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Abstract

We introduce a new test for a two-sided hypothesis involving a subset of the struc-
tural parameter vector in the linear instrumental variables (IVs) model.
(2019), GKM19 from now on, introduce a subvector Anderson-Rubin (AR) test
with data-dependent critical values that has asymptotic size equal to nominal size
for a parameter space that allows for arbitrary strength or weakness of the IVs and
has uniformly nonsmaller power than the projected AR test studied in
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et al. (2012). However, GKM19 imposes the restrictive assumption of conditional ho-
moskedasticity. The main contribution here is to robustify the procedure in GKM19 to
arbitrary forms of conditional heteroskedasticity. We first adapt the method in GKM19
to a setup where a certain covariance matrix has an approximate Kronecker product
(AKP) structure which nests conditional homoskedasticity. The new test equals this
adaption when the data is consistent with AKP structure as decided by a model se-
lection procedure. Otherwise the test equals the AR/AR test in |Andrews| (2017)) that
is fully robust to conditional heteroskedasticity but less powerful than the adapted
method. We show theoretically that the new test has asymptotic size bounded by the
nominal size and document improved power relative to the AR/AR test in a wide array

of Monte Carlo simulations when the covariance matrix is not too far from AKP.
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1 Introduction

Robust and powerful subvector inference constitutes an important problem in Econometrics.
For instance, it is standard practice to report confidence intervals on each of the coefficients
in a linear regression model. By robust we mean a testing procedure for a hypothesis of (or
a confidence region for) a subset of the structural parameter vector such that the asymptotic
size is bounded by the nominal size for a parameter space that allows for weak or partial
identification. Recent contributions to robust subvector inference have been made in the
context of the linear instrumental variables (IVs from now on) model (see, for example,
Dufour and Taamouti (2005), Guggenberger et al.| (2012) (GKMC from now on), Guggen-
berger et al. (2019), GKM19 from now on, and Kleibergen| (2021)), GMM models (see, for
example, Chaudhuri and Zivot| (2011), Andrews and Cheng| (2014)), Andrews and Mikusheva
(2016)), |Andrews (2017), and |[Han and McCloskey| (2017))), and also models defined by mo-
ment (in)equalities (see, for example, Bugni et al. (2017), |Gafarov| (2017), and Kaido et al.
(2019)). GKM19 introduce a new subvector test that compares the AR subvector statistic
to conditional critical values that adapt to the strength or weakness of identification and
verify that the resulting test has correct asymptotic size for a parameter space that imposes
conditional homoskedasticity (CHOM from now on) and uniformly improves on the power
of the projected AR test studied in Dufour and Taamouti (2005]).

The contribution of the current paper is to provide a robust subvector test that improves
the power of another robust subvector test by combining it with a more powerful test that

is robust for only a smaller parameter space. More specifically, in the context of the linear



IV model, we first provide a modification of the subvector AR test of GKM19, called the
AR 4k pq test, where a denotes the nominal size. We verify that it has correct asymptotic size
for a parameter space that nests the setup with CHOM and also allows for particular cases
of conditional heteroskedasticity (CHET from now on), namely setups where a particular
covariance matrix has a Kronecker product (KP from now on) structure. For example, the
data generating process (DGP from now on) has a KP structure if the vector of structural
and reduced form errors equals a random vector independent of the IVs times a scalar
function of the IVs. In particular then, the variances of all the errors depend on the IVs by
the same multiplicative constant given as a scalar function of the IVs. In the companion
paper |Guggenberger et al. (2020) (GKM20 from now on) we document that KP structure
is compatible with more than 60% of empirical data sets we studied of several recently
published empirical papers (at the 5% nominal size).

Second, depending on a model selection mechanism that determines whether the data are
compatible with KP, the recommended test then equals the AR 4xp, test or the AR/AR test
in Andrews| (2017) that is robust to arbitrary forms of CHET. We show that the ARk pq
test does not reject less often under the null hypothesis than the AR/AR test when the data
are close to KP structure.

We propose two different model selection methods. One is based on the KPST test
statistic introduced in GKM20 for testing the null hypothesis that a covariance matrix has
KP structure. The other one is based on the standardized norm of the distance between the
covariance matrix estimator and its closest KP approximation. As in the model selection
method proposed in |Andrews and Soares| (2010), we compare the test statistic to a user
chosen threshold that, in the asymptotics, is let go to infinity. The thresholds can be chosen
differently depending on the number of IVs k and parameters not under test. Based on
comprehensive finite sample simulations we provide choices for the thresholds for several
values of k that lead to good control of the finite sample size.

As the main contribution of the paper, we verify that the resulting test, called pars—axpa
test, has asymptotic size bounded by the nominal size a under certain conditions on the
selection mechanism and implementation of the AR/AR test at nominal size o — ¢ for some
arbitrarily small § > 0.

In a Monte Carlo study, we compare the suggested new test @ars—arxpo With several
alternatives given in |Andrews (2017), in particular, the AR/AR and the AR/QLRI tests.
Andrews (2017) fills a very important gap in the literature on subvector inference by pro-
viding two-step Bonferroni-like methods for a rich class of models that nests GMM, that i)
control the asymptotic size under relatively mild high-level conditions that allow for CHET,

ii) are asymptotically non-conservative (in contrast to standard Bonferroni methods) and iii)



are asymptotically efficient under strong identification. In contrast, the test considered here,
©MS—AKPa, can only be used in the linear IV model and is not asymptotically efficient under
strong identification. The Monte Carlo study finds that ¢nrs—axp has uniformly higher
rejection probabilities than the AR/AR test for all the DGPs considered. That includes
the null rejection probabilities (NRPs from now on) with the ¢y axpo test having finite
sample size of 6% versus the 5.4% of the AR/AR test at nominal size 5%. Based on the
Monte Carlo study we conclude that relative to the AR/QLR1 test, yars—arxpa can be a
useful alternative in terms of power in situations of weak or mixed identification strengths
when the degree of overidentification is small and the covariance matrix of the data is not
too far from KP structure. Whenever the data are compatible with KP structure, it also
offers an important computational advantage because the AR xp, test is given in closed
form. In contrast, implementation of the two-step Bonferroni-like methods require mini-
mization of a statistic over a set that has dimension equal to the number of parameters not
under test. The computation time should grow exponentially in the dimension of that set
which constitutes a computational challenge especially when an applied researcher uses the
proposed methods for the construction of a confidence region by test inversion. Given the
construction of the ARxp, test it is not surprising to find the relative best performance
of the pys—axpa test to occur under weak identification. Namely, the critical values of the
former test adapt to the strength of identification and can be substantially lower than the
corresponding chi-square critical values when identification is deemed to be weak.

The rest of the paper is organized as follows. In Section [2| we introduce a version of a
subvector |[Anderson and Rubin| (1949) test that has correct asymptotic size for a parameter
space that imposes an approximate Kronecker product (AKP) structure for the covariance
matrix. In Section (3| we introduce a new test that has correct asymptotic size for a param-
eter space that does not impose any structure on the covariance matrix and therefore, in
particular, allows for arbitrary forms of conditional heteroskedasticity. Finally, in Section [4]
we study the finite the finite sample properties of the test. Proofs are given in the Appendix
at the end.

Notation: Throughout the paper, we denote by “®” the KP of two matrices, by vec(-)
the column vectorization of a matrix, and by || || the Frobenius norm[] We use the notation
My =1, — Py and Py := A(A’A)~1A’ for any full rank matrix A € R"<k,

"Recall the Frobenius norm for a matrix A = (a;;) € R"*" is defined as [|A||* := 372, 3" af;. When
A is a vector the Frobenius and the Euclidean norm are numerically equivalent.



2 Subvector AR Test under Approximate Kronecker

Product Structure

Assume the linear IV model is given by the equations

y=YpB+Wy+e
Y=ZIy + Vy

where y € R*, Y € V™ W € RV and Z € R™**. We assume that k — my > 1 and

myw > 1. The reduced form can be written as

(v v w)=7(m HW)(i Om]ffmy Omjxmw>+(vy Ve Vi ), (22)

mw

N J/
-

Vv

where v, := V3 + Viyy + ¢ (which depends on the true g and v), Vij, = (Viwa, ..., Vivn),
Vi =Wra,..., Vo), 7 = (Z1,...,Z,). By V;, for i = 1,...,n, we denote the i-th row of V/
written as a column vector and similarly for other matrices.

The objective is to test the subvector hypothesis

HO . ﬁ = BO against H1 . B 7é B(), (23)

using tests whose size, i.e. the highest NRP over a large class of distributions for (e, 7;, Vi Viva)
and the unrestricted nuisance parameters Ily, IIy,, and 7, equals the nominal size «, at least
asymptotically. In particular, weak identification and non-identification of 8 and ~ are al-
lowed for. We impose the following assumption as in GKM19 (from where the name of the

assumption is inherited).

. = <y , . . .. .
Assumption B: The random vectors (g;, Z;, Vy.;, Viy;) fori = 1,...,n in 1} are i.i.d. with
distribution F.

For a given sequence a,, = o(1) in R>(, we define a sequence of parameter spaces Faxpa,
for (v, Iy, Iy, F') under the null hypothesis Hy : 5 = [, that is larger than the corresponding
ones in GKMC and GKM19 in that general forms of AKP structures for the variance matrix

Rp = Ep(vec(Z;U))(vec(Z;U)))) € RFP*FP (2.4)



are allowed forE| Namely, for U; := (&; + Viy;7, Viy;)" (which equals (v, — Vi3, Viy;)'),

p =1+ my, and m := my + my let

Fapa, = {(v, Iy, Iy, F) : v € R™ Ty € R 1Ty, € pExmy
Ep(||T;][***) < B, for T; € {vec(Z:U)), || Z:|*},
Ep(ZV]) = 0" Rp = Gr@ Hp + Ty,
Fomin(A) > 6, for A € {Ex(Z,Z;),Gp, Hp}} (2.5)

for symmetric matrices Y,, € R¥>**? such that
1T < an, (2.6)

positive definite (pd from now on) symmetric matrices Gr € RP*P (whose upper left element
is normalized to 1) and Hr € R%*% §,, 6, > 0, B < co. Note that the factors in the KP Gr®
Hp are not uniquely defined due to the summand Y,. Note that no restriction is imposed
on the variance matrix of vec(?iV{w) and, in particular, EF(UGC(EZ»V{,,Z')(vec(ZiV{,’i))') does
not need to factor into a KP.

The factorization of the covariance matrix into an AKP in line three of is a weaker
assumption than CHOM. Under CHOM, we have Gp = Ep (U;U!) and Hp = Ep(Z,Z;)
(prior to the normalization of the upper left element of G) and Y, = 0¥** The AKP
structure allowed for here (but not in GKMC and GKM19) also covers some important cases
of CHET involving vec(Z,;U}).

Examples. i) Consider the case in 1} where (&;, ‘7‘,’[,1)’ € R? are i.i.d. zero mean with
(Zi

a pd variance matrix, independent of Z;, and (g, Viva) )(a,f/v’vl)’ for some scalar

valued function f of 7,- In that case, the covariance matrix Rz can be written
Er(vee(Z;U))(vec(Z;U))))
— B (UiU; ® ZZ)
=Ep ((52 + V‘;W’y, Vvlv,i)/(gi + VV/V,fYa VV/V2> ® 717;)

=B (& + Vin, Viva) G+ Vi, Vi) ) © B (1(Z0)°Z:Z,) (2.7)

2Regarding the notation (v, Iy, Iy, F) and elsewhere, note that we allow as components of a vector
column vectors, matrices (of different dimensions), and distributions.
3For example, |Andrews| (2017) considers f(Z;) = || Zi||/k/2.



and thus has KP structure even though, obviously, CHOM is not satisfied because
Ex(UU{|Z:) = [(Z:)Er (& + Vi, Vi) G + Vi Vi) (2.8)

depends on Z;.

ii) In a wage regression to assess the effect of "years of education”, the assumption of
CHOM would require that e.g. the variance of "wage” does not depend on the included
regressor "race”. This assumption is incompatible with recent US data where the wage
dispersion is largest for Asians. Instead, the construction (e;, Vi)' := f(Z)(E, ‘N/V’VZ)’ in i)
allows for dependence of the variances of the regressand and all endogenous regressors on
a scalar function of Z,. The maintained restriction is that all these variances are affected
approximately by the same scalar function of Z;. In the related paper, GKM20, we test the
null hypothesis of KP structure for more than 100 specifications in about a dozen highly
cited papers and find that at the 5% nominal size in about 30% of the cases the null is not
rejected.

iii) For a time series setting, consider a structural vector autoregression AX; = BX; 1+
n:, where dim X; = dimn, = n, FE (| X:—1) = 0 and suppose that var (n:|X:—1) = var (n;) =
Y = diag (0%, ...,02,). If 02 = a,0? for some scalar function of time ay, i.e., the volatilities of
all the shocks change over time in a proportional manner, then the variance of X; 17, has KP
structure. In this model, identification can be achieved by exclusion restrictions (Sims|, [1980)
that render some of X;_; valid instruments. It can also be achieved with external instruments
if available (Stock and Watson, 2018). Time-variation in volatilities has been reported in
many contexts. For instance, the ‘great moderation’ is a well-documented phenomenon of a
fall in macroeconomic volatility in the US in the early 1980s (cf. Bernanke (2004), ch. 4).

