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Abstract

We introduce a new test for a two-sided hypothesis involving a subset of the struc-

tural parameter vector in the linear instrumental variables (IVs) model. Guggenberger

et al. (2019), GKM19 from now on, introduce a subvector Anderson-Rubin (AR) test

with data-dependent critical values that has asymptotic size equal to nominal size

for a parameter space that allows for arbitrary strength or weakness of the IVs and

has uniformly nonsmaller power than the projected AR test studied in Guggenberger
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et al. (2012). However, GKM19 imposes the restrictive assumption of conditional ho-

moskedasticity. The main contribution here is to robustify the procedure in GKM19 to

arbitrary forms of conditional heteroskedasticity. We first adapt the method in GKM19

to a setup where a certain covariance matrix has an approximate Kronecker product

(AKP) structure which nests conditional homoskedasticity. The new test equals this

adaption when the data is consistent with AKP structure as decided by a model se-

lection procedure. Otherwise the test equals the AR/AR test in Andrews (2017) that

is fully robust to conditional heteroskedasticity but less powerful than the adapted

method. We show theoretically that the new test has asymptotic size bounded by the

nominal size and document improved power relative to the AR/AR test in a wide array

of Monte Carlo simulations when the covariance matrix is not too far from AKP.

Keywords: Asymptotic size, conditional heteroskedasticity, Kronecker product, lin-

ear IV regression, subvector inference, weak instruments

JEL codes: C12, C26

1 Introduction

Robust and powerful subvector inference constitutes an important problem in Econometrics.

For instance, it is standard practice to report confidence intervals on each of the coefficients

in a linear regression model. By robust we mean a testing procedure for a hypothesis of (or

a confidence region for) a subset of the structural parameter vector such that the asymptotic

size is bounded by the nominal size for a parameter space that allows for weak or partial

identification. Recent contributions to robust subvector inference have been made in the

context of the linear instrumental variables (IVs from now on) model (see, for example,

Dufour and Taamouti (2005), Guggenberger et al. (2012) (GKMC from now on), Guggen-

berger et al. (2019), GKM19 from now on, and Kleibergen (2021)), GMM models (see, for

example, Chaudhuri and Zivot (2011), Andrews and Cheng (2014), Andrews and Mikusheva

(2016), Andrews (2017), and Han and McCloskey (2017)), and also models defined by mo-

ment (in)equalities (see, for example, Bugni et al. (2017), Gafarov (2017), and Kaido et al.

(2019)). GKM19 introduce a new subvector test that compares the AR subvector statistic

to conditional critical values that adapt to the strength or weakness of identification and

verify that the resulting test has correct asymptotic size for a parameter space that imposes

conditional homoskedasticity (CHOM from now on) and uniformly improves on the power

of the projected AR test studied in Dufour and Taamouti (2005).

The contribution of the current paper is to provide a robust subvector test that improves

the power of another robust subvector test by combining it with a more powerful test that

is robust for only a smaller parameter space. More specifically, in the context of the linear
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IV model, we first provide a modification of the subvector AR test of GKM19, called the

ARAKP,α test, where α denotes the nominal size. We verify that it has correct asymptotic size

for a parameter space that nests the setup with CHOM and also allows for particular cases

of conditional heteroskedasticity (CHET from now on), namely setups where a particular

covariance matrix has a Kronecker product (KP from now on) structure. For example, the

data generating process (DGP from now on) has a KP structure if the vector of structural

and reduced form errors equals a random vector independent of the IVs times a scalar

function of the IVs. In particular then, the variances of all the errors depend on the IVs by

the same multiplicative constant given as a scalar function of the IVs. In the companion

paper Guggenberger et al. (2020) (GKM20 from now on) we document that KP structure

is compatible with more than 60% of empirical data sets we studied of several recently

published empirical papers (at the 5% nominal size).

Second, depending on a model selection mechanism that determines whether the data are

compatible with KP, the recommended test then equals the ARAKP,α test or the AR/AR test

in Andrews (2017) that is robust to arbitrary forms of CHET. We show that the ARAKP,α

test does not reject less often under the null hypothesis than the AR/AR test when the data

are close to KP structure.

We propose two different model selection methods. One is based on the KPST test

statistic introduced in GKM20 for testing the null hypothesis that a covariance matrix has

KP structure. The other one is based on the standardized norm of the distance between the

covariance matrix estimator and its closest KP approximation. As in the model selection

method proposed in Andrews and Soares (2010), we compare the test statistic to a user

chosen threshold that, in the asymptotics, is let go to infinity. The thresholds can be chosen

differently depending on the number of IVs k and parameters not under test. Based on

comprehensive finite sample simulations we provide choices for the thresholds for several

values of k that lead to good control of the finite sample size.

As the main contribution of the paper, we verify that the resulting test, called ϕMS−AKP,α

test, has asymptotic size bounded by the nominal size α under certain conditions on the

selection mechanism and implementation of the AR/AR test at nominal size α− δ for some

arbitrarily small δ > 0.

In a Monte Carlo study, we compare the suggested new test ϕMS−AKP,α with several

alternatives given in Andrews (2017), in particular, the AR/AR and the AR/QLR1 tests.

Andrews (2017) fills a very important gap in the literature on subvector inference by pro-

viding two-step Bonferroni-like methods for a rich class of models that nests GMM, that i)

control the asymptotic size under relatively mild high-level conditions that allow for CHET,

ii) are asymptotically non-conservative (in contrast to standard Bonferroni methods) and iii)
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are asymptotically efficient under strong identification. In contrast, the test considered here,

ϕMS−AKP,α, can only be used in the linear IV model and is not asymptotically efficient under

strong identification. The Monte Carlo study finds that ϕMS−AKP,α has uniformly higher

rejection probabilities than the AR/AR test for all the DGPs considered. That includes

the null rejection probabilities (NRPs from now on) with the ϕMS−AKP,α test having finite

sample size of 6% versus the 5.4% of the AR/AR test at nominal size 5%. Based on the

Monte Carlo study we conclude that relative to the AR/QLR1 test, ϕMS−AKP,α can be a

useful alternative in terms of power in situations of weak or mixed identification strengths

when the degree of overidentification is small and the covariance matrix of the data is not

too far from KP structure. Whenever the data are compatible with KP structure, it also

offers an important computational advantage because the ARAKP,α test is given in closed

form. In contrast, implementation of the two-step Bonferroni-like methods require mini-

mization of a statistic over a set that has dimension equal to the number of parameters not

under test. The computation time should grow exponentially in the dimension of that set

which constitutes a computational challenge especially when an applied researcher uses the

proposed methods for the construction of a confidence region by test inversion. Given the

construction of the ARAKP,α test it is not surprising to find the relative best performance

of the ϕMS−AKP,α test to occur under weak identification. Namely, the critical values of the

former test adapt to the strength of identification and can be substantially lower than the

corresponding chi-square critical values when identification is deemed to be weak.

The rest of the paper is organized as follows. In Section 2 we introduce a version of a

subvector Anderson and Rubin (1949) test that has correct asymptotic size for a parameter

space that imposes an approximate Kronecker product (AKP) structure for the covariance

matrix. In Section 3 we introduce a new test that has correct asymptotic size for a param-

eter space that does not impose any structure on the covariance matrix and therefore, in

particular, allows for arbitrary forms of conditional heteroskedasticity. Finally, in Section 4

we study the finite the finite sample properties of the test. Proofs are given in the Appendix

at the end.

Notation: Throughout the paper, we denote by “⊗” the KP of two matrices, by vec(·)
the column vectorization of a matrix, and by || · || the Frobenius norm.1 We use the notation

MA := In − PA and PA := A(A′A)−1A′ for any full rank matrix A ∈ <n×k.
1Recall the Frobenius norm for a matrix A = (aij) ∈ <m×n is defined as ||A||2 :=

∑m
i=1

∑n
j=1a

2
ij . When

A is a vector the Frobenius and the Euclidean norm are numerically equivalent.
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2 Subvector AR Test under Approximate Kronecker

Product Structure

Assume the linear IV model is given by the equations

y=Y β +Wγ + ε

Y =ZΠY + VY

W =ZΠW + VW , (2.1)

where y ∈ <n, Y ∈ <n×mY , W ∈ <n×mW , and Z ∈ <n×k. We assume that k −mW ≥ 1 and

mW ≥ 1. The reduced form can be written as

(
y Y W

)
= Z

(
ΠY ΠW

)( β ImY 0mY ×mW

γ 0mW×mY ImW

)
+
(
vy VY VW

)
︸ ︷︷ ︸

V

, (2.2)

where vy := VY β+ VWγ + ε (which depends on the true β and γ), V ′W = (VW,1, . . . , VW,n),

V ′Y = (VY,1, . . . , VY,n), Z
′
= (Z1, . . . , Zn). By Vi, for i = 1, ..., n, we denote the i-th row of V

written as a column vector and similarly for other matrices.

The objective is to test the subvector hypothesis

H0 : β = β0 against H1 : β 6= β0, (2.3)

using tests whose size, i.e. the highest NRP over a large class of distributions for (εi, Z
′
i, V

′
Y,i, V

′
W,i)

and the unrestricted nuisance parameters ΠY , ΠW , and γ, equals the nominal size α, at least

asymptotically. In particular, weak identification and non-identification of β and γ are al-

lowed for. We impose the following assumption as in GKM19 (from where the name of the

assumption is inherited).

Assumption B: The random vectors (εi, Z
′
i, V

′
Y,i, V

′
W,i) for i = 1, ..., n in (2.1) are i.i.d. with

distribution F.

For a given sequence an = o(1) in <≥0, we define a sequence of parameter spaces FAKP,an
for (γ,ΠW ,ΠY , F ) under the null hypothesisH0 : β = β0 that is larger than the corresponding

ones in GKMC and GKM19 in that general forms of AKP structures for the variance matrix

RF := EF (vec(ZiU
′
i)(vec(ZiU

′
i))
′) ∈ <kp×kp (2.4)
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are allowed for.2 Namely, for Ui := (εi + V ′W,iγ, V
′
W,i)

′ (which equals (vyi − V ′Y,iβ, V
′
W,i)

′),

p := 1 +mW , and m := mY +mW let

FAKP,an = {(γ,ΠW ,ΠY , F ) : γ ∈ <mW ,ΠW ∈ <k×mW ,ΠY ∈ <k×mY ,

EF (||Ti||2+δ1) ≤ B, for Ti ∈ {vec(ZiU
′
i), ||Zi||2},

EF (ZiV
′
i ) = 0k×(m+1), RF = GF ⊗HF + Υn,

κmin(A) ≥ δ2 for A ∈ {EF (Z
′
iZi), GF , HF}} (2.5)

for symmetric matrices Υn ∈ <kp×kp such that

||Υn|| ≤ an, (2.6)

positive definite (pd from now on) symmetric matrices GF ∈ <p×p (whose upper left element

is normalized to 1) and HF ∈ <k×k, δ1, δ2 > 0, B <∞. Note that the factors in the KP GF⊗
HF are not uniquely defined due to the summand Υn. Note that no restriction is imposed

on the variance matrix of vec(ZiV
′
Y,i) and, in particular, EF (vec(ZiV

′
Y,i)(vec(ZiV

′
Y,i))

′) does

not need to factor into a KP.

The factorization of the covariance matrix into an AKP in line three of (2.5) is a weaker

assumption than CHOM. Under CHOM, we have GF = EF (UiU
′
i) and HF = EF (Z

′
iZi)

(prior to the normalization of the upper left element of GF ) and Υn = 0kp×kp. The AKP

structure allowed for here (but not in GKMC and GKM19) also covers some important cases

of CHET involving vec(ZiU
′
i).

Examples. i) Consider the case in (2.1) where (ε̃i, Ṽ
′
W,i)

′ ∈ <p are i.i.d. zero mean with

a pd variance matrix, independent of Zi, and (εi, V
′
W,i)

′ := f(Zi)(ε̃i, Ṽ
′
W,i)

′ for some scalar

valued function f of Zi.
3 In that case, the covariance matrix RF can be written

EF (vec(ZiU
′
i)(vec(ZiU

′
i))
′)

=EF

(
UiU

′
i ⊗ ZiZ

′
i

)
=EF

(
(εi + V ′W,iγ, V

′
W,i)

′(εi + V ′W,iγ, V
′
W,i)⊗ ZiZ

′
i

)
=EF

(
(ε̃i + Ṽ ′W,iγ, Ṽ

′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)
)
⊗ EF

(
f(Zi)

2ZiZ
′
i

)
(2.7)

2Regarding the notation (γ,ΠW ,ΠY , F ) and elsewhere, note that we allow as components of a vector
column vectors, matrices (of different dimensions), and distributions.

3For example, Andrews (2017) considers f(Zi) = ||Zi||/k1/2.
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and thus has KP structure even though, obviously, CHOM is not satisfied because

EF (UiU
′
i |Zi) = f(Zi)

2EF (ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i)

′(ε̃i + Ṽ ′W,iγ, Ṽ
′
W,i) (2.8)

depends on Zi.

ii) In a wage regression to assess the effect of ”years of education”, the assumption of

CHOM would require that e.g. the variance of ”wage” does not depend on the included

regressor ”race”. This assumption is incompatible with recent US data where the wage

dispersion is largest for Asians. Instead, the construction (εi, V
′
W,i)

′ := f(Zi)(ε̃i, Ṽ
′
W,i)

′ in i)

allows for dependence of the variances of the regressand and all endogenous regressors on

a scalar function of Zi. The maintained restriction is that all these variances are affected

approximately by the same scalar function of Zi. In the related paper, GKM20, we test the

null hypothesis of KP structure for more than 100 specifications in about a dozen highly

cited papers and find that at the 5% nominal size in about 30% of the cases the null is not

rejected.

iii) For a time series setting, consider a structural vector autoregression AXt = BXt−1 +

ηt, where dimXt = dim ηt = n, E (ηt|Xt−1) = 0 and suppose that var (ηt|Xt−1) = var (ηt) =

Σt = diag (σ2
1t, ..., σ

2
nt). If σ2

it = atσ
2
i for some scalar function of time at, i.e., the volatilities of

all the shocks change over time in a proportional manner, then the variance of Xt−1ηt has KP

structure. In this model, identification can be achieved by exclusion restrictions (Sims, 1980)

that render some of Xt−1 valid instruments. It can also be achieved with external instruments

if available (Stock and Watson, 2018). Time-variation in volatilities has been reported in

many contexts. For instance, the ‘great moderation’ is a well-documented phenomenon of a

fall in macroeconomic volatility in the US in the early 1980s (cf. Bernanke (2004), ch. 4).

AKP would result if the fall in the volatilities were similar across variables.

In this section we will introduce a new conditional subvector ARAKP test and show it

has asymptotic size with respect to the parameter space FAKP,an equal to the nominal size.

We next define the new test statistic and the critical value for the case considered here of

AKP structure.

