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Abstract

We show that Moreira’s (2003) conditional critical value function for likelihood ratio (LR) tests
on the structural parameter in homoskedastic linear instrumental variables (IV) regression provides
a bounding critical value function for subset LR tests on one structural parameter of several for
general homoskedastic linear IV regression. The resulting subset LR test is size correct under weak
identification and efficient under strong identification. A power study shows that it outperforms the
subset Anderson-Rubin test with conditional critical values from Guggenberger et al. (2019) when
the structural parameters are reasonably identified and has slightly less power when identification
is weak.
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1 Introduction

For the homoskedastic linear instrumental variables (IV) regression model with one included endoge-
nous variable, size correct procedures exist to conduct tests on its structural parameter, see e.g.
Anderson and Rubin (AR) (1949), Kleibergen (2002) and Moreira (2003). Andrews et al. (2006) show
that the (conditional) likelihood ratio (LR) test from Moreira (2003) is optimal amongst size correct
procedures that test a point null hypothesis against a two sided composite alternative. Efficient tests of
hypotheses specified on one structural parameter in a linear IV regression model with several included
endogenous variables which are size correct under weak instruments are, however, still mostly lacking.
In Guggenberger et al. (2019), a conditional critical value function for the subset AR test is proposed
which makes it size correct and nearly optimal for testing a hypothesis on one structural parameter
of several when the reduced form equations are only specified for the endogenous variables associated
with the untested structural parameters. This conditional critical value function for the subset AR test
improves upon the x2-critical value function that results when the unrestricted structural parameters
are well identified and which Guggenberger et al. (2012) show provides a bounding distribution for
the subset AR test. In the linear IV regression model with one included endogenous variable, the
dependence of the optimal LR test on its conditioning statistic is such that it resembles the AR test
when the conditioning statistic is small while it is similar to the Lagrange Multiplier (LM) test from
Kleibergen (2002) when the conditioning statistic is large, see also Andrews (2016). Since the LR
test is optimal, this implies that the power of the AR test is close to optimal when the structural
parameters are weakly identified, so the conditioning statistic is small, but not when the conditioning
statistic is large and the structural parameters are well identified. The subset AR test is then also not
optimal when the structural parameters are well identified and the number of instruments exceeds the
number of structural parameters so the model is over identified. We therefore construct a conditional
critical value function for the subset LR test which makes it size correct under weak instruments and
optimal under strong instruments.

Our conditional critical value function for the subset LR test is identical to the conditional critical
value function of the LR test for the homoskedastic linear IV regression model with one included
endogenous variable. That conditional critical value function depends on a conditioning statistic
and two independent x? distributed random variables. Instead of the common specification of the
conditioning statistic as in Moreira (2003), it can also be specified as the difference between the sum
of the two (smallest) roots of the characteristic polynomial associated with the linear IV regression
model and the value of the AR statistic at the hypothesized value of the structural parameter. This
specification of the conditioning statistic generalizes to the conditioning statistic for the conditional
critical value function of the subset LR test which conducts tests on one structural parameter of
several. Alongside the conditioning statistic, the conditional critical value function of the subset LR
test also has the usual degrees of freedom adjustment of one of the involved y? distributed random

variables when conducting tests on subsets of parameters.



Given a data set, the realized value of the subset AR, and also of the subset LR statistic, does not
vary over the different structural parameters at large distant values. At such values, the subset AR
and LR tests are identical to tests for a reduced rank value of the reduced form parameter matrix. The
rank condition for identification is for the reduced form parameter matrix to have a full rank value
so at distant values of the hypothesized structural parameter, the subset AR and LR tests become
identical to tests of the identification of all structural parameters.

For the homoskedastic linear IV regression model with one included endogenous variable, An-
drews et al. (2006) show that the (conditional) LR test is optimal. Andrews et al. (2006) use the
Neyman-Pearson Lemma, which states that the LR test for testing point null against point alternative
hypotheses is optimal, to construct the power envelope. The rejection frequencies of the LR test using
its conditional critical value function are on the power envelope so the conditional LR test is optimal.
Hypotheses specified on subsets of the structural parameters do not fully pin down the distribution so
it is not possible to construct a power envelope using the Neymann-Pearson Lemma for our studied
setting. Guggenberger et al. (2019) therefore construct power bounds for the subset AR test and
show that, when using their conditional critical value function, its rejection frequencies are near the
power bound. The subset AR test can be shown to be identical to a test of the rank of a matrix using
the smallest characteristic root of its estimator. A power bound for the rejection frequencies of the
subset AR test can then be constructed using a LR test, which tests joint hypotheses specified on all
characteristic roots and the closed-form expression of the probability density of their estimators, with
algorithms from Andrews et al. (2008) and Elliot et al. (2015). While the subset AR and LR tests
appear to test the same hypotheses on the hypothesized structural parameter, the manner in which
they do so differs. Since the subset AR test rewrites the hypothesis on the structural parameter into
one of a reduced rank value of a matrix, it is possible to specify null and alternative hypotheses using
a set of parameters, i.e. the characteristic roots of the matrix, for which a closed form expression of
the joint density of their estimators is readily available. This is key to the construction of the power
bounds for the subset AR test. Rewriting the tested null and alternative hypotheses for the subset
LR test shows that the null imposes a reduced rank value on a sub-matrix of the one whose rank is
restricted under the alternative. It is therefore unclear how the difference between the null and alter-
native can be reflected using a set of well identified parameters, for which we also need a closed-form
expression of the joint distribution of their estimators, in order to obtain meaningful power bounds
for the subset LR test. Generic optimality results regarding power are then hard to obtain so we
resort to a simulation study to compare power of competing subset testing procedures. It shows that
the subset AR test dominates the subset LR test in terms of power when the structural parameters
are very weakly identified so power is low in general. For just small amounts of identification of the
hypothesized structural parameter, it, however, pays off to use the subset LR test. When the non-
hypothesized structural parameters are well identified, the subset LR test basically simplifies to the
conditional LR test of Moreira (2003) so it is optimal for such settings.



Optimality results for testing the structural parameter in the homoskedastic linear IV regression
model with one included endogenous variable have been extended in different directions. Andrews
(2016), Montiel Olea (2015) and Moreira and Moreira (2013) extend it to general covariance structures
while Montiel Olea (2015) and Chernozhukov et al. (2009) analyze the admissibility of such tests.
Neither one of these extensions, however, analyzes tests on subsets of the structural parameters.

The homoskedastic linear IV regression model is a fundamental model in econometrics. It provides
a stylized setting for analyzing inference issues which makes it straightforward to communicate the
results. As such there is an extensive literature on it. This paper provides a further contribution by
solving an important open problem: how to optimally construct confidence sets which remain valid
when instruments are weak for all structural parameters. The linear IV regression model with iid errors
can be further extended by allowing, for example, for autocorrelation and/or heteroskedasticity. These
extensions are empirically relevant and when the structural parameters are well identified, inference
methods extend straightforwardly. Kleibergen (2005) shows that the same reasoning applies to the
weak instrument robust tests on the full structural parameter vector. The extensions to tests on subsets
of the parameters are, however, far less straightforward. They can be obtained for the homoskedastic
linear IV regression model because of the algebraic structure it provides, see also Guggenberger et al.
(2012, 2019). This structure is lost when the errors are autocorrelated and/or heteroskedastic. We
then basically have to resort to explicitly analyzing the rejection frequency of the subset tests over all
possible values of the nuisance parameters as, for example, suggested by Andrews and Chen (2012).
Unless you resort to projection based tests, weak instruments robust tests on subsets of the parameters
for the linear IV regression model with a more general error structure is therefore conceptually very
different from a setting with iid errors. It is thus important to determine the extent to which it is
analytically possible to analyze the distribution of tests on subsets of the parameters while allowing for
weak identification. Since the estimators that are used for the non-hypothesized structural parameters
are inconsistent in such settings, it is from the outset already unclear if any such analytical results
can be obtained.

The paper is organized as follows. The second section states the subset AR and LR tests. In
the third section, we construct a bound for the conditional critical value function of the subset LR
test. The fourth section discusses a simulation experiment which shows that the subset LR test
with conditional critical values is size correct. The fifth section provides extensions to more than two
included endogenous variables. The sixth section covers the behavior of the subset AR and LR tests at
distant values of the hypothesized parameter. The seventh section provides the appropriate parameter
space so all our results extend to the usual iid homoskedastic setting. The eighth section summarizes
a simulation power study and the ninth section applies the tests to construct 95% confidence sets for
the return on education using the Card (1995) data. The final section states our conclusions.

We use the following notation throughout the paper: vec(A) stands for the (column) vectorization
of the k x n matrix A, vec(A) = (a}...al) for A= (a;...ay), P4 = A(A’A)71A’ is a projection on



the columns of the full rank matrix A and M4 = Iy — P4 is a projection on the space orthogonal to

A. Convergence in probability is denoted by “—” and convergence in distribution by “7”.
P

2 Subset tests in linear IV regression

We consider the linear IV regression model

y = XB+Wy+e
X = ZIy+Vx (1)
W = Zlw + Wy,

with y and W N x 1 and N x m,, dimensional matrices that contain endogenous variables, X a
N x m, dimensional matrix of exogenous or endogenous variables,! Z a N x k dimensional matrix of
instruments and m = m,+m,,. The specification of X is such that we allow for tests on the parameters
of the included exogenous variables. The N x 1, N X m,, and N X m, dimensional matrices €, Vjy and
Vx contain the disturbances. The unknown parameters are contained in the m, X 1, my, X 1, k X my,
and k x m,, dimensional matrices g, v, IIx and IIyy. The model stated in equation (1) is used to
simplify the exposition. An extension of the model that is more relevant for practical purposes arises
when we add a number of so-called included exogenous (control) variables, whose parameters we are
not interested in, to all equations in (1). The results that we obtain do not alter from such an extension
when we replace the expressions of the variables that are currently in (1) in the specifications of the
subset statistics by the residuals that result from a regression of them on these additional included
exogenous variables. When we want to test a hypothesis on the parameters of the included exogenous
variables, we just include them as elements of X.