AKP would result if the fall in the volatilities were similar across variables.

In this section we will introduce a new conditional subvector AR xp test and show it
has asymptotic size with respect to the parameter space Faxp,, equal to the nominal size.
We next define the new test statistic and the critical value for the case considered here of
AKP structure.

Estimation of the two factors in the AKP structure: Define

Z; = n""Z 2) Y7, e R (2.9)



and Z € R™F* with rows given by Z! for i = 1, ..., nﬁ Define an estimator of the matrix

Rp = (I, ® (BpZ:Z,) V) Rp(I, ® (EpZ; Z,) /%) € Rbwxkr (2.10)

R, = n YN fifl € R wwhere
fi = ((MZYO)M (M2W);), ® Zz S %kp’ and 70 =Yy — Yﬂo (211)

Note that En is automatically a centered estimator because, as straightforward calculations
show, n™y". f; = 0. From Rp=Gp® Hp + T, it follows that Rr = Gr ® Hp + o(1) for

Hp = (EpZ:Z,) VP Hp(EpZ:Z;) V2. (2.12)
Let
(G, H,) = argmin ||G ® H — R,|], (2.13)

where the minimum is taken over (G, H) for G € R x p, H € R* x k being pd, symmetric
matrices, and normalized such that the upper left element of G equals 1.

Following van Loan and Pitsianis (1993, Corollary 2.2), it can be shown that (G,, H,,)
are given in closed form by the following construction. First, for a pd matrix A € RFP>p

define the rearrangement of A as

A
R(A):= | ... | € R?* where
AP
(vec(Ary))
Aj = e RPEF for j =1, ..., p, (2.14)
(vec(Ay))'

where A;; € R¥** denotes the (I,j) submatrix of dimensions k x k, where ,j = 1,...,p.
Second, denote by
L'R(A)N = diag(5,) € RrP>** (2.15)

a singular value decomposition of R(A)[| where the singular values &, for [ = 1, ..., p? are or-

4For simplicity, we do not use the more precise notation Z;, for Z;. It is explained in detail in Comment
3 below Theorem [I] why we introduce Z;, namely to obtain invariance of the testing procedure with respect
to nonsingular transformations of the IVs.

°In [van Loan and Pitsianis| (1993, Corollary 2), the orthogonal matrices L € RPr<rP and N € RFFXkk are



dered non-increasingly. Finally, denote by E(:, 1) and N (:,1) singular vectors corresponding

to the largest singular value o; and let E(l, 1) denote the first component of Z(:, 1). Then,
letting the role of A be played by R, in 1} minimizers (@n, ?[n) to 1) are defined by

vee(Gy) = L(:,1)/L(1,1) and vec(H,) = 31L(1,1)N(:, 1), (2.16)

where E(l, 1) > 0 whenever R, is pd. By Lemma |4| below, the definition given in 1' is

unique for all large enough n wp1 and
Gn— Gp, — 077 and H, — Hp, — 07 as. (2.17)

under certain sequences F,, as defined in Fagp,, for which Rp, = Gr, ® Hp, + o(1) (where
Ry, is defined in (2.10) with F replaced by F,), Hp, := (Ep, Z:Z,)"Y2Hp, (Ep, Z:Z,;)"Y/?
(as defined in (2.12))), and the upper left element of G, is normalized to 1.

Definition of the conditional subvector test: We denote the subvector AR statistic
when the variance matrix has AKP structure by ARaxp.(5o) and define it as the smallest

100t Ry, Of the roots A4y, @ = 1, ..., p (ordered nonincreasingly) of the characteristic polynomial
KL, —n G2 (Yo, W) ZH'Z' (Yo, W) @;1/2‘ —0. (2.18)
The conditional subvector test ARsxpo rejects Hy at nominal size v if

ARakpn(Bo) > c1—a(Rin, k — mw), (2.19)

where ¢, (-, ) is defined as follows. |Muirhead (1978), in the case where my = 1 and
assuming normality, provides an approximate, nuisance parameter free, conditional density
of the smaller eigenvalue kg, given the larger one &y, for any degree of overidentification
k — mw, see (2.12) in GKM19 for the conditional pdf. For given &y, and arbitrary myy,
¢1—olR1n, K — my ) denotes the 1 — a-quantile of that approximation. GKM19 (Table 1 and
Supplement C) provide ¢;_o(k1pn, & — my) for a = 1,5,10%, k — my = 1,...,20 and a fine
grid of values for &y, say A1; < ... < Ay < ... < Ry y for some large J. We reproduce
Table 1 (that covers the case a = 5% and k — my = 4) from GKM19 below. Conditional
critical values for values of &1, not reported in the tables are obtained by linear interpolation.

Specifically, let ¢1_q j(k — 1) denote the 1 — a quantile of the distribution whose density is

called U and V, respectively, notation that we have already used for other objects.
6Note that it would not be unique if the eigenspace associated with the largest singular value had dimen-
sion larger than 1.



given by (2.12) in GKM19 with &4, replaced by & ;. The end point of the grid &, ; should be

chosen high enough so that ¢1_q, j(k — mw) = Xﬁ_mml_a. For any realization of k1, < Ry 7,

find j such that &y, € [A1,-1, /1] with A9 =0 and ¢1_a (K —mw) = 0, and let

Cioa (Rin, & —mwy) := Mch—a,j—l (k —mw) + w(h—a,j (k —mw).
K15 — R1,5-1 K15 — R15-1
(2.20)
Table 1: cv = ¢1_o(R1, k — my) for o = 5%, k — my, = 4 for various values of &
ki ¢cv| R c¢ev| ki c¢v| Ry c¢cv| k1 cv| Rk cv k1 ¢V k1 cv k1 cv
1.2 11121 19132 29|45 39|59 49|74 59 94 69| 125 7.9 20.9 8.9
1.3 12123 21|35 31|47 41|62 51|78 6.1 99 7.1 | 134 81| 26.5 9.1
14 1325 23|37 33|50 43|65 53|82 63105 73] 14.5 83| 39.9 9.3
1.6 15|27 25|40 35|53 45|68 55|86 65| 11.1 751|159 85| 574 9.4
1.8 17130 2742 37|56 47|71 57|90 6.7 | 117 7.7 ]179 87| 1000 9.48

Denote by Py, 1y,7)(-) the probability of an event under the null hypothesis when
the true values of the structural and reduced form parameters and the distribution of the
random variables are given by (v, [Iy, Iy, F). Recall the definition of the parameter space
Fakpa, i . We can now formulate the main result of this section.

Theorem 1 Under Assumption B, the conditional subvector test ARakpq defined in (2.19)

implemented at nominal size o has asymptotic size, i.e.

lim sup sup
n—=00 (v,lw Iy ,F)EFaKx P,an

P('y,HW,Hy,F)(ARAKP,n(ﬁO) > Cl—a(’%lna k— mW))

equal to a for a € {1%,5%,10%} and k —my € {1, ...,20} .

Comment. 1. Some portions of the proof follow similar steps as the proof of Theorem
51in GKM19. In particular, one portion of the proof relies on an one-dimensional simulation
exercise to prove that the NRPs are bounded by the nominal size. This exercise could be
extended to choices of o and k — my, beyond those in the theorem and likely the theorem
would extend to many more choices.

2. Trivially, under the same assumptions as in Theorem [I], we obtain that

lim sup sup
n—=00 (v,Iyw Iy, F)€FAKP,ay,

Pyt 1ty 1) (ARAK P (B0) > Xk 1—a) = O

That is, the generalization of the subvector test in GKMC to AKP structure has correct

10



asymptotic size. This result is obtained fully analytically; its proof does not require any
simulations.

3. Invariance with respect to nonsingular transformations of the IV ma-
trix. The identifying power of the model comes from the moment condition Epe;Z; =
Er(y;—Y]!B—W/v)Z; = 0. This moment condition obviously still holds when the instrument
vector is premultiplied by a nonrandom nonsingular matrix A € R*** ie. Epeg,AZ; = 0.
It then seems reasonable to look for testing procedures whose outcome is invariant to such
nonsingular transformations. In the weak IV literature, e.g. |Andrews et al. (2006) and |An-
drews et al.|(2019) and references therein, the class of (similar) invariant tests to orthogonal
transformations A, that is, changes of the coordinate system, has been studied. The trans-
formation of the IVs in is performed in order for the test to be invariant to nonsingular
transformations of the IVs.

If the conditional subvector AR kp test defined in (2.19) (and R, in (2.11))) was de-
fined with Z; in place of Z; it would be invariant to orthogonal transformations but not
necessarily to nonsingular ones. To see the former, denote by En 4 the matrix En when
the instrument vector has been transformed to AZ; (and consequently Z is changed to
ZA"). Then the claim follows from R(R,4) = R(R,)(A’ ® A’) (which holds for any non-
singular matrix A by straightforward calculations using vec(ABC) = (C" ® A)vec(B) for
any conformable matrices A, B, and C' and M = M5,,) which implies Gua = G, and
}AIn A= AﬁnA’ when A is orthogonal, where again @n 4 and I;Tn 4 denote the matrices @n and
ITIn when the instrument vector Z; has been transformed to AZ;. It then follows that the
matrix n=G, /2 (Yo, W)/iﬁglil (Yo, W) Gn'?in (2.18 (and thus its eigenvalues) remain

invariant under orthogonal transformations Z; — AZ; of the instrument matrix. This test

however is not invariant in general to arbitrary nonsingular transformations.

But with the replacement of Z; by Z; as done in and, correspondingly, Z by
7(71*17/7)*1/ 2 in , the test is invariant against nonsingular transformations A. The
invariance of this test to arbitrary nonsingular transformations Z; — AZ; of the instrument
matrix (which leads to a transformation of Z; to (AZ ZA')"Y/2AZ,) follows from straight-

forward calculations and the fact that the matrix
Ty = (Z Z)\2A(AZ ZA) /% e phxk (2.21)

is orthogonal. In particular, one can easily show that the matrices R(ﬁn), @n, and ﬁn that
appear as ingredients in the conditional subvector test ARsxp, with A = I, are related

to the corresponding matrices R(ﬁn 4), @n A, and ﬁn A, when A is an arbitrary nonsingular

11



matrix, via
R(Rpa) = R(R,) (T4 @ Ts), Gpa = G, and Hyq = T4 H, Ty (2.22)

which immediately implies the desired invariance result.

4. The conditional subvector test can be generalized to a stationary time series setting,
see the Appendix, Section for details.

5. Note that under the null hypothesis the test does not depend on the value of the
reduced form matrix Iy because the test statistic and the critical value are affected by Y
only through Y, =y — Y.

6. GKM19 establish that the conditional subvector AR test introduced there enjoys
near optimality properties in the linear IV model with conditional homoskedasticity in a
certain class of tests that depend on the data only through the roots k;,, ¢ = 1,...,p when
k—my = 1. On the other hand, when k—my gets bigger the test may be quite conservative.
The power gains over the projected AR subvector test discussed in |Dufour and Taamouti
(2005) arise in weakly identified scenarios while under strong identification these two tests
become identical. Similarly, we expect the power properties of the new conditional subvector
test ARsxpq to be most competitive for small k — myy, particular, when £ — my = 1, in

weakly identified situations.

3 Subvector Testing under Arbitrary Forms of Condi-

tional Heteroskedasticity

We now allow for arbitrary forms of CHET, that is, the parameter space does not impose an
AKP structure for Rp. We describe a testing procedure under high level assumptions that
we then verify in the next subsections for particular implementations of the test.

In what follows, Fp; is a generic parameter space for (7, Iy, Iy, F) that does not impose
an AKP structure, but if the restriction Rp = Gp ® Hp + Y, as in FakPa, 1 was
added to the conditions in Fp; then Frep C Fakpa, . For example, the null parameter space
Frer may impose stronger moment conditions than Faxp,, so that certain Lyapunov CLT's
apply. See the definitions of Fy.; in the next subsections. We summarize the restrictions on

the parameter space (PS) in the following assumption.

Assumption PS: Fy. C fAKp’an, where JEAKPM is equal to Fagpa, without the
condition Rp = Gr® Hp + T, (AKP structure ) and without the assumptions sy (A) > d5
for A€ {Gr,Hr}.

12



We assume there exists a robust test (RT) @greo that has asymptotic size for the pa-
rameter space Fg. bounded by the nominal size .. For example, in the next subsection we
consider a particular implementation of the AR/AR test in |Andrews (2017)). In general, we
think of ¢pre.a as a test whose power can be substantially improved on by the test paxpa
when Rp has AKP structure.