Estimation of the two factors in the AKP structure: Define

Zi := (n−1Z
′
Z)−1/2Zi ∈ <k (2.9)

7



and Z ∈ <n×k with rows given by Z ′i for i = 1, ..., n.4 Define an estimator of the matrix

RF = (Ip ⊗ (EFZiZ
′
i)
−1/2)RF (Ip ⊗ (EFZiZ

′
i)
−1/2) ∈ <kp×kp (2.10)

by

R̂n := n−1
∑n

i=1fif
′
i ∈ <kp×kp, where

fi := ((MZY 0)i, (MZW )′i)
′ ⊗ Zi ∈ <kp, and Y 0 := y − Y β0. (2.11)

Note that R̂n is automatically a centered estimator because, as straightforward calculations

show, n−1
∑

ifi = 0. From RF = GF ⊗HF + Υn, it follows that RF = GF ⊗HF + o(1) for

HF := (EFZiZ
′
i)
−1/2HF (EFZiZ

′
i)
−1/2. (2.12)

Let

(Ĝn, Ĥn) = arg min ||G⊗H − R̂n||, (2.13)

where the minimum is taken over (G,H) for G ∈ <p × p, H ∈ <k × k being pd, symmetric

matrices, and normalized such that the upper left element of G equals 1.

Following van Loan and Pitsianis (1993, Corollary 2.2), it can be shown that (Ĝn, Ĥn)

are given in closed form by the following construction. First, for a pd matrix A ∈ <kp×kp

define the rearrangement of A as

R(A) :=

 A1

...

Ap

 ∈ <pp×kk, where

Aj :=

 (vec(A1j))
′

...

(vec(Apj))
′

 ∈ <p×kk for j = 1, ..., p, (2.14)

where Alj ∈ <k×k denotes the (l, j) submatrix of dimensions k × k, where l, j = 1, ..., p.

Second, denote by

L̂′R(A)N̂ = diag(σ̂l) ∈ <pp×kk (2.15)

a singular value decomposition of R(A),5 where the singular values σ̂l for l = 1, ..., p2 are or-

4For simplicity, we do not use the more precise notation Zin for Zi. It is explained in detail in Comment
3 below Theorem 1 why we introduce Zi, namely to obtain invariance of the testing procedure with respect
to nonsingular transformations of the IVs.

5In van Loan and Pitsianis (1993, Corollary 2), the orthogonal matrices L̂ ∈ <pp×pp and N̂ ∈ <kk×kk are
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dered non-increasingly. Finally, denote by L̂(:, 1) and N̂(:, 1) singular vectors corresponding

to the largest singular value σ̂1 and let L̂(1, 1) denote the first component of L̂(:, 1). Then,

letting the role of A be played by R̂n in (2.15), minimizers (Ĝn, Ĥn) to (2.13) are defined by

vec(Ĝn) = L̂(:, 1)/L̂(1, 1) and vec(Ĥn) = σ̂1L̂(1, 1)N̂(:, 1), (2.16)

where L̂(1, 1) > 0 whenever R̂n is pd. By Lemma 4 below, the definition given in (2.16) is

unique for all large enough n wp16 and

Ĝn −GFn → 0p×p and Ĥn −HFn → 0k×k a.s. (2.17)

under certain sequences Fn as defined in FAKP,an for which RFn = GFn ⊗HFn + o(1) (where

RFn is defined in (2.10) with F replaced by Fn), HFn := (EFnZiZ
′
i)
−1/2HFn(EFnZiZ

′
i)
−1/2

(as defined in (2.12)), and the upper left element of GFn is normalized to 1.

Definition of the conditional subvector test: We denote the subvector AR statistic

when the variance matrix has AKP structure by ARAKP,n(β0) and define it as the smallest

root κ̂pn of the roots κ̂in, i = 1, ..., p (ordered nonincreasingly) of the characteristic polynomial∣∣∣κ̂Ip − n−1Ĝ−1/2
n

(
Y 0,W

)′
ZĤ−1

n Z ′
(
Y 0,W

)
Ĝ−1/2
n

∣∣∣ = 0. (2.18)

The conditional subvector test ARAKP,α rejects H0 at nominal size α if

ARAKP,n(β0) > c1−α(κ̂1n, k −mW ), (2.19)

where c1−α (·, ·) is defined as follows. Muirhead (1978), in the case where mW = 1 and

assuming normality, provides an approximate, nuisance parameter free, conditional density

of the smaller eigenvalue κ̂2n given the larger one κ̂1n for any degree of overidentification

k − mW , see (2.12) in GKM19 for the conditional pdf. For given κ̂1n and arbitrary mW ,

c1−α(κ̂1n, k −mW ) denotes the 1− α-quantile of that approximation. GKM19 (Table 1 and

Supplement C) provide c1−α(κ̂1n, k −mW ) for α = 1, 5, 10%, k −mW = 1, ..., 20 and a fine

grid of values for κ̂1n, say κ̂1,1 ≤ ... ≤ κ̂1,j ≤ ... ≤ κ̂1,J for some large J. We reproduce

Table 1 (that covers the case α = 5% and k −mW = 4) from GKM19 below. Conditional

critical values for values of κ̂1n not reported in the tables are obtained by linear interpolation.

Specifically, let q1−α,j(k − 1) denote the 1 − α quantile of the distribution whose density is

called U and V, respectively, notation that we have already used for other objects.
6Note that it would not be unique if the eigenspace associated with the largest singular value had dimen-

sion larger than 1.
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given by (2.12) in GKM19 with κ̂1n replaced by κ̂1,j. The end point of the grid κ̂1,J should be

chosen high enough so that q1−α,J(k−mW ) ≈ χ2
k−mW ,1−α. For any realization of κ̂1n ≤ κ̂1,J ,

find j such that κ̂1n ∈ [κ̂1,j−1, κ̂1,j] with κ̂1,0 = 0 and q1−α,0 (k −mW ) = 0, and let

c1−α (κ̂1n, k −mW ) :=
κ̂1,j − κ̂1n

κ̂1,j − κ̂1,j−1

q1−α,j−1 (k −mW ) +
κ̂1n − κ̂1,j−1

κ̂1,j − κ̂1,j−1

q1−α,j (k −mW ) .

(2.20)

Table 1: cv = c1−α(κ̂1, k −mW ) for α = 5%, k −mW = 4 for various values of κ̂1

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.2 1.1 2.1 1.9 3.2 2.9 4.5 3.9 5.9 4.9 7.4 5.9 9.4 6.9 12.5 7.9 20.9 8.9

1.3 1.2 2.3 2.1 3.5 3.1 4.7 4.1 6.2 5.1 7.8 6.1 9.9 7.1 13.4 8.1 26.5 9.1

1.4 1.3 2.5 2.3 3.7 3.3 5.0 4.3 6.5 5.3 8.2 6.3 10.5 7.3 14.5 8.3 39.9 9.3

1.6 1.5 2.7 2.5 4.0 3.5 5.3 4.5 6.8 5.5 8.6 6.5 11.1 7.5 15.9 8.5 57.4 9.4

1.8 1.7 3.0 2.7 4.2 3.7 5.6 4.7 7.1 5.7 9.0 6.7 11.7 7.7 17.9 8.7 1000 9.48

Denote by P(γ,ΠW ,ΠY ,F )(·) the probability of an event under the null hypothesis when

the true values of the structural and reduced form parameters and the distribution of the

random variables are given by (γ,ΠW ,ΠY , F ). Recall the definition of the parameter space

FAKP,an in (2.5). We can now formulate the main result of this section.

Theorem 1 Under Assumption B, the conditional subvector test ARAKP,α defined in (2.19)

implemented at nominal size α has asymptotic size, i.e.

lim sup
n→∞

sup
(γ,ΠW ,ΠY ,F )∈FAKP,an

P(γ,ΠW ,ΠY ,F )(ARAKP,n(β0) > c1−α(κ̂1n, k −mW ))

equal to α for α ∈ {1%, 5%, 10%} and k −mW ∈ {1, ..., 20} .

Comment. 1. Some portions of the proof follow similar steps as the proof of Theorem

5 in GKM19. In particular, one portion of the proof relies on an one-dimensional simulation

exercise to prove that the NRPs are bounded by the nominal size. This exercise could be

extended to choices of α and k −mW beyond those in the theorem and likely the theorem

would extend to many more choices.

2. Trivially, under the same assumptions as in Theorem 1, we obtain that

lim sup
n→∞

sup
(γ,ΠW ,ΠY ,F )∈FAKP,an

P(γ,ΠW ,ΠY ,F )(ARAKP,n(β0) > χ2
k−mW ,1−α) = α.

That is, the generalization of the subvector test in GKMC to AKP structure has correct
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asymptotic size. This result is obtained fully analytically; its proof does not require any

simulations.

3. Invariance with respect to nonsingular transformations of the IV ma-

trix. The identifying power of the model comes from the moment condition EF εiZi =

EF (yi−Y ′i β−W ′
iγ)Zi = 0. This moment condition obviously still holds when the instrument

vector is premultiplied by a nonrandom nonsingular matrix A ∈ <k×k, i.e. EF εiAZi = 0.

It then seems reasonable to look for testing procedures whose outcome is invariant to such

nonsingular transformations. In the weak IV literature, e.g. Andrews et al. (2006) and An-

drews et al. (2019) and references therein, the class of (similar) invariant tests to orthogonal

transformations A, that is, changes of the coordinate system, has been studied. The trans-

formation of the IVs in (2.9) is performed in order for the test to be invariant to nonsingular

transformations of the IVs.

If the conditional subvector ARAKP test defined in (2.19) (and R̂n in (2.11)) was de-

fined with Zi in place of Zi it would be invariant to orthogonal transformations but not

necessarily to nonsingular ones. To see the former, denote by R̂nA the matrix R̂n when

the instrument vector has been transformed to AZi (and consequently Z is changed to

ZA′). Then the claim follows from R(R̂nA) = R(R̂n)(A′ ⊗ A′) (which holds for any non-

singular matrix A by straightforward calculations using vec(ABC) = (C ′ ⊗ A)vec(B) for

any conformable matrices A,B, and C and MZ = MZA′) which implies ĜnA = Ĝn and

ĤnA = AĤnA
′ when A is orthogonal, where again ĜnA and ĤnA denote the matrices Ĝn and

Ĥn when the instrument vector Zi has been transformed to AZi. It then follows that the

matrix n−1Ĝ
−1/2
n

(
Y 0,W

)′
ZĤ−1

n Z
′ (
Y 0,W

)
Ĝ
−1/2
n in (2.18) (and thus its eigenvalues) remain

invariant under orthogonal transformations Zi → AZi of the instrument matrix. This test

however is not invariant in general to arbitrary nonsingular transformations.

But with the replacement of Zi by Zi as done in (2.11) and, correspondingly, Z by

Z(n−1Z
′
Z)−1/2 in (2.18), the test is invariant against nonsingular transformations A. The

invariance of this test to arbitrary nonsingular transformations Zi → AZi of the instrument

matrix (which leads to a transformation of Zi to (AZ
′
ZA′)−1/2AZi) follows from straight-

forward calculations and the fact that the matrix

TA := (Z
′
Z)1/2A′(AZ

′
ZA′)−1/2 ∈ <k×k (2.21)

is orthogonal. In particular, one can easily show that the matrices R(R̂n), Ĝn, and Ĥn that

appear as ingredients in the conditional subvector test ARAKP,α with A = Ik are related

to the corresponding matrices R(R̂nA), ĜnA, and ĤnA, when A is an arbitrary nonsingular
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matrix, via

R(R̂nA) = R(R̂n) (TA ⊗ TA) , ĜnA = Ĝn, and ĤnA = T ′AĤnTA (2.22)

which immediately implies the desired invariance result.

4. The conditional subvector test can be generalized to a stationary time series setting,

see the Appendix, Section A.5, for details.

5. Note that under the null hypothesis the test does not depend on the value of the

reduced form matrix ΠY because the test statistic and the critical value are affected by Y

only through Y 0 = y − Y β0.

6. GKM19 establish that the conditional subvector AR test introduced there enjoys

near optimality properties in the linear IV model with conditional homoskedasticity in a

certain class of tests that depend on the data only through the roots κ̂in, i = 1, ..., p when

k−mW = 1. On the other hand, when k−mW gets bigger the test may be quite conservative.

The power gains over the projected AR subvector test discussed in Dufour and Taamouti

(2005) arise in weakly identified scenarios while under strong identification these two tests

become identical. Similarly, we expect the power properties of the new conditional subvector

test ARAKP,α to be most competitive for small k −mW , particular, when k −mW = 1, in

weakly identified situations.

3 Subvector Testing under Arbitrary Forms of Condi-

tional Heteroskedasticity

We now allow for arbitrary forms of CHET, that is, the parameter space does not impose an

AKP structure for RF . We describe a testing procedure under high level assumptions that

we then verify in the next subsections for particular implementations of the test.

In what follows, FHet is a generic parameter space for (γ,ΠW ,ΠY , F ) that does not impose

an AKP structure, but if the restriction RF = GF ⊗ HF + Υn as in FAKP,an in (2.5) was

added to the conditions in FHet then FHet ⊂ FAKP,an . For example, the null parameter space

FHet may impose stronger moment conditions than FAKP,an so that certain Lyapunov CLTs

apply. See the definitions of FHet in the next subsections. We summarize the restrictions on

the parameter space (PS) in the following assumption.

Assumption PS: FHet ⊂ F̃AKP,an , where F̃AKP,an is equal to FAKP,an without the

condition RF = GF ⊗HF + Υn (AKP structure ) and without the assumptions κmin(A) ≥ δ2

for A ∈ {GF , HF}.

12



We assume there exists a robust test (RT) ϕRob,α that has asymptotic size for the pa-

rameter space FHet bounded by the nominal size α. For example, in the next subsection we

consider a particular implementation of the AR/AR test in Andrews (2017). In general, we

think of ϕRob,α as a test whose power can be substantially improved on by the test ϕAKP,α

when RF has AKP structure.

Assumption RT: Let ϕRob,α be a test of (2.3) whose asymptotic size for the parameter

space FHet is bounded by the nominal size α.

We now define a new test that, roughly speaking, coincides with ϕAKP,α or ϕRob,α de-

pending on whether the data seems consistent or not with AKP structures. We now provide

the details.