To further simplify the exposition, we start out as in, for example, Andrews et al. (2006), assuming
that the rows of u = ¢ + Viwy + Vx 3, Viy and Vx, which we indicate by w;, Vyy;, and Vy,, so
uw=(ur...un), Viw = Vwi...Vwn), Vx = (Vx1...Vxn), are i.i.d. normal distributed with mean
zero and known covariance matrix 2. We also assume that the instruments in Z = (Z;...Zy)" are

pre-determined. These random variables are then uncorrelated with the instruments Z; so:
E(Z;(e; : V)’(?i : Vévl)) =0, 1=1,...,N. (2)

We extend this in Section 7 to the usual i.i.d. homoskedastic setting.

We are interested in testing the subset null hypothesis

Hyp : B = B, against the two sided alternative H; : 8 # . (3)

"When X consists of exogenous variables, it is part of the matrix of instruments as well so Vi is in that case equal
to zero.



In Guggenberger et al . (2012, 2019), the subset AR test of Hy is analyzed. We focus on the subset
LR test. The distributions of these tests of the joint hypothesis

H* : B = By and 7 = 7, (4)

are robust to weak instruments, see e.g. Anderson and Rubin (1949), Moreira (2003) and Kleibergen
(2007). The expressions of their subset counterparts result when we replace the hypothesized value
of 7, vp, in their expressions for testing the joint hypothesis by the limited information maximum
likelihood (LIML) estimator under Hp, which we indicate by 7(83,).> We note beforehand that our
results only hold when we use the LIML estimator and do not apply when we use the two stage least
squares estimator. Since the specification of the subset LR statistic involves the subset AR statistic,
we state both their expressions. We also note that when the model is exactly identified, so k& = m,
the subset LR statistic simplifies to the subset AR statistic since the second component of the subset

LR statistic is equal to zero.

Definition 1: 1. The subset AR statistic (times k) for Ho : f = [, reads

1 —XBy—W=r)'P. —XBn—W
AR(y) = mimcrn. Y CRS)

=0 W — XBo — WA(Bo)) Pz(y — X By — WA (6,)) (5)

= )\mim

with 4(By) the LIML(K) estimator,

) ’ ) 1 0 1 0
655(/80) = ( ~ ) Q(/BU) ( ~ ) ) Q(ﬂO) = _BO 0 Q _/30 0 (6)
~3(80) ~3(8o) i 0 5.

and Amin equals the smallest root of the characteristic polynomial
‘AQ(BO)—(Y—Xﬁo cW)Pz(Y —XBy: W)| =0. (7)

2. The subset LR statistic for Hy reads

LR(BO) = Amin — Hmin> (8)
with
- —XB—Wn) Py(y—X[—W
Hmin = MINgeRMz, yeR™w ((1y —BB’ : —32)9?1@ —B'B: —77))” (9)

2Since we treat the reduced form covariance matrix as known, the LIML estimator is identical to the LIMLK estimator,
see e.g. Anderson et. al. (1983).



which equals the smallest root of the characteristic polynomial
pQ—(y: X W)YPz(y: X :W)| =0. (10)

Under Hy and when ITy has a full rank value, the subset AR statistic has a x2(k — myy) limiting
distribution. This distribution provides an upper bound on the limiting distribution of the subset
AR statistic for all values of Iy, see Guggenberger et al. (2012). Guggenberger et al. (2019) show
that a conditional bounding distribution can be constructed that improves upon the x?(k — myy)
bounding distribution. Guggenberger et al. (2012) further show that the score or Lagrange test of
Hp is size distorted. While the subset AR test with conditional critical values is near optimal under
weak instruments, see Guggenberger et al. (2019), it is less powerful than optimal tests of Hy under
strong instruments, like, for example, the t-test. It is therefore important to have tests of Hy which
are size-correct under weak instruments and are as powerful as the t-test under strong instruments.
We show that the subset LR test is such a test.

3 Subset LR test

The weak instrument robust tests of the joint hypothesis H* proposed in the literature can be specified
as functions of independently distributed sufficient statistics. These can be constructed under the joint
hypothesis H* but not under the subset hypothesis Hy. To obtain a weak instrument robust inference

procedure for Hy using the subset LR test, we therefore proceed in three steps:

1. We provide a specification of the subset LR statistic testing Hgy as a function of the independent
sufficient statistics defined under H*. We use it to construct the conditional distribution of the

subset LR statistic given %m(m + 1) conditioning statistics defined under H*.

11. We construct a bound on the conditional distribution of the subset LR statistic under the joint

hypothesis H* that depends on only m, conditioning statistics defined under H*.

iti. We provide an estimator for the conditioning statistics from (i) which is feasible under Hy. We
show that when used for the conditional bounding distribution constructed under (i) that it

provides a bound on the distribution of the subset LR statistic to test Hg.

3.1 Subset LR statistic under H*

The subset LR statistic consists of two components, i.e. the subset AR statistic and the smallest root
fin (10). Theorems 1 and 2 state them as functions of the independent sufficient statistics defined
under H*. For reasons of brevity, we initially focus only on the case of one structural parameter that is
tested and one which is left unrestricted so m, = m,, = 1. We extend this later to more unrestricted

structural parameters. Theorem 1 first states the independent sufficient statistics defined under H*



and thereafter expresses the subset AR statistic as a function of them. Theorem 2 states the smallest

characteristic root p,,;, as a function of the independent sufficient statistics under H*
Theorem 1. Under H* : 8 = By, ¥ = 7q, the statistics:

EBovo) = (Z'2) 32 (y — Wrg — XBo)oes?

1 . _1 11
O(Bo:v0) = (2'2) 27 [(W:X)—(y—Wvo—Xﬁo)Zi Xy ves ()

1

My : HX)E;aE,Imk) independently distributed random variables, with

[N

are N(0,1y) and N((Z'Z)

10 o\ 10 0
Oge - OcVv
Yo 0 Imy Yo 0 Imy

1x1,0p: = O'IEV :mx 1, Byy imxm and Xyye = Xyy — ove0ev/0ee; and sufficient statistics
fO’I" (67 e HXa HW)S

The specification of the subset AR test of Hy : = By as a function of £(Bq, 7o) and O(By, o) 1s:

AR(By) = mingegmuw ﬁ (f(ﬁoﬁo) - G(Boﬁo)(lnéw)Q), (f(ﬁoa%) - @(50770)(178w)9)

(13)
= 3 [ch + 12+ 'y + 5% — \/(g02 2+ st) — 402 + n’n)s*]

where

wh—t

) (Imw) (Bo:70)'€(Bos v0) ~ N(0, Im,,)

D2

(.0 ) 1080, 100 (Box 10)) " ©(Bo. 10) €(B010) ~ N (0. L) (14)
n= (ﬁoﬁohf(/@oa%) ~ N(0, Iy—m)

" = (Imw) ©(B0:70)'©(Bo,v0) (")

( 1"6“’), ©(B0:70)'©(Bos Y0) (I i)
= |G (

’ -1
0 ) 50770 /80770

mX

with @, v and 1 independently distributed, ©(5y,vo)L s a kX (k—m) dimensional orthonormal matriz
which is orthogonal to ©(By,7q) : OB, 70) | ©(Bg,v0) =0 and O(8y, ) ©(Bo,v0) L = Lk—m-
Proof. see the Appendix and Moreira (2003). m

Theorem 2. Under H* : B = By, v = 7y, the expression of the smallest characteristic root pigi,

(10) as a function of the sufficient statistics (£(By, Vo), ©(Bo, Vo)) 5:

see Moreira (2003) and Andrews et. al. (2006) for a proof that £(8,,7,) and ©(8,,~,) are sufficient statistics for (8
v, IIx, Iw).



Hmin = mianRmz, geR™w m (5(50770) - @(507’70)(2)>I (6(50770) - @(/60570) (2)) ) (15)

which is identical to the smallest Toot of the characteristic polynomial:

/ / /S
mmﬂ—(w%”” = )‘:o (16)

with 8% = diag(s2,, 5251), Shax > 52

faxs Soin)s Smmax “in» @ diagonal matriz that contains the two eigenvalues of

©(Bg,70)'©(Bys 7o) in descending order and

Y= (080,70 (B0, 10)) 7O (Bo: 70)'€(Bos 7o) (17)

so ¥ and n are m and k —m dimensional independent standard normal distributed random vectors.
Proof. see the Appendix and Kleibergen (2007). m

The closed form expression for the subset AR statistic as a function of the sufficient statistics
(€(Bosv0)s O(Bos70)) results since it is the smallest root of a second order polynomial. The small-
est root in Theorem 2 results from a third order polynomial so we only provide it in an implicit
manner. Theorems 1 and 2 state the subset AR statistic and the smallest root pu,,;, as functions of
the independent sufficient statistics £(5g,7) and O(8g,7o) (11) which are defined under H*. Since
&(By, o) and O(By,7,) are independently distributed, we can use the conditional distributions of the
subset AR statistic and the smallest root i, given the realized value of ©(8y,7,) : ©(Bg, 7o), see
Moreira (2003). Theorems 1 and 2 show that these conditional distributions further simplify so we
*

can use the conditional distribution of the subset AR statistic given the realized value of s*, §*, and

2 and s2. :§%.  §2 This makes

the conditional distribution of p;, given the realized values of sz . hax - Smins Smax-

the total number of conditioning statistics equal to three. Theorem 3 next shows that these three
conditioning statistics are an invertible function of ©(8y,7,)©(8g;7o). Theorem 3 also shows how,
given ©(By,70)'©(By, 7o), We can construct (¢, v) from ), which is a standard normal distributed
random vector, and vice versa. Since both ¢ and 7 are standard normal distributed random vectors,
they are the random variables present in the conditional distribution of the subset LR statistic under
H* given the realized value ©(8,7,)'© (8o, Y0)-

Theorem 3. Under H* : B = By, v = 7, the subset LR statistic for testing Hy : 5 = 3y given a
realized value of ©(By,70)'©(Bo, Vo) é(ﬂov’m),é(ﬁoa’m)a can be specified as

LR(Bg) = 4 |02+ 12 +0/n+ 5" — /(92 + 12 40/ + 8% — 402 + /)" | = fyuin (18)



where fu;, results from (16) usmg the realized value of S. The functional relationship between (p, v,

8*) used in Theorem 1 and (v, 82, 82..) from Theorem 2 is characterized by:

§* = (Imw) ©(Boy, ) e (/607’70)(["6”) (Imw vs2y! 1"6“’ = COb 2 .+ sm@ §3nm
1 cos(G)Smaxzﬁl sin(6 Smmwz
= 7% s;rr:l(:x)w c:)s(@)w
Y |:( 0 ) V 2V/ (I'"?X):| ( ) VS ldj \/(sm(@))2 cos 9))2
max l
,¢ — SV/ Imw ( Imw VS2V, Imw)) QO—’—S lvl ]"?X) VS ZV/ 2
(Sf:ax Cslsné?) /\/ COS max |:Sln :| Smm + (Sm((())//ssmax)l/ \/(SISI;(O)) + (CZS( K
(19)
with YV = (Zf:((g)) : _szzé))) ,0 < 6 < 27 : the matriz of orthonormal eigenvectors of (:)(50, 'yo)’(:)(ﬂo, Yo0)-

Proof. It results from the singular value decomposition,

é(ﬁo» ’70) = Z/[SV’,

with & and V k x m and m x m dimensional orthonormal matrices, i.e. U'U = I,,,, V'V = I,,,, and
the diagonal m x m matrix S containing the m non-negative singular values (§; ... §,,) in decreasing
order on the main diagonal, that ¢ = U'¢(By, 7). The remaining part results from using the singular

value decomposition for the expressions in Theorems 1 and 2. =

Theorem 3 shows that the subset LR statistic is a function of three conditioning statistics, s*, sfnm

and s2 __, which are all defined under the joint hypothesis H*. To obtain a bounding expression for

max’
the distribution of the subset LR statistic which is viable under Hg, we first reduce the number of

conditioning statistics for which we thereafter provide estimators which are feasible under Hy.

3.2 Bound on distribution subset LR with one conditioning statistic

Since we do not have a closed-form expression of the subset LR statistic as a function of the conditioning
statistics, it is hard to show that it is a monotone function of any (or several) of them, which would
make it straightforward to obtain a bounding expression for it. In order to construct such a bounding
expression, we therefore start out to show that the two elements that comprise the subset LR statistic
are monotone functions of (some of) their conditioning statistics.

Theorem 4. When specified as functions of the realized values (8%, 82, . 82..), the subset AR

min’ max

statistic and p,,;, are non-decreasing functions of, respectively, §* and 52, .

Proof. see the Appendix. m

10



Theorem 4 implies that the conditional distributions of the subset AR statistic and p,;, are
bounded by their conditional distributions that result for the smallest and largest feasible values of

the realized value of their conditioning statistics §* and §2,,, resp.. Given the realized value of s2 ,

mm, both §* and 52, can be infinite while their lower bounds are equal to smm

Theorem 5. Given the realized value of Smm : smm, the subset AR statistic is bounded according to

ARlow‘S* = mln) AR’ = mln)

. 2
PV S, — \/(@ U2+ Sh) T — AW+ n)sh, (20)

< AR(By)|s™ = §7) <
V2 +1n'n = ARy, = AR|s* = o0) ~ x2(k — my)
and i 15 bounded according to
Ml0w|smin = 31211111) = Mmin|3min = é12][1in7 slznax = §12nin)
|:w1+1/}2+7777+ mln_\/(¢1+w2+nn+ mln) 47777 mln:|

< :U’min|sr2nin = ’§ﬁ11n’ 812nax - S%nax) < (21)

% |:¢% + 77/77 + §12nin B \/(¢% + T’,T/ + é12nin) - 477 77Smm:|
a2 2

= Mmin’smin = Smin> Smax — OO) - :uup’S?nin - §I2nin>‘

Proof. see the Appendix. m

Since 82, < §* < 82,1, the bounds on the subset AR statistic are rather wide but they are sharp

for large values of § sml Both the lower and upper bound of i,,;, are non-decreasing functions of 82,

n'
and are equal when § s i €quals zero and for large values of 5 smm in which case they both equal n'n. It
implies that they are tlght which can be further verified by conducting a mean-value expansion of the
2 a2 2

lower bound. The bounds are tight since p,;, given (s5. = § S8 ax

_ §2
min min’ -

¢ ax) 1S primarily a function
of 82, and much less so of 82 . (as one would expect from the smallest characteristic root).

The conditional distribution of the subset LR statistic stated in Theorem 3 has three conditioning
statistics which are all defined under H*. The three conditioning statistics result from the three different
elements of the estimator of the concentration matrix ©(8y,70)©(89,70). This estimator provides
an independent estimate of the identification strength of the two parameters restricted under H*.
Under Hg, there is only one tested parameter so we hope to reflect its identification strength by one
conditioning statistic. The smallest characteristic root of ©(8y, 7o) ©(Bg, 7o) is reflected by 32, . Since
it reflects the minimal identification strength of any combination of the parameters in H*, we use it

as the conditioning statistic in a bounding function of the conditional distribution of the subset LR

4Since §* = (I"’W) O(Bos70) (ﬁo,'yo)(l’gw), §* is bounded by the smallest and largest characteristic roots of
6(50770),6(/807’-}/0) S0 Smm S ‘§* S max

11



statistic given ©(3g,70)©(B0,7,)- The bounding function then results as the difference between the
upper bounding functions of the subset AR statistic and p,,;, stated in Theorem 5. It is obtained by
noting that

e = oty [ [500)]” 2 (22

so when §* goes off to infinity, cos(@) # 0, 52, goes off to infinity as well. Other settings of the

different conditioning statistics do not result in an upper bound. For example, consider sin(f) = 1,

2 a2 a2

~x .
min SO $ = Smin>

§* =8 which results from applying 'Hopital’s rule to (22). Since the subset AR

max
statistic, which constitutes the first component of the subset LR statistic in (18), is an increasing
2

function of 5*, we obtain a lower bound on the subset AR statistic given 5 . so the resulting setting

for the subset LR statistic is more akin to a lower bound than an upper bound.

Definition 2. We denote the limit of the subset LR statistic, when specified according to Theorem

3 as a function (8%, 82, 82. ), that results when §* and 32,. go off to infinity and cos(8) # 0, so

Uy = ¢ and 1y =v, by CLR(B) : °

CLR(Bo)|s70in = Stain) = lima+, 52 )00 LR(Bo)

~ ~ 2 ~
= % VQ + 77/77 - S?nin + \/(V2 + 77,77 + Sr2nin) - 477/778?Hi1’1

(23)

We use CLR(f3,) defined in (23) as a conditional bound given 82 . for the conditional distribution

min
of LR(By) given (82. | 82, §*). It equals the difference between the upper bounds on AR(f,) and
Imin Stated in Theorem 4 with ¢; equal to v. The difference between the upper bounds of two statistics
not necessarily provides an upper bound on the difference between the two statistics. Here it does
since the upper bound on the subset AR statistic has a lot of slackness when p,;, is close to its lower

bound. To prove this, we specify the subset LR statistic as

LR(8p) = CLR(By) — D(By); (24)

with
D(ﬁO) = ARup - AR(/BO) + Hmin —

A~ a 2 S
L2 4+ =\ 02 20)° i,

(25)

and analyze the properties of the conditional approximation error D(f,) given é?nin over the range of
values of 42, and 8* (). We note that only negative values of D(f,) can lead to size distortions so
we only focus on worst case settings of the conditioning statistics (§*, 82 , &2 that lead to such

min? max)

negative values.

®The expression of CLR(3,) is identical to that of Moreira’s (2003) conditional likelihood ratio statistic which explains
the acronym.

12



Theorem 6. Under H*, the conditional distribution of CLR(B,) given s2. = §2. provides an upper

min

bound for the conditional distribution of LR(By) given (s2:, = 82. ) 82ax = 82axs 8* = 8%) since the
approzimation error D(B,) is non-negative for all values of (82, §2.x, 8%) and all realizations of (v,

1, ).
Proof. see the Appendix. m

Theorem 6 is proven using approximations of the different components of D(S,). These approxi-

can take. For none of these do we find

mations are analyzed over the range of values (82 , 52, §%)

min’
that D(f3,) is negative.

Corollary 1. Under H*, the rejection frequency of a (1-a) X 100% significance test of Hq using the

2. 2
2in = Soin 15 less than or equal

subset LR test with conditional critical values from CLR(By) given s
to 100 x a%.

While the conditional critical value function makes the subset LR test of Hy size correct, it is infea-
2

sible since the conditioning statistic 57, is defined under H*. We next construct a feasible estimator

2

for 32, under Hy which is such that the resulting conditional critical value function makes the subset

LR test size correct under Hy.

3.3 Conditioning statistic under H,

To motivate our estimator of 2. under Hy, we start out from the characteristic polynomial in (16)

min

which is when, m,, = m, = 1, a third order polynomial:

(1 — Bomax) (B = o) (1t — pimin) = p° — a1p® + agp — az = 0, (26)

with, resulting from Theorem 2:

ar = PPN+ st + Sthax = tr(QTHY DX W) P2(Y L X S W) = i + B+ Haax
a2 = U’U(anm + Srznax) + aninsfnax + ¢%512nax + wgsfnin (27)

_ /o 02 2 _
a3z = N MNSminSmax = MminH2Hmaxs

and where ;0 < po < fiay are the three roots of the characteristic polynomial in (26). We next
factor out the largest root .. to specify the third order polynomial as the product of a first and

second order polynomial:

P — aip® + agp — a3 = (18— fgax) (B = bip 4 b2) = 0, (28)
with
by = ¢/¢ + 77I77 + s?nin + S?nax — Hmax

by = n,nsgninsgnax/umax‘

13



2

min

to do so, we use that g, provides an estimator of s2,, -+ 12

We obtain our estimator for the conditioning statistic §% . from the second order polynomial. In order

Theorem 7. Under H*, the largest root i, s such that

2
Finax = St + U + S22 (U3 + ') + b, (30)

ax

With 8%y = S2ax + 03 and h = O(max(sph (V3 +1'1)2, 5.2 s24.)) > 0, where O(a) indicates that the
respective element is proportional to a.