Assumption RT: Let ¢prq o be a test of (2.3) whose asymptotic size for the parameter

space Fge is bounded by the nominal size «.

We now define a new test that, roughly speaking, coincides with Yaxpa O Qrop de-
pending on whether the data seems consistent or not with AKP structures. We now provide
the details.

Consider a given sequence of constants ¢, such that
¢n — 00 and ¢,/n'? = 0 (3.1)
e.g. ¢, = cn'/?/1In(n) or ¢, = en'/?/Inln(n) for some constant ¢ > 0 and define
Aon i=min |[|Rz"*(G @ H — R, )Ry’ /en, (3.2)

where the minimum (here and in analogous expressions below) is taken over (G, H) for
G € P, H € R¥** being pd, symmetric matrices, normalized such that the upper left
element of GG equals 1[] The quantity Ag,, measures how far from KP structure the covariance
matrix Rp, in (2.10) when F' = F,, is. To show that the new test yrs_axpo defined below
has asymptotic significance level «, it is sufficient (as proven in the Appendix) to consider
two types of drifting sequences of DGPs in Fp.; and to establish that the test has limiting
NRP bounded by the nominal size « in each case. The first type of sequences are those for
which

n'?Xgp, — ho = 00, (3.3)

that is sequences where the covariance matrix Rp, is "far away” from KP structure. We
assume that there is a model selection (MS) method ¢ps., € {0,1} such that when Rp,
is "far from” KP structure it will chose the robust test wpal. The next assumption makes
that statement more precise. To properly formulate the assumption we require terminology
that is provided in the Appendix because it requires a lot of space. In particular, we need to
consider particular sequences of drifting parameters A, 5, (defined in in the Appendix)

where w,, denotes a subsequence of n.

"The expression G ® H — R, is pre- and postmultiplied by R;:/ ? for invariance reasons.
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Assumption MS: Let ¢ps., € {0,1} be a model selection method such that under pa-
rameter sequences A, » (with underlying parameter space Fp.) with hg = oo we have
©MS,e, = 1 wpal.

By definition, along Ay, . wy 2/\9wn — hg and thus when hg = oo the sequence is not

local to KP structure.

Definition of the fully robust test: Let § > 0. The new suggested test Yrrs—arps.cn.a
of nominal size « of the null hypothesis (2.3 is defined as

OMS,cnPRoba—s + (1 — O, ) PAKPa- (3.4)

We typically write ¢ars—axpo rather than ©arg— axps.c, .o to simplify notation. Ideally, o = 0
can be chosen in this construction. To verify Assumption RP below using the AR/AR test
as QRrob.a—s we need to have 0 > 0. (Potentially, Assumption RP may hold with ¢ = 0 but

our current proof technique does not allow verifying it).

By Assumption MS, ¢rrs-axpa = Proba—s Wpal in case . Thus, by Assumption
RT, the new test ¢ars—axpeo has limiting NRP bounded by a — d of the test in that case.

For the model selection methods introduced below, the sequence of constants ¢,, reflects
a trade-off between size and power. Large values of ¢, will imply frequent use of paxpa
which should translate into good power properties. On the other hand, use of paxp, could
distort the null rejection probabilities in finite samples if the test is used in a scenario where
the covariance matrix does not have AKP structure. Below we make a recommendation
regarding the choice of ¢, based on comprehensive Monte Carlo studies. Note that ¢, can
also depend on observed nonrandom quantities such as e.g. k and my, but for the sake of
notational simplicity we don’t make that explicit.

To guarantee correct asymptotic significance level a of the test pps—axpo and to rule
out any potential pretesting issue, we have to implement the test Yro o at a nominal size
infinitesimally smaller than . For example, we can pick 6 = 1079, which should not make
any practical difference in terms of power relative to using the test with § = 0.

In addition, we have to impose one additional assumption regarding the relative null
rejection probabilities (RP) of the robust test ¢gropa—s and @axp, under sequences with
AKP structure in order to make sure that ¢as_axpo has limiting NRP bounded by a.

More precisely, consider a sequence of DGPs in Fp.; such that
n?Xgn — hy € [0, 00). (3.5)

Using n'/2/c,, — oo, one can then show that min ||G ® H — Rp,|| — 0 and the sequences
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are of AKP structure. Therefore, under such sequences the test waxp, has limiting null
rejection probability bounded by «. The notation Py, ,(A) denotes probability of an event
A when the true DGP is characterized by A, ». By definition, along A, », wy 2)\gwn — hyg

and thus when hg < oo the sequence is local to KP structure.

Assumption RP: Under sequences of DGPs (v, , Hww,, Hyw,, Fuw,) in Fpge for subse-

quences w,, for which A, , satisfies hg € [0,00), Py, , (¢roba—s < QaKPa) — 1.

Under Assumption RP one can show that in case (i.e. under drifting sequences of
DGPs Ay, », with finite hg) ©rrs—axpq has limiting NRP bounded by the nominal size of the
test (because from the proof of Theorem [1| the test ¢ 4k po has limiting null rejection proba-
bility bounded by «; and the limiting null rejection probability of the new test Yars—arxpa 1S
then bounded by a by the assumption that ¢ g q—s has asymptotic size bounded by o —4.)

From the above, it then follows quite straightforwardly, that the asymptotic size of
©MS—AKPo 1S bounded by the nominal size for the parameter space Fp.;. Also, the new test
is at most as nonsimilar asymptotically as @groba—s Which translates into favorable power

properties of the new test.

Theorem 2 Suppose Assumptions PS, RT, MS, and RP hold. Then the test orrs—axps.cn.a
defined in with & > 0 and ¢, satisfying the conditions in has asymptotic size
bounded by the nominal size a for the parameter space Fye for a € {1%,5%,10%} and
k—mw €{1,...,20}.

Comments. 1. If liminf, o inf( my, ny,ryerue, B Iy, F)PMS—AKPScpa 1S cONtinu-
ous in 0 at 6 = 0 then as § — 0 the new test Yars—arPoscn,o 15 asymptotically not more

nonsimilar (i.e. less conservative) than @prepq, i.e.

lim lim inf inf E _

51_r>r(1) m nliloo (»y,HW,Hl;I»l,F)efHet (v, Iy Iy ,F)PMS—AK P,§,cn,a

> lim inf inf E . 3.6

B n—00 (V:HW7HY7F)€]:H615 (’Y’HW’HY7F) (pROb’a ( )
See the proof of Theorem [2f for a proof. Property (3.6)) should translate into improved power
of Oars—AKPs.cn,a Telative t0 Yrob q-

2. The restriction to a € {1%, 5%, 10%} and k — my € {1, ...,20} in the formulation of
Theorem is an artifact of Theorem Where the conditional subvector test ¢ 4x po Was shown
to have correct asymptotic size for these cases only. The same is true for other theorems
formulated below.

In the next subsection we specifically use the AR/AR subvector procedure due to |An-

drews| (2017)) as @roba—s. We propose two different methods for the model selection method
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©MmS,c,- The first one is akin to the moment selection technique suggested in |Andrews and
Soares (2010)) to check which moment inequalities are binding in a model defined by moment
inequalities. The second one is based on the test for KP structure proposed in |Guggenberger
et al.| (2020).

3.1 Model selection methods ¢js,.,

In this subsection we discuss two methods that can be used for ¢j/g., as model selection
procedures. The first one is akin to the moment selection method in |Andrews and Soares
(2010), the second one is the test for KP structure introduced in GKM?20.

Method 1: Define

K, = n1/2|‘§;1/2(én ® H, - En)ﬁﬁw\% (3.7)

with é\n and ﬁn defined in {D to evaluate how far the true model is away from KP

structure. Define the first choice for model selection as
OMS.c, = (K, > c). (3.8)
Recall the definition of F AKPa, given in Assumption PS. Here we take

Fret = {(7, Ow, Iy, F) € fAKP,an,
Er((I1Z:|P||U]|*)**) < B, fmin(Rn) > 0} (3.9)

It is easy to show using the formulae in and the analogous one R,,4 = (]p®TA)]§n(]p®
Ty4) for ﬁn, orthogonality of T4, and using the fact that the Frobenius norm is invariant
to orthogonal transformations, that IA(n is invariant to nonsingular transformations of the
instrument vector. Crucial for this result is again that f; in in the definition of ﬁn (and
as a result in the definition of CAJn and I/-jn in (2.13))) is implemented with the transformed
instrument vector Z; (rather than with Z;).
Method 2: Define
OMS.e, = L(KPST > ¢,), (3.10)

where K PST is the test statistic introduced in GKM20 to test the null of a KP structure
of RFH To employ this method, we need to strengthen the moment restrictions in Fyet to
Er(||Ti||> + 61) < B, for T; € {||Z:||*|Ui||%, | Z:||*}, see Theorem 3 in GKM20.

8The test statistic is defined in (14) in GKM (2020) and not reproduced here for brevity. In their notation
our f; is f;, compare their equation (6) to our 1|
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We verify Assumption MS in the Appendix, Section , for these two choices of pps.,
and for the parameter space defined in (3.9).

3.2 Choice for ¢prm. : The AR/AR test in |Andrews| (2017)

In this subsection we define one particular version of the various weak IVs and heteroskedas-
ticity robust subvector tests suggested in /Andrews| (2017)), namely the so called AR/AR test
and verify that it satisfies Assumptions RT and RP from the previous subsection. We define
it for nominal size «.

To do so, we use the following quantities. For = (3, ) letﬂ

9 (0) == Zi(yi = /B = Wi7) and g, (0) == n" '3[ 9 (0) . (3.11)
Define
S (0) =130 (90 (0) — Gu (0)) (9: (6) — G (6)) (3.12)

The heteroskedasticity-robust AR statistic for testing hypotheses involving the full parameter

vector 0, evaluated at (fp,7), is defined as

HAR, (Bo,7) = 1Gn (Bo,7) En (B0,7) " G (B, ) - (3.13)

For s = 1,...,my denote by W*® € R" the s-th column of W. Next, as in |Andrews (2017,
(7.9)-(7.10)) let

Dy (6) := 3, ()% (D1 (8) , ..., Dinyym (6)) € RF¥™W
Dy (8) := —n " ZW* =Ty, () S, (8) " G0 (6) € R,

)
)

Pon (0) = =0 S0, (ZiW7 =" Z'W*) i (0)' € R, and
)

(3.14)

where HARg,, (fo,7) is a C (a)-AR statistic, obtained as a quadratic form in the moment
conditions projected onto the space orthogonal to the orthogonalized Jacobian with respect
to 7. The random perturbation an™'/2¢; (with ¢; € R¥*™W a random matrix of independent
standard normal random variables that are independent of all other statistics considered) in
the last line of of is introduced in |Andrews (2017, p.23), to guarantee that the space

projected on has rank my, a.s. Here a € R is a tiny positive constant.

9To simplify notation we write (3, ) here and in other situations, rather than the more correct (5’,~')".
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Let a € (0,1). The AR/AR test at nominal size « is defined as follows.

1. Fix an o € (0, ). As in |Andrews| (2017, (7.1)) define

CSf, == {7 € R™ : HAR, (60,7) < X310} UT 1, (3.15)

fm = {7 S WIZ(Z?ﬂZZ)ﬂﬁn (50,7) =0" & (316)
~ oA - Inn

is the so-called “estimator set”, see |Andrews (2017, p.1 and (7.3)). If W P,V is
invertible (which would happen wapl under the assumption (not imposed here) that
ErZ;W/ is full column rank) then the first condition in Ty, has the unique solution
3, := (W P,W) "W’ P4(y — Y ) and therefore T'y,, = {7, }. (Note that along certain
sequences for which ||| — oo it follows that ||g, (8o,7) || — oo and therefore if the

function @n (Bo,7y) > 0 only has one local extremum it must be a global minimum.)

2. For as,(0) defined below (and depending on « and «y), Hy in (2.3) is rejected if
infiecsjn(HARB,n (507 ?) - Xifmw,lfam(ﬁoﬁ)) > 0.

That is

aar = 1 s 3.17
PAR/AR,a,01 {inffyecsirn(HARﬁ,n(BOﬁ)—XﬁimW’17a2’n([30,,7>)>0} ( )

see |Andrews| (2017, (4.2)). We typically write ¢ ap/ar,o instead of Yar/ara.a,-

The second step size as ,(#) is chosen as
—aq, ifI1CS,(0) <K
azal0) = § @70 OOV S B (3.18)
a, if 1CS,(0) > Ky,

for some positive number K, e.g., K; = 0.05 and a7 = .005, see Andrews| (2017, (7.8) and
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p.34)% where

By (6) = Diag{o7,(0), ..., 6y ()} € RV,

Y mwn

52,0) = n~ 0, (Hul0) - ﬁsn(e))Q, for s = 1,.... mu,
Hoi(0) = \ (W22 2.5 () Zi, Hon(0) 1= 0 S0 Hu6),
1CS,(0) :=n kY2 (D,(0)W' ZS, (0) " ZWd,(0)), (3.19)

min

see | Andrews| (2017, (7.4)-(7.5)), where W € R denotes the s-th component of W;.