Consider a given sequence of constants cn such that

cn →∞ and cn/n
1/2 → 0 (3.1)

e.g. cn = cn1/2/ ln(n) or cn = cn1/2/ ln ln(n) for some constant c > 0 and define

λ9n := min ||R−1/2
Fn

(G⊗H −RFn)R
−1/2
Fn
||/cn, (3.2)

where the minimum (here and in analogous expressions below) is taken over (G,H) for

G ∈ <p×p, H ∈ <k×k being pd, symmetric matrices, normalized such that the upper left

element of G equals 1.7 The quantity λ9n measures how far from KP structure the covariance

matrix RFn in (2.10) when F = Fn is. To show that the new test ϕMS−AKP,α defined below

has asymptotic significance level α, it is sufficient (as proven in the Appendix) to consider

two types of drifting sequences of DGPs in FHet and to establish that the test has limiting

NRP bounded by the nominal size α in each case. The first type of sequences are those for

which

n1/2λ9n → h9 =∞, (3.3)

that is sequences where the covariance matrix RFn is ”far away” from KP structure. We

assume that there is a model selection (MS) method ϕMS,cn ∈ {0, 1} such that when RFn

is ”far from” KP structure it will chose the robust test wpa1. The next assumption makes

that statement more precise. To properly formulate the assumption we require terminology

that is provided in the Appendix because it requires a lot of space. In particular, we need to

consider particular sequences of drifting parameters λwn,h (defined in (A.21) in the Appendix)

where wn denotes a subsequence of n.

7The expression G⊗H −RFn
is pre- and postmultiplied by R

−1/2
Fn

for invariance reasons.
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Assumption MS: Let ϕMS,cn ∈ {0, 1} be a model selection method such that under pa-

rameter sequences λwn,h (with underlying parameter space FHet) with h9 = ∞ we have

ϕMS,cn = 1 wpa1.

By definition, along λwn,h, w
1/2
n λ9wn → h9 and thus when h9 = ∞ the sequence is not

local to KP structure.

Definition of the fully robust test: Let δ ≥ 0. The new suggested test ϕMS−AKP,δ,cn,α

of nominal size α of the null hypothesis (2.3) is defined as

ϕMS,cnϕRob,α−δ + (1− ϕMS,cn)ϕAKP,α. (3.4)

We typically write ϕMS−AKP,α rather than ϕMS−AKP,δ,cn,α to simplify notation. Ideally, δ = 0

can be chosen in this construction. To verify Assumption RP below using the AR/AR test

as ϕRob,α−δ we need to have δ > 0. (Potentially, Assumption RP may hold with δ = 0 but

our current proof technique does not allow verifying it).

By Assumption MS, ϕMS−AKP,α = ϕRob,α−δ wpa1 in case (3.3). Thus, by Assumption

RT, the new test ϕMS−AKP,α has limiting NRP bounded by α− δ of the test in that case.

For the model selection methods introduced below, the sequence of constants cn reflects

a trade-off between size and power. Large values of cn will imply frequent use of ϕAKP,α

which should translate into good power properties. On the other hand, use of ϕAKP,α could

distort the null rejection probabilities in finite samples if the test is used in a scenario where

the covariance matrix does not have AKP structure. Below we make a recommendation

regarding the choice of cn based on comprehensive Monte Carlo studies. Note that cn can

also depend on observed nonrandom quantities such as e.g. k and mW but for the sake of

notational simplicity we don’t make that explicit.

To guarantee correct asymptotic significance level α of the test ϕMS−AKP,α and to rule

out any potential pretesting issue, we have to implement the test ϕRob,α at a nominal size

infinitesimally smaller than α. For example, we can pick δ = 10−6, which should not make

any practical difference in terms of power relative to using the test with δ = 0.

In addition, we have to impose one additional assumption regarding the relative null

rejection probabilities (RP) of the robust test ϕRob,α−δ and ϕAKP,α under sequences with

AKP structure in order to make sure that ϕMS−AKP,α has limiting NRP bounded by α.

More precisely, consider a sequence of DGPs in FHet such that

n1/2λ9n → h9 ∈ [0,∞). (3.5)

Using n1/2/cn → ∞, one can then show that min ||G ⊗ H − RFn|| → 0 and the sequences
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are of AKP structure. Therefore, under such sequences the test ϕAKP,α has limiting null

rejection probability bounded by α. The notation Pλwn,h(A) denotes probability of an event

A when the true DGP is characterized by λwn,h. By definition, along λwn,h, w
1/2
n λ9wn → h9

and thus when h9 <∞ the sequence is local to KP structure.

Assumption RP: Under sequences of DGPs (γwn ,ΠWwn ,ΠY wn , Fwn) in FHet for subse-

quences wn for which λwn,h satisfies h9 ∈ [0,∞), Pλwn,h(ϕRob,α−δ ≤ ϕAKP,α)→ 1.

Under Assumption RP one can show that in case (3.5) (i.e. under drifting sequences of

DGPs λwn,h with finite h9) ϕMS−AKP,α has limiting NRP bounded by the nominal size of the

test (because from the proof of Theorem 1 the test ϕAKP,α has limiting null rejection proba-

bility bounded by α; and the limiting null rejection probability of the new test ϕMS−AKP,α is

then bounded by α by the assumption that ϕRob,α−δ has asymptotic size bounded by α− δ.)
From the above, it then follows quite straightforwardly, that the asymptotic size of

ϕMS−AKP,α is bounded by the nominal size for the parameter space FHet. Also, the new test

is at most as nonsimilar asymptotically as ϕRob,α−δ which translates into favorable power

properties of the new test.

Theorem 2 Suppose Assumptions PS, RT, MS, and RP hold. Then the test ϕMS−AKP,δ,cn,α

defined in (3.4) with δ > 0 and cn satisfying the conditions in (3.1) has asymptotic size

bounded by the nominal size α for the parameter space FHet for α ∈ {1%, 5%, 10%} and

k −mW ∈ {1, ..., 20} .

Comments. 1. If lim infn→∞ inf(γ,ΠW ,ΠY ,F )∈FHet E(γ,ΠW ,ΠY ,F )ϕMS−AKP,δ,cn,α is continu-

ous in δ at δ = 0 then as δ → 0 the new test ϕMS−AKP,δ,cn,α is asymptotically not more

nonsimilar (i.e. less conservative) than ϕRob,α, i.e.

lim
δ→0

lim inf
n→∞

inf
(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕMS−AKP,δ,cn,α

≥ lim inf
n→∞

inf
(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕRob,α. (3.6)

See the proof of Theorem 2 for a proof. Property (3.6) should translate into improved power

of ϕMS−AKP,δ,cn,α relative to ϕRob,α.

2. The restriction to α ∈ {1%, 5%, 10%} and k −mW ∈ {1, ..., 20} in the formulation of

Theorem 2 is an artifact of Theorem 1 where the conditional subvector test ϕAKP,α was shown

to have correct asymptotic size for these cases only. The same is true for other theorems

formulated below.

In the next subsection we specifically use the AR/AR subvector procedure due to An-

drews (2017) as ϕRob,α−δ. We propose two different methods for the model selection method
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ϕMS,cn . The first one is akin to the moment selection technique suggested in Andrews and

Soares (2010) to check which moment inequalities are binding in a model defined by moment

inequalities. The second one is based on the test for KP structure proposed in Guggenberger

et al. (2020).

3.1 Model selection methods ϕMS,cn

In this subsection we discuss two methods that can be used for ϕMS,cn as model selection

procedures. The first one is akin to the moment selection method in Andrews and Soares

(2010), the second one is the test for KP structure introduced in GKM20.

Method 1: Define

K̂n := n1/2||R̂−1/2
n (Ĝn ⊗ Ĥn − R̂n)R̂−1/2

n ||, (3.7)

with Ĝn and Ĥn defined in (2.13), to evaluate how far the true model is away from KP

structure. Define the first choice for model selection as

ϕMS,cn := I(K̂n > cn). (3.8)

Recall the definition of F̃AKP,an given in Assumption PS. Here we take

FHet = {(γ,ΠW ,ΠY , F ) ∈ F̃AKP,an ,

EF ((||Zi||2||Ui||2)2+δ1) ≤ B, κmin(Rn) ≥ δ2}. (3.9)

It is easy to show using the formulae in (2.22) and the analogous one R̂nA = (Ip⊗T ′A)R̂n(Ip⊗
TA) for R̂n, orthogonality of TA, and using the fact that the Frobenius norm is invariant

to orthogonal transformations, that K̂n is invariant to nonsingular transformations of the

instrument vector. Crucial for this result is again that fi in (2.11) in the definition of R̂n (and

as a result in the definition of Ĝn and Ĥn in (2.13)) is implemented with the transformed

instrument vector Zi (rather than with Zi).

Method 2: Define

ϕMS,cn := I(KPST > cn), (3.10)

where KPST is the test statistic introduced in GKM20 to test the null of a KP structure

of RF .
8 To employ this method, we need to strengthen the moment restrictions in FHet to

EF (||Ti||2 + δ1) ≤ B, for Ti ∈ {||Zi||4||Ui||4, ||Zi||4}, see Theorem 3 in GKM20.

8The test statistic is defined in (14) in GKM (2020) and not reproduced here for brevity. In their notation

our fi is f̂i, compare their equation (6) to our (2.11).
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We verify Assumption MS in the Appendix, Section A.3, for these two choices of ϕMS,cn

and for the parameter space defined in (3.9).

3.2 Choice for ϕRob,α : The AR/AR test in Andrews (2017)

In this subsection we define one particular version of the various weak IVs and heteroskedas-

ticity robust subvector tests suggested in Andrews (2017), namely the so called AR/AR test

and verify that it satisfies Assumptions RT and RP from the previous subsection. We define

it for nominal size α.

To do so, we use the following quantities. For θ = (β, γ) let9

gi (θ) := Zi(yi − Y ′i β −W ′
iγ) and ĝn (θ) := n−1

∑n
i=1gi (θ) . (3.11)

Define

Σ̂n (θ) := n−1
∑n

i=1 (gi (θ)− ĝn (θ)) (gi (θ)− ĝn (θ))′ . (3.12)

The heteroskedasticity-robust AR statistic for testing hypotheses involving the full parameter

vector θ, evaluated at (β0, γ) , is defined as

HARn (β0, γ) := nĝn (β0, γ)′ Σ̂n (β0, γ)−1 ĝn (β0, γ) . (3.13)

For s = 1, ...,mW denote by W s ∈ <n the s-th column of W. Next, as in Andrews (2017,

(7.9)-(7.10)) let

D̃n (θ) := Σ̂n (θ)−1/2 (D̂1n (θ) , ..., D̂mWn (θ)) ∈ <k×mW ,

D̂sn (θ) := −n−1Z
′
W s − Γ̂sn (θ) Σ̂n (θ)−1 ĝn (θ) ∈ <k,

Γ̂sn (θ) := −n−1
∑n

i=1

(
ZiW

s
i − n−1Z

′
W s
)
gi (θ)

′ ∈ <k×k, and

HARβ,n (β0, γ) := nĝn (β0, γ)′ Σ̂n (β0, γ)−1/2MD̃n(β0,γ)+an−1/2ζ1
Σ̂n (β0, γ)−1/2 ĝn (β0, γ) ,

(3.14)

where HARβ,n (β0, γ) is a C (α)-AR statistic, obtained as a quadratic form in the moment

conditions projected onto the space orthogonal to the orthogonalized Jacobian with respect

to γ. The random perturbation an−1/2ζ1 (with ζ1 ∈ <k×mW a random matrix of independent

standard normal random variables that are independent of all other statistics considered) in

the last line of of (3.14) is introduced in Andrews (2017, p.23), to guarantee that the space

projected on has rank mW a.s. Here a ∈ < is a tiny positive constant.

9To simplify notation we write (β, γ) here and in other situations, rather than the more correct (β′, γ′)′.
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Let α ∈ (0, 1). The AR/AR test at nominal size α is defined as follows.

1. Fix an α1 ∈ (0, α) . As in Andrews (2017, (7.1)) define

CS+
1n := {γ̃ ∈ <mW : HARn (β0, γ̃) < χ2

k,1−α1
} ∪ Γ̃1n, (3.15)

where for Q̂n (θ) := ĝn (θ)′ (n−1
∑n

i=1ZiZ
′
i)
−1ĝn (θ) ,

Γ̃1n :=
{
γ ∈ <mW : W ′Z(

∑n
i=1ZiZ

′
i)
−1ĝn (β0, γ) = 0mW & (3.16)

Q̂n (β0, γ) ≤ min
γ̃∈<mW

Q̂n (β0, γ̃) +
lnn

n

}
is the so-called “estimator set”, see Andrews (2017, p.1 and (7.3)). If W ′PZW is

invertible (which would happen wap1 under the assumption (not imposed here) that

EFZiW
′
i is full column rank) then the first condition in Γ̃1n has the unique solution

γn := (W ′PZW )−1W ′PZ(y − Y β0) and therefore Γ̃1n = {γn}. (Note that along certain

sequences for which ||γ|| → ∞ it follows that ||ĝn (β0, γ) || → ∞ and therefore if the

function Q̂n (β0, γ) ≥ 0 only has one local extremum it must be a global minimum.)

2. For α2,n(θ) defined below (and depending on α and α1), H0 in (2.3) is rejected if

inf γ̃∈CS+
1n

(HARβ,n (β0, γ̃)− χ2
k−mW ,1−α2,n(β0,γ̃)) > 0.

That is

ϕAR/AR,α,α1 = 1{
inf

γ̃∈CS+1n
(HARβ,n(β0,γ̃)−χ2

k−mW ,1−α2,n(β0,γ̃)
)>0

}, (3.17)

see Andrews (2017, (4.2)). We typically write ϕAR/AR,α instead of ϕAR/AR,α,α1 .

The second step size α2,n(θ) is chosen as

α2,n(θ) :=

{
α− α1, if ICSn(θ) ≤ KL

α, if ICSn(θ) > KL,
(3.18)

for some positive number KL, e.g., KL = 0.05 and α1 = .005, see Andrews (2017, (7.8) and
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p.34)10, where

Φ̂n(θ) := Diag{σ̂−1
1n (θ), ..., σ̂−1

mWn(θ)} ∈ <mW×mW ,

σ̂2
sn(θ) := n−1

∑n
i=1

(
Hsi(θ)− Ĥsn(θ)

)2

, for s = 1, ...,mW ,

Hsi(θ) :=

√
(W s

i )2Z
′
iΣ̂n (θ)−1 Zi, Ĥsn(θ) := n−1

∑n
i=1Hsi(θ),

ICSn(θ) := n−1κ
1/2
min(Φ̂n(θ)W ′ZΣ̂n (θ)−1 Z

′
W Φ̂n(θ)), (3.19)

see Andrews (2017, (7.4)-(7.5)), where W s
i ∈ < denotes the s-th component of Wi.