Proof. see the Appendix. m
2

max T 1#% which gets more precise when s?nax

Theorem 7 shows that g, is an estimator of s

increases. We use it to purge s2,,. + 1?2 from the expression of by :

bp= d+ s2 (31)

min?

with

d= (1— Ui

1
Smax

) W3 +1m) — h. (32)

Since h is non-negative, the statistic d in (32) is bounded from above by a x?(k—1) distributed random
variable. Theorem 4 shows that under H*, the subset AR statistic is also bounded from above by a
x%(k — 1) distributed random variable. We therefore use the subset AR statistic as an estimator for

d in (32) to obtain the estimator for the conditioning statistic 82 . that is feasible under Hy:

Smin = b1 — AR(By)
= tr( QY X W)Y Pz(Y i X W) = pthmax — AR(Bp)
= smallest characteristic root of (7YY : X : W)/ Pz(Y : X : W))+
second smallest characteristic root of (Q71(Y : X : W) Pz(Y : X : W)) — AR(B)-

(33)

2
min
2

min

We use s
2
min

to determine the properties of its estimation error.

as the conditioning statistic for the conditional bounding distribution CLR(S,) given that
2 2

Stin = Smin (23). The conditioning statistic 57, in (33) estimates s;; with error so it is important

2

Theorem 8. Under H*, the estimator of the conditioning statistic 5z, can be specified as:

g?nin = 812111n + 9, (34)
with
2 2
g= Vhty — Vv + SFm '+ V'v) — 2 (s + ') — h +e, (35)

14



/ 2
and where e = O << [<P§(507’Yo)/M@(BOﬁO)(InSw)5(507’Yo)]/ {802 + (178’”) @(50770)/@(507’)’0)(178’”)}) ) .
Proof. see the Appendix. m

The common element in the (upper) bounding distributions of the statistic d and the subset AR
statistic is the x2(k — 2) distributed random variable n/n. It implies that the difference between these

two statistics, which constitutes the estimation error in 52 . consists of:

min’

1. The difference between two possibly correlated x2(1) distributed random variables:

Uathy — V', (36)

with ¢, that part of £(5,,7,) that is spanned by the eigenvectors of the smallest singular value
of ©(By,vp) and v that part of £(5y,7,) that is spanned by @(50,70)( 0 )

Iy

2. The difference between the deviations of d and AR(f3,) from their bounding x?(k—1) distributed

random variables:

2 () — B (s ') — h e (37)
P2 rs 1T 2W2 TN .

*
Smax

2

Since s* is smaller than or equal to s;, .,

this error is largely non-negative and becomes negligible

when s* and s2 , get large.

Since s* has a non-central y? distribution with k& degrees of freedom independent of ¢, v and 7,
and a similar argument applies to s2 .., 1, 15 and 7, the combined effect of the components in (37)
is small, since every element is at most of the order of magnitude of one and a decreasing function of
The same argument applies to (36) as well.

s* and s2,,..

2

min

2

Corollary 2. The estimation error for estimating s by 5z, s bounded and decreasing with the

strength of identification of ~.

2 .
min *

The derivative of CLR(S,) given s2. with respect to s

_ 9 2 _ _ 1|_ v24+s0—n'n
L < og CLR(Bo) 85010 = 50) 2|71 V(WP so—n'n)?+4v2n'n <0 (38)

which is constructed in Lemma 2 in the Appendix, is such that CLR(/;) is not sensitive to the value
2
min*

critical values given 32, with little effect on the size of the subset LR test under Hy. Corollary 2 and

of s Thus small errors in the estimation of sfnin just lead to a small change in the conditional
(38) imply that the estimation error in 32, has just a minor effect on the size of the subset LR test
under Hy. We next provide a more detailed discussion of the effect of the estimation error in 32 on
the size of the subset LR test.

Under H*, the conditioning statistic s2

mi

, is independent of £(3y, 7o) while the components of the

estimation error g in (36) and (37) are not. We therefore analyze the properties of the estimation

15



2

mi

2

error in 57 . and its effect when using §; . for the approximation of the conditional distribution of the

subset LR statistic (23). One part of the estimation error results from the deviation of the distribution
of the subset AR statistic from its bounding x?(k — 1) distribution. We therefore assess the two fold
effect that it has: one directly on the subset LR statistic through the subset AR statistic and one

on the approximate conditional distribution through its effect on 52, . We analyze the effect of the
2

estimation error in 87 ; on the approximate conditional distribution of the subset LR statistic for four

different cases:
2

1. Strong identification of v and 5 : Both 3 and «y are well identified, so sz ; is large and s*

(> s2. ) is large as well. This implies that both components of the subset LR statistic are at their

min
upperbounds stated in Theorem 4 so the conditional distribution of the subset LR statistic equals that
of CLR(f,). Since both s* and s2

fax are large, the estimation error is:

g= vy —v'v. (39)

The proof of Theorem 8 shows the expressions of the covariance between 1, and v which, since both

2. and s2

Smin max

are large, can not be large. The estimation error is therefore Op(1). The derivative of

the approximate conditional distribution of the subset LR statistic with respect to sfnin goes to zero
2 2

2 .
when s; . gets large. Hence, since s, < in has no effect on the

is large, the estimation error in §

accuracy of the approximation of the conditional distribution of the subset LR statistic.
2

2. Strong identification of v, weak identification of 3 : Since 3 is weakly identified sz ; is

small but s* is large because ~ is strongly identified and so is therefore s2, . Since both s* and s2

are large, both components of the subset LR statistic are at their upperbounds stated in Theorem 4
which implies that the conditional distribution of the subset LR statistic equals that of CLR(f,). Also

since s* and s2

. . . ~9 . .
max are large, the estimation error in 57, is just

g= vhy— V. (40)

2

Because s; ;, is small and s* is large, Theorem 3 shows that cos(6) is close to one while sin(6) is close

to zero. This implies that v is approximately equal to 15 so g is small. The estimation error does
therefore not lead to size distortions when using the approximation of the conditional distribution of
the subset LR statistic.

3. Weak identification of v, strong identification of 3 : v is weakly identifed so sfnin and s*

2

are small while s2 max

max

phyp- The difference between the conditional distribution of the subset LR statistic and the conditional

is large since f is strongly identified. Since s7 .. is large, p,,;, is at its upperbound

bounding distribution of CLR(,) then solely results from the difference between the upper bound

on the distribution of the subset AR statistic, ARy, and its conditional distribution. When using
2

conditional critical values from CLR(f,) given s2 . for the subset LR test, it is conservative. We,

16



2

mi

2

however, use 5. instead of s; . with estimation error g :

= b — '+ / @? n+1v) +e,
g waz SOQJF(IT%“’) @(50770)/@(50»70)<I7%w) (77 7 ) (41)

2

min’

values. The last part of (41) results from the subset AR statistic. Since the conditional critical values

which, since it increases the estimate of the conditioning statistic § reduces the conditional critical

of CLR(S,) given s2. make the subset LR statistic test conservative for this setting, the decrease

min
of the conditional critical values does not lead to over-rejections. This holds since the reduction of
the subset AR statistic compared to its bounding x?(k — 1) distribution exceeds the decrease of the

conditional distribution of CLR(3,) given 32 instead of s>

~in 2 in- The latter results since the derivative

2

of the conditional distribution of CLR(8,) given s2. with respect to s2; exceeds minus one. Hence,

usage of the conditional critical values of CLR(8,) given 52, make the subset LR test conservative
for this setting.

Weak identification of v and strong identification of 3 covers the parameter setting for which
Guggenberger et al. (2012) show that the subset score statistic from Kleibergen (2004) for testing Hy
is size distorted. This size distortion occurs for values of Iy and Il x which are such that Iy = axIlx
with Iy relatively large so 3 is well identified and a a small scalar so v is weakly identified. These
settings thus do not lead to size distortion for the subset LR test when using the conditional critical
values that result from CLR(f,) given 2. .

4. Weak identification of v and 3 : Both s2. and s>

3 *
in & ax are small and so is therefore s*. The

proof of Theorem 6 in the Appendix shows that the error of approximating the subset LR statistic
by CLR(3,) given sfnin is non-negative for this setting. Usage of the conditional critical values that
result from CLR(f,) given s2, would then make the subset LR test conservative.

min i’

distributions of d and the subset AR statistic deviate from their x2(k — 1) distributed lower bounds

so the estimation error contains all components of (35). The twofold effect of the deviation of the

When we use § instead of s the estimation error g is now such that both the bounding

bounding distribution of the subset AR statistic from a x2(k — 1) distribution is now diminished since
2

its contribution to the estimator of the conditioning statistic 57 ; is largely offset by the deviation of

the bounding distribution of d from a y?(k — 1) distribution. Hence,

2

v3

*
max

U
w2+ (") ©(B,70)'©(Bo,vo) (1w )

(' +¢'@) — 5= (Vohy +1'n) + e — h, (42)
is small. Also the other component of g is typically small since ¢, and v are highly correlated when
both v and 3 are weakly identified. This all implies that §2. is close to s2, so the subset LR
test remains conservative when we use conditional critical values from CLR(3,) given &2, instead of
CLR(B,) given s2, .

17



Corollary 3. Under H*, the rejection frequency of a (1-a) x 100% significance test of Hq using the
subset LR test with conditional critical values from CLR(By) given s2., = 32. s less than or equal

mln min
to 100 x a%.

Corollary 3 is the feasible extension of Corollary 1 where the conditioning statistic is only defined
under H*. We later in Theorem 13 extend Corollary 3 to the general iid homoscedastic setting with

well defined parameter spaces.