Coming back to the statistic ARaxp.(5o) given in (2.18)) note that

ARarpn(Bo) = %is)?nfww ARk pa(Bo,7), where
n (L) (Yo W) ZH, 2 (Yo, W) (1)

7~

(e

using the fact that the minimal eigenvalue of any symmetric square matrix A € RP*P is

ARuxcpn(S0,7) = (3.20)

obtained as mingemp ||z)|=1 #'Az. Furthermore,

ZﬁAKP,n(ﬁ ¥) =ng, (5o,~)/~ (Bo>7) " G (Bo,7) , where
S (Bo.7) =((1,=7) G (1,=7)) @ (n 7177)1/2@(”7177)1/2

() en) o wrmenizn () or)

(3.21)

and (Gy, H,) defined in (2.16).
Let v, be an element in arg mingegmw ARAKPn(/BO, 7). We impose a mild technical con-

dition below, namely that
M (75 = 7a) = Op(1) (3.22)

and v,/ = O,(1) under sequences in Fp; (defined in (3.23) below) that are of AKP structure,
i.e. under sequences M\, for which hy € [0,00). For example, |Staiger and Stock| (1997,

Theorem 1) establish ;7 — v, = O,(1) for the LIML estimator under weak IV sequences

19Andrews| (2017, (7.8)) allows for more involved definitions of az ,,(#). We choose the version that takes
Ky = K in the notation of |Andrews (2017) that is also used in the Monte Carlos in |Andrews| (2017]).
Regarding the definition of @n (9), note that it constitutes a slight modification compared with the definitions
in |Andrews| (2017, (7.5)). In particular, the modification in the definition of 2, is necessary to make the
procedure invariant to nonsingular transformations of the instrument vector. We thank Donald Andrews for
suggesting this updated version of his test statistic.
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Iy, = C/n'/? (for some fixed matrix C') and homoskedasticity. Hahn and Kuersteiner| (2002,
Theorem 1) implies for the 2SLS estimator under a setup where Ily,, = C /n5 for
d > 0.Stock and Wright| (2000, Theorem 1(i)) and |Guggenberger and Smith (2005, Theorem
2) implies Iy, = C/n'/? for the CU estimator under mixed weak /strong IV asymptotics
My, = (C/n'/2, D) for a fixed full rank matrix D € R¥*™w with mf;, < my (using high
level assumptions, such as Assumption C in Stock and Wright| (2000))) and possible CHET.
Explicitly deriving under all drifting sequences, if one minimizes AR axpn(Bo,7) in
~ over R™W | is technically tedious because uniform weak laws of large numbers and weak
convergence of empirical processes typically rely on a compactness condition. If is not
already implied by the restrictions in the parameter space Fpe: below then the asymptotic

size results should be interpreted for sequences of parameter spaces Fpe:, that impose
additional restrictions on Fpg; such that (3.22)) holds.

The null parameter space is restricted by the conditions in Fag/ar of Andrews| (2017,

(8.8)) and some weak additional ones, namely,

Frier = {(7, T, Iy, F) € Fagpa, : 7 € O, C "™,

Ep||UiZi, Ziy Zit,| " < Bfor j=1,...,p, li,lo,l3 =1,..., k,

Ep||eiZi||*™ < B, Ep|lvec(W/Z,)||*™* < B, varg||W:Z;)|| > 6, for
s=1..,my, and Kypn(A) > 09 for A € {RF,EFE?Ei?;}}, (3.23)

for constants B < oo, and 41, d, > 0 and a bounded set ©,, such that for some ¢ > 0 we have
B(0.,.,€) C ©,, where O, denotes the null nuisance parameter space for v and B(O,., €)

denotes the union of closed balls in ™" with radius € centered at points in ©.,.

Lemma 1 Assume that under any sequence of DGPs (Y, , Uww, , Uyw, , Fw, ) in Fue defined
in ((8.25) for subsequences wy, for which Ay, n satisfies hg € [0,00) we have v, = O,(1) and
H%inwn('yﬁgﬂ — Yun) = Op(1). Then, for any § > 0, the AR/AR test par/ara—sa, 1 (3-17
satisfies Assumptions RT and RP for the parameter space Fres.

3.3 Main result

We obtain the following corollary of Lemmal[l], Theorem 2] and the verification of Assumption
MS in subsection for the two model selection methods ¢y, suggested there.

Define the parameter space Fp.; as the intersection of the parameter spaces defined in
(3.9) and when the method in is used as s, (and a slightly more restricted

parameter space when ([3.10]) is used, as explained below (3.10)).)
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Corollary 3 Assume the same condition as in Lemma . Then the test pys—akxpo defined
mn with 6 > 0 and ¢, satisfying the conditions in implemented with the AR/AR
test ar/ARa—s,0, Of Andrews (2017) playing the role of Yroba—s and either of the two model
selection methods described above used for s, , has asymptotic size bounded by the nominal
size v for the parameter space Fyes defined on top of the corollary for a € {1%,5%,10%}
and k —my € {1,...,20}.

Comment. Note that under the null hypothesis the test does not depend on the value

of the reduced form matrix IIy-.

4 Monte Carlo study

In this section we investigate the finite sample performance in model of the suggested
new test @ys—arxpo defined in and juxtapose it to the performance of alternative
methods suggested in the extant literature, namely the two-step tests AR/AR, AR/LM, and
AR/QLR1 in |Andrews (2017). For the implementation of ¢prs-axpa We use both methods
considered in Section and call the resulting tests MS-AKP1 and MS-AKP2 for the
remainder of this section. We also simulate the performance of the test ARsxp, (which is
of course size distorted in the setups with CHET that are outside of KP structure).

All results below are for nominal size @ = 5%. We consider the case § € R and v € R
and pick f =+ = 0 and test the null hypothesis in (2.3)).

Recommended choices for ¢,

First, we perform a large number of simulations in order to determine recommendations for
the sequence of constants c¢,, satisfying . We make recommendations for ¢, = ¢, as a
function of the number & of IVs and consider the cases k € {2, 3,4}.

For each k, sample size n € {250,500}, and (Ily, ITyy) € RF*? with

with my € {2,4,40}, corresponding to “very weak”, “weak”, and “strong” identification of
~ (and, relevant for the power results below, Iy = 1%y /(nk)Y/2 with 7y € {2,4,40} and
1% equal to (1¥/% —1¥/?) when k is even and equal to (1, —1%)" when k = 3) we randomly
generate 1, 000 different DGPs (that is a choice for the covariance matrix) as described below

and simulate the null rejection probabilities (using 5,000 i.i.d samples of each given DGPs)
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of MS-AKP1 and MS-AKP2 for choices of ¢, given as
en = Cpi = c(k)n*?/Inlnn (4.2)

with ¢(k) taken from the set C':= {.05, .1, ..., 3}.

In finite sample simulations for the DGPs considered here, the AR/AR test sometimes
slightly overrejects. For example, under CHOM, n = 250, k = 3, strong Vs, and covariance
matrix ¥ being chosen as below (4.6)), where (u;, vy;, vy;) ~ iid. N(0% %), the AR/AR
test has NRP equal to 5.4%. From our theory we also know that the test ARsxp, (at least
under AKP structures) has nonsmaller NRP than the AR/AR test. Define as the ” simulated
size of a test when there are k£ IVs” the highest empirical NRP of the test over all choices
of n, II, and (1,000) random DGPs considered. For each of the two methods MS-AKP1
and MS-AKP2 and for each k € {2,3,4}, our recommendation for ¢, then is to take the
largest c¢(k) in C' such that the simulated size does not exceed 6% (that is, we allow for a
distortion of 1% in the ” simulated size”). It turns out that in our simulations this criterion
for ¢, always leads to well defined choice of ¢(k) (when a priori it could be that even for
the smallest/largest choice of ¢(k) in C' the simulated size exceeds/is still below 6%).

To generate random DGPs we consider the following mechanism. Given all tests consid-
ered above, including AR 4k p«, have correct asymptotic size under AKP structure we focus
attention on designs with conditional heteroskedasticity that are not of AKP structure. In

particular, we choose

& = (o + |QZil|)ui,
Wi = (ay +||Qv Zi||)vy,,
Vivi = (v + [|Qv Zil|)ow,, (4.3)

with (u;, vy, vw;) ~ iid. N(03,X) and independent of Z; ~ i.i.d. N(0%, I},) for i = 1,...,n.
Each of the 1,000 random DGPs is determined by choosing a., ay € R, Q., Qv € R***_ and
¥ € N33, where X has diagonal elements equal to 1. The scalars a., oy and the components
of Q.,Qy € R*¥* are obtained by i.i.d. draws from a U[0,10], and the off-diagonal ones
of X € 33 are obtained by i.i.d. draws from a UJ0, 1] (subject to the restriction that
the resulting matrix ¥ is pd). Note that the setup in nests KP structure when e.g.
a. =ay =0, Q. = Qy = I;, and CHOM when e.g. a. = ay =1, Q. = Qy = 0F*F,

For each k£ = 2,3,4 the binding constraint on c(k) always came from the combination
n = 250 and “strong” identification, while for the “very weakly” identified scenario even

the largest choice of ¢(k) € C typically did not yield overrejection for any of the sample
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sizes considered. Based on the above setup we recommend the following choices for ¢, j.
For Method 1 in Section [3.1, MS-AKP1, that is for pps_axpa based on the distance in

Frobenius norm statistic, we suggest
c(2) = .85, c(3) = 1.25, c(4) =14, (4.4)

while for Method 2, MS-AKP2, that is for ¢y g_axp. based on the KPST statistic in
GKM20, we suggest

¢(2)=.75, c(3)=145 c(4) =109 (4.5)

Recall that with these choices of ¢(k) and ¢, chosen as in (4.2) the tests and MS-AKP1
and MS-AKP2 have correct asymptotic size for a parameter space with arbitrary forms of

conditional heteroskedasticity.

Choice of tuning parameters

The implementation of the various tests depends on a large number of user chosen constants.
In particular, to implement the AR/AR, AR/LM, and the AR/QLR1 we pick oy = .005,
K = Ky = 0.05 as already mentioned above after (3.18)). To calculate the estimator set
fln we employ the closed form solution provided below . We choose a = .001 and
pick the elements of the random matrix ¢; € R¥™W as iid. N(0,1) independent of all
other variables considered, see the last line of of B The confidence interval for v that
appears in is obtained by grid search over an interval of length 20 centered at the
true value of v with 100 equally spaced gridpointsH To implement the AR/QLRI test, as
in |Andrews| (2017) we pick K; = K}; = 0.005 and K, = 1. We refer to Table II in Andrews
(2017) that provides the results of a comprehensive sensitivity analysis on most of the user
chosen constants above. To calculate the data-dependent critical values for the AR/QLR1
test we use 10,000 i.i.d chi-square random variables. There was no noticeable difference
between § = 0 and § = 1076 for § given in ; therefore, for the sake of computational

simplicity, we pick the former in the simulations.

"UNote that by choosing a # 0 the tests are no longer invariant to nonsingular transformations of the IV
vector. However, for small a the differences after a transformations are usually very small.

12When the dimension of v grows then the implementation of that step by grid search will cause an
exponential increase in computation time for each of the two-step methods.
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Size results

Under a setup with CHET outside of KP, the tests MS-AKP1 and MS-AKP2 equal the
AR/AR test wpal. We therefore consider the KP setup in |Andrews| (2017)) in Section 9.1
which is obtained from with a, = ay = 0 and Q. = Qv = I.. We also consider the
setup with CHOM obtained from (4.3) with a. = ay = 1 and Q. = Qv = 0***. In both
cases, we take the matrix

kY € R (4.6)

to have diagonal elements equal to one, and the (1,2) and (1,3) elements equal to .8 and
the (2,3) element equal to .3, as in |[Andrews| (2017). We consider my = 7y € {2,4,40} in
(4.1)), again, representing "very weak”, "weak”, and "strong” IVs, also see Andrews (2017)).
Finally, we take k € {2,3,4} and sample sizes n € {250,500}. Altogether, that makes for
36 different specifications. In addition, we also obtain results for certain cases of mixed
identification strength, e.g. when my # 7y € {2,40} and also some results for larger sample
sizes.

As reported in |Andrews (2017), we also find that in an overall sense the AR/AR and
AR/LM tests are dominated by the AR/QLRI test. For instance, regarding the AR/LM
test, its power function (even in the strong IV context under CHOM) is not always U-shaped
and suffers from power dips against certain alternatives. For example, for the KP setup for
n = 250, k = 4, with weak IVs, the power of the AR/LM and AR/QLRI tests when the
true value of 8 equals 2 are 8.6% and 75.6%, respectively, while in the setup with CHOM
when = 1.43 the power of the AR/LM test is 34.9% while all the other tests have power
equal to 100%. On the other hand, the AR/AR test fares worse than the AR/QLRI test in
strongly identified overidentified situations. In what follows, we don’t therefore discuss the
AR/LM test in much detail.