Coming back to the statistic ARAKP,n(β0) given in (2.18) note that

ARAKP,n(β0) = inf
γ̃∈RmW

ÃRAKP,n(β0, γ̃), where

ÃRAKP,n(β0, γ̃) :=
n−1
(

1
−γ̃

)′ (
Y 0,W

)′
ZĤ−1

n Z ′
(
Y 0,W

) (
1
−γ̃

)(
1
−γ̃

)′
Ĝn

(
1
−γ̃

) (3.20)

using the fact that the minimal eigenvalue of any symmetric square matrix A ∈ Rp×p is

obtained as minx∈Rp,||x||=1 x
′Ax. Furthermore,

ÃRAKP,n(β0, γ̃) =nĝn (β0, γ̃)′ Σ̃n (β0, γ̃)−1 ĝn (β0, γ̃) , where

Σ̃n (β0, γ̃) :=((1,−γ̃′) Ĝn (1,−γ̃′)′)⊗ (n−1Z
′
Z)1/2Ĥn(n−1Z

′
Z)1/2

=

((
1

−γ̃

)
⊗ Ik

)′
(Ĝn ⊗ (n−1Z

′
Z)1/2Ĥn(n−1Z

′
Z)1/2)

((
1

−γ̃

)
⊗ Ik

)
(3.21)

and (Ĝn, Ĥn) defined in (2.16).

Let γ+
n be an element in arg minγ̃∈RmW ÃRAKP,n(β0, γ̃). We impose a mild technical con-

dition below, namely that

ΠWnn
1/2(γ+

n − γn) = Op(1) (3.22)

and γ+
n = Op(1) under sequences in FHet (defined in (3.23) below) that are of AKP structure,

i.e. under sequences λn,h for which h9 ∈ [0,∞). For example, Staiger and Stock (1997,

Theorem 1) establish γ+
n − γn = Op(1) for the LIML estimator under weak IV sequences

10Andrews (2017, (7.8)) allows for more involved definitions of α2,n(θ). We choose the version that takes
KU = KL in the notation of Andrews (2017) that is also used in the Monte Carlos in Andrews (2017).

Regarding the definition of Φ̂n(θ), note that it constitutes a slight modification compared with the definitions
in Andrews (2017, (7.5)). In particular, the modification in the definition of σ̂2

sn is necessary to make the
procedure invariant to nonsingular transformations of the instrument vector. We thank Donald Andrews for
suggesting this updated version of his test statistic.
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ΠWn = C/n1/2 (for some fixed matrix C) and homoskedasticity. Hahn and Kuersteiner (2002,

Theorem 1) implies (3.22) for the 2SLS estimator under a setup where ΠWn = C/nδ for

δ > 0. Stock and Wright (2000, Theorem 1(i)) and Guggenberger and Smith (2005, Theorem

2) implies ΠWn = C/n1/2 for the CU estimator under mixed weak/strong IV asymptotics

ΠWn = (C/n1/2, D) for a fixed full rank matrix D ∈ <k×m′W with m′W ≤ mW (using high

level assumptions, such as Assumption C in Stock and Wright (2000)) and possible CHET.

Explicitly deriving (3.22) under all drifting sequences, if one minimizes ÃRAKP,n(β0, γ̃) in

γ̃ over <mW , is technically tedious because uniform weak laws of large numbers and weak

convergence of empirical processes typically rely on a compactness condition. If (3.22) is not

already implied by the restrictions in the parameter space FHet below then the asymptotic

size results should be interpreted for sequences of parameter spaces FHet,n that impose

additional restrictions on FHet such that (3.22) holds.

The null parameter space is restricted by the conditions in FAR/AR of Andrews (2017,

(8.8)) and some weak additional ones, namely,

FHet = {(γ,ΠW ,ΠY , F ) ∈ F̃AKP,an : γ ∈ Θγ∗ ⊂ <mW ,

EF ||UijZil1Zil2Zil3||1+δ1 ≤ B for j = 1, ..., p, l1, l2, l3 = 1, ..., k,

EF ||εiZi||2+δ1 ≤ B, EF ||vec(W ′
iZi)||2+δ1 ≤ B, varF ||W s

i Zi)|| ≥ δ2 for

s = 1...,mW , and κmin(A) ≥ δ2 for A ∈ {RF , EF ε
2
iZiZ

′
i}}, (3.23)

for constants B <∞, and δ1, δ2 > 0 and a bounded set Θγ∗ such that for some ε > 0 we have

B(Θγ∗, ε) ⊂ Θγ, where Θγ denotes the null nuisance parameter space for γ and B(Θγ∗, ε)

denotes the union of closed balls in <mW with radius ε centered at points in Θγ∗.

Lemma 1 Assume that under any sequence of DGPs (γwn ,ΠWwn ,ΠY wn , Fwn) in FHet defined

in (3.23) for subsequences wn for which λwn,h satisfies h9 ∈ [0,∞) we have γ+
wn = Op(1) and

Π
1/2
Wwn

wn(γ+
wn − γwn) = Op(1). Then, for any δ > 0, the AR/AR test ϕAR/AR,α−δ,α1 in (3.17)

satisfies Assumptions RT and RP for the parameter space FHet.

3.3 Main result

We obtain the following corollary of Lemma 1, Theorem 2, and the verification of Assumption

MS in subsection 3.1 for the two model selection methods ϕMS,cn suggested there.

Define the parameter space FHet as the intersection of the parameter spaces defined in

(3.9) and (3.23) when the method in (3.8) is used as ϕMS,cn (and a slightly more restricted

parameter space when (3.10) is used, as explained below (3.10).)
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Corollary 3 Assume the same condition as in Lemma 1. Then the test ϕMS−AKP,α defined

in (3.4) with δ > 0 and cn satisfying the conditions in (3.1) implemented with the AR/AR

test ϕAR/AR,α−δ,α1 of Andrews (2017) playing the role of ϕRob,α−δ and either of the two model

selection methods described above used for ϕMS,cn , has asymptotic size bounded by the nominal

size α for the parameter space FHet defined on top of the corollary for α ∈ {1%, 5%, 10%}
and k −mW ∈ {1, ..., 20} .

Comment. Note that under the null hypothesis the test does not depend on the value

of the reduced form matrix ΠY .

4 Monte Carlo study

In this section we investigate the finite sample performance in model (2.1) of the suggested

new test ϕMS−AKP,α defined in (3.4) and juxtapose it to the performance of alternative

methods suggested in the extant literature, namely the two-step tests AR/AR, AR/LM, and

AR/QLR1 in Andrews (2017). For the implementation of ϕMS−AKP,α we use both methods

considered in Section 3.1) and call the resulting tests MS-AKP1 and MS-AKP2 for the

remainder of this section. We also simulate the performance of the test ARAKP,α (which is

of course size distorted in the setups with CHET that are outside of KP structure).

All results below are for nominal size α = 5%. We consider the case β ∈ < and γ ∈ <
and pick β = γ = 0 and test the null hypothesis in (2.3).

Recommended choices for cn

First, we perform a large number of simulations in order to determine recommendations for

the sequence of constants cn satisfying (3.1). We make recommendations for cn,k = cn as a

function of the number k of IVs and consider the cases k ∈ {2, 3, 4}.
For each k, sample size n ∈ {250, 500}, and (ΠY ,ΠW ) ∈ <k×2 with

ΠW = 1kπW/(nk)1/2 (4.1)

with πW ∈ {2, 4, 40}, corresponding to “very weak”, “weak”, and “strong” identification of

γ (and, relevant for the power results below, ΠY = 1̃kπY /(nk)1/2 with πY ∈ {2, 4, 40} and

1̃k equal to (1k/2′,−1k/2′)′ when k is even and equal to (1,−12′)′ when k = 3) we randomly

generate 1, 000 different DGPs (that is a choice for the covariance matrix) as described below

and simulate the null rejection probabilities (using 5, 000 i.i.d samples of each given DGPs)
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of MS-AKP1 and MS-AKP2 for choices of cn given as

cn = cn,k = c(k)n1/2/ ln lnn (4.2)

with c(k) taken from the set C := {.05, .1, ..., 3}.
In finite sample simulations for the DGPs considered here, the AR/AR test sometimes

slightly overrejects. For example, under CHOM, n = 250, k = 3, strong IVs, and covariance

matrix Σ being chosen as below (4.6), where (ui, vY,i, vW,i)
′ ∼ i.i.d. N(03,Σ), the AR/AR

test has NRP equal to 5.4%. From our theory we also know that the test ARAKP,α (at least

under AKP structures) has nonsmaller NRP than the AR/AR test. Define as the ”simulated

size of a test when there are k IVs” the highest empirical NRP of the test over all choices

of n, Π, and (1, 000) random DGPs considered. For each of the two methods MS-AKP1

and MS-AKP2 and for each k ∈ {2, 3, 4}, our recommendation for cn,k then is to take the

largest c(k) in C such that the simulated size does not exceed 6% (that is, we allow for a

distortion of 1% in the ”simulated size”). It turns out that in our simulations this criterion

for cn,k always leads to well defined choice of c(k) (when a priori it could be that even for

the smallest/largest choice of c(k) in C the simulated size exceeds/is still below 6%).

To generate random DGPs we consider the following mechanism. Given all tests consid-

ered above, including ARAKP,α, have correct asymptotic size under AKP structure we focus

attention on designs with conditional heteroskedasticity that are not of AKP structure. In

particular, we choose

εi = (αε + ||QεZi||)ui,

VY,i = (αV + ||QVZi||)vY,i,

VW,i = (αV + ||QVZi||)vW,i, (4.3)

with (ui, vY,i, vW,i)
′ ∼ i.i.d. N(03,Σ) and independent of Zi ∼ i.i.d. N(0k, Ik) for i = 1, ..., n.

Each of the 1,000 random DGPs is determined by choosing αε, αV ∈ <, Qε, QV ∈ <k×k, and

Σ ∈ <3×3, where Σ has diagonal elements equal to 1. The scalars αε, αV and the components

of Qε, QV ∈ <k×k are obtained by i.i.d. draws from a U [0, 10], and the off-diagonal ones

of Σ ∈ <3×3 are obtained by i.i.d. draws from a U [0, 1] (subject to the restriction that

the resulting matrix Σ is pd). Note that the setup in (4.3) nests KP structure when e.g.

αε = αV = 0, Qε = QV = Ik and CHOM when e.g. αε = αV = 1, Qε = QV = 0k×k.

For each k = 2, 3, 4 the binding constraint on c(k) always came from the combination

n = 250 and “strong” identification, while for the “very weakly” identified scenario even

the largest choice of c(k) ∈ C typically did not yield overrejection for any of the sample
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sizes considered. Based on the above setup we recommend the following choices for cn,k.

For Method 1 in Section 3.1, MS-AKP1, that is for ϕMS−AKP,α based on the distance in

Frobenius norm statistic, we suggest

c(2) = .85, c(3) = 1.25, c(4) = 1.4, (4.4)

while for Method 2, MS-AKP2, that is for ϕMS−AKP,α based on the KPST statistic in

GKM20, we suggest

c(2) = .75, c(3) = 1.45, c(4) = 1.9. (4.5)

Recall that with these choices of c(k) and cn chosen as in (4.2) the tests and MS-AKP1

and MS-AKP2 have correct asymptotic size for a parameter space with arbitrary forms of

conditional heteroskedasticity.

Choice of tuning parameters

The implementation of the various tests depends on a large number of user chosen constants.

In particular, to implement the AR/AR, AR/LM, and the AR/QLR1 we pick α1 = .005,

KL = KU = 0.05 as already mentioned above after (3.18). To calculate the estimator set

Γ̃1n we employ the closed form solution provided below (3.16). We choose a = .001 and

pick the elements of the random matrix ζ1 ∈ <k×mW as i.i.d. N(0, 1) independent of all

other variables considered, see the last line of of (3.14).11 The confidence interval for γ that

appears in (3.15) is obtained by grid search over an interval of length 20 centered at the

true value of γ with 100 equally spaced gridpoints.12 To implement the AR/QLR1 test, as

in Andrews (2017) we pick K∗L = K∗U = 0.005 and Krk = 1. We refer to Table II in Andrews

(2017) that provides the results of a comprehensive sensitivity analysis on most of the user

chosen constants above. To calculate the data-dependent critical values for the AR/QLR1

test we use 10,000 i.i.d chi-square random variables. There was no noticeable difference

between δ = 0 and δ = 10−6 for δ given in (3.4); therefore, for the sake of computational

simplicity, we pick the former in the simulations.

11Note that by choosing a 6= 0 the tests are no longer invariant to nonsingular transformations of the IV
vector. However, for small a the differences after a transformations are usually very small.

12When the dimension of γ grows then the implementation of that step by grid search will cause an
exponential increase in computation time for each of the two-step methods.

23



Size results

Under a setup with CHET outside of KP, the tests MS-AKP1 and MS-AKP2 equal the

AR/AR test wpa1. We therefore consider the KP setup in Andrews (2017) in Section 9.1

which is obtained from (4.3) with αε = αV = 0 and Qε = QV = Ik. We also consider the

setup with CHOM obtained from (4.3) with αε = αV = 1 and Qε = QV = 0k×k. In both

cases, we take the matrix

kΣ ∈ <3×3 (4.6)

to have diagonal elements equal to one, and the (1,2) and (1,3) elements equal to .8 and

the (2,3) element equal to .3, as in Andrews (2017). We consider πW = πY ∈ {2, 4, 40} in

(4.1), again, representing ”very weak”, ”weak”, and ”strong” IVs, also see Andrews (2017).

Finally, we take k ∈ {2, 3, 4} and sample sizes n ∈ {250, 500}. Altogether, that makes for

36 different specifications. In addition, we also obtain results for certain cases of mixed

identification strength, e.g. when πW 6= πY ∈ {2, 40} and also some results for larger sample

sizes.

As reported in Andrews (2017), we also find that in an overall sense the AR/AR and

AR/LM tests are dominated by the AR/QLR1 test. For instance, regarding the AR/LM

test, its power function (even in the strong IV context under CHOM) is not always U-shaped

and suffers from power dips against certain alternatives. For example, for the KP setup for

n = 250, k = 4, with weak IVs, the power of the AR/LM and AR/QLR1 tests when the

true value of β equals 2 are 8.6% and 75.6%, respectively, while in the setup with CHOM

when β = 1.43 the power of the AR/LM test is 34.9% while all the other tests have power

equal to 100%. On the other hand, the AR/AR test fares worse than the AR/QLR1 test in

strongly identified overidentified situations. In what follows, we don’t therefore discuss the

AR/LM test in much detail.

We consider rejection probabilities under the null and (for power) under a grid of seven

alternatives on each side with distances from the null chosen depending on the strength of

identification. For example, in the very weakly, weakly, and strongly identified cases we

take alternatives in the interval [−2, 2], [−2, 2], and [−.2, .2], respectively, around the true

parameter 0. Results are obtained from 10, 000 i.i.d samples from each DGP.

First, we discuss the null rejection probabilities. Over the 18 DGPs of the KP setups,

the NRPs of MS-AKP1, MS-AKP2, AR/AR, AR/LM, and AR/QLR1 lie in the intervals

(all numbers in %): [3.5,5.9], [3.3,6.0], [1.9,5.1], [.6,5.2], and [1.5,4.9]. As set up above, the

tests MS-AKP1 and MS-AKP2 slightly overreject the null for small sample sizes (especially

in the strongly identified case), but the size distortion disappears as n grows. For example,

the NRPs of MS-AKP2 in the KP setup with k = 3 and strong identification is 6.0, 5.5, 5.2,
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and 5.1%, respectively, when n = 250, 500, 1, 000, and 1, 500. On the other hand, the tests

AR/AR, AR/LM, and AR/QLR1, while controlling the NRP very well, underreject the null

in weakly identified scenarios. This leads to relatively poor power properties relative to the

tests MS-AKP1 and MS-AKP2 in weakly identified situations.