Conditioning statistic when using one included endogenous variable For the linear IV

regression model with one included endogenous variable:

y = XfB+¢

X = Zlx + Vx, (43)
the AR statistic (times k) for testing Hg reads
AR(By) = ﬁﬁo)(y — XB0) Pz(y — XBy), (44)
with 6..(8g) = (7/160)/9(7150) and Q the reduced form covariance matrix, ) = gf{‘; : Z}ti) .
The LR statistic for testing Hg equals the AR statistic minus its minimal value over (3 :
R(Bo) = AR(fy) — ming AR(f). (45)
This minimal value equals the smallest root of the quadratic polynomial:
p? —aip+as=0, (46)

with

atf = tr(QYY : X)'Pz(Y : X)) = AR(By) + s?
az = 52 [AR(By) — LM(8y)]
M(Bo) = 055%50 (Y — XBo)'P, ZTx (B, )( — XBo)
s* = Tlx(8)'2'Z1x(8o) /6 xx.2(Bo)
lx(By) = (Z2'2)7'7 [X (y Xﬁo)axf%))} = (2271 2y X)Q7 () [(510)'9_1@10)} B
(47)
and Gxx.(8y) = wxy — Zxelfa)® _ [(ﬁo)'tz—l(ﬁlo)} T oxe(By) = wxy — wxxB. Under Ho, the LR

6 (Bo)
statistic has a conditional distribution given the realized value of s* which is identical to (23) with

equal to s? and 7'n a x%(k — 1) distributed random variable, see Moreira (2003).

mln
The statistic af in (47) does not depend on f,. For a given value of AR(f3,), we can therefore

18



straightforwardly recover s? from ajf :

2= tr(Q Y I X)Pz(Y : X)) — AR(B,)
= smallest characteristic root of (27 1(Y : X)' Pz(Y : X))+ (48)
second smallest characteristic root of (271(Y : X)'Pz(Y : X)) — AR(B,),

which shows that the specification of the conditioning statistic for the conditional distribution of the
LR statistic for the linear IV regression model with one included endogenous variable is identical to

§2. in (33).

min

4 Simulation experiment

To show the adequacy of usage of conditional critical values that result from CLR(f,) given §Iznm for
the subset LR test of Hg, we conduct a simulation experiment. Before we do so, we first state some
invariance properties which allow us to obtain general results by just using a small number of nuisance

parameters.

Theorem 9. Under Hy, the subset LR statistic only depends on the sufficient statistics £(58q, o)

and ©(By, o) which are defined under H* and independently normal distributed with means resp. zero
) _1
and (Z’Z)%(HW :Ix)X, ¢ . and identity covariance matrices.
Proof. see the Appendix. m
_ _1
Theorem 9 shows that under Hy, (2’2 )% (I : I x )Xy, ¢. is the only parameter of the IV regression
model that affects the distribution of the subset LR statistic. The number of (nuisance) parameters

where the subset LR statistic depends on is therefore equal to km. We aim to further reduce this

number.

Theorem 10. Under Hy, the dependence of the distribution of the subset LR statistic on the para-
meters of the linear IV regression model is fully captured by the %m(m + 1) parameters of the matrix

concentration parameter:

_1 . . 1
ZV‘Q/—;(HW . HX)/Z/Z(HW : HX)EV\z/"e — RA/AR,, (49)

with R an orthonormal mxm matriz and A'A a diagonal mxm matriz that contains the characteristic

r00t8S.

Proof. see the Appendix. =
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In our simulation experiment, we use two included endogenous variables so m = 2. We also use
the specifications for R and A’A :

sin(7) cos(7)

R= <COS<T> 5 —Si“”)>, 0<7<2m MA= </\01 5 AOQ)- (50)

With these three parameters: 7, A1 and Ao, we can generate any value of the matrix concentration
parameter and therefore also every possible distribution of the subset LR statistic under Hy. In our
simulation experiment, we compute the rejection frequencies of testing Hg using the subset AR and

subset LR tests for a range of values of 7, A1, Ay and k. This range is chosen such that:
0<7<2m 0< A1 £100, 0 < A <100, (51)

and we use values of k from two to one hundred. For every parameter, we use fifty different values on

an equidistant grid and five thousand simulations to compute the rejection frequency.

Maximal rejection frequency over the number of instruments. Figure 1 shows the max-
imal rejection frequency of testing Hy at the 95% significance level using the subset AR and LR tests
over the different values of (7, A1, A2) as a function of the number of instruments. We use the x? crit-
ical value function for the subset AR test and the conditional critical values from CLR(8,) given 82 .

for the subset LR test. Figure 1 shows that both tests are size correct for all numbers of instruments.

Figure 1. Maximal rejection frequencies of 95% signifance subset AR (dashed) and

subset LR (solid) tests of H for different numbers of instruments.
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Maximal rejection frequencies as function of the characteristic roots of the matrix
concentration parameter To further illustrate the size properties of the subset AR and subset
LR tests, we compute the maximal rejection frequencies over 7 as a function of (A1, A2) for k = 5,
10, 20, 50 and 100. These are shown in Panels 1-5. All panels are in line with Figure 5 and show
no size distortion of either the subset AR or subset LR tests. The panels show that both tests are

conservative at small values of both A1 and As.

Panel 1. Maximal rejection frequency over 7 for different values of (A1, A2) for k = 5.
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Figure 1.1. subset AR test Figure 1.2. subset LR test

Panel 2. Maximal rejection frequency over 7 for different values of (A1, A2) for k& = 10.
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Panel 4. Maximal rejection frequency over 7 for different values of (A1, A2) for k = 50.
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Panel 5. Maximal rejection frequency over 7 for different values of (A1, A2) for & = 100.
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To show the previously referred to size distortion of the subset score test, Panels 6 and 7 show

the rejection frequency of the subset LM test of Hy. These figures again show the maximal rejection

frequency over 7 as a function of (A1, A2). They clearly show the increasing size distortion when &

gets larger which occurs for settings where Iy = allx with I1x sizeable and « small so Iy is small

and tangent to IIx. The implied value of II is therefore of reduced rank so either Ay or Ao is equal to

zero which explains why the size distortions shown in Panels 6 and 7 occur at these values.

Panel 6. Maximal rejection frequency over 7 as function of (A1, A2) for subset LM test
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Panel 7. Maximal rejection frequency over 7 as function of (A1, A2) for subset LM test
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5 More included endogenous variables

Theorems 1, 2, 4 and 5 extend to more non-hypothesized structural parameters, i.e. settings where myy
exceeds one. Theorem 3 can be generalized as well to show the relationship between the conditioning

statistic of the subset AR statistic under H* and the singular values of ©(8g,7¢) ©(8y, 7o) for values
2

of m larger than two. Combining these results, Corollary 1, which states that CLR(f,) given 2.
provides a bound on the conditional distribution of the subset LR statistic, extends to values of m
larger than two. Theorem 6 states the maximal error of this bound by running through the different
settings of the conditioning statistics. Since the number of conditioning statistics is larger, we refrain
from extending Theorem 6 to settings of m larger than two.

For the estimator of the conditioning statistic, Theorem 7 is extended in the Appendix to cover
the sum of the largest m — 1 characteristic roots of (10) when m exceeds two while the bound on the
subset AR statistic is extended in Lemma 1 in the Appendix. Hence, the estimator of the conditioning

statistic

5. = smallest characteristic root (Q~1(Y : X : W)'Pz(Y : X : W))+

min (52)
second smallest characteristic root (Q75(Y : X : W)/ Pz(Y : X : W)) — AR(B,),

applies to tests of Hy : 5 = B, for any number of additional included endogenous variables and so does

the conditional bound on the distribution of the subset LR statistic under Hq stated in Corollary 3.
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Range of values of the estimator of the conditioning statistic. The estimator of the condi-
tioning statistic in (52) is a function of the subset AR statistic. Before we determine some properties

of 52 , we therefore first analyze the behavior of the realized value of the joint AR statistic that tests

H*: 8 =By, 7 = as a function of a = (56 76)I-

Theorem 11. Given a sample of N observations, the realized value of the joint AR statistic that

tests H* : o = g, with o= (8" 1 7/ :

ARp-(ar) = ——(y — Xa)' Pz (y — Xov),

oee()

is a function of « that has a minimum, mazimum and (m — 1) saddle points. The values of the AR
statistic at these stationarity points are equal to resp. the smallest, largest and, if m exceeds one, the

second up to m-th root of the characteristic polynomial (10).
Proof. see the Appendix. m

Theorem 11 implies that in a linear IV regression model with one included endogenous variable,
the realized value of the AR statistic when considered as a function of the structural parameters has
one minimum and one maximum while in linear IV models with more included endogenous variables,
it also has (m — 1) saddle points. Saddle points are stationary points at which the Hessian is positive
definite in a number of directions and negative definite in the remaining directions. The saddle point
with the lowest value of the joint AR statistic therefore results from maximizing in one direction
and minimizing in all other (m — 1) directions. The subset AR statistic that tests Hp results from
minimizing the joint AR statistic over v at 8 = . The maximal value of the subset AR statistic
is therefore smaller than or equal to the smallest value of the joint AR statistic over the different
saddle points since it results from constrained optimization (because of the ordering of the variables
where you optimize over). When m = 1, the optimization is unconstrained, since no minimization is
involved, so the maximal value of the subset AR statistic is equal to the second smallest characteristic

root which is in that case also the largest characteristic root.

Corollary 4. Given a sample of N observations, the mazximum over all realized values of the subset

AR statistic is less than or equal to the second smallest characteristic oot of (10):

max < second smallest root ({2~ : : A : : .
5 AR(B) d small QN Y P X I WYPz(Y P X W) (53)

Corollary 5. Given a sample of N observations, the minimum over all realized values of the condi-

tioning statistic §fnin is larger than or equal to the smallest characteristic root of (10):

ming 32, > smallest root (2"1(Y : X I W) Pz(Y : X : W)). (54)
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Corollary 5 shows that the behavior of the conditioning statistic as a function of g for larger values

of m is similar to that when m = 1.

6 Testing at distant values

An important application of subset tests is to construct confidence sets. Confidence sets result from
specifying a grid of values of 3, and computing the subset statistic for each value of 3, on the grid.5
The (1 — a) x 100% confidence set then consists of all values of 8, on the grid for which the subset
test is less than its 100 x a% critical value. These confidence sets show that the subset LR test of
Hy : B = By at a value of (3, that is distant from the true one is identical to the subset LR test of
H, : v =y at a value of v, that is distant from the true one and the same holds true for the subset
AR test.

Theorem 12. Given a sample of N observations, my = 1, and for tests of Hy : B = By for values of

Bo that are distant from the true value:

_1
a. The realized value of the subset AR statistic AR(By) equals the smallest eigenvalue of QX%/I//(X
1 '
W) Py(X : W)Q 3, with Qxw = (wxx : wXW> .

Ww X Www

b. The realized value of the subset LR statistic equals

LR(/BO) =  Vmin = Hmin> (55)

_1 . . 1
with vmin the smallest eigenvalue of QX%,II,(X : W) Pz(X @ W)Q3, and iy, the smallest
eigenvalue of (10).

c. The realized value of the conditioning statistic §3nm equals
§2. = smallest characteristic root (Q71(Y : X : W)'Pz(Y : X : W))+
second smallest characteristic root (27 1Y : X : W)/ Pz(Y : X : W))— (56)

smallest characteristic root (Qyjy (X @ W) Pz (X : W)).