We consider rejection probabilities under the null and (for power) under a grid of seven
alternatives on each side with distances from the null chosen depending on the strength of
identification. For example, in the very weakly, weakly, and strongly identified cases we
take alternatives in the interval [—2,2], [-2,2], and [—.2,.2], respectively, around the true
parameter 0. Results are obtained from 10, 000 i.i.d samples from each DGP.

First, we discuss the null rejection probabilities. Over the 18 DGPs of the KP setups,
the NRPs of MS-AKP1, MS-AKP2, AR/AR, AR/LM, and AR/QLR1 lie in the intervals
(all numbers in %): [3.5,5.9], [3.3,6.0], [1.9,5.1], [.6,5.2], and [1.5,4.9]. As set up above, the
tests MS-AKP1 and MS-AKP?2 slightly overreject the null for small sample sizes (especially
in the strongly identified case), but the size distortion disappears as n grows. For example,
the NRPs of MS-AKP2 in the KP setup with & = 3 and strong identification is 6.0, 5.5, 5.2,
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and 5.1%, respectively, when n = 250, 500, 1,000, and 1,500. On the other hand, the tests
AR/AR, AR/LM, and AR/QLRI1, while controlling the NRP very well, underreject the null
in weakly identified scenarios. This leads to relatively poor power properties relative to the
tests MS-AKP1 and MS-AKP2 in weakly identified situations.

Regarding the 18 DGPs with CHOM, the one important difference relative to the KP
setup is that the three tests AR/AR, AR/LM, and AR/QLR1 are less conservative with
NRPs over the 18 DGPs in the intervals [4.1,5.4], [3.5,5.4], and [3.7,5.1], respectively. As a

consequence, these tests have relatively better power properties than in the KP setup.

Power results

Next we discuss the power results. Power for MS-AKP1, MS-AKP2, AR/AR, and AR/QLR1
increases as the IVs become stronger. On the other hand, by the local-to-zero design con-
sidered here (see and below), as n increases, power for these three tests changes only
slightly. We therefore only provide details for the case where n = 250. Power of all the tests
is much higher in the setting with CHOM compared to the KP setting and especially so for
the AR/QLRI test (because it underrejects the null hypothesis less under CHOM than under
KP). As one example, consider the case n = 250, k = 2, with weak identification. In that
case, when the true 5 equals .571 the tests MS-AKP2, AR/AR, and AR/QLR1 have power
48.7, 46.3, and 45.4% under KP, but power equal to 95.9, 95.6, and 95.4% under CHOM!

A representative selection of power curves in four different cases is plotted in Figure [I}
Note that in the figures corresponding to the different cases, both the scale of the horizontal
and the vertical axes vary by a lot depending on the strength of identification.

The key takeaways from the power study are as follows:

i) Based on the DGPs considered here we cannot make a clear recommendation as to
which one of the two tests MS-AKP1 and MS-AKP2 is preferable. In most cases, they
have virtually identical power. In few cases, one dominates the other, but only by a small
difference. One small advantage of MS-AKP1 over MS-AKP2 is that it is somewhat easier
to implement. In the Figures below we only report results for MS-AKP2.

ii) Regarding the comparison between the tests MS-AKP1, MS-AKP2 and AR/AR we
find that the former two virtually uniformly dominate the latter in all the designs consid-
ered. This is not surprising given the construction of the new tests and given they satisfy
Assumption RP above. The relative power advantage of the tests MS-AKP1, MS-AKP2
over AR/AR partly stem from the underrejection of the latter test under the null. See e.g.
Figure (I that contains power curves for n = 250, k£ = 2, very weak identification, and KP
structure for MS-AKP2, AR/AR, and AR/QLR1. (The NRPs of the three tests reported
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Figure 1, n=250 k=2,Very Weak, KP Figure 1, n=250,k=4,Strong, KP
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Figure IV, n=250,k=4,Mixed Strength, KP
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Figure 1: Power of various subvector tests in different cases. Covariance structure: Kronecker
product (KP); CHOM. Identification strength (my, 7wy ): Very Weak (2,2); Weak (4,4); Strong
(40, 40); Mixed strength: (2,40).

here are 4.2, 2.0, and 1.6%, respectively.)

iii) Regarding the comparison between the tests MS-AKP1, MS-AKP2 and AR/QLR1 in
the case of equal identification strength 7wy = 7y we find that the former two are generally
more powerful under weak identification and small k& while the reverse is true under strong
identification and larger k, see Figures |1 and II for the cases “k = 2 and very weak identi-
fication” and “k = 4 and strong identification,” respectively, both for n = 250 and KP. (In
Figure [1[[I, the NRPs of the tests MS-AKP2, AR/AR, and AR/QLRI1 are 5.9, 5.1, and 4.6%,
respectively.) These two figures show the best relative performances for the MS-AKP1, MS-
AKP2 and AR/QLRI tests in the “equal identification” settings where my, = my. In Figure
the power advantage of MS-AKP2 over AR/QLR1 is as high as 5.2%, while in Figure [1][T
the power of AR/QLRI can be up to 13.1% more powerful than MS-AKP2.

In the “intermediate” case between these extremes, namely “k = 3 and weak identifica-
tion” (again with n = 250 and KP), the MS-AKP1 and MS-AKP2 tests have slightly higher
power than AR/QLR1 when the true value of § is negative while the reverse is true for
positive values of 5. In all cases, the relative performance of the AR/QLRI test improves
under CHOM; under CHOM, for the “intermediate” case “k = 3 and weak identification”
(again with n = 250) the AR/QLR1 test has uniformly higher power than the MS-AKP1 and
MS-AKP?2 tests, see Figure [l[IL. (In Figure [[[II, the NRPs of the tests MS-AKP2, AR/AR,
and AR/QLRI are 5.5, 4.7, and 5.1%, respectively.)
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In cases of mixed identification strength, my # my € {2,40}, we find that when my = 2
and my = 40 the tests MS-AKP1 and MS-AKP2 have uniformly higher power than AR/QLR1
for all k£ considered whereas in the case my = 40 and my = 2 all tests have comparable
power. See Figure[I[V that contains the case my = 2 and my = 40, n = 250, k = 4, with KP
structure where the power gap between the new tests and AR/QLR1 is as high as 13.4%.
(In Figure V, the NRPs of the tests MS-AKP2, AR/AR, and AR/QLR1 are 3.3, 1.9, and
0.9%, respectively.) It seems that in these cases of mixed identification strength the new

tests enjoy their most competitive relative performance.

5 Conclusion

We propose the construction of a robust test that improves the power of another robust test
by combining it with a powerful test that is only robust for a subset of the parameter space.
We implement this construction in the context of the linear IV model applied to the ARsxp
test that has correct asymptotic size for a parameter space that imposes AKP structure and
the AR/AR test that is robust even when allowing for arbitrary forms of CHET. We believe
that the particular construction and implementation suggested here, namely combining a
powerful but non fully robust test with a less powerful fully robust test in order to obtain a
fully robust more powerful test, might be successfully applied in other scenarios and also in
the current scenario based on different choices of testing procedures. For instance, it might
be feasible to combine the LR type subvector test of Kleibergen (2021) with the AR/QLR1
of |Andrews| (2017) but it would be technically substantially more challenging to verify the
assumptions given below that are sufficient for control of the asymptotic size of the resulting
test.

A Appendix

The Appendix is structured as follows. In Section the proof of Theorem [1f is given,
prepared for first with several technical lemmas in Subsection [A.1.1] Next in Section
the proof of Theorem [2] is given. We provide verifications of the high level assumptions for
particular implementations of the test including for both ¢yss., and AR/AR in Sections
and [A.4] respectively. Finally, in Section [A.5] we generalize the conditional subvector test

to a time series framework.
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A.1 Proof of Theorem 1

A.1.1 Technical lemmas

In what follows below we will require results about solutions to certain minimization problems
involving the Frobenius norm. The next lemma provides a special case of Corollary 2.2 in
van Loan and Pitsianis| (1993). Note that [van Loan and Pitsianis (1993) point to |Golub and
van Loan| (1989, p.73) for a proof of Corollary 2.2. However, the result in |Golub and van
Loan| (1989, p.73) is for a minimization problem using the p-norm for p = 2 and not the

Frobenius norm which is used here.

Lemma 2 Consider the minimization problem

min I|A — BJ)?
BeRm*n rk(B)=1
for a given nonzero matriz A € R™*™ with singular value decomposition A = Udiag(oy, ..., 0,)V’
for singular values oy > 09 > ... > 0, > 0 with p = min{m, n} and rectangular diag(oy, ...,0,) €
R<" - orthogonal matrices U = [uq, ..., up| € R™™ and V = [vq,...,v,] € R, Then a
minimizing argument is given by B = o1uivy and the minimum equals Y\ _,07. If 01 > 09

then B = ojuiv} is the unique minimizer.
Proof of Lemma 2l Note that

i A—B|*= i di - C|)? Al
Be?RmXIE,Hrlk(B):lH I Ce%mxrf},lgk(C):lH iag (a1, ..., o) ] (A1)

by viewing C' = U'BV and because ||D|| = ||[U'D|| = ||DV|| for any matrix D € R™*"
and conformable orthogonal matrices U and V. We can write any matrix C' € R™*" with
rk(C) =1 as

C = |le|]| e, ..., anc) (A.2)

for ¢ € R™\{0™} and o, € R for k = 1,...,n. Because ||A + B||* = ||A||* + ||B||* +
2 < A, B > where < A, B >p:= trace(A’B) denotes the Frobenius inner product, and
|diag (o1, ...,0p)|[* = 27107, [|CI]> = Yol a7, < diag(o, ..., 0,),C >p= 377 oicuci|[c][ ™

for ¢ = (¢1, ..., ¢)" we have
ldiag(or, nop) = I = T 102 + 0 0f =257 aucllell ™. (A)

Viewing (A.3)) as a function in ag, k = 1,...,n, and ¢, taking first order conditions (FOCs)
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with respect to ay, we obtain 2ay — 20.ci||c||™* = 0 or

ar = opeille]| T for k=1,..,pand oy, =0 for k =p+1,...,n. (A.4)

p —10i%; CZ)CJHC“ 1)”CH 2=

Taking FOCs with respect to ¢;, 7 = 1, ..., p, we obtain (||c||o;a;—(
0 and thus
ey — (S0 ymsaics)e; = 0 (4.5)

P

and for j =p+1,...,m we have (3_7_ o;0;¢;)¢jl|c|| ™ = 0 and therefore

CjZ;;):lO'Z‘OéZ‘CZ’ =0. (AG)

The objective is to find (cy, ..., ¢,) such that the two summands in (A.3) that depend on C
are being minimized. Using (A.4]) we thus need to find (cy, ..., ¢;,) such that

C;

Yol = 2320 ol = =30 07 (7 ) (A7)

[lel]

is minimized. Let a be the largest index for which ¢y = ... = ¢,. Given that o, > 0,

for b > a it follows that a vector ¢ = (¢y,...,¢,)  is a minimizing argument if and only if
(c1y.0y¢a) # 0™ P and (coi1y ey €)' = 0™ and the minimum in (A.3) equals

C;

ZP 10 - 1= 1012<||c||)2:zp 10i _0122 1(| ||> = p20_2 (A8)
For example, one solution is ¢ = e; := (1,0,...0)" € R™ for which the minimizing matrix
in - ) becomes C' = (oye1,0™,...0™). Correspondingly, a minimizing matrix B becomes

UCV" = oyuyvy.

If 01 > 0y then a = 1. Therefore, any minimizing ¢ equals (¢, 0, ..., 0)’ for some ¢; # 0 and
therefore, by and (A.4), the only minimizing matrix C' equals ||c||" (e, ..., ane) =
(01€1,0™,...0™). And consequently, there can only be a unique minimizer B = UCV' =

alulv’l. O

Let R € ™! and R = UXV’ be a singular value decomposition of R, where & € Jm*!
has min{m, [} singular values of R on the diagonal and zeros elsewhere, U € R"™*™ is
an orthogonal matrix of eigenvectors of RR', and V € R*! is an orthogonal matrix of
eigenvectors of R'R. In general, U, X, and V are not uniquely defined. The matrix X is
uniquely determined by the restriction that the singular values are ordered nonincreasingly.

We assume that this is the case from now on. Let a be the geometric multiplicity of the largest
cigenvalue of RR'. Write U = [W : W¢] for W € ™%, Thus W = (@, ..., ¥,) denotes an
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orthogonal basis for the eigenspace associated with the largest eigenvalue of RR'.