Regarding the 18 DGPs with CHOM, the one important difference relative to the KP

setup is that the three tests AR/AR, AR/LM, and AR/QLR1 are less conservative with

NRPs over the 18 DGPs in the intervals [4.1,5.4], [3.5,5.4], and [3.7,5.1], respectively. As a

consequence, these tests have relatively better power properties than in the KP setup.

Power results

Next we discuss the power results. Power for MS-AKP1, MS-AKP2, AR/AR, and AR/QLR1

increases as the IVs become stronger. On the other hand, by the local-to-zero design con-

sidered here (see (4.1) and below), as n increases, power for these three tests changes only

slightly. We therefore only provide details for the case where n = 250. Power of all the tests

is much higher in the setting with CHOM compared to the KP setting and especially so for

the AR/QLR1 test (because it underrejects the null hypothesis less under CHOM than under

KP). As one example, consider the case n = 250, k = 2, with weak identification. In that

case, when the true β equals .571 the tests MS-AKP2, AR/AR, and AR/QLR1 have power

48.7, 46.3, and 45.4% under KP, but power equal to 95.9, 95.6, and 95.4% under CHOM!

A representative selection of power curves in four different cases is plotted in Figure 1.

Note that in the figures corresponding to the different cases, both the scale of the horizontal

and the vertical axes vary by a lot depending on the strength of identification.

The key takeaways from the power study are as follows:

i) Based on the DGPs considered here we cannot make a clear recommendation as to

which one of the two tests MS-AKP1 and MS-AKP2 is preferable. In most cases, they

have virtually identical power. In few cases, one dominates the other, but only by a small

difference. One small advantage of MS-AKP1 over MS-AKP2 is that it is somewhat easier

to implement. In the Figures below we only report results for MS-AKP2.

ii) Regarding the comparison between the tests MS-AKP1, MS-AKP2 and AR/AR we

find that the former two virtually uniformly dominate the latter in all the designs consid-

ered. This is not surprising given the construction of the new tests and given they satisfy

Assumption RP above. The relative power advantage of the tests MS-AKP1, MS-AKP2

over AR/AR partly stem from the underrejection of the latter test under the null. See e.g.

Figure 1I that contains power curves for n = 250, k = 2, very weak identification, and KP

structure for MS-AKP2, AR/AR, and AR/QLR1. (The NRPs of the three tests reported
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Figure 1: Power of various subvector tests in different cases. Covariance structure: Kronecker
product (KP); CHOM. Identification strength (πW , πY ): Very Weak (2, 2); Weak (4, 4); Strong
(40, 40); Mixed strength: (2, 40).

here are 4.2, 2.0, and 1.6%, respectively.)

iii) Regarding the comparison between the tests MS-AKP1, MS-AKP2 and AR/QLR1 in

the case of equal identification strength πW = πY we find that the former two are generally

more powerful under weak identification and small k while the reverse is true under strong

identification and larger k, see Figures 1I and II for the cases “k = 2 and very weak identi-

fication” and “k = 4 and strong identification,” respectively, both for n = 250 and KP. (In

Figure 1II, the NRPs of the tests MS-AKP2, AR/AR, and AR/QLR1 are 5.9, 5.1, and 4.6%,

respectively.) These two figures show the best relative performances for the MS-AKP1, MS-

AKP2 and AR/QLR1 tests in the “equal identification” settings where πW = πY . In Figure

1I the power advantage of MS-AKP2 over AR/QLR1 is as high as 5.2%, while in Figure 1II

the power of AR/QLR1 can be up to 13.1% more powerful than MS-AKP2.

In the “intermediate” case between these extremes, namely “k = 3 and weak identifica-

tion” (again with n = 250 and KP), the MS-AKP1 and MS-AKP2 tests have slightly higher

power than AR/QLR1 when the true value of β is negative while the reverse is true for

positive values of β. In all cases, the relative performance of the AR/QLR1 test improves

under CHOM; under CHOM, for the “intermediate” case “k = 3 and weak identification”

(again with n = 250) the AR/QLR1 test has uniformly higher power than the MS-AKP1 and

MS-AKP2 tests, see Figure 1III. (In Figure 1III, the NRPs of the tests MS-AKP2, AR/AR,

and AR/QLR1 are 5.5, 4.7, and 5.1%, respectively.)
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In cases of mixed identification strength, πW 6= πY ∈ {2, 40}, we find that when πW = 2

and πY = 40 the tests MS-AKP1 and MS-AKP2 have uniformly higher power than AR/QLR1

for all k considered whereas in the case πW = 40 and πY = 2 all tests have comparable

power. See Figure 1IV that contains the case πW = 2 and πY = 40, n = 250, k = 4, with KP

structure where the power gap between the new tests and AR/QLR1 is as high as 13.4%.

(In Figure 1IV, the NRPs of the tests MS-AKP2, AR/AR, and AR/QLR1 are 3.3, 1.9, and

0.9%, respectively.) It seems that in these cases of mixed identification strength the new

tests enjoy their most competitive relative performance.

5 Conclusion

We propose the construction of a robust test that improves the power of another robust test

by combining it with a powerful test that is only robust for a subset of the parameter space.

We implement this construction in the context of the linear IV model applied to the ARAKP,α

test that has correct asymptotic size for a parameter space that imposes AKP structure and

the AR/AR test that is robust even when allowing for arbitrary forms of CHET. We believe

that the particular construction and implementation suggested here, namely combining a

powerful but non fully robust test with a less powerful fully robust test in order to obtain a

fully robust more powerful test, might be successfully applied in other scenarios and also in

the current scenario based on different choices of testing procedures. For instance, it might

be feasible to combine the LR type subvector test of Kleibergen (2021) with the AR/QLR1

of Andrews (2017) but it would be technically substantially more challenging to verify the

assumptions given below that are sufficient for control of the asymptotic size of the resulting

test.

A Appendix

The Appendix is structured as follows. In Section A.1 the proof of Theorem 1 is given,

prepared for first with several technical lemmas in Subsection A.1.1. Next in Section A.2

the proof of Theorem 2 is given. We provide verifications of the high level assumptions for

particular implementations of the test including for both ϕMS,cn and AR/AR in Sections A.3

and A.4, respectively. Finally, in Section A.5, we generalize the conditional subvector test

to a time series framework.
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A.1 Proof of Theorem 1

A.1.1 Technical lemmas

In what follows below we will require results about solutions to certain minimization problems

involving the Frobenius norm. The next lemma provides a special case of Corollary 2.2 in

van Loan and Pitsianis (1993). Note that van Loan and Pitsianis (1993) point to Golub and

van Loan (1989, p.73) for a proof of Corollary 2.2. However, the result in Golub and van

Loan (1989, p.73) is for a minimization problem using the p-norm for p = 2 and not the

Frobenius norm which is used here.

Lemma 2 Consider the minimization problem

min
B∈<m×n, rk(B)=1

||A−B||2

for a given nonzero matrix A ∈ <m×n with singular value decomposition A = Udiag(σ1, ..., σp)V
′

for singular values σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0 with p = min{m,n} and rectangular diag(σ1, ..., σp) ∈
<m×n, orthogonal matrices U = [u1, ..., um] ∈ <m×m, and V = [v1, ..., vn] ∈ <n×n. Then a

minimizing argument is given by B = σ1u1v
′
1 and the minimum equals

∑p
i=2σ

2
i . If σ1 > σ2

then B = σ1u1v
′
1 is the unique minimizer.

Proof of Lemma 2. Note that

min
B∈<m×n, rk(B)=1

||A−B||2 = min
C∈<m×n, rk(C)=1

||diag(σ1, ..., σp)− C||2 (A.1)

by viewing C = U ′BV and because ||D|| = ||U ′D|| = ||DV || for any matrix D ∈ <m×n

and conformable orthogonal matrices U and V. We can write any matrix C ∈ <m×n with

rk(C) = 1 as

C = ||c||−1(α1c, ..., αnc) (A.2)

for c ∈ <m\{0m} and αk ∈ < for k = 1, ..., n. Because ||A + B||2 = ||A||2 + ||B||2 +

2 < A,B >F where < A,B >F := trace(A′B) denotes the Frobenius inner product, and

||diag(σ1, ..., σp)||2 =
∑p

i=1σ
2
i , ||C||2 =

∑n
i=1α

2
i , < diag(σ1, ..., σp), C >F=

∑p
i=1σiαici||c||−1

for c = (c1, ..., cm)′ we have

||diag(σ1, ..., σp)− C||2 =
∑p

i=1σ
2
i +

∑n
i=1α

2
i − 2

∑p
i=1σiαici||c||

−1. (A.3)

Viewing (A.3) as a function in αk, k = 1, ..., n, and c, taking first order conditions (FOCs)
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with respect to αk, we obtain 2αk − 2σkck||c||−1 = 0 or

αk = σkck||c||−1 for k = 1, ..., p and αk = 0 for k = p+ 1, ..., n. (A.4)

Taking FOCs with respect to cj, j = 1, ..., p, we obtain (||c||σjαj−(
∑p

i=1σiαici)cj||c||−1)||c||−2 =

0 and thus

||c||2σjαj − (
∑p

i=1σiαici)cj = 0 (A.5)

and for j = p+ 1, ...,m we have (
∑p

i=1σiαici)cj||c||−3 = 0 and therefore

cj
∑p

i=1σiαici = 0. (A.6)

The objective is to find (c1, ..., cp) such that the two summands in (A.3) that depend on C

are being minimized. Using (A.4) we thus need to find (c1, ..., cm) such that

∑p
i=1σ

2
i c

2
i ||c||−2 − 2

∑p
i=1σ

2
i c

2
i ||c||−2 = −

∑p
i=1σ

2
i (

ci
||c||

)2 (A.7)

is minimized. Let a be the largest index for which σ1 = ... = σa. Given that σa > σb

for b > a it follows that a vector c = (c1, ..., cm)′ is a minimizing argument if and only if

(c1, ..., ca)
′ 6= 0m−p and (ca+1, ..., cm)′ = 0m−a and the minimum in (A.3) equals

∑p
i=1σ

2
i −

∑p
i=1σ

2
i (

ci
||c||

)2 =
∑p

i=1σ
2
i − σ2

1

∑a
i=1(

ci
||c||

)2 =
∑p

i=2σ
2
i . (A.8)

For example, one solution is c = e1 := (1, 0, ...0)′ ∈ <m for which the minimizing matrix

in (A.1) becomes C = (σ1e1, 0
m, ...0m). Correspondingly, a minimizing matrix B becomes

UCV ′ = σ1u1v
′
1.

If σ1 > σ2 then a = 1. Therefore, any minimizing c equals (c1, 0, ..., 0)′ for some c1 6= 0 and

therefore, by (A.2) and (A.4), the only minimizing matrix C equals ||c||−1(α1c, ..., αnc) =

(σ1e1, 0
m, ...0m). And consequently, there can only be a unique minimizer B = UCV ′ =

σ1u1v
′
1. �

Let R ∈ <m×l and R = UΣV ′ be a singular value decomposition of R, where Σ ∈ <m×l

has min{m, l} singular values of R on the diagonal and zeros elsewhere, U ∈ <m×m is

an orthogonal matrix of eigenvectors of RR′, and V ∈ <l×l is an orthogonal matrix of

eigenvectors of R′R. In general, U, Σ, and V are not uniquely defined. The matrix Σ is

uniquely determined by the restriction that the singular values are ordered nonincreasingly.

We assume that this is the case from now on. Let a be the geometric multiplicity of the largest

eigenvalue of RR′. Write U = [W̃ : W̃C ] for W̃ ∈ <m×a. Thus W̃ = (w̃1, ..., w̃a) denotes an
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orthogonal basis for the eigenspace associated with the largest eigenvalue of RR′.

Lemma 3 Let R and Rn for n ≥ 1 be <m×l matrices such that Rn → R as n → ∞.

Let UΣV ′ and UnΣnV
′
n be any singular value decompositions of R and Rn, respectively,

where the singular values are ordered nonincreasingly. For j ≤ m, denote by w̃j and w̃nj

the j-th column of U and Un, respectively. Decompose U = [W̃ : W̃C ] ∈ <m×m, where

W̃ = (w̃1, ..., w̃a) ∈ <m×a is an orthogonal basis for the eigenspace associated with the largest

eigenvalue of RR′. Conformingly, let Un = [W̃n : W̃C
n ].13 Assume Σ does not equal the zero

matrix. Then w̃′njw̃l = o(1) for j > a and l ≤ a.