Proof. see the Appendix. m

Theorem 12 shows that the expressions of the subset AR and LR statistics at values of 3 that are

distant from the true value do not depend on 5. Hence, the same value of the statistics result when

®The confidence sets that result from the subset tests can not (yet) be constructed using the efficient procedures
developed by Dufour and Taamouti (2003) for the AR statistic and Mikusheva (2007) for the LR statistic since these
apply to tests on all structural parameters.
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we use them to test for a distant value of any element of . The weak identification of one structural
parameter therefore carries over to all the other structural parameters. Hence, when the power for
testing one of the structural parameters is low because of its weak identification, it is low for all other
structural parameters as well.

The smallest eigenvalue of Q;a%,[l, (X W) Py(X : W)Q;(‘%,V is identical to Anderson’s (1951) canon-
ical correlation reduced rank statistic which is the LR test under homoskedastic normal disturbances
of the hypothesis H,. : rank(Ily : I1y) = my +my — 1, see Anderson (1951). Thus Theorem 12 shows

that the subset AR test is equal to a reduced rank test of (ITy : Iy) at values of 3, that are distant

from the true one. Since the identification condition for 8 and 7 is that (ITyy : IIy) has a full rank

value, the subset AR test at distant values of 3 is identical to a test for the identification of 5 and ~.

7 Weak instrument setting

For ease of exposition, we have assumed sofar that the instruments are pre-determined and v and V'
are jointly normal distributed with mean zero and a known value of the (reduced form) covariance
matrix Q. Our results extend straightforwardly to i.i.d. errors, instruments that are (possibly) random
and an unknown covariance matrix 2. The analogues of the subset AR and LR statistics in Definition

1 for an unknown value of {2 are obtained by replacing €2 in these expressions by the estimator:
Q= ey X W)Y Mgy X W), (57)

which is a consistent estimator of €2 under the outlined conditions, O — Q.
P

We next specify the parameter space for the null data generating processes.

Assumption 1. The parameter space V under Hg is such that:

U= {w = {wlﬂ ¢2} : wl = (77 HW7 HX)7 v € mea HW € kamwa HX € kamxa
¢2 =F: E(||ﬂ||2+6) < M7 for E S {sia‘/tiaziazisivz’iv;,as’i‘/i}v

B(Zie) = 0. E(ZV) =0, Bl(vee(Zi(es Vi) veelZes  V)) = 5s)
1 00 1 00

(E((ei 1 V) (@ V) ® E(ZiZ))) = (8®Q), X=| —f 1 0 | Q| =5y 1 0 |,
v 01 v 01

’ Q= 7 . ‘ m
for some § > 0, M < oo, Q = E(Z;Z]) positive definite and § € RHDX(mA1) positive definite

symmetric.

Assumption 2 is a common parameter space assumption, see e.g. Andrews and Cheng (2012),
Andrews and Guggenberger (2009) and Guggenberger et al. (2012, 2019).
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To determine the asymptotic size of the subset LR test, we analyze parameter sequences in ¥

which lead to the specification of the model for a sample of N i.i.d. observations as

Xn = ZnHX,n + VX,n (59)
Wn = ZnHW,n + VW,na

with yp, :n X1, Xy i X mg, Wy in Xy, Zp in Xk, eqinx 1, Vg, inXmg, Vivg i n X my,
Bimg X1, 7y, my x 1, xp kX mg, Hy, 0 kX my. The rows of (e, : Vi : Vivg @ Zy) are ii.d.

distributed with distribution F},. The mean of the rows of (¢, : Vx., : Vivn : Zn) equals zero and their

covariance matrix is
Z — Oce,n OcViyn .
" oVen © Bvvn (60)
These sequences are assumed to allow for a singular value decomposition, see e.g. Golub and Van Loan

(1989), of the normalized reduced form parameter matrix.

Assumption 2. The matriz O(n) = (Z;LZn)_%(HWm : HX,n)Z{;%//jn that results from a sequence

A = (Yo Owin, x n, Fr) of null data generating processes in W has a singular value decomposition:
1 . —
O(n) = (23 Zn) "2 (M  Uxw)Syfe,, = HaT, R, € RF™, (61)

where H,, and R, are kxk and m xm dimensional orthonormal matrices and T, a k xn rectangular
matriz with the m singular values (in decreasing order) on the main diagonal, with a well defined
limat.

Theorem 13 states that the subset LR test is size correct for weak instrument settings.

Theorem 13. Under Assumptions 1 and 2, the asymptotic size of the subset LR test of Hg with

significance level o :

ASySZLR7a = limsup,,_,. supyey Pra |LR(Bg) > CLRl—a(/60|812nin = g?nin,n)] ) (62)

where LRy, (B,) is the subset LR statistic for a sample of size n and CLR1_q (By|8%:, = 5245,) 18 the

(1—a) x 100% quantile of the conditional distribution of CLR(B,) given that s2. = &>

min i 48 equal to
afor0<a<l.
Proof. see the Appendix. m

Equality of the rejection frequency of the subset LR test and the significance level occurs when ~
is well identified. When 7 becomes less well identified, the subset LR test, identical to the subset AR

test, becomes conservative.
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8 Power comparison

We focus in our power comparison on the size-correct subset LR and subset AR tests where for the
latter we use both the conditional critical values from Guggenberger et al. (2019) and x?(k— 1) critical
values. In Guggenberger et al. (2019), a power bound for the subset AR test is constructed and it
is shown that the rejection frequencies of the subset AR test when using their conditional critical
value function, are near this power bound. The subset AR statistic tests Hy by means of a reduced
rank restriction which Hg imposes on a matrix. The subset AR statistic therefore equals the smallest
characteristic root of the estimator of that matrix. A power bound for the subset AR test can then
be constructed using a LR statistic which tests conveniently specified hypotheses on all characteristic
roots with the algorithms from Andrews et al. (2008) and Elliot et al. (2015). This LR test further
uses the closed form expression of the joint density of the estimators of the characteristic roots.

To show the differences in the (alternative) hypotheses for the subset AR and subset LR tests, we
explicitly state the null and alternative hypotheses for both tests:

Ho:8=0y (y—XBo:W)=Zlw(y: Iny)+ (u: Vi)
AR: Hy : 8 # By (y—XB+X(B—Bo): W)= (u+Vx(—Bo)+

2 [ D)+ TLx(8 = 50) )
Ho:8=0y (y—XBo:W)=Zlw (g : Iimy) + (u: Vi)
LR: Hi: B8 # By (y=XB+X(B~PB) i W:X)=(u+Vx(B—Po): Viw: Vx)+
2 [ Doy 30+ (8= 50) 107 £y

(63)

\

It shows that for the subset AR test, the null and alternative hypothesis are reduced rank vs. full

rank values of the parameter matrix in the linear regression model:”
(y—XBy: W) =Z%w + (u: Viy), (64)

with @y a k x (mw + 1) dimensional matrix. The null and alternative hypothesis can then also be
specified using the characteristic roots of the quadratic form of (scaled) @y for which a closed-form
expression of the joint density of their estimators is available. This allows Guggenberger et al. (2019)
to construct a power bound for the subset AR test.

Contrary to the subset AR test, the null and alternative hypothesis for the subset LR test both

imply reduced rank values for the parameter matrix in the linear regression model

(y—XBy: W :X)=2Z®+ (u: Vi : Vx), (65)

"This shows that the subset AR test has no discriminatory power when ITy and IIx are linearly dependent, the
setting where the subset LM statistic is size distorted.
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with ® a k x (m+ 1) dimensional matrix. The null hypothesis, however, imposes a reduced rank value
on just the first (my +1) columns of ® while the alternative hypothesis imposes this restriction on the
combined columns of ®. This means that we have to use all three elements of the concentration matrix
and the value of § under the alternative hypothesis to characterize the difference between the null and
alternative hypothesis being tested using the subset LR test. Furthermore, no closed-form expression
is available for the density of the quadratic form of the estimator of ® which has a non-central Wishart
distribution. This all considerably complicates the computation of power bounds for the subset LR

test compared to the subset AR test which we therefore refrain from.

Subset LR vs subset AR with x?(k—1) critical values We conduct a simulation study based on
the data generating process from Section 4, where we used a grid over (A1, A2, 7) for a given number
of instruments, to analyze power. We restrict 7, which reflects the dependence between Il and Ilx,
to zero so A1 reflects the identification strength of 8 and Ao of 7. We use two different settings for the
number of instruments, five and twenty. Alongside the twenty-five point grids over A\; and Ao, we use
a fifty-one point grid over § ranging from minus one to one while our null hypothesis is Hy : g = 0.
For every point on the grid, we use 2500 simulations.

We first compare the power of the subset LR test with that of the subset AR test when using
x2(k — my,) critical values. Guggenberger et al. (2012) show that this distribution provides a bound
on the distribution of the subset AR test. Panels 8 and 9 show the difference in the rejection frequency
of testing Hy : 8 = 0 against Hy : 8 # 0 at the 95% significance level between the subset LR and
subset AR tests. This difference is reflected as a function of 8 and the strength of identification of
G reflected by Ao, for two different numbers of instruments k, 5 and 20, and two different strengths
of identification of v, very weak A\; = 4 and semi-strong A\; = 25. The power of the subset LR test
dominates the power of the subset AR test using x?(k — m,,) critical values for all our settings of 3,
A1 and As.
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Panel 8. Difference in rejection frequency of testing Hy : 8 = 0 against H; : 5 # 0
at the 95% significance level between the subset LR and subset AR test using x2(k — 1)

critical values as a function of 8 and A2 (the identification strength of ), k=5

Figure 8.1. A; = 4 (identification of ) Figure 8.2. A; = 25 (identification of )

Panel 9. Difference in rejection frequency of testing Hy : § = 0 against H; :  # 0
at the 95% significance level between the subset LR and subset AR test using x?(k — 1)
critical values as a function of 5 and A2 (the identification strength of 3), k = 20
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Figure 9.1. A\; = 4 (identification of ) Figure 9.2. A; = 25 (identification of ~)

Subset LR vs subset AR with conditional critical values We next compare the power dif-
ference of testing Hy : 8 = 0 against Hy : 8 # 0 using the subset LR and the subset AR test with
conditional critical values from Guggenberger et al. (2019). Panels 10 and 11 are for the same settings

as Panels 8 and 9. When compared to these panels, the subset LR test is now slightly less powerful
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when the non-hypothesized parameter, v, is (very) weakly identified and generally more powerful when

it is (reasonably) well identified.

