye, created in 1993, is one of the earliest examples of interactive, computer-based art that found its destination in an institutional setting of the Montevideo/ Time Based Arts later known as NIMK (fig. 1). In the 1990s, interactivity began to "celebrate itself as a sort of hype," maintains René Coelho, the founder and first CEO of Montevideo (Coelho 1999). Since Dokumenta 9 in Kassel in 1992, Gary Hill (b. 1951), Bill Viola (b. 1951), Bruce Nauman (b. 1945), and Tony Oursler (b. 1957) have become frequently promoted and presented artists. Coelho's gallery in the Netherlands innovatively presented and distributed video art. In an interview from 1991, Coelho states: "For twenty years we have been providing an art form that nobody was asking for. In the Netherlands it has never attracted a large audience, due to the lack of a scientific and theoretical foundation" (Coelho 1999). Remarkably, in talking about the artistic achievements in context of the activity of Dutch art scene, he states: "...Bill Spinhoven's *Eye* is an icon, too" (Coelho 1999).

Easy life

The idea for *Eye* was first conceived at Montevideo, during the period Bill Spinhoven spent at Coelho's gallery at the time of its reorganization in the 1980s. The artist was experimenting in making drawings by recording his eye using a black and white camera. The first installation that resulted from these experiments, and the artist's cooperation with Paul Klomp, was a double screen projection entitled *Shot Across the Mind* (1989) (fig. 2a). The eye became fully computerized and made "drawings" by itself. Later, the development of this idea resulted in an interactive installation entitled *Birds Eye* (1991), which also implements a projection (fig. 2b). Spinhoven was able to connect to the installation via telephone to hear visitors' comments. These early versions lead to the creation of *Eye* in two primary ways. The eye images used in *Birds Eye* are identical to those incorporated in *Eye*, only zoomed. Moreover, the program of the later Montevideo version of *Eye* involves sequences of the source code taken from *Birds Eye*, which were able to be reactivated in order to recover the dysfunctional piece (Sspinoven 2010). This allows us to think about these artworks in a new way, one that might have an impact on how they are perceived and preserved: computer-based artworks as a documentation container or a self-documenting device. After receiving the Prix de Rome, the highest and oldest art award of the Rijksacademie in Amsterdam, Bill Spinhoven conceived another installation that used black and white images of his eye, but without any interactive functions. Although the installation was entirely static, intriguingly, the viewer believed it was interactive (fig. 3).
Institutional life

Asked to create a special artwork for the re-opening of the Montevideo gallery at the new venue, Spinhoven delivered v/Eye, an installation that consciously reverses the viewer experience: ‘My idea was that if everybody comes to Montevideo to look at art, I invent art that can look at people’ (Sphin­hoven 2010).

Since its first display in the window of the gallery at the Spuistraat in February 1994, and its later acquisition, the aesthetic appearance—contrary to its ‘inner life’ and spatial setting—of the artwork has stayed virtually the same. The only exception was an early (unidentifiable) monitor and a plinth, which were provided from the NIMk’s dis­play (fig. 1). The version of v/Eye that is currently distributed by the NIMk is a black and white version comprising a Sony monitor placed on a black stool, the artwork’s main component. Since its first display in the window of the gallery in the course of various travelling exhibitions, the spatial setting of v/Eye’s display has changed. This has had an impact on the beha­vi­or­al character of the artwork related to the way in which the audience engaged with it. For instance, the display during the exhibition Kinetics and Interaction. Multimedia Art from the Netherlands at the Staats­liche Museen, Berlin in 1999, revealed the mirror hung on metal chains attached to the wall above and underneath the screen. Another display set-up from the exhibition at the Keizergracht 264, Amsterdam, in 2003, shows the artwork facing the viewer from a distant, high window at the current location (NIMk), rendering its direct interaction with the viewer almost impossible (fig. 4a).

Relevant for the question of the spatial setting of the artwork is whether the first exhibited version of v/Eye in the Spuistraat in 1993 should be regarded as site-specific and, if so, whether this site-specificity is critical for the artwork’s integrity. The first setting in a window at René Goe­heid’s gallery and the view from the street offered an element of stenography within which the in­stallation was staged: the accessibility of a public space and the accessibility of the chosen observer. The visitors to the pub located on the other side of the street, who observed the mise-en-scene, were enthusiastic about the possibility of contemplating the surprised passers-by fol­lowed by the telematic eye. On the tape taped shortly after the re-opening (viewable in the online NIMk catalogue), the atmosphere of the street and the reactions of the pedestrians to the artwork are clearly recorded. With one single exception, the later versions of v/Eye were exhibited in the context of a museum or gallery space, taking the formal character of a white cube or a black box. This change had an effect upon the artwork’s reception and the viewer’s interaction with it in a rather decided manner.