Lemma 3 Let R and R, for n > 1 be ™! matrices such that R, — R as n — 00.
Let UXV" and U,%,V, be any singular value decompositions of R and R,, respectively,
where the singular values are ordered nonincreasingly. For j < m, denote by w; and wy,;
the j-th column of U and U,, respectively. Decompose U = [ﬁ// : WC] e R™™ where
W= (W1, ..., Wy) € R™* 4s an orthogonal basis for the eigenspace associated with the largest
eigenvalue of RR'. Conformingly, let U, = [Wn : Wnc] Assume Y does not equal the zero

matriv. Then W) ;w; = o(1) for j > a and | < a.

Proof of Lemma [3] Wlog we can assume m > [. (If m < [ add [ — m rows of zeros to
the bottom of R and R,,. Then the result for

R U Omxl—m by .
Olfmxl - Olfmxm U’ Olfmxl 4

for any orthogonal matrix U implies the desired result for R = UXV’.) Denote by o; the
j-th singular value of R (i.e. 0; equals the (j, j)-th element of ) for j = 1, ..., 1, and likewise
o, denotes the j-th singular value of R,. By definition (and given that the algebraic and
geometric multiplicities coincide for any diagonalizable matrix), a is the largest index for
which o; = ... = 0,. Define
Op i= mm{lgr%l?_a |00 = On(atj)|, Ta}- (A.9)
Then by Wedin’s (1972) theorem (see, e.g. [Li| (1998) equations (4.4) and (4.8)Y7), it follows
that
|sin ©(W, W,,)|| = o(1/6,,), (A.10)

where @(W, Wn) denotes the angle matrix between W and W, (see |Li| (1998), equation (2.3)
for a definition). Furthermore, by Lemma 2.1 and equation (2.4) in |Li (1998)), we have

|| sin ©(W, W,)|| = [[WEW]|. (A.11)

Note that d,, is bounded away from zero for all large n because (1) o, > 0 by the assumption

13But note that Wn does not necessarily correspond to a basis for the eigenspace of the largest eigenvalue of
R, R, but may represent eigenvectors corresponding to several different eigenvalues because the multiplicities
of eigenvalues of R, R, and RR' may not be the same. As a trivial example, consider RR’ = I and R, R},
equal to a diagonal matrix with first and second diagonal elements equal to 1 and 1 — n™!, respectively.

14 A comprehensive reference for background reading on Wedin’s (1972) theorem is [Stewart and Sun| (1990,
p-260, Theorem 4.1).
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that X # 0, (2) if @ < I, by construction o, > 0441 and therefore mini<;j<;—q |04 — Tp(a+)|
is uniformly bounded away from zero (because singular values are continuous as functions
of the matrix elements and R, — R), and (3) if a = [ then mini<j<;—q |04 — Op(ats)| = 00,
because we take a minimum of the empty set. Therefore, by and we have

WS W] = o(1) (A.12)
which implies that w;,;w; = o(1) for j > a and | < a. O

A.1.2 Uniformity Reparametrization

To prove that the new conditional subvector AR xp test has asymptotic size bounded by
the nominal size o we use a general result in Andrews, Cheng, and Guggenberger (2020,
ACG from now on). To describe it, consider a sequence of arbitrary tests {¢, : n > 1} of a
certain null hypothesis and denote by RP, (\) the NRP of ¢,, when the DGP is pinned down
by the parameter vector A € A, where A denotes the parameter space of A. By definition,

the asymptotic size of ¢, is defined as

AsySz = lim sup sup RP, (). (A.13)
n—00 A€A
Let {h,(A\) : n > 1} be a sequence of functions on A, where h,(A) = (h,1(A), ..., by s ()
with h,, j(A) € RVj =1,..., J. Define

H={hec RU{xoo})’ : hy,(Au,) — h for some subsequence {w,}
of {n} and some sequence {\,, € A:n > 1}} (A.14)

Assumption B in ACG: For any subsequence {w,} of {n} and any sequence {\,, €
A : n > 1} for which hy,(M\y,) = h € H, RP, (\y,) = [RP~(h), RP(h)] for some
RP~(h), RP*(h) € (0,1)[7]

The assumption states, in particular, that along certain drifting sequences of parameters
A, indexed by a localization parameter h the NRP of the test cannot asymptotically exceed
a certain threshold RP*(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption B in ACG
holds. Then, infrcy RP~(h) < AsySz < suppcy RP*(h).

5By definition, the notation x, — [%1,00, T2,00] means that 1,0 < liminf,, oz, < limsup, _,. z, <

X2, 00-
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We next verify Assumption B in ACG for the conditional subvector AR xp test and
establish that sup,cy RP1(h) = a when the test is implemented at nominal size .. In the
setup considered here, the parameter space A actually depends on n which does not affect
the conclusion of Theorem 2.1(a) and Theorem 2.2 in ACG.

We use Andrews and Guggenberger (2019, AG from now on) , namely Proposition 16.5
in AG, to derive the joint limiting distribution of the eigenvalues &;,, i = 1,...,p in (2.18).
We reparameterize the null distribution F' to a vector A. The vector A is chosen such that
for a subvector of A convergence of a drifting subsequence of the subvector (after suitable
renormalization) yields convergence of the NRP of the test. For given F' and any Gy € RF*P
and Hp € ®*F such that Rp = Gr @ Hp + Y, as in define

Up = G3'""? € R and Qp = Hp " "X(ExZ;Z,)"/? € R, (A.15)
where again Hp = (EF7172)*1/2HF(Epfiig)*lﬂ from (2.12f). Denote by

Br € RP*P an orthogonal matrix of eigenvectors of Ug(Iyy, [y )’ QwQ r (1w, Uy ) Ur
(A.16)

ordered so that the p corresponding eigenvalues (1, ..., ,F) are nonincreasing. Denote by

Cr € R*** an orthogonal matrix of eigenvectors of Qg (I, Iy ) UpUs (I, Ty ) Q9
(A.17)

The corresponding k eigenvalues are (11p, ..., pr, 0, ..., 0). Denote by
(T1p, ..., Tpr) the singular values of Qp(Ilyy, Hy )Up € RE*P, (A.18)

which are nonnegative, ordered so that 7;p is nonincreasing. (Some of these singular values
may be zero.) As is well-known, the squares of the p singular values of a k X p matrix A
equal the p largest eigenvalues of A’A and AA’. In consequence, n;p = TjQF forj=1,..,p. In

addition, n;p =0 for j =p+1,..., k.

16The matrices By and Cr are not uniquely defined. We let By denote one choice of the matrix of
eigenvectors of Ug (I, Iy )’ Q%Q r (Il +y, Iy )Up and analogously for Cp.

Note that the role of ErG; in AG, Section 16, is played by (ITyy,Iy) € R¥*P and the role of W is
played by Qp.
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Define the elements of \ to bd™|

M= (T, oy Tpr) € RP,
Ao = Bp € RP*P,

A3 :=Cp € Rk

Ay p = EF71-7; € RExk

/
Aok = (Asiips ooy A o) = <T2—F T ) € [0, 17", where 0/0 := 0,
Fr Tp—1F

Xor i= Qp € RF
A= Up € RP7P,
Ag,p = F, and
A= Ap = (A p, .y Mg F)- (A.19)

Note that by (A.15) we have G = Up? = )\7_% and Hp = (EFZZ-)VQQFQ’F_l(EFZ?;)UQ
= >‘411,/ ;)\g }m)\%}l )\i/ ; In Sectionthe additional element Ag r defined in is appended to A
with corresponding changes to several objects below, e.g. A, and h,()\) in and Ay,
in and (A.21); e.g. h,(\) becomes (Y21 g, Ao.py A3 7y -y A7,y Ao ).

The parameter space A,, for A and the function h,(\) (that appears in Assumption B in
ACG) are defined by

Ay ={A: A=\ p,...., A\sp) for some F' st (v,Iw,Ily, F') € Faxpa, for some (v, Iy, Iy)},
hn()\) = (n1/2)\1’F, )\2’F, )\3,F7 ---7>\7,F>- (AZO)

We define A and h,(\) as in and because, as shown below, the asymptotic
distributions of the test statistic and conditional critical values under a sequence {F,, : n > 1}
for which h, (Ag,) — h depend on lim nl/Q)\LFn and lim A\, g, for m = 2,...,7. Note that we
can view h € (RU {#o00})” (for an appropriately chosen finite J € N).

For notational convenience, for any subsequence {w,, : n > 1},
{Aw,.n : m > 1} denotes a sequence {\,, € A, :n > 1} for which hy, (Ay,) = h.  (A.21)

It follows that the set H defined in (A.14) is given as the set of all h € (R U {£o00})’ such

"For simplicity, as above, when writing A = (A1, ..., As r) (and likewise in similar expressions) we allow
the elements to be scalars, vectors, matrices, and distributions. Note that A5 r is included so that Proposition
16.5 in AG can be applied.
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that there exists {\,, n : n > 1} for some subsequence {w, : n > 1}.

We decompose h analogously to the decomposition of the first seven components of A:
h = (h, ..., hy), where A\, p and h,, have the same dimensions for m = 1,...,7. We further
decompose the vector hy as hy = (hy 1, ..., h1,)", where the elements of hy could equal co.

Again, by definition, under a sequence {\,, : n > 1}, we have
nPrin = iy >0V = 1,0, Ap, — B Ym =2, 7. (A.22)

Note that hy, = 7,5, = 0 because p(lly v, Ilyw) < p, where p(A) denotes the rank of a matrix
A.
By Lyapunov-type WLLNs and CLTSs, using the moment restrictions imposed in (2.5)),

we have under A\, ,

n—l/27’(€ + VWVn) 51 h
- ") ~ N (0%, (hy? @ (hahg 'h 'R
( vec (n‘l/QZ/VW> ) Iy (5% (0%, (h7? @ (hahg 'hg 'ha)))

ML (' ZZ) = I, 0 Z e Vig] — 07, (A.23)
n p p
where the random vector (&1, §3,)" is defined here, F;, denotes the distribution of (e, 7z, VY Vi)
under )\, 5, and, by definition above, h, 2 and hahg 1hleflh4 denote the limits of G, and ﬁpn
under A, j.

Let g = g, € {0, ...,p — 1} be such that

hyj=o0for 1 <j<gqpand hy; <ooforq,+1<j<p, (A.24)

where hy ; 1= limnl/QTan >0forj=1,....p by and the distributions {F,, : n > 1}
correspond to {X\,;, : n > 1} defined in (A.21). This value ¢ exists because {h1; : j < p}
are nonincreasing in j (since {7;p : j < p} are nonincreasing in j, as defined in )
Note that ¢ is the number of singular values of Qr, (Il Vo, [y, ) Ug, € JF<P that diverge

1/2

to infinity when multiplied by n'/?. Note again that ¢ < p because p(Ilyw,Yn, Hwn) < p.

A.1.3 Asymptotic Distributions

One might wonder whether the definition of G,, in as vec(Gy) = L, 1)/2(1, 1) where
(@n, f[n) are minimizers in is unique. If for instance the eigenspace corresponding to
the largest eigenvalue was of dimension bigger than one, then clearly Z(:, 1) would not be
uniquely defined. The following lemma shows that the definition of @n is unique and derives

its limit.
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To simplify notation a bit, we write shorthand R,, for Ry, and likewise for other expressions.

Lemma 4 Under sequences A,y from A, in (A.20) based on the parameter space Fakpa,
wpl the definition of G, € P and H, € R>F in 1} is unique and

@n — lim G,, and }A[n — lim H, a.s.,

n—oo n—oo
where H, = (Ep, Z:Z,)"\?H (Ep, Z;Z;)~V/? is defined in (2.19).

Comment. Note that under sequences A, j,, lim,,_,o, G, and lim,,_, H,, do exist. On the
other hand, the matrices GG,, and H,, may not be uniquely pinned down by the restrictions
in in Fakpa,. The results én — lim,,_, G,, and f]n — lim,, o H, a.s. hold for any
possible choice of G,, and H,,.

Proof of Lemma 4l Recall the definition
Ry = (I, ® (Er, Z:Z;) ") Br, (vec(Z,U) (vec(ZU)) ) (1, ® (Ep, Z:Z) /%) (A.25)
in (2.10). By Theorem 1 in [van Loan and Pitsianis (1993),
|A— B & C|| = ||R(A) — vec(B)vec(C)|| (A.26)

for any conformable matrices A, B, and C. Thus, for

Tn = (Ip @ (EFnEiE;)_1/2>Tn<[p ® (EFnEi?;)_l/Q)a (A'27)

it follows that R(R, — T,) = vec(G,)vec(H,)" and because mmin(EFnZZé)_lm), Kmin(Gn),
and Kuyin(H,) > 0y in F, AKPay, it follows that R(R, — Y,) has rank 1. It follows also
that lim, o R(R, — T,) = lim, ,o R(R,) (which exists under sequences \,;) has rank
1 (even though the rank of R(R,) could be larger than 1 for every n). By continuity
of the singular values and because the geometric and algebraic multiplicity coincide for
diagonalizable matrices, the dimension of the eigenspace of R(R,,)R(R,)" corresponding to
the largest singular value of R(R,,) is one for all n large enough.