Proof of Lemma 3. Wlog we can assume m ≥ l. (If m < l add l −m rows of zeros to

the bottom of R and Rn. Then the result for(
R

0l−m×l

)
=

(
U 0m×l−m

0l−m×m Ũ

)(
Σ

0l−m×l

)
V ′

for any orthogonal matrix Ũ implies the desired result for R = UΣV ′.) Denote by σj the

j-th singular value of R (i.e. σj equals the (j, j)-th element of Σ) for j = 1, ..., l, and likewise

σnj denotes the j-th singular value of Rn. By definition (and given that the algebraic and

geometric multiplicities coincide for any diagonalizable matrix), a is the largest index for

which σ1 = ... = σa. Define

δn := min{ min
1≤j≤l−a

|σa − σn(a+j)|, σa}. (A.9)

Then by Wedin’s (1972) theorem (see, e.g. Li (1998) equations (4.4) and (4.8)14), it follows

that

|| sin Θ(W̃ , W̃n)|| = o(1/δn), (A.10)

where Θ(W̃ , W̃n) denotes the angle matrix between W̃ and W̃n (see Li (1998), equation (2.3)

for a definition). Furthermore, by Lemma 2.1 and equation (2.4) in Li (1998), we have

|| sin Θ(W̃ , W̃n)|| = ||W̃C′
n W̃ ||. (A.11)

Note that δn is bounded away from zero for all large n because (1) σa > 0 by the assumption

13But note that W̃n does not necessarily correspond to a basis for the eigenspace of the largest eigenvalue of
RnR

′
n but may represent eigenvectors corresponding to several different eigenvalues because the multiplicities

of eigenvalues of RnR
′
n and RR′ may not be the same. As a trivial example, consider RR′ = I2 and RnR

′
n

equal to a diagonal matrix with first and second diagonal elements equal to 1 and 1− n−1, respectively.
14A comprehensive reference for background reading on Wedin’s (1972) theorem is Stewart and Sun (1990,

p.260, Theorem 4.1).
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that Σ 6= 0, (2) if a < l, by construction σa > σa+1 and therefore min1≤j≤l−a |σa − σn(a+j)|
is uniformly bounded away from zero (because singular values are continuous as functions

of the matrix elements and Rn → R), and (3) if a = l then min1≤j≤l−a |σa − σn(a+j)| = ∞,
because we take a minimum of the empty set. Therefore, by (A.10) and (A.11) we have

||W̃C′
n W̃ || = o(1) (A.12)

which implies that w̃′njw̃l = o(1) for j > a and l ≤ a. �

A.1.2 Uniformity Reparametrization

To prove that the new conditional subvector ARAKP test has asymptotic size bounded by

the nominal size α we use a general result in Andrews, Cheng, and Guggenberger (2020,

ACG from now on). To describe it, consider a sequence of arbitrary tests {ϕn : n ≥ 1} of a

certain null hypothesis and denote by RPn(λ) the NRP of ϕn when the DGP is pinned down

by the parameter vector λ ∈ Λ, where Λ denotes the parameter space of λ. By definition,

the asymptotic size of ϕn is defined as

AsySz = lim sup
n→∞

sup
λ∈Λ

RPn(λ). (A.13)

Let {hn(λ) : n ≥ 1} be a sequence of functions on Λ, where hn(λ) = (hn,1(λ), ..., hn,J(λ))′

with hn,j(λ) ∈ < ∀j = 1, ..., J. Define

H = {h ∈ (< ∪ {±∞})J : hwn(λwn)→ h for some subsequence {wn}

of {n} and some sequence {λwn ∈ Λ : n ≥ 1}} (A.14)

Assumption B in ACG: For any subsequence {wn} of {n} and any sequence {λwn ∈
Λ : n ≥ 1} for which hwn(λwn) → h ∈ H, RPwn(λwn) → [RP−(h), RP+(h)] for some

RP−(h), RP+(h) ∈ (0, 1).15

The assumption states, in particular, that along certain drifting sequences of parameters

λwn indexed by a localization parameter h the NRP of the test cannot asymptotically exceed

a certain threshold RP+(h) indexed by h.

Proposition 1 (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption B in ACG

holds. Then, infh∈H RP
−(h) ≤ AsySz ≤ suph∈H RP

+(h).

15By definition, the notation xn → [x1,∞, x2,∞] means that x1,∞ ≤ lim infn→∞ xn ≤ lim supn→∞ xn ≤
x2,∞.
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We next verify Assumption B in ACG for the conditional subvector ARAKP test and

establish that suph∈H RP
+(h) = α when the test is implemented at nominal size α. In the

setup considered here, the parameter space Λ actually depends on n which does not affect

the conclusion of Theorem 2.1(a) and Theorem 2.2 in ACG.

We use Andrews and Guggenberger (2019, AG from now on) , namely Proposition 16.5

in AG, to derive the joint limiting distribution of the eigenvalues κ̂in, i = 1, ..., p in (2.18).

We reparameterize the null distribution F to a vector λ. The vector λ is chosen such that

for a subvector of λ convergence of a drifting subsequence of the subvector (after suitable

renormalization) yields convergence of the NRP of the test. For given F and any GF ∈ <p×p

and HF ∈ <k×k such that RF = GF ⊗HF + Υn as in (2.5) define

UF := G
−1/2
F ∈ <p×p and QF := H

−1/2
F (EFZiZ

′
i)

1/2 ∈ <k×k, (A.15)

where again HF = (EFZiZ
′
i)
−1/2HF (EFZiZ

′
i)
−1/2 from (2.12). Denote by

BF ∈ <p×p an orthogonal matrix of eigenvectors of U ′F (ΠWγ,ΠW )′Q′FQF (ΠWγ,ΠW )UF

(A.16)

ordered so that the p corresponding eigenvalues (η1F , ..., ηpF ) are nonincreasing. Denote by

CF ∈ <k×k an orthogonal matrix of eigenvectors of QF (ΠWγ,ΠW )UFU
′
F (ΠWγ,ΠW )′Q′F .

16

(A.17)

The corresponding k eigenvalues are (η1F , ..., ηpF , 0, ..., 0). Denote by

(τ1F , ..., τpF ) the singular values of QF (ΠWγ,ΠW )UF ∈ <k×p, (A.18)

which are nonnegative, ordered so that τjF is nonincreasing. (Some of these singular values

may be zero.) As is well-known, the squares of the p singular values of a k × p matrix A

equal the p largest eigenvalues of A′A and AA′. In consequence, ηjF = τ 2
jF for j = 1, ..., p. In

addition, ηjF = 0 for j = p+ 1, ..., k.

16The matrices BF and CF are not uniquely defined. We let BF denote one choice of the matrix of
eigenvectors of U ′F (ΠW γ,ΠW )′Q′FQF (ΠW γ,ΠW )UF and analogously for CF .

Note that the role of EFGi in AG, Section 16, is played by (ΠW γ,ΠW ) ∈ Rk×p and the role of WF is
played by QF .
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Define the elements of λ to be17

λ1,F := (τ1F , ..., τpF )′ ∈ <p,

λ2,F := BF ∈ <p×p,

λ3,F := CF ∈ <k×k,

λ4,F := EFZiZ
′
i ∈ <k×k,

λ5,F := (λ5,1F , ..., λ5,p−1F )′ :=

(
τ2F

τ1F

, ...,
τpF
τp−1F

)′
∈ [0, 1]p−1, where 0/0 := 0,

λ6,F := QF ∈ <k×k,

λ7,F := UF ∈ <p×p,

λ8,F := F, and

λ := λF := (λ1,F , ..., λ8,F ). (A.19)

Note that by (A.15) we have GF = U−2
F = λ−2

7,F and HF = (EFZiZ
′
i)

1/2Q−1
F Q′−1

F (EFZiZ
′
i)

1/2

= λ
1/2
4,Fλ

−1
6,Fλ

′−1
6,F λ

1/2
4,F . In Section 3 the additional element λ9,F defined in (3.2) is appended to λ

with corresponding changes to several objects below, e.g. Λn and hn(λ) in (A.20) and λwn,h

in (A.19) and (A.21); e.g. hn(λ) becomes (n1/2λ1,F , λ2,F , λ3,F , ..., λ7,F , λ9,F ).

The parameter space Λn for λ and the function hn(λ) (that appears in Assumption B in

ACG) are defined by

Λn := {λ : λ = (λ1,F , ..., λ8,F ) for some F st (γ,ΠW ,ΠY , F ) ∈ FAKP,an for some (γ,ΠW ,ΠY )},

hn(λ) := (n1/2λ1,F , λ2,F , λ3,F , ..., λ7,F ). (A.20)

We define λ and hn(λ) as in (A.19) and (A.20) because, as shown below, the asymptotic

distributions of the test statistic and conditional critical values under a sequence {Fn : n ≥ 1}
for which hn(λFn)→ h depend on limn1/2λ1,Fn and limλm,Fn for m = 2, ..., 7. Note that we

can view h ∈ (< ∪ {±∞})J (for an appropriately chosen finite J ∈ N).

For notational convenience, for any subsequence {wn : n ≥ 1},

{λwn,h : n ≥ 1} denotes a sequence {λwn ∈ Λn : n ≥ 1} for which hwn(λwn)→ h. (A.21)

It follows that the set H defined in (A.14) is given as the set of all h ∈ (< ∪ {±∞})J such

17For simplicity, as above, when writing λ = (λ1,F , ..., λ8,F ) (and likewise in similar expressions) we allow
the elements to be scalars, vectors, matrices, and distributions. Note that λ5,F is included so that Proposition
16.5 in AG can be applied.
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that there exists {λwn,h : n ≥ 1} for some subsequence {wn : n ≥ 1}.
We decompose h analogously to the decomposition of the first seven components of λ:

h = (h1, ..., h7), where λm,F and hm have the same dimensions for m = 1, ..., 7. We further

decompose the vector h1 as h1 = (h1,1, ..., h1,p)
′, where the elements of h1 could equal ∞.

Again, by definition, under a sequence {λn,h : n ≥ 1}, we have

n1/2τjFn → h1,j ≥ 0 ∀j = 1, ..., p, λm,Fn → hm ∀m = 2, ..., 7. (A.22)

Note that h1,p = τpFn = 0 because ρ(ΠWγ,ΠW ) < p, where ρ(A) denotes the rank of a matrix

A.

By Lyapunov-type WLLNs and CLTs, using the moment restrictions imposed in (2.5),

we have under λn,h(
n−1/2Z

′
(ε+ VWγn)

vec
(
n−1/2Z

′
VW

) )
→
d

(
ξ1,h

ξ2,h

)
∼ N

(
0kp,

(
h−2

7 ⊗ (h4h
−1
6 h′−1

6 h4)
))
,

λ−1
4,Fn

(n−1Z
′
Z)→

p
Ik, n

−1Z
′
[ε : VW ]→

p
0k×p, (A.23)

where the random vector (ξ1,h, ξ
′
2,h)
′ is defined here, Fn denotes the distribution of (εi, Z

′
i, V

′
Y,iV

′
W,i)

under λn,h, and, by definition above, h−2
7 and h4h

−1
6 h′−1

6 h4 denote the limits of GFn and HFn

under λn,h.

Let q = qh ∈ {0, ..., p− 1} be such that

h1,j =∞ for 1 ≤ j ≤ qh and h1,j <∞ for qh + 1 ≤ j ≤ p, (A.24)

where h1,j := limn1/2τjFn ≥ 0 for j = 1, ..., p by (A.22) and the distributions {Fn : n ≥ 1}
correspond to {λn,h : n ≥ 1} defined in (A.21). This value q exists because {h1,j : j ≤ p}
are nonincreasing in j (since {τjF : j ≤ p} are nonincreasing in j, as defined in (A.18)).

Note that q is the number of singular values of QFn(ΠWnγn,ΠWn)UFn ∈ <k×p that diverge

to infinity when multiplied by n1/2. Note again that q < p because ρ(ΠWnγn,ΠWn) < p.

A.1.3 Asymptotic Distributions

One might wonder whether the definition of Ĝn in (2.16) as vec(Ĝn) = L̂(:, 1)/L̂(1, 1) where

(Ĝn, Ĥn) are minimizers in (2.13) is unique. If for instance the eigenspace corresponding to

the largest eigenvalue was of dimension bigger than one, then clearly L̂(:, 1) would not be

uniquely defined. The following lemma shows that the definition of Ĝn is unique and derives

its limit.
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To simplify notation a bit, we write shorthandRn forRFn and likewise for other expressions.

Lemma 4 Under sequences λn,h from Λn in (A.20) based on the parameter space FAKP,an,

wp1 the definition of Ĝn ∈ <p×p and Ĥn ∈ <k×k in (2.16) is unique and

Ĝn → lim
n→∞

Gn and Ĥn → lim
n→∞

Hn a.s.,

where Hn = (EFnZiZ
′
i)
−1/2Hn(EFnZiZ

′
i)
−1/2 is defined in (2.12).

Comment. Note that under sequences λn,h, limn→∞Gn and limn→∞Hn do exist. On the

other hand, the matrices Gn and Hn may not be uniquely pinned down by the restrictions

in (2.5) in FAKP,an . The results Ĝn → limn→∞Gn and Ĥn → limn→∞Hn a.s. hold for any

possible choice of Gn and Hn.

Proof of Lemma 4. Recall the definition

Rn = (Ip ⊗ (EFnZiZ
′
i)
−1/2)EFn(vec(ZiU

′
i)(vec(ZiU

′
i))
′)(Ip ⊗ (EFnZiZ

′
i)
−1/2) (A.25)

in (2.10). By Theorem 1 in van Loan and Pitsianis (1993),

||A−B ⊗ C|| = ||R(A)− vec(B)vec(C)′|| (A.26)

for any conformable matrices A,B, and C. Thus, for

Υn := (Ip ⊗ (EFnZiZ
′
i)
−1/2)Υn(Ip ⊗ (EFnZiZ

′
i)
−1/2), (A.27)

it follows that R(Rn − Υn) = vec(Gn)vec(Hn)′ and because κmin(EFnZiZ
′
i)
−1/2), κmin(Gn),

and κmin(Hn) ≥ δ2 in FAKP,an , it follows that R(Rn − Υn) has rank 1. It follows also

that limn→∞R(Rn − Υn) = limn→∞R(Rn) (which exists under sequences λn,h) has rank

1 (even though the rank of R(Rn) could be larger than 1 for every n). By continuity

of the singular values and because the geometric and algebraic multiplicity coincide for

diagonalizable matrices, the dimension of the eigenspace of R(Rn)R(Rn)′ corresponding to

the largest singular value of R(Rn) is one for all n large enough.

By the uniform moment restrictions in (2.5) in FAKP,an , namely EF (||Ti||2+δ1) ≤ B <∞,
for Ti ∈ {vec(ZiU

′
i), vec(ZiZ

′
i)} and κmin(EF (ZiZ

′
i)) ≥ δ2 > 0, a strong law of large numbers

implies that

R̂n −Rn → 0kp×kp and R(R̂n)−R(Rn)→ 0pp×kk a.s. (A.28)
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Therefore, the dimension of the eigenspace of R(R̂n)R(R̂n)′ corresponding to the largest

singular value of R(R̂n) is one for all n large enough wp1.

By the uniqueness statement of Lemma 2 for the rank 1 case, it follows that the formula

for minimizers of the KP approximation problem in (2.13) given in van Loan and Pitsianis

(1993, Corollary 2 and Theorem 11), namely

vec(Ĝn) = σ̂1L̂(:, 1) and vec(Ĥn) = N̂(:, 1), (A.29)

yields symmetric pd matrices Ĝn and Ĥn. When applying Theorem 11, note that R̂n >

0 for all large enough n wp1, which holds by (A.28), limn→∞Gn ⊗ Hn = limn→∞Rn −
Υn = limn→∞Rn, and because κmin(EFnZiZ

′
i)
−1/2), κmin(Gn), and κmin(Hn) ≥ δ2 in FAKP,an .

Given that Ĝn > 0, Sylvester’s criterion for positive definiteness implies that L̂(1, 1) > 0 for

all large enough n wp1, and we can therefore define Ĝn and Ĥn as in (2.16) with normalization

to 1 of the upper left element of Ĝn for all large enough n wp1.