The development of v/Eye renders the aspect of the relation­ship between v/Eye and its institutional affiliation unclear. Although the acquisition records recount quite the opposite, v/Eye seems to have never entered the collection of NIMk in a physical way. The particular position of NIMk and its mandate to distribute media art renders the physical collection holdings superfluous.

The Neth­er­la­nd­s Med­i­a Art Insti­tute came into being as Montevideo in 1978 and since then, an extensive col­lection of video and media art has been assembled. In addition to its own collection, the institute also manages the video collections of the De Appel Foundation, the Lijnbaan Center in Rotterdam, and the Netherlands Cultural Heritage Agency (RCE). The distribution col­lection comprises more than two thousand media works, varying from the earliest experiments through recent produc­tions by known Dutch and international artists. The institute’s online archive accommodates over a thousand media artworks and unique documentation of events and projects realized and presented by NIMk.

The particularity of the NIMk collection lies in its compi­lation of diverse recording formats and carriers, which are distributed, but, in many cases, have no prescribed and specific material manifestation. NIMk acquisitions do not involve complex installations comprised of sculp­tural elements. However, it is surprising to note that the archival documents prove that the physical equipment of v/Eye was stored at its repository for a time. When neces­sary, this equipment was re-used in other installations. Furthermore, the artist remembers that v/Eye’s plinth was lent out to his fellow artists when they were in need. In the initial stage of the research, the fact that v/Eye was physically housed in the collection of NIMk was evident from discussions with personnel, who remembered the installation stored on the premises, but emphasized its exceptional state. In addition the documents from the NIMk archive reveal two acquisitions of v/Eye in its physical form: the first one dating to December 6, 1993 and v/Eye’s second exhibition version dating to July 11, 1994. The first Ankoopcontract includes the physical components of the artwork, the sum of the acquisition, and, furthermore, a note about the replacement of the camera which probably was posing technical problems. The second document Ankoop v/Eye states that in rela­tion to the frequent absence of the artwork due to various exhibitions, its function as a flag­ship (Vlagho­borst) of NIMk had been dis­missed. For this reason the artist was asked to produce another version of v/Eye, termed here a "second version" (tweede visie or tweede experi­
As time passed, and the installation became its multiplified form, the display equipment changed location. During my visit to the artist's studio in Hengelo, Netherlands (October 2010), various elements of iEye were stored in situ. This proves the ambiguity of its status: on one hand, it is a physical object about which contracts are signed and records kept and which, as a loan of NIMK, physically travels to different venues. On the other, although included in NIMK's media collection, it is present there solely as a registration file. Matters become further complicated due to the existence of different versions of iEye at the same time.

Life outside NIMK and ongoing development

Dating back to the 1990s, there were at least four versions, including its NIMK versions, and a number of variations, or, in the artist's words, "editions" of iEye in existence (2010). Worth mentioning, among others, is a German version from 1997—the so-called DASA version (Industrial Safety Association in Dortmund). iEye was acquired by DASA on the occasion of an exhibition entitled Short Cuts: Anschlüsse an den Körper: ein Cross-over durch Kunst, Wissenschaft und KörperBilder (August–October 1997). This version characterized the implementation of a color JVC monitor displaying a black and white image, and a later version of RISC OS (286 Acorn RISC, OS 3.7, 1992). DASA made a decision to conceal the entire apparatus behind a grey-painted chipboard casing. The only visible part of the installation remaining was the screen of the monitor. The wall caption indicates that the installation was created in 1993; the indication of the remaking of the artwork for DASA, dated four years later, is lacking. According to the curator of the exhibition, Hans-Gerd Kaspers, for a considerable time, iEye had posed technical problems and is the reason why it has been removed from the display. It became a subject of a preservation project by Intermedia Art Institute (IMA) in Düsseldorf. In reference to the number of existing versions the registration of iEye by IMA in 2009 suggests that "there are four editions of the iEye: two with the artist, one at the NIMK and one at the DASA. It is unclear if all of them are the same" (Caianielli 2009, 1). Interestingly, and highly relevant for the discussion about iEye's future manifestations, IMA planned to recover the installation, taking the earlier DASA version from 1997 as a starting point.

In 2004 Spinhoven produced a color version of the eye. This version uses the image of an eye of a stranger and was presented as a multiple installation on a larger number of screens at the Library of Hengelo (The Netherlands). It is currently out of order.