By the uniform moment restrictions in in Farpa,, namely Ex(||T;||**°) < B < oo,
for T; € {vec(Z;U)),vec(Z;Z;)} and ki (Ep(ZiZ;)) > 85 > 0, a strong law of large numbers
implies that

R, — R, — 0""* and R(R,) — R(R,) — 0PP*** a. (A.28)
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Therefore, the dimension of the eigenspace of R(ﬁn)R(ﬁn)’ corresponding to the largest
singular value of R(En) is one for all n large enough wpl.

By the uniqueness statement of Lemma [2| for the rank 1 case, it follows that the formula
for minimizers of the KP approximation problem in given in [van Loan and Pitsianis
(1993, Corollary 2 and Theorem 11), namely

vee(Gy) = 51L(:, 1) and vec(H,) = N(:, 1), (A.29)

yields symmetric pd matrices CAJ and ]/-\I When applying Theorem 11, note that }A%n >
0 for all large enough n wpl, which holds by (A.28 - lim,— oo G, ® H,, = lim,,_,oc R,
T, = lim,_,o R,, and because kmin(Er, Z; 7 D7Y2), ki (G), and fin(H,) > 62 in Fagpa, -
Given that Gn > 0, Sylvester’s criterion for positive definiteness implies that L(l, 1) > 0 for
all large enough n wp1, and we can therefore define CAJn and I/-jn as in with normalization
to 1 of the upper left element of @n for all large enough n wpl.

Next we apply Lemma |3| with a = 1 and the roles of R,, and R in Lemma |3| played by

R(ﬁn) and lim,, ,., R(R,,), respectively. By (A.28), the lemma implies
L(:,5)'Ly = o(1) (A.30)

wpl. for j > 1, where Z(:, j) denotes the j-th column of L in the singular value decomposition
L'R(R,)N = diag(5,) of R(R,) and L, denotes the first column of L in the singular value
decomposition Z/R(limn_>C>o R(R,))N = diag(7;) of lim,_,o R(R,). For any orthogonal basis
(@1, ..., xp2) of R7° and y € NP we have y = ?il(y’xj)xj. In particular, we have L, =

g’il(L’lf(:,j))Z(:,j) = (L4L(:,1))L(:,1) + o(1) wpl., where the second equality holds by
. Together with the normalization of the upper left elements of @n and G, to 1, this
implies @n — G, = 0P*P a.s. and ﬁn — H, — 0% a.s. follows analogously. (]

An analogue to Lemma 16.4 in AG and Lemma 1 in GKM19 is given by the following

statement. Define

~

D, :=(Z'Z)Z (Yo,W) and Q,, := H,;*(n"'Z'Z)"*[F (A.31)

Denote by vec];ilw (-) the inverse vec operation that transforms a kmy, vector into a k x my,

matrix.

Lemma 5 Under sequences {\,, :n > 1} with A\, € A, in (A.20) based on the parameter
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space Fakpa, nl/Q(IA)n — (Il Y, Iywn)) —+4 Dy, where

Dy, ~ hi* (&1p, veci p, (S2.n)),

&1, and &op, are defined in || and again hy is the limit of Ay, = EFnEZ-?;. Furthermore,
we have @n — Qy —p OFF,

Proof of Lemma [B. We have

n'’2(D,, — (Wywnyn, Mywn)

=n'*((Z'Z)7Z (y = Y Bo. W) = (Mww s i)

=n'*((Z2)™Z (ZTwn o + Vivrn + €, ZTwn + Viv) = [wayn, M)
=(n'Z'Z) " 0" V?Z (Vwyn + €, Viv)] —a Di, (A-32)

where the first equality uses the definition of ﬁn in 1’ the second equality uses the
formulas in ([2.1]), and the convergence results holds by the (triangular array) CLT and WLLN
in (A.23). The remaining statement holds by the WLLN in (A.23) and the consistency of

~

H,, for H, proven above. []

For notational convenience, write

U, =G\ (A.33)

AN AN AN AN A~

NN A AN A~

ordered nonincreasingly, and &,, is the subvector AR 4k p test statistic. To describe the lim-

iting distribution of (K1, ..., Kpn) we need additional notation, namely:

hy = <h2,q7 h2,p*q)7 h3 = (h3,q7 hS,qu);
09%(P—9)

h<1>,p—q L= Diag{thH, ey th,l, 0} € éRkX(p_Q),
O(k=p)x(p—a)
Zh = (Zh’q,zhm_q) c §Rk><p, Zh’q = h37q c §Rk><q7
Nppgi=hshS .+ heDphrhy, , € RFXP-D (A.34)

1,p—q

where hy, € RP*9, hy, , € RP¥XPD hy € RM hyyp, € RED A, € RF¥9 and
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Appq € ﬂ?kx(p*q) Let T;, := Bp, S, and S,, := Diag{(n'?mp, )7}, ..., (n*?75) "1, 1,..., 1} €
RP*P_ The same proof as the one of Lemma 16.4 in AG shows that nl/QQFnZA)nUFnTn —a A\,
under all sequences {\,, : n > 1} with A\, € A. The following proposition is an analogue
to Proposition 16.5 in AG and to Proposition 2 in GKM19.

Proposition 2 Under all sequences {\, 5 : n > 1} with A\, 5 € Ay,

(a) Kjn —p 00 for all j <gq,

(b) the (ordered) vector of the smallest p — q eigenvalues of nﬁéﬁ;@n@nf)nﬁn, i.e.,
(K(g+1)ns --» Rpn)', converges in distribution to the (ordered) p — q vector of the eigenvalues of
Zlf},,p—qh&k—qhg’quzh,p—q € Rp—0xp—a)

(¢) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma [3],
and

(d) under all subsequences {wy} and all sequences { Ay, n : n > 1} with Ay, n € Ay, the

results in parts (a)-(c) hold with n replaced with w,,.

Comments. 1. The proof of the proposition follows from the proof of Proposition 16.5
in AG. Note that Assumption WU in AG (assumed in their Proposition 16.5) is fulfilled with
the roles of Wop, Wg, Usr, and Ur in AG played here by Qr, QF, Ur, and Ug, respectively,
while the roles of W; and U; in AG are played by the identity function. The roles of /Wzn and
Wn in AG are both played by @n and those of both ﬁgn and ﬁn by l/]\n. Lemmathen shows
consistency WQn — Wap, —, 05 and ﬁgn — Usp, —p 0P*P under sequences {A,p : n > 1}
with A, , € A, and trivially the functions W; and U; are continuous in our case. Note that
by the restrictions in Faxp,, in the requirements in the parameter space Fyyy in AG,
namely “Kmin(@r) and fmin(Up) are uniformly bounded away from zero and ||Qp|| and ||Up||
are uniformly bounded away from infinity”, are fulfilled. For example, the former follows be-
cause Kmin(Qr) = 1/fmax(Q7') = 1//£max((EF7i7;)_1/2H}/2) and /amax((EFZEQ)_l/QH}?/Q)
is uniformly bounded.

2. Propositionyields the desired joint limiting distribution of the p eigenvalues in ([2.18]).
Using repeatedly the general formula (C" ® A)vec(B) = vec(ABC') for three conformable

matrices A, B, C, we have for the expression hgDjh; that appears in Ay,

&2,
~vec(vy, ..., Up), (A.35)

vec(hgDphy) = vec(hghzl(flﬁ,vec,;inw (&an))h7) = (hr @ (hahg ) ™) ( SH) >

There is some abuse of notation here. For example, hs, and ha,_, denote different matrices even if
p — q equals q.
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where, by definition, v, j = 1, ..., p are i.i.d. normal k-vectors with zero mean and covariance

matrix [, and the distributional statement follows by straightforward calculations using
(A.23). Therefore, by Lemma , the definition of Ay, _, in (A.34), and by noting that

Diagi{h veyh1,-1,0
g7k,qh3h0 o ( Zag{ 1,g+1 -y Itl1p—1, } ) <A36)

Lp=a — 0k=p)x(p—a)

we obtain

! A =
— Vg ee, Up)ho
3,k—q—h,p—q O(k—p)X(p—q) S,k’—q( 1oy p) 2,p—q

~ ( Diag{h1,g+1, ..., h1p-1,0} ) Ny

- Diag{hiq11, -, h1p-1,0}
O(k=p)x(p—a)

) + (W, ooy Wp—g), (A.37)

where, by definition, w;, j = 1,...,p — ¢ are i.i.d. normal (k — ¢)-vectors with zero mean
and covariance matrix Ij_,. The distributional equivalence in the second line holds because
(V1, ooy Up)hap—q ~ (V1y ey Up_g), where ;, j = 1,...,p — ¢ are i.i.d. N(0%, I}) as hy,_, has
orthogonal columns of length 1. Analogously, A3, (v, ..., U0p—g) ~ (w1, ..., w,4) because

hs3 k—q has orthogonal columns of length 1.

For example, when ¢ = p — 1 = my (which could be called the "strong IV” case),

we obtain from (A.37] hgyk_qzhm,q = w; € R¥™w_ Therefore Z;lvp_qh&k,qhg,k_qzhm,q ~

X%—mw and thus by part (b) of Proposition 2 the limiting distribution of the subvector
ARk p test statistic is Xifmw in that case, while all the larger roots in 1) converge in
probability to infinity by part (a).

Proof of Theorem Given the discussion in Comment 2 to Proposition [2] the same
proof as for Theorem 5 in GKM19 applies. [J

A.2 Proof of Theorem [2

Proof of Theorem It is enough to verify Proposition [1] above for the parameter space

Frer and the test pars_axpq. To verify Assumption B in ACG consider a sequence Ay, 5,
defined as in (A.19)) and (A.21]) above except that the component

Agw, = min ||[Rp*(G @ H — Ry, )Rp?|| /cu, (A.38)

is added to A, , where the minimum (here and in similar expressions below) is taken over
(G,H) for G € R H € R*F being pd, symmetric matrices, normalized such that
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the upper left element of G equals 1. In (A.20), we replace Faxpa,, by Fre: and define
huw, (AF) := (w}/z)\LF, A2y A3y ey )\77F,w3/2)\97p). To simplify notation, we write n instead
of w,, from now on.

Consider first a sequence A, j, with hg = co. By Assumption MS, ¢us., = 1 wpal and
therefore, Yars—axpPa = Proba—s Wpal. Thus, the new test pryg-axpq has limiting NRP
bounded by a — ¢ in that case because @ropo—s has asymptotic size bounded by its nominal
size by Assumption RT .

Second, consider a sequence A, with hg € [0,00). In that case, n'/?/c, — oo implies
that min HRE/ (Go H— an)R;i/ ?|| = 0. By submultiplicativity of the Frobenius norm
and ||R},/n ?|| being uniformly bounded in Fy, it then follows that min ||G ® H — Rp, || — 0.
That is, the covariance matrix Rp, has AKP structure. Therefore, also the covariance matrix
Ry, has AKP structure. By the proof of Theorem [1| the test pax Po then has limiting NRP
bounded by « under sequences A, ; with hg € [0, 00). It therefore follows that

lim sup Py, , (¢yms—axpa = 1)
n—oo

< lim sup P,\n’h(maX{SORobu—& YAKPa} = 1)

n—00
= lim sup Py, ,(Paxpa=1) <, (A.39)
n—00
where the equality uses Assumption RP, Py, (@Proba—s < Yarxpa) — 1, which implies that
Py, (max{@roba—s, PaxPa} = 1)N(PRoba—s > PaKPa)) — 0 and the last inequality follows
from the fact that the limiting NRP of the test paxp, is bounded by a.
This establishes Proposition [1| with supycy RPT(h) < « and thus Theorem
To prove Comment 1 below Theorem [2] note that by the assumed continuity, lims_,o
lim inf,, o inf 11y, 11y F)eFre £y T Ty ,F)PMS—AK Pé,en,a €quals iminf, o inf o m,, my myer,.,

Ey My Iy ,F)PMS—AKP0,c,a- But note that

lim inf inf Bty 1y FYPMS—AKPO.cp o
n—00 (77HW7HY7F)EFH61& (’Y’ W ) e

=lim inf E, my, 11y, F)PMS—AK PO o
n—oo

:11113010 E('ywn W Iy g, Fum ) PMS—AK P0,cu,, o

=lim By, ,9MS—AKPOcw, o0 (A.40)
n—o0

where in the first equality (v, Hwy, Hyp, F) € Fper is chosen such that inf i1y, 11y mye .,
By My Ty FYPMS—AKPOcnsa = Bl Tyn Ty ) PMS—AKPO,cna — 11, in the second equality a

subsequence {w,} of {n} can be found, and in the third equality {w,} may denote a further
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subsequence along which (Y, , ww, , Hyw,, Fi, ) is of type Ay, 5 for some h. (We are allowing
here for the possibility that Ey, ,©ms-AKPsc,, .« Mmay depend on the particular sequence
Aw,,,n Tather than just h.) If hg = oo then Yarg—axpo.co, 0 = Proba Wpal by Assumption MS
and

lim F > lim inf inf E . A 41
e Awn.n PRoba Z 700 (. Ty T F)E Forer (v,Iw ,ITy ,F) ¥ Rob,a ( )

On the other hand, if hg < oo then by Assumption RP, ¢roppo < Yaxpa wpal and

lim E),  ,OMS—AKPOcw, o = 1M Ex  ©ORobao (A.42)
n—oo ’ n—oo ’

and the desired conclusion then follows as in (A.41]). O

A.3 Assumption MS for the model selection method ¢j/s,,

Here we verify Assumption MS for the two suggested methods for pps.,-
Method 1, defined as [ (IA(n > ¢,) : To simplify notation we write again n instead of w,

and subscripts F}, as n. Consider a sequence A, with hg = co. Rewrite
Ky/co =n"?|RY*(G, ® Hy, — Ry + (R — R)R;Y?||/cn. (A.43)

In the proof of Lemma we use the uniform moment restrictions in (2.5)) in Fax p,, to obtain
R, — R, = 0,(1); here the stronger uniform moment condition Er((||Z;|[?||Ui||?)**%) < B
allows the application of a Lyapunov CLT and to establish that n'/2(R, — R,) = O,(1).
Because by assumption i (Rr,) > 02 in Fper, we thus have nl/Qﬁgln(Rn — ﬁn)ﬁﬁlm/cn =

0p(1). Furthermore,
n'?||R;Y(Gy @ Hy — Ry) RV /e = 0N — by = 00, (A.44)

where the inequality holds by the definition of Ag, in (3.2)). Because E}/ Ry 12 Iy, and
Yy Y p tkp
norms are continuous, it thus follows that l/(\'n /cn > 1 wpal.
Method 2: The desired result is obtained using Theorem 3 in GKM20.