Panel 10. Difference in rejection frequency of testing Hy : § = 0 against H; : # # 0
at the 95% significance level between the subset LR and subset AR test using conditional

critical values as a function of 8 and Ay (the identification strength of ), k=5
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Figure 10.1. A; = 4 (identification of ) Figure 10.2. A; = 25 (identification of )

Panel 11. Difference in rejection frequency of testing Hy : § = 0 against H; :  # 0
at the 95% significance level between the subset LR and subset AR test using conditional

critical values as a function of § and Ay (the identification strength of 3), k = 20
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Figure 11.1. A; = 4 (identification of ) Figure 11.2. A} = 25 (identification of )

To further analyze the difference in power between the subset LR test and the subset AR test

with conditional critical values, Panels 12 and 13 show the difference in the rejection frequencies for
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tests of Hp : 8 = 0 against Hy : 8 # 0 using the subset LR and AR tests for different numbers of
instruments and identification strengths of 5, as a function of 8 and the identification strength of ~.
Figures 12.1 and 13.1 show that for very weakly identified settings of 8, were power is very low in
general, the subset AR test is slightly more powerful than the subset LR test. Figures 12.2 and 13.2
show that when ( is reasonably well identified that the subset LR is more powerful except when ~ is
very weakly identified. The equal rejection frequency lines of testing using subset LR or subset AR
resulting from Figures 12.2 and 13.2 are shown in Panel 14. They are remarkably similar and show
again that when 7 is weakly identified, so power is low, that the subset AR test is (slightly) more
powerful than the subset LR test. For reasonable small identification strengths of v, the subset LR

test, however, dominates in terms of power.

Panel 12. Difference in rejection frequency of testing Hy : 5 = 0 against H; : 8 # 0
at the 95% significance level between the subset LR and subset AR test using conditional

critical values as a function of 5 and A; (the identification strength of ), k =5

T AR,
] \\§§\\\§\\§‘\}ulﬂn
I\

” .

ORGSR,
TR

05 05

40

0 1 | 0

! 1 b 1 b

Figure 12.1. Ay = 4 (identification of /) Figure 12.2. Ay = 25 (identification of /3)
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Panel 13. Difference in rejection frequency of testing Hy : § = 0 against H; : § # 0
at the 95% significance level between the subset LR and subset AR test using conditional

critical values as a function of 5 and A; (the identification strength of v), k = 20
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Figure 13.1. Ay = 4 (identification of /) Figure 13.2. Ay = 25 (identification of /3)

Panel 14. Equal rejection frequency line for testing Hj : 8 = 0 against H; : 5 # 0 at the

95% significance level when using the subset LR or subset AR test using conditional

critical values as a function of 5 and A; (the identification strength of ), Ay =25
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Figure 14.1. k=5 Figure 14.2. k=20

9 95% confidence sets for return on education for Card (1995)

Card (1995) analyzes the return on education for earnings. He uses proximity to college as an in-

strument in an IV regression of (length of) education on (the log) wage. The proximity influences
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Instruments)\Estimation Method LS | 2SLS | LIML

age, age?, indicators for prox to 2, 4 and 4 year public college | 0.074 | 0.162 0.18
0.0035 | 0.041 0.048

Table 1: Estimates of return on education g (standard error is listed below).

the cost of college education so it is directly related to the (length of) education but only indirectly
(channeled by education) to earnings. We construct 95% confidence sets for the return on education.
Since other endogenous variables are present in the structural equation, i.e. experience, experience?,
we use the subset LR, subset AR and subset LM tests to do so. The data set of Card (1995) consists
of 3010 observations obtained from the 1976 subsample of the National Longitudinal Survey of Young
Men. Our data consists of: four variables indicating the proximity to college, the length of education,
log-wages, experience and age, metropolitan, family and regional indicators. For more details on the
data we refer to Card (1995).

The model that is used by Card is identical to model (1) expanded with an additional set of
exogenous control variables, i.e. a constant term and the racial, metropolitan, family and regional
indicator variables. Hence, the variables in (1) stand for: y; the (logarithm of the) wage of individual
i, X; the length of education of individual i, W; = (exp; exp?)’ contains the experience (exp) and
experience squared of individual 4 and the instrument vector Z; consists of age, age? and three indicator
variables which show the proximity to a two year college, a four year college and a four year public
college respectively. The experience variables are obtained from age and education: exp; =age; —6—Y;.
All these variables are regressed on the exogenous control variables and the residuals from these
regressions are used in the expressions of our test statistics.

Table 1 contains estimates of the return on education for three estimation procedures. Kleibergen
(2004) reports tests for the rank value of (Ilx : Iy) which show that the return on education is
weakly identified so t-tests based on the estimators and standard errors reported in Table 1 have to be
interpreted with caution, see also Stock and Yogo (2001). Since three included endogenous variables
are present, we use the subset LR, subset AR and subset LM tests to construct 95% confidence sets
for the return on education. The conditioning statistic for the conditional critical value function of
the subset LR test is computed using (52) which applies to settings where my exceeds one. For the
conditioning statistic of the subset AR test, we use the extension provided by Guggenberger et al.
(2019) for myy larger than one. It implies, however, that the conditioning statistic is very large so the

conditional critical value function becomes identical to the x?(3) critical value function.
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Figure 15. Tests of Hy : 8 = [.quc using subset LR (solid), subset LM (dashed) and
subset AR (dash-dotted line) and their 95% (conditional) critical value lines (dotted).
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Figure 15.1: return on education

Figure 15 shows the values of the subset LR, subset AR and subset LM tests as a function of the
hypothesized value of the return on education parameter. Figure 15 also shows the 95% critical value
function of these statistics whose intersections with them (indicated by the straight vertical lines) show
the resulting 95% confidence sets. The 95% confidence set that results from the subset LR test is the
shortest while the one from the subset LM test is the longest. The latter test is also not size correct
for all settings of the nuisance parameters, see Guggenberger et al. (2012). These 95% confidence sets
differ substantially from the one that results from the two stage least squares t-test which is much too

tight: (0.082, 0.24). This again reiterates the importance of using size correct subset tests.

10 Conclusions

Inference using the LR test on one structural parameter in the homoskedastic linear IV regression
model extends straightforwardly from a model with just one included endogenous variable to several.
The first and foremost extension is that of the conditional critical value function. When using the usual
degrees of freedom adjustments of the involved y? distributed random variables to account for the
parameters left unrestricted by the hypothesis of interest, the conditional critical value function of the
LR test in the linear IV regression model with one included endogenous variable from Moreira (2003)
provides a bounding critical value function for the subset LR test of a hypothesis on one structural
parameter of several in a linear IV regression model with multiple included endogenous variables. The

functional expression of the conditioning statistic involved in the conditional critical value function is
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unaltered. This specification of the conditional critical value function and its conditioning statistic
makes the LR test for one structural parameter size correct.

A second important property of the conditional critical value function is optimality of the resulting
subset LR test under strong identification of all untested structural parameters. When all untested
structural parameters are well identified, the subset LR test becomes identical to the LR test in the
linear IV regression model with one included endogenous variable for which Andrews et al. (2006)
show that the LR test is optimal under weak and strong identification of the hypothesized structural
parameter. Establishing optimality while allowing for any kind of identification strength for the
untested parameters is complicated. In Guggenberger et al. (2019), conditional critical values for
the subset AR statistic are constructed which make it nearly optimal under weak instruments for
the untested structural parameters but not so under strong instruments and over identification. A
simulation experiment shows that for such weak identification settings this subset AR test indeed
(slightly) dominates our subset LR test in terms of power but the subset LR test starts to dominate
for just minor amounts of identification of the structural parameters.

A key property of the homoskedastic linear IV regression model is the reduced rank structure it
imposes on the reduced form parameter matrix. Our results for the subset LR test in the homoskedastic
linear I'V regression model therefore directly extend to LR tests on subsets of the structural parameters
in other homoskedastic models that also imply such a reduced rank structure. A prominent example
of such a model is the linear factor model in asset pricing that is used to determine the expected
asset return premium on risk factors. For many empirical factors used in the literature, these risk
premia are, however, weakly identified, see Kleibergen (2009). It is also common to estimate several
risk premia so our proposed subset LR test is also important for constructing confidence sets for risk

premia in asset pricing.
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Appendix for: Efficient size correct subset inference in
homoskedastic linear instrumental variables regression

Lemma 1. a. The distribution of the subset AR statistic (5) for testing Ho : B = B¢ is bounded
according to
6(50770),M@(B0w0)([78w)5(/80770)

AR (By) < ; =
O L () ©(Be0r O (B0 o) ()]

=nn+vv ~ 3k —my).

< 6(6&VO)IM@(ﬂOWO)(I%w)g(ﬁO?'70) (66)

b. When my, = 1, we can specify the subset AR statistic as

AR(By) ~ (n'n+12) x |1— & ] - 67
(50) (77 n+v ) X |: (p2+(1ﬂ8w) @(50770),@(50770)([%1“) € ( )

with

’ 2 ,
o U'E(BO)'YO) M@(ﬁoﬁo)(lngw)g(ﬁoﬂ/o) (1”8“’) 9(50770)/9(60770)(177511))
v2+("m0) 0(80,710)'©(Borvo) (5w ) w2+ (") ©(Bo,10) ©(Borvo) ()

A ! _1
{ £(Bo:70) M@(ﬁoﬁo)(hr(z)w)f(ﬁoﬁo) 4£(Bo+Y0) M@(ﬁoﬁo)(hgw)f(ﬁoﬁo) }

- 7 + n
o2+ ("5 ) ©(8070)'©(Bo70) (M5) (w2 (M) G(Bono)’@(ﬁoﬁo)(l"éw))2

S0

! 2
e=0 v€(Bo,70) M@(Boﬁo)(”’é’w)f(ﬁoﬁo) - o)
v2+(IW6w)16(50770)/9(50:’70)(1”6“’) -~ U.