Spinhoven still continues to develop further versions of iEye and comprehends the project as an open-ended process. In September 2010 the artist introduced us to a test version of the artwork that implemented five images of a child's eye. iEye's actions were triggered by the movements of a computer mouse; the program was written on JavaScript, CSS, and HTML5, and was loaded locally.

The conventional concept of an artifact entering a museum collection and being frozen in a static display mode does not coincide with iEye's nature, which has become infinitely variable. "It was an installation at the beginning, then it became a part of a computer, then the computer became interactive, and a part of it became a core version. . . . The camera and the monitor are separate parts, but I would like to make it more organic. . . . An organism, I mean like cells that have kind of similarity and together they create all new organisms" (Spinhoven 2010). The latest instance of iEye is embodied in the project IART (2010), which focuses on the "the possibility to transform fluently from one classical installation into another." According to Spinhoven, over time, "IART will become an extremely expressive self-supporting entity, capable of managing its own sustainability and development." (Spinhoven 2010). The project is based on the biologist James Grier Miller's living systems theory.

The artist liberated iEye from being an art object, allowing it to live in an unrestricted way, setting it free in form of the IART project. This might be seen both as an end of the development of iEye, but also as its beginning. In order to transfer iEye, Spinhoven applies virtualization of the computer system to a web-based platform (Spinhoven 2010). As will be shown in the following paragraph, virtualization plays a key role not solely from the conservation perspective, but triggers the artist to think far beyond its conventional implementation for source code-based systems.

CONSERVATION OPTIONS

International research on the preservation of computer-based art and new media

The research on preservation of computer-based installations was predominantly conducted concurrently with the research on a larger amount of media- and time-based artworks. Within the profession, there have been a number of attempts to find a way of understanding, documenting, and preserving these artworks, for example: Matters in Media Art, the Variable Media Initiative, DOCAM Research Alliance, International Network for the Conservation of Contemporary Art, and the above mentioned Obsolete Equipment Project by PACKED view in the Benelux countries. A number of exhibitions, conferences, and symposia resulted from these endeavours, allowing discussions of the more general issues of preserving digital heritage. Furthermore, this topic has been the focus of research undertaken by various international researchers examining the possibilities of assessing, documenting, and transferring computer-based art (Riethart 2000; Dimitrovsky 2004; García and Vilar 2007; Lurk 2008; Aktive Archive 2012; Variable Media Network 2012).

The issues surrounding the procedures, definitions, and implementation of a specific professional vocabulary in the preservation of electronic media poses a number of questions. There is still a great potential in the adaptation, interpretation, and adjustment of the scientific terminology. Admittedly, terms are currently used in very different manners, depending on the profile of the specialists and their background (programmers, conservators, etc.). At times the term emulation is used interchangeably with the term virtualization, meaning the process of extracting the operating system, the source code, and files to a new environment. Furthermore, there is no specific differentiation between the vocabulary applied to the purely carrier-, material-based aspects of the artwork and its encoded, digital content. For example, the process of rewriting a code in a different language may entail a radical strategy of reinterpretation. Alternatively, the migration of code to enable the operability of a newer application, operating system, hardware, or all three, implies less severity to an artwork's integrity in terms of honoring its initial condition.

Preservation options and outlooks for iEye

One could assume that with the research undertaken on the preservation possibilities and the subsequent decisions made concerning the conservation of iEye, its vivid trajectory would reach its final stages. As I shall demonstrate below, what happened was quite the contrary.

In 2010, a decision was made at NIMK to recover the functionality of iEye. The logical circumstance of this decision was the selection of one from the many versions of the installation from its twenty-years lifespan. The efforts were concentrated on bringing back to life the version of iEye dating to 1993, when it was acquired by NIMK, due to its historic significance and the fact that iEye’s initial behavior and functionality has a strong relationship with specific computer hardware architecture. Immediately, the objective of the recovery of this version encountered complications. The early Panasonic monitor once displayed on the window
The next step in the development of virtualization strategies for the artwork was the isolation of the entire system. The digitizer had to be replaced by a new one. The original camera was no longer available. The digitizer had to be replaced and, finally, in order to ensure proper functionality, an emuluation of the machine code was performed. The synchronization of the image timings posed challenges. At the end the physical appearance of the activated artwork and its technical functions resembled the version from 1993. The emulation and migration of the artwork were undertaken by the artist.