A.4 Proofs of Results Involving the AR/AR test

Proof of Lemma . Assumption RT is satisfied by the AR/AR test by Theorem 8.1 in
Andrews| (2017)) noting that the parameter space Fag/ar in Andrews| (2017, (8.8)) contains
the parameter space Fp,, defined in (3.23). In particular, note that &;; defined in (8.2) in

Andrews| (2017)), equals 0 in the linear IV model considered here and therefore the condition
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in (8.8) Er&# being bounded holds trivially. Also, Assumption W in |Andrews| (2017)) holds
with the choice Wi, = (n" '3 Z,Z,)~* considered here.
Assumption RP is verified by the following argument that uses Lemmal[6|below. To sim-
plify notation we write n instead of w,,. Let 7, be an element in arg minseqmw HAR,, (5o,7) -
Consider first the case where 5, ¢ OS], defined in . Then, in particular, it must
be that HAR, (8o, ¥n) > Xi.1—a,- We obtain

ARaxp (Bo) — ¢1—a (Rin, kK — mw)
= HAR, (B0,9n) = Xi1ay + (Xh1a, — Ci—a (i k —mw)) + By +0, (1),  (A.45)

where the equality follows from Lemma @ But Xi1 0, > Xiemuia = Cl-a (Rin, k —mw)
no matter what value Ay, takes on. Given my > 1 and a; < o we have that xj, ., —
C1—q (Rin, k — my ) > € wpl for some € > 0. Because B,, > 0 it follows from HAR,, (Bo, Yn) >
X%,l—al that ARakp (50) > ¢1—a (Rin, K — my) wpal. In other words, the conditional sub-
vector AR 4xp test rejects wpal.

Consider second the case where 3, € CS; . Recall the rejection condition of the test
CAR/ARa—801 inf%csfn(HAR@n (Bo,7) _Xz*mw,lfaz,n(ﬁoﬁ)) > 0. For any 5 € C'S} , we have
a2, (Bo,7) < a— 0 by . Therefore, in particular for 7, € CS;

Xi—mW,l—agn(Bo,%) > Xi—mw,l—a +e> 10 (Rin, k—mw) +e€ (A.46)

for some € > 0. We thus obtain that

ARArpn(Bo) — ci—a (Rin, k — muw)

> HAR, (B0,7n) = Xi—my 1 —an (g0 + €+ B+ 0p (1)

> HARg . (8o, Vn) = X¢ w1 —ann(Boim) T € + B, + 0, (1)

> min (HARgp (B0,9) = Xyt —azn(io) + € + B+ 0, (1), (A7)

yecst

where the first inequality follows from Lemma [6] and (A.46), the second inequality follows
from HAR,, (8,7) > HARg,, (Bo,7) for any (8o, 7) because Mp, 5 =) 1 an

matrix, and the last inequality follows because 7,, € CS; . Thus, if ¢ ARJAR,a—5,0; = 1 and

172, 18 a projection

min%csﬂ (HARgs,, (Bo,7) — Xifmw’lfam(ﬁoﬁ)) > 0, it must also be true that ARsxp,(5o) —
C1—o (Fin, k —my) >0 Wpalm

2ONote that it is this derivation that necessitates using ©Rob,a—s rather than the more powerful Yrep

in the definition of Yars—axPes.c,,o. The term B, might go to zero and the o, (1) term could be negative
and dominate and therefore, without the ¢ > 0 term we would not be able to obtain a strict inequality
between the first and second line of (A.47) and thus not be able to show that ¢rep e < Yarp holds
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The inequalities in (A.46]) and (A.47) immediately imply the desired result

Py, 1 (@QRroba—s < QAKPa)
= P, »((@Rroba—s < 0axpa) N (Gn € CST)) + Pr,, . ((roba—s < Paxpa) N (Gn ¢ CST,))
— 1. (A.48)

O

Recall that 7,, is an element in arg mingeqmw HAR,,, (fo,7) and 7;; is an element in

arg minyegmw ARAK P, (B0, 7)-

Lemma 6 Consider a sequence Ay, , (of reparameterized elements in Fpe) with hy < 0o
(that is, a sequence of AKP structure). If vf = Op(1) and wanw}/Q('y;jn — Yau,) = Op(1)
then along Ay, n

AR Ak Py (B0) = HARy, (B0 Fuwn) + B, + 0, (1)

for some random sequence B, that is nonnegative wpl.

Proof. To simplify notation we write n instead of w,. Recall from (3.13)

HAR, (8o,7) =nGn (bo, 5)/ ZA3n (Bo, W)_l Gn (Bo,7)

- (_%) (Vo W) Z8, (50,7) " Z (Yo, W) (_1?) (A.49)

Defining b, := (1, =3, —;")" it follows that under the null

Yoi—Wivt = 4i=Y/ Bo—Wiy,t = vyi— V. Bo—Viv.vt +Z Mwa(v—) = VI +Z My (v =)
(A.50)
Define
gin = ZZZZHWH(’Y - ’Y:L_) € %k and gn = ”_12?:1&71- (A51)

wpal under all drifting sequences. Under weak identification we would still be able to do so; namely, if
q=qn =0, see above then Proposition (b) implies that k1, = Op(1) and given that the critical
values ¢1_q (K1n, k — my ) obtained by linear interpolation from the tables in the Appendix of GKM19 are
strictly increasing in K1, with ¢1_4 (R1n, k& — mw) — X%—mw,l—a as k1, — oo it follows that thereisa v > 0
such that xifmw’lfa > ¢1—q (Rin, kK — mw) + v wpal. Then, implies that ¢ropa < YAk P holds
wpal. But that argument does not go through when ¢ = q; > 1.
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We then have

nin (507 ’yn+)

. _ . . o _ . /
=> _Zi(YOi —~ W) -Z (Yo —Wn!) /n} [Zi(YOi - Wi -Z (Yo —Wnt) /n]
=S (Yo — Wit VZZ,~ 7 (Yo—Wnh) (Yo—Wn,! )17/ n

— — 2
=S |(Vi) + 20V Z Oy = i) + (ZiTlwa(y = 2) } 2.7,

— ZVOIVZ A 2Z VO (y = )y Z Z + Z 2w (y — 40) (v — 90 iy Z Z) [
=Y (Vi) ZiZ,+ 0y (in =€) (G — &)

+ 250 (VIO Z (v = 4 ) ZiZy = 2Z Vi (y = 1) Wy, Z Z[n — Z VBV Z [n
=30, (Vb)) ZiZ, + 0,(n'?), (A.52)

where for the third equality we use (A.50) and Z' (Yo—Wny) = 7/Vb:{ +7Z 7y, (v=.1),
in the fifth equality we apply a WLLN or a Lyapunov CLT theorem for each of the last three
summands in the second to last line and the second summand in the third to last line which
hold by the moment conditions imposed in the parameter space Fp; in . In particular,
using v;- = O,(1) and Hy,,n'/?(y;F — v,) = O,(1), the first summand in the second to last

line is O,(n'/?) while the other summands are O,(1).

The first summand in the last line of (A.52)) can be expanded as follows after normaliza-

tion by n~!.

n I (VN ZiZ,
=(bf L) n 'S, (VieZi) (Vie Zi) (b ® I)

=((G)en) e (™) o 7) (™) o7) () on)

When £y = § (which is assumed here) we have

~

Rr, = Ep, (vee(Z;U))(vec(Z;U)))') + 0,(1) = Gr, @ Hp, + T, + 0,(1), (A.53)

for some Y,, = o(1), where the first equality holds by a WLLN and the second one holds by
the assumption that n'/2\g, — hg < 0o and the argument given in the Proof of Theorem
that establishes that Rp, has AKP structure.
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Therefore, by (3.21])

XAln (507 7:) - i (ﬁ()a ’7;)
— I (V) ZZ, — (1, =) G (1, =4")) © (0 Z'Z) 2 H(n " Z Z)V? + 0,(1)
=0, (1), (A.54)

where the last line follows from 7,7 = O,(1),|A.53] a WLLN, and Lemma . Therefore,
"3 (5077) = ARarcn(Bor ) + 0p(1),
(A.55)
where we use positive definiteness of ¥ (Bo,;F) in the last equality which holds by the
restrictions on EF(7;71»), Gp,and Hp in .
By definition of 7,,, HAR,, (o,7,7) > HAR,, (B0, 7). By definition of v, ARAkp.(5o) =
ARuxcpn(fo. ). Thus, by

HAR, (Bo, %) =13 (Bo,f) [i (Bos ) + 0p (1)}

ARAKPJ’L(BO) :HARn (/3077:) + Op(l) Z HARn (ﬂOu’/y\n) + Op(]->7 (A56)

which is the desired result.

A.5 Time series case

In this section we drop Assumption B and allow for a stationary time series setup. In the
time series case, F' denotes the distribution of the stationary infinite sequence {(7;, V)
i=..,0,1,...}. Recall the definition U; := (&; + Vjj.;7, Vjy;)’ and define

R = Varp (020 vee(Z,U})) . (A.57)
Consider again a sequence a,, = o(1) in (. The parameter space is given by

Frsaxpa, : = (7, Oy, Oy, F) 1 vy € R™ Ty € R 11y € RE™ {(Z;,V;) i = ...,0,1, ...
are stationary and strong mixing under F' with strong mixing numbers
{ap(m) :m > 1} that satisfy ap(m) < Om™,
Ep(ZV]) =0 Rp = Gr@ Hp + Yo,
Ep(||Ti][**°) < B, for T; € {vec(Z;U}), || Z|*}
Fomin(A) > 6 for A € {EpZ:Z,,Gp, Hp}} (A.58)
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for some § > 0, d > (2+6)/d, B,C < oo, for symmetric matrices T,, € R*** such that
||| < an, pd symmetric matrices Gp € RP*P (whose upper left element is normalized to
1) and Hp € R¥*F.

In the time series context, the definition of R, in (2.11]) is replaced by a heteroskedasticity
and autocorrelation consistent (HAC) variance matrix estimator based on {f; : ¢ < n} for
Rp, = (I, ® (EFZZ)*/Q)T%M(IP ® (Ep7i7;)*1/2), e.g. see Newey and West| (1987)) and
Andrews| (1991)). With this modification, the conditional subvector AR sxp test for the time
series case is then defined exactly as in . Theorem (1| then holds without Assumption

B and with ]:AKP,an replaced by ]:TS,AKP,an-

Comment. 1. The proof of the theorem in the time series case follows the exact same
steps as the proof of Theorem [Iin the i.i.d. case in the Appendix with simple modifications.
In particular, define sequences {A\w,n :m > 1} as in m ) but with Faxp,, replaced
by Frsakxpa, I . Then, under sequences A, (writing n instead of w,, to smlphfy
notation), the HAC estimator Rn satisfies R — Rpy —p 0**kr and thus R —p h_
hi/ 2hg 1h6_1h4/ see earlier sections for notation. Also, the CLT in continues to hold
under the mixing conditions in Frg axpa,. Then, the exact same proof as for the i.i.d. case
applies.

2. Again, we obtain the corresponding result for the generalization of the subvector test
in GKMC to the time series KP structure case. This test has correct asymptotic size for the
parameter space Frg axpa, and the result is obtained fully analytically; its proof does not

require any simulations.
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