Next we apply Lemma 3 with a = 1 and the roles of Rn and R in Lemma 3 played by

R(R̂n) and limn→∞R(Rn), respectively. By (A.28), the lemma implies

L̂(:, j)′L1 = o(1) (A.30)

wp1. for j > 1, where L̂(:, j) denotes the j-th column of L̂ in the singular value decomposition

L̂′R(R̂n)N̂ = diag(σ̂l) of R(R̂n) and L1 denotes the first column of L in the singular value

decomposition L
′R(limn→∞R(Rn))N = diag(σl) of limn→∞R(Rn). For any orthogonal basis

(x1, ..., xp2) of <p2 and y ∈ <p2 we have y =
∑p2

j=1(y′xj)xj. In particular, we have L1 =∑p2

j=1(L′1L̂(:, j))L̂(:, j) = (L′1L̂(:, 1))L̂(:, 1) + o(1) wp1., where the second equality holds by

(A.30). Together with the normalization of the upper left elements of Ĝn and Gn to 1, this

implies Ĝn −Gn → 0p×p a.s. and Ĥn −Hn → 0k×k a.s. follows analogously. �

An analogue to Lemma 16.4 in AG and Lemma 1 in GKM19 is given by the following

statement. Define

D̂n := (Z
′
Z)−1Z

′ (
Y 0,W

)
and Q̂n := Ĥ−1/2

n (n−1Z
′
Z)1/2.18 (A.31)

Denote by vec−1
k,mW

(·) the inverse vec operation that transforms a kmW vector into a k×mW

matrix.

Lemma 5 Under sequences {λn,h : n ≥ 1} with λn,h ∈ Λn in (A.20) based on the parameter
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space FAKP,an , n1/2(D̂n − (ΠWnγn,ΠWn))→d Dh, where

Dh ∼ h−1
4 (ξ1,h, vec

−1
k,mW

(ξ2,h)),

ξ1,h and ξ2,h are defined in (A.23), and again h4 is the limit of λ4,n = EFnZiZ
′
i. Furthermore,

we have Q̂n −Qn →p 0k×k.

Proof of Lemma 5. We have

n1/2(D̂n − (ΠWnγn,ΠWn))

=n1/2((Z
′
Z)−1Z

′
(y − Y β0,W )− (ΠWnγn,ΠWn))

=n1/2((Z
′
Z)−1Z

′
(ZΠWnγn + VWγn + ε, ZΠWn + VW )− (ΠWnγn,ΠWn))

=(n−1Z
′
Z)−1[n−1/2Z

′
(VWγn + ε, VW )]→d Dh, (A.32)

where the first equality uses the definition of D̂n in (A.31), the second equality uses the

formulas in (2.1), and the convergence results holds by the (triangular array) CLT and WLLN

in (A.23). The remaining statement holds by the WLLN in (A.23) and the consistency of

Ĥn for Hn proven above. �

For notational convenience, write

Ûn := Ĝ−1/2
n . (A.33)

Note that the matrix nÛnD̂
′
nQ̂
′
nQ̂nD̂nÛn equals n−1Ĝ

−1/2
n

(
Y 0,W

)′
ZĤ−1

n Z ′
(
Y 0,W

)
Ĝ
−1/2
n

which appears in (2.18). Thus, κ̂in for i = 1, ..., p equals the ith eigenvalue of nÛ ′nD̂
′
nQ̂
′
nQ̂nD̂nÛn,

ordered nonincreasingly, and κ̂pn is the subvector ARAKP test statistic. To describe the lim-

iting distribution of (κ̂1n, ..., κ̂pn) we need additional notation, namely:

h2 = (h2,q, h2,p−q), h3 = (h3,q, h3,k−q),

h�1,p−q : =

 0q×(p−q)

Diag{h1,q+1, ..., h1,p−1, 0}
0(k−p)×(p−q)

∈ <k×(p−q),

∆h : = (∆h,q,∆h,p−q) ∈ <k×p, ∆h,q := h3,q ∈ <k×q,

∆h,p−q := h3h
�
1,p−q + h6Dhh7h2,p−q ∈ <k×(p−q), (A.34)

where h2,q ∈ <p×q, h2,p−q ∈ <p×(p−q), h3,q ∈ <k×q, h3,k−q ∈ <k×(k−q), ∆h,q ∈ <k×q, and
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∆h,p−q ∈ <k×(p−q).19 Let Tn := BFnSn and Sn := Diag{(n1/2τ1Fn)−1, ..., (n1/2τqFn)−1, 1, ..., 1} ∈
<p×p. The same proof as the one of Lemma 16.4 in AG shows that n1/2QFnD̂nUFnTn →d ∆h

under all sequences {λn,h : n ≥ 1} with λn,h ∈ Λ. The following proposition is an analogue

to Proposition 16.5 in AG and to Proposition 2 in GKM19.

Proposition 2 Under all sequences {λn,h : n ≥ 1} with λn,h ∈ Λn,

(a) κ̂jn →p ∞ for all j ≤ q,

(b) the (ordered) vector of the smallest p − q eigenvalues of nÛ ′nD̂
′
nQ̂nQ̂nD̂nÛn, i.e.,

(κ̂(q+1)n, ..., κ̂pn)′, converges in distribution to the (ordered) p− q vector of the eigenvalues of

∆
′
h,p−qh3,k−qh

′
3,k−q∆h,p−q ∈ <(p−q)×(p−q),

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma 5,

and

(d) under all subsequences {wn} and all sequences {λwn,h : n ≥ 1} with λwn,h ∈ Λn, the

results in parts (a)-(c) hold with n replaced with wn.

Comments. 1. The proof of the proposition follows from the proof of Proposition 16.5

in AG. Note that Assumption WU in AG (assumed in their Proposition 16.5) is fulfilled with

the roles of W2F , WF , U2F , and UF in AG played here by QF , QF , UF , and UF , respectively,

while the roles of W1 and U1 in AG are played by the identity function. The roles of Ŵ2n and

Ŵn in AG are both played by Q̂n and those of both Û2n and Ûn by Ûn. Lemma 5 then shows

consistency Ŵ2n −W2Fn →p 0k×k and Û2n − U2Fn →p 0p×p under sequences {λn,h : n ≥ 1}
with λn,h ∈ Λn and trivially the functions W1 and U1 are continuous in our case. Note that

by the restrictions in FAKP,an in (2.5) the requirements in the parameter space FWU in AG,

namely “κmin(QF ) and κmin(UF ) are uniformly bounded away from zero and ||QF || and ||UF ||
are uniformly bounded away from infinity”, are fulfilled. For example, the former follows be-

cause κmin(QF ) = 1/κmax(Q−1
F ) = 1/κmax((EFZiZ

′
i)
−1/2H

1/2
F ) and κmax((EFZiZ

′
i)
−1/2H

1/2
F )

is uniformly bounded.

2. Proposition 2 yields the desired joint limiting distribution of the p eigenvalues in (2.18).

Using repeatedly the general formula (C ′ ⊗ A)vec(B) = vec(ABC) for three conformable

matrices A,B,C, we have for the expression h6Dhh7 that appears in ∆h,p−q

vec(h6Dhh7) = vec(h6h
−1
4 (ξ1,h, vec

−1
k,mW

(ξ2,h))h7) = (h7 ⊗ (h4h
−1
6 )−1)

(
ξ1,h

ξ2,h

)
∼vec(v1, ..., vp), (A.35)

19There is some abuse of notation here. For example, h2,q and h2,p−q denote different matrices even if
p− q equals q.

38



where, by definition, vj, j = 1, ..., p are i.i.d. normal k-vectors with zero mean and covariance

matrix Ik, and the distributional statement follows by straightforward calculations using

(A.23). Therefore, by Lemma 5, the definition of ∆h,p−q in (A.34), and by noting that

h′3,k−qh3h
�
1,p−q =

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
(A.36)

we obtain

h′3,k−q∆h,p−q =

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
+ h′3,k−q(v1, ..., vp)h2,p−q

∼

(
Diag{h1,q+1, ..., h1,p−1, 0}

0(k−p)×(p−q)

)
+ (w1, ..., wp−q), (A.37)

where, by definition, wj, j = 1, ..., p − q are i.i.d. normal (k − q)-vectors with zero mean

and covariance matrix Ik−q. The distributional equivalence in the second line holds because

(v1, ..., vp)h2,p−q ∼ (ṽ1, ..., ṽp−q), where ṽj, j = 1, ..., p − q are i.i.d. N(0k, Ik) as h2,p−q has

orthogonal columns of length 1. Analogously, h′3,k−q(ṽ1, ..., ṽp−q) ∼ (w1, ..., wp−q) because

h3,k−q has orthogonal columns of length 1.

For example, when q = p − 1 = mW (which could be called the ”strong IV” case),

we obtain from (A.37) h′3,k−q∆h,p−q = w1 ∈ <k−mW . Therefore ∆
′
h,p−qh3,k−qh

′
3,k−q∆h,p−q ∼

χ2
k−mW and thus by part (b) of Proposition 2 the limiting distribution of the subvector

ARAKP test statistic is χ2
k−mW in that case, while all the larger roots in (2.18) converge in

probability to infinity by part (a).

Proof of Theorem 1. Given the discussion in Comment 2 to Proposition 2, the same

proof as for Theorem 5 in GKM19 applies. �

A.2 Proof of Theorem 2

Proof of Theorem 2. It is enough to verify Proposition 1 above for the parameter space

FHet and the test ϕMS−AKP,α. To verify Assumption B in ACG consider a sequence λwn,h

defined as in (A.19) and (A.21) above except that the component

λ9wn := min ||R−1/2
Fwn

(G⊗H −RFwn )R
−1/2
Fwn
||/cwn (A.38)

is added to λwn , where the minimum (here and in similar expressions below) is taken over

(G,H) for G ∈ <p×p, H ∈ <k×k being pd, symmetric matrices, normalized such that
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the upper left element of G equals 1. In (A.20), we replace FAKP,awn by FHet and define

hwn(λF ) := (w
1/2
n λ1,F , λ2,F , λ3,F , ..., λ7,F , w

1/2
n λ9,F ). To simplify notation, we write n instead

of wn from now on.

Consider first a sequence λn,h with h9 = ∞. By Assumption MS, ϕMS,cn = 1 wpa1 and

therefore, ϕMS−AKP,α = ϕRob,α−δ wpa1. Thus, the new test ϕMS−AKP,α has limiting NRP

bounded by α− δ in that case because ϕRob,α−δ has asymptotic size bounded by its nominal

size by Assumption RT .

Second, consider a sequence λn,h with h9 ∈ [0,∞). In that case, n1/2/cn → ∞ implies

that min ||R−1/2
Fn

(G ⊗ H − RFn)R
−1/2
Fn
|| → 0. By submultiplicativity of the Frobenius norm

and ||R1/2
Fn
|| being uniformly bounded in FHet it then follows that min ||G⊗H −RFn|| → 0.

That is, the covariance matrix RFn has AKP structure. Therefore, also the covariance matrix

RFn has AKP structure. By the proof of Theorem 1 the test ϕAKP,α then has limiting NRP

bounded by α under sequences λn,h with h9 ∈ [0,∞). It therefore follows that

lim sup
n→∞

Pλn,h(ϕMS−AKP,α = 1)

≤ lim sup
n→∞

Pλn,h(max{ϕRob,α−δ, ϕAKP,α} = 1)

= lim sup
n→∞

Pλn,h(ϕAKP,α = 1) ≤ α, (A.39)

where the equality uses Assumption RP, Pλn,h(ϕRob,α−δ ≤ ϕAKP,α) → 1, which implies that

Pλn,h((max{ϕRob,α−δ, ϕAKP,α} = 1)∩(ϕRob,α−δ > ϕAKP,α))→ 0 and the last inequality follows

from the fact that the limiting NRP of the test ϕAKP,α is bounded by α.

This establishes Proposition 1 with suph∈H RP
+(h) ≤ α and thus Theorem 2.

To prove Comment 1 below Theorem 2, note that by the assumed continuity, limδ→0

lim infn→∞ inf(γ,ΠW ,ΠY ,F )∈FHet E(γ,ΠW ,ΠY ,F )ϕMS−AKP,δ,cn,α equals lim infn→∞ inf(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕMS−AKP,0,cn,α. But note that

lim inf
n→∞

inf
(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕMS−AKP,0,cn,α

=lim inf
n→∞

E(γn,ΠWn,ΠY n,Fn)ϕMS−AKP,0,cn,α

= lim
n→∞

E(γwn ,ΠWwn ,ΠY wn ,Fwn )ϕMS−AKP,0,cwn ,α

= lim
n→∞

Eλwn,hϕMS−AKP,0,cwn ,α, (A.40)

where in the first equality (γn,ΠWn,ΠY n, Fn) ∈ FHet is chosen such that inf(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕMS−AKP,0,cn,α ≥ E(γn,ΠWn,ΠY n,Fn)ϕMS−AKP,0,cn,α − n−1, in the second equality a

subsequence {wn} of {n} can be found, and in the third equality {wn} may denote a further
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subsequence along which (γwn ,ΠWwn ,ΠY wn , Fwn) is of type λwn,h for some h. (We are allowing

here for the possibility that Eλwn,hϕMS−AKP,δ,cwn ,α may depend on the particular sequence

λwn,h rather than just h.) If h9 =∞ then ϕMS−AKP,0,cwn ,α = ϕRob,α wpa1 by Assumption MS

and

lim
n→∞

Eλwn,hϕRob,α ≥ lim inf
n→∞

inf
(γ,ΠW ,ΠY ,F )∈FHet

E(γ,ΠW ,ΠY ,F )ϕRob,α. (A.41)

On the other hand, if h9 <∞ then by Assumption RP, ϕRob,α ≤ ϕAKP,α wpa1 and

lim
n→∞

Eλwn,hϕMS−AKP,0,cwn ,α ≥ lim
n→∞

Eλwn,hϕRob,α (A.42)

and the desired conclusion then follows as in (A.41). �

A.3 Assumption MS for the model selection method ϕMS,cn

Here we verify Assumption MS for the two suggested methods for ϕMS,cn .

Method 1, defined as I(K̂n > cn) : To simplify notation we write again n instead of wn

and subscripts Fn as n. Consider a sequence λn,h with h9 =∞. Rewrite

K̂n/cn = n1/2||R̂−1/2
n (Ĝn ⊗ Ĥn −Rn + (Rn − R̂n))R̂−1/2

n ||/cn. (A.43)

In the proof of Lemma 4 we use the uniform moment restrictions in (2.5) in FAKP,an to obtain

R̂n − Rn = op(1); here the stronger uniform moment condition EF ((||Zi||2||Ui||2)2+δ1) ≤ B

allows the application of a Lyapunov CLT and to establish that n1/2(R̂n − Rn) = Op(1).

Because by assumption κmin(RFn) ≥ δ2 in FHet, we thus have n1/2R̂
−1/2
n (Rn−R̂n)R̂

−1/2
n /cn =

op(1). Furthermore,

n1/2||R−1/2
n (Ĝn ⊗ Ĥn −Rn)R−1/2

n ||/cn ≥ n1/2λ9n → h9 =∞, (A.44)

where the inequality holds by the definition of λ9n in (3.2). Because R̂
1/2
n R

−1/2
n →p Ikp and

norms are continuous, it thus follows that K̂n/cn > 1 wpa1.

Method 2: The desired result is obtained using Theorem 3 in GKM20.