Last year, the fully virtualized version of the artwork was presented side by side with its virtualized clone. The outcomes of the reinstallation of both examples of the artwork were assessed by the professional audience invited to the symposium. The artwork maintains different relations with changing temporal conditions. Technology rendered as state-of-the-art in the 1990s, over a time span of twenty years and after the emergence of “Big Brother” and new monitoring technologies, became an almost archetypical instance of surveillance in media. Moreover, artworks are entangled in social and cultural networks; their identity is created in interaction with the time and circumstances in which they exist. Thus, even the highest attainable recovery of a digital artifact cannot resurrect the Zeitgeist of the era of its creation. What it can do is evoke nostalgic ideas about an irretrievable past. However, if one assumes that in some way the conception of a work extends beyond its physical manifestation, one risks becoming blind to the importance of these manifestations and to the tangible evidence of the object's history. The artwork is obviously not an ephemeron that in its evanescence addresses itself only to the present.

As suggested above, the status of the artwork within the NIMK collection might be regarded as purely conceptual. Without its physical manifestation dozing in the repositories, the artwork exists only in form of documentation and registration files. The impact on conservation might be obvious: since there is no physical form of the artwork, why should any element of the work be physically conserved, or passed to posterity? On the other hand, as opposed to many new art productions, the artwork's long history allows us to analyze its physical manifestation in its specific temporal and spatial context. The various emodiments of the installation over the course of almost twenty years of existence provide a solid testimony of its development, which responds to the given technological capacities. These historical instantiations construct the trajectory of the artwork in its struggle with time, proving its tangible dependency on these physical forms. All of them respond to the temporary state of knowledge and
technology, and involve programmers, conservators, curators, technicians, and other actors. Conservation of the installation should thus respect its unique trajectory by documenting its life, which is constructed through social entanglement with people and things.

ROLE OF THE ARTIST

A novelty in preservation of these types of artworks is the particular role played by the artist. Following conservation doctrines, respect of an artist’s intentions was always assigned the highest value and priority. Now, however, it is the artist that takes an active role in designing and re-designing the preservation strategy of his or her piece, programming, re-programming, and manipulating the work. Like craftsmen in centuries past, the contemporary media artist is also a specialist in information technology, and acts as a restorer of his or her own artistic production. For a conservator, bearing witness to the artist’s (re-)engagement may, over time, be not enough. An extended collaboration is called for, that requires subtle and skillful maneuvering and negotiation in the zones between technological know-how, creativity, and fidelity to conservation dicta.

In the case of Bill Spinhoven, the particularity of his engagement with computer-based arts is evident in the support that he used to offer other artists. The gathered experience and knowledge inseminated his own creations. Spinhoven states: “At the beginning I earned money with producing artworks for other artists. I used the modules then for something else” (2010). In addition, his cooperation with other artists, such as Paul Klomp, had an impact on the realization of his artworks.

It could thus be assumed that the early Dutch media art that arose around the Montevideo cross-fertilized on the technological and aesthetical level. This could play a role in thinking about preserving this significant portion of our digital heritage.

CONCLUSION

We can state that iEye has existed in many forms and variations. The artist’s personal preference and the development of the installation during the last two decades render conservation decision-making a highly complex and multi-layered issue. iEye’s variability is a part of its very nature, and its original or authentic state is not recoverable. Rather than existing as something fixed and stable, it is a mere conglomerate of the artwork’s embodiments and instantiations. Facing the impossibility of the recovery of old, obsolete equipment, conservation produces further versions of the work. The question remains open as to when its conservation begins and ends. In the course of the conservation process, artworks are being remediated, enriched with new values and deprived of others; new versions emerge. The conservator’s responsibility is not only to honor and safeguard the material authenticity of the artwork’s various instantiations through documentation, but also to ensure its intrinsic fluidity, allowing for ongoing development and change.

ACKNOWLEDGMENTS

This article is informed by conversations with Bill Spinhoven van Oosten, the team of the Netherlands Media Art Institute in Amsterdam; the curator of the DASA in Dortmund; Hans-Gerd Kasmiers, Renate Buschmann from Intermedia Art Institute in Düsseldorf; Tiziana Caianello from the Zero Foundation in Düsseldorf; and co-researchers from the Obsolete Equipment Project. For fruitful discussions and help, my special gratitude to Professor Deborah Cherry, Glenn Wharton, Gabby Wijers, and my colleagues and researchers from the project New Strategies for the Conservation of Contemporary Art.

REFERENCES

Further reading

Hanna Barbara Holling
Ph.D researcher
Conservator for contemporary art and new media
University of Amsterdam
Institute of Art History and Cultural Studies
Amsterdam School for Cultural Analysis
Herengracht 286
1016 BK Amsterdam
The Netherlands
h.b.holling@uva.nl
http://home.medewerker.uva.nl/h.b.holling
www.newstrategies/conservation.nl

Papers presented in The Electronic Media Review have not undergone peer review.

The Electronic Media Review • Volume Two 2011