A.4 Proofs of Results Involving the AR/AR test

Proof of Lemma 1. Assumption RT is satisfied by the AR/AR test by Theorem 8.1 in

Andrews (2017) noting that the parameter space FAR/AR in Andrews (2017, (8.8)) contains

the parameter space FHet defined in (3.23). In particular, note that ξ1i defined in (8.2) in

Andrews (2017), equals 0 in the linear IV model considered here and therefore the condition
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in (8.8) EF ξ
2
1i being bounded holds trivially. Also, Assumption W in Andrews (2017) holds

with the choice Ŵ1n = (n−1
∑n

i=1ZiZ
′
i)
−1 considered here.

Assumption RP is verified by the following argument that uses Lemma 6 below. To sim-

plify notation we write n instead of wn. Let γ̂n be an element in arg minγ̃∈RmW HARn (β0, γ̃) .

Consider first the case where γ̂n /∈ CS+
1n, defined in (3.15). Then, in particular, it must

be that HARn (β0, γ̂n) > χ2
k,1−α1

. We obtain

ARAKP (β0)− c1−α (κ̂1n, k −mW )

= HARn (β0, γ̂n)− χ2
k,1−α1

+ (χ2
k,1−α1

− c1−α (κ̂1n, k −mW )) + B̃n + op (1) , (A.45)

where the equality follows from Lemma 6. But χ2
k,1−α1

> χ2
k−mw,1−α ≥ c1−α (κ̂1n, k −mW )

no matter what value κ̂1n takes on. Given mW ≥ 1 and α1 < α we have that χ2
k,1−α1

−
c1−α (κ̂1n, k −mW ) > ε wp1 for some ε > 0. Because B̃n ≥ 0 it follows from HARn (β0, γ̂n) >

χ2
k,1−α1

that ARAKP (β0) > c1−α (κ̂1n, k −mW ) wpa1. In other words, the conditional sub-

vector ARAKP test rejects wpa1.

Consider second the case where γ̂n ∈ CS+
1n. Recall the rejection condition of the test

ϕAR/AR,α−δ,α1 , inf γ̃∈CS+
1n

(HARβ,n (β0, γ̃)−χ2
k−mW ,1−α2,n(β0,γ̃)) > 0. For any γ̃ ∈ CS+

1n, we have

α2,n(β0, γ̃) ≤ α− δ by (3.18). Therefore, in particular for γ̂n ∈ CS+
1n

χ2
k−mW ,1−α2,n(β0,γ̂n) > χ2

k−mw,1−α + ε ≥ c1−α (κ̂1n, k −mW ) + ε (A.46)

for some ε > 0. We thus obtain that

ARAKP,n(β0)− c1−α (κ̂1n, k −mW )

> HARn (β0, γ̂n)− χ2
k−mW ,1−α2,n(β0,γ̂n) + ε+ B̃n + op (1)

≥ HARβ,n (β0, γ̂n)− χ2
k−mW ,1−α2,n(β0,γ̂n) + ε+ B̃n + op (1)

≥ min
γ̃∈CS+

1n

(HARβ,n (β0, γ̃)− χ2
k−mW ,1−α2,n(β0,γ̃)) + ε+ B̃n + op (1) , (A.47)

where the first inequality follows from Lemma 6 and (A.46), the second inequality follows

from HARn (β0, γ̃) ≥ HARβ,n (β0, γ̃) for any (β0, γ̃) because MD̃n(β0,γ̃)+an−1/2ζ1
is a projection

matrix, and the last inequality follows because γ̂n ∈ CS+
1n. Thus, if ϕAR/AR,α−δ,α1 = 1 and

minγ̃∈CS+
1n

(HARβ,n (β0, γ̃)−χ2
k−mW ,1−α2,n(β0,γ̃)) > 0, it must also be true that ARAKP,n(β0)−

c1−α (κ̂1n, k −mW ) > 0 wpa1.20

20Note that it is this derivation that necessitates using ϕRob,α−δ rather than the more powerful ϕRob,α
in the definition of ϕMS−AKP,δ,cn,α. The term B̃n might go to zero and the op (1) term could be negative
and dominate and therefore, without the ε > 0 term we would not be able to obtain a strict inequality
between the first and second line of (A.47) and thus not be able to show that ϕRob,α ≤ ϕAKP,α holds
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The inequalities in (A.46) and (A.47) immediately imply the desired result

Pλwn,h(ϕRob,α−δ ≤ ϕAKP,α)

= Pλwn,h((ϕRob,α−δ ≤ ϕAKP,α) ∩ (γ̂n ∈ CS+
1n)) + Pλwn,h((ϕRob,α−δ ≤ ϕAKP,α) ∩ (γ̂n /∈ CS+

1n))

→ 1. (A.48)

�

Recall that γ̂wn is an element in arg minγ̃∈RmW HARwn (β0, γ̃) and γ+
wn is an element in

arg minγ̃∈RmW ÃRAKP,wn(β0, γ̃).

Lemma 6 Consider a sequence λwn,h (of reparameterized elements in FHet) with h9 < ∞
(that is, a sequence of AKP structure). If γ+

wn = Op(1) and ΠWwnw
1/2
n (γ+

wn − γwn) = Op(1)

then along λwn,h

ARAKP,wn(β0) = HARwn (β0, γ̂wn) + B̃wn + op (1)

for some random sequence B̃wn that is nonnegative wp1.

Proof. To simplify notation we write n instead of wn. Recall from (3.13)

HARn (β0, γ̃) =nĝn (β0, γ̃)′ Σ̂n (β0, γ̃)−1 ĝn (β0, γ̃)

=n

(
1

−γ̃

)′ (
Y 0,W

)′
ZΣ̂n (β0, γ̃)−1 Z

′ (
Y 0,W

)( 1

−γ̃

)
. (A.49)

Defining b+
n := (1,−β′0,−γ+′

n )
′

it follows that under the null

Y 0i−W ′
iγ

+
n = yi−Y ′i β0−W ′

iγ
+
n = vy,i−V ′Y,iβ0−V ′W,iγ+

n +Z
′
iΠWn(γ−γ+

n ) = V ′i b
+
n+Z

′
iΠWn(γ−γ+

n ).

(A.50)

Define

ξin := ZiZ
′
iΠWn(γ − γ+

n ) ∈ <k and ξn := n−1
∑n

i=1ξin. (A.51)

wpa1 under all drifting sequences. Under weak identification we would still be able to do so; namely, if
q = qh = 0, see (A.24) above then Proposition 2(b) implies that κ̂1n = Op(1) and given that the critical
values c1−α (κ̂1n, k −mW ) obtained by linear interpolation from the tables in the Appendix of GKM19 are
strictly increasing in κ̂1n with c1−α (κ̂1n, k −mW )→ χ2

k−mw,1−α as κ̂1n →∞ it follows that there is a γ > 0

such that χ2
k−mw,1−α ≥ c1−α (κ̂1n, k −mW ) + γ wpa1. Then, (A.47) implies that ϕRob,α ≤ ϕAKP,α holds

wpa1. But that argument does not go through when q = qh ≥ 1.
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We then have

nΣ̂n

(
β0, γ

+
n

)
=
∑n

i=1

[
Zi(Y 0i −W ′

iγ
+
n )− Z ′

(
Y 0 −Wγ+

n

)
/n
] [
Zi(Y 0i −W ′

iγ
+
n )− Z ′

(
Y 0 −Wγ+

n

)
/n
]′

=
∑n

i=1(Y 0i −W ′
iγ

+
n )2ZiZ

′
i − Z

′ (
Y 0 −Wγ+

n

) (
Y 0 −Wγ+

n

)′
Z/n

=
∑n

i=1

[(
V ′i b

+
n

)2
+ 2(V ′i b

+
nZ
′
iΠWn(γ − γ+

n )) +
(
Z
′
iΠWn(γ − γ+

n )
)2
]
ZiZ

′
i

− (Z
′
V b+

n b
+′
n V

′Z + 2Z
′
V b+

n (γ − γ+
n )′Π′WnZ

′
Z + Z

′
ZΠWn(γ − γ+

n )(γ − γ+
n )′Π′WnZ

′
Z)/n

=
∑n

i=1

(
V ′i b

+
n

)2
ZiZ

′
i +
∑n

i=1

(
ξin − ξn

) (
ξin − ξn

)′
+ 2
∑n

i=1(V ′i b
+
nZ
′
iΠWn(γ − γ+

n ))ZiZ
′
i − 2Z

′
V b+

n (γ − γ+
n )′Π′WnZ

′
Z/n− Z ′V b+

n b
+′
n V

′Z/n

=
∑n

i=1

(
V ′i b

+
n

)2
ZiZ

′
i +Op(n

1/2), (A.52)

where for the third equality we use (A.50) and Z
′ (
Y 0 −Wγ+

n

)
= Z

′
V b+

n +Z
′
ZΠWn(γ−γ+

n ),

in the fifth equality we apply a WLLN or a Lyapunov CLT theorem for each of the last three

summands in the second to last line and the second summand in the third to last line which

hold by the moment conditions imposed in the parameter space FHet in (3.23). In particular,

using γ+
n = Op(1) and ΠWnn

1/2(γ+
n − γn) = Op(1), the first summand in the second to last

line is Op(n
1/2) while the other summands are Op(1).

The first summand in the last line of (A.52) can be expanded as follows after normaliza-

tion by n−1.

n−1
∑n

i=1

(
V ′i b

+
n

)2
ZiZ

′
i

=
(
b+
n ⊗ Ik

)′
n−1
∑n

i=1

(
Vi ⊗ Zi

) (
Vi ⊗ Zi

)′ (
b+
n ⊗ Ik

)
=

((
1

−γ+
n

)
⊗ Ik

)′
n−1
∑n

i=1

((
vyi − V ′Y iβ0

VWi

)
⊗ Zi

)((
vyi − V ′Y iβ0

VWi

)
⊗ Zi

)′
︸ ︷︷ ︸

=:R̂Fn

((
1

−γ+
n

)
⊗ Ik

)
.

When β0 = β (which is assumed here) we have

R̂Fn = EFn(vec(ZiU
′
i)(vec(ZiU

′
i))
′) + op(1) = GFn ⊗HFn + Υn + op(1), (A.53)

for some Υn = o(1), where the first equality holds by a WLLN and the second one holds by

the assumption that n1/2λ9n → h9 <∞ and the argument given in the Proof of Theorem 2

that establishes that RFn has AKP structure.
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Therefore, by (3.21)

Σ̂n

(
β0, γ

+
n

)
− Σ̃

(
β0, γ

+
n

)
= n−1

∑n
i=1

(
V ′i b

+
n

)2
ZiZ

′
i − (

(
1,−γ+′

n

)
Ĝn

(
1,−γ+′

n

)′
)⊗ (n−1Z

′
Z)1/2Ĥn(n−1Z

′
Z)1/2 + op(1)

= op (1) , (A.54)

where the last line follows from γ+
n = Op(1), A.53, a WLLN, and Lemma 4. Therefore,

HARn

(
β0, γ

+
n

)
= nĝ

(
β0, γ

+
n

)′ [
Σ̃
(
β0, γ

+
n

)
+ op (1)

]−1

ĝ
(
β0, γ

+
n

)
= ÃRAKP,n(β0, γ

+
n ) + op(1),

(A.55)

where we use positive definiteness of Σ̃ (β0, γ
+
n ) in the last equality which holds by the

restrictions on EF (Z
′
iZi), GF , and HF in (2.5).

By definition of γ̂n, HARn (β0, γ
+
n ) ≥ HARn (β0, γ̂n). By definition of γ+

n , ARAKP,n(β0) =

ÃRAKP,n(β0, γ
+
n ). Thus, by (A.55)

ARAKP,n(β0) =HARn

(
β0, γ

+
n

)
+ op(1) ≥ HARn (β0, γ̂n) + op(1), (A.56)

which is the desired result. �

A.5 Time series case

In this section we drop Assumption B and allow for a stationary time series setup. In the

time series case, F denotes the distribution of the stationary infinite sequence {(Z ′i, V ′i )′ :

i = ..., 0, 1, ...}. Recall the definition Ui := (εi + V ′W,iγ, V
′
W,i)

′ and define

RF,n := V arF
(
n−1/2

∑n
i=1vec(ZiU

′
i)
)
. (A.57)

Consider again a sequence an = o(1) in <≥0. The parameter space is given by

FTS,AKP,an : = {(γ,ΠW ,ΠY , F ) : γ ∈ <mW ,ΠW ∈ <k×mW ,ΠY ∈ <k×mY , {(Zi, Vi) : i = ..., 0, 1, ...}

are stationary and strong mixing under F with strong mixing numbers

{αF (m) : m ≥ 1} that satisfy αF (m) ≤ Cm−d,

EF (ZiV
′
i ) = 0k×(m+1), RF,n = GF ⊗HF + Υn,

EF (||Ti||2+δ) ≤ B, for Ti ∈ {vec(ZiU
′
i), ||Zi||2}

κmin(A) ≥ δ for A ∈ {EFZiZ
′
i, GF , HF}} (A.58)
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for some δ > 0, d > (2 + δ)/δ, B,C < ∞, for symmetric matrices Υn ∈ <kp×kp such that

||Υn|| ≤ an, pd symmetric matrices GF ∈ <p×p (whose upper left element is normalized to

1) and HF ∈ <k×k.
In the time series context, the definition of R̂n in (2.11) is replaced by a heteroskedasticity

and autocorrelation consistent (HAC) variance matrix estimator based on {fi : i ≤ n} for

RF,n := (Ip ⊗ (EFZiZ
′
i)
−1/2)RF,n(Ip ⊗ (EFZiZ

′
i)
−1/2), e.g. see Newey and West (1987) and

Andrews (1991). With this modification, the conditional subvector ARAKP test for the time

series case is then defined exactly as in (2.19). Theorem 1 then holds without Assumption

B and with FAKP,an replaced by FTS,AKP,an .

Comment. 1. The proof of the theorem in the time series case follows the exact same

steps as the proof of Theorem 1 in the i.i.d. case in the Appendix with simple modifications.

In particular, define sequences {λwn,h : n ≥ 1} as in (A.21) but with FAKP,an replaced

by FTS,AKP,an in (A.20). Then, under sequences λn,h (writing n instead of wn to simplify

notation), the HAC estimator R̂n satisfies R̂n − RF,n →p 0kp×kp and thus R̂n →p h
−2
7 ⊗

h
1/2
4 h−1

6 h
′−1
6 h

1/2
4 see earlier sections for notation. Also, the CLT in (A.23) continues to hold

under the mixing conditions in FTS,AKP,an . Then, the exact same proof as for the i.i.d. case

applies.

2. Again, we obtain the corresponding result for the generalization of the subvector test

in GKMC to the time series KP structure case. This test has correct asymptotic size for the

parameter space FTS,AKP,an and the result is obtained fully analytically; its proof does not

require any simulations.
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