Proof. a. To obtain the approximation of the subset AR statistic, AR(5,), we use that it equals

the smallest root of the characteristic polynomial:
‘AQ(ﬁo) —(y = XBo: W) Pz(y — XBy : W)‘ = 0.

We first pre- and post multiply the matrices in the characteristic polynomial by

1 : 0
—Yo ° Imw
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to obtain )

p (2 an, o0 (a0 ) -

—Yo Yo * Imy

/ li
_ <1% : IW?W) {ZHW(% S L)+ (e Vi) (710 : 173W> Py

Pz [ZHW(% FImy,) + (2 Viv) <710 E In?wﬂ (}70 ey ' =0e
!/
’AEW - |:5 ZHw+VW:| Py [E ZHW+VW]‘ =0.

/
where Yy = <_1V 0 > Q(By) <_£m D 0 > . We now specify ¥, as

0 I, w myy

1
1 _ -
_1 - —o ! .02
sz _ 0—6657 Oce O'iV%V ww.e
EUJ’U).E

with Zywwe = Sww — O'WEO';:.lo'gw, so we can specify the characteristic polynomial as well as:

N|=

!/

_1 _1 _1 . . _1
HINELD S0 SIS [s D ZIw + Viv | Py |e i ZIy + VW} I

Vg1 — [f(ﬁo,w : @(50,7())(“511))}' [f(ﬁoryo) : @(50770)(1"61”)} \ =0

Wich:<g‘i:;;‘;),Withaggzlxl,o*vs:o"ev:mxlandEVV:mxm,

-2
E—%’ _ ) Sww.e : L0
VVe = -1 PR S :
X w)ExweSwwe  ExX(ew)

SWive = SWW — OWe0od Oew, SXWe = BXW — OXeOo Ocs DX X (e : W) = BXX — (5;;)’2@1(
We note that £(5g, 7o) and ©(8, ) are independently distributed since

_1 _1 ! _1 _1
2 _Oev 2 2 _Oev 2
Oce oos ZVVe 5| Cee Fap I
_1 1
2 2
0 2VV.a 0 ZVV‘z-:

is block diagonal. Returning to the characteristic polynomial, it reads

Moy 1 — [&(ﬁo,m : @(60,%)(’“5“’)]/ [f(ﬁm) : @(%md(’%w)” =0¢&

£(Bo:70)"€(Bov0) : 5(BOWO)/@(BO"YO)(Iﬂéw) > '

’ ' / =0.
(I’"(ﬁw) ©(B0,70)"§(Bov0) (I%w) @(507’70)/9(50770)(1731”)

>\Imw+1 -
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. £(Bo:70)"€(Bov0) : 5(50770),@(50770)(17””)
W f : , 0 foll
© Spectly <(Imw) ©(Bo,70)"6(Bov0) (Iwéw) @(50770)'9(50770)(1”8“’) as ToTows

(50:’70) £(Boo) : £(Bo0) 6(50’70)(1,%}) —
Im“’ ©(B0,70)"€(Bor10) (Im“’) O(Bo:70)’ @(5()’70)(1"“”)
-1
( £(Bo,70)'©(Bo, 70)(1mw) [(Imw) ©(Bo:70)’ 9(30770)( )} >
Iy
€(Bov0)' M, ©(80,:70) Imgy, £(Bo-v0) : 0
< o (") " (") ©(Bo,10) ©(Bo o) (")
' —1 !
( : €(Bo70) (,30»'?0)( w)[(“ﬁw) ©(Bo:v0)’ (507’70)( )] 1>
I
_1
( - v [(Imw) 0(Bo70)’ (507’70)(1"6“’)] 2>
: [
£(Borvo)' M ©(B0.70) Imaqy £(Bo0) : 0
'\/ ( ) ) (Imw) 9(50770) 9(/3(),70)(17”“’)
1 L0 )
[("ae) ©(Bosv0) ©(Bor0) (") | Fv T T )

N

with ¢ = [(Imw) ©(Bo,70)’ (ﬁ()a’)’o)([”éw)} o (Imw) ©(Bos70)'€(Bos70) 7 N(0, Ip,, ) and independent

/ . .
of £(Bos o) Mg 0(Bore )(Imw)g(ﬁo,%) and (Irgw) 0By, 7o) (50,%)(1%w), which are independent of one
another as well, so the characteristic polynomial becomes:

Iy,

1
)\ImW+1 o ((1) ® [(Imw) 9(60770) 9(ﬂ07’70)( )] ?) (E(ﬁ0770) MG(BOs’E)O)(Iﬂaw)g(BO7’YO)

. 0 1 1 - 0
: _1 =0.
(") ©(Bo70)'© (50770)(1"“”)) <[(I’”w) ©(B0:70)©(Bosv0) ()| Z Imw) '

We can construct a bound on the smallest root of the above polynomial by noting that the smallest

root coincides with

1

minc [( i )}( i ) (jc)/ (1 © [(Irer) (B0770) @(50770)( )] 2) ({(60770) 9(50170)(1”%“’)6(50’70)

0 Ty

N

L 0 1 L0 (1)
) ( mw) ©(Bo:70)’ @(60’70)( ) [(Iw(gw),9(60:70)’9(50»70)(17%w)} ® " mw ]

If we use a value of ¢ equal to

6:[(1’””) ©(Bo:70)’ (BO?VO)(I%M)} ¥

[N

and substitute it into the above expression, we obtain an expression that is always larger than or equal

to the smallest root, i.e. the subset AR statistic, since this is the minimal value with respect to c, see
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Guggenberger et al. (2012),

5(50,70)’Me(5 ) Imaqy £(Bo-70)
R(5y) < i) - o

1+¢’ [(lm“’) O(B0,70)’ @(50770)(17"7”)]7190 1+<P'[(Im“’) ©(Bo:70)’ (507’70)(1"“”)]71%0
<+ Vv~ Pk —my).

This shows that the subset AR statistic is less than or equal to a x?(k — m,,) distributed random
variable. The upper bound on the distribution of the subset AR statistic coincides with its distribution
when ©(8, 7o) ( mw) is large so it is a sharp upper bound.

b. We assess the approximation error when using the upper bound for AR(f,) when m,, = 1. In order

to do so, we use that
R(By) = min. f(c),

with

and

1
A= <1 80'[(1"8“’)/@(50770)’9(50770)(17%1”)} 7) <5(50770)']\/[6@0’70)(1%1”)5(50770)
0

I

L y : y o0 (Y]
(mw) (60770) @(60770)( mw) [(Imw) (507'}/0) @(/60770)( )] 2@ Imu) —-¢

The subset AR statistic evaluates f(c) at ¢ while our approximation does so at ¢. To assess the

magnitude of the approximation error, we conduct a first order Taylor approximation:
« - ) JO
f@~ 1@+ (8 - o,

for which we obtain the expression of (¢ — ¢) from a first order Taylor approximation of (%k) =0:

9 9 2 "~
0= <a—£\c> ~ (a—i\g) + (acg\(;) (c—¢) &

L 2f \ ' (o

ee ~(h) (30)

so upon combining:
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The expressions for the first and second order derivative of f(c) read:

- o[BI LA )
N O (R 10 (N I |
o _ o [CaCh) (YA () Cat) '),
A (8 R G B B8 [ G € (AR AN
SN0 (LI QI
CyC) \CCy) ~ Gy Gy |

50 USing that (_l~),A(_O) = 07 (_15),14(_15) = 5(/80"YO),M@(rBONO)(INéw)g(BO’70)7 (_15)/( ) 1"‘90 |:(Imw) 9(507’

(,15)/(,01) = [(Im”) ©(Bo,70)’ (Boﬂo)(lwé“’)} 590, (,01),14(,01) = (Imw) (8o, 7o)’ (50770)(1”51”), we
obtain that

g(ﬁo,fyo)’M@(B o) (T £(Bov0) -3
U= -2 010 (5") N2 (Imw) ©(B0,70)© (B0 v0) ("5) | *
I I
(12 [() 'O BarareiBan) ()] )
82f’~— 2 (I"o““)' (Bo-70)’ (ﬁoﬁo)(lmw) 5(/80770),]\/[@(60’70)(]"61”)g(BOWO) +
ooz le = 7o) )
d (H@ [(zmw) ©(B070)"©(Bo,v0) ("™ )] 1g0> (1+<,0 [(Imw) (50770)’@(50770)(1%'w)] 1@)
€(Borv0)’ M@(Bowo)(lrg’w)g(BONO) P [(Imw) O (Bo70)’ @(50,’70)(17“”)]71(’0
— T\ 2
(14_@ [(Imw) (BO,WO)’G(B()KY())(IT%”)] 1<P> (1+90 [(Im‘”)@(ﬁoﬁo) e(ﬁoﬁo)( mw)] 1"&)
— 9 §(Bos70) Me(ﬁowo)(lﬁw)g(ﬁ()ﬁ()) (Im“’) O(Bo,70)’ (50770)(17”“]) _
= =1
14/ [(Im“’) (50770)'@(50770)(1"81”)] 3 £(Bo70)"M (50170)(17"“1)6(60’70)
s R G L D el )
) — 2 :
L+ [ ) ©(Bo,70) ©(Bosvo) ("aw )] e (1+<P (") ©(Bo70)©(Bav0) ("] 1“7)
Hence
(%Ie)_l (%6)2: , §30:70) Mo 50 o () EB070) 2 ¢ [(") ©(Bosr0)'© (/30770)(1775“’)]7}
’ ) (1+<P {(Imw) (/30770) (50,70)( mw)]il‘p) L+¢! [(Imw) 6(50’70) (/30’70)(1%1”)] ¥
("aw) ©(Bor70)"©(Bosvo) ("a) 1
T+
[{(ﬁo,fyo) (ﬁoﬁo)(l,%w)f(ﬁoﬂo) 14! [(Imw) (50770)/@(50770)(1731”)] 1S0
-1

# [(Imw) ©(Bo:70) ©(Bo; ’Yo)( )]_150
Z 2
(H"P {(Imw) (50770)'6(50770)( ”8“’)] 14,0)
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and

R ~ ;%) Mg - , x |1— 7 ?° -
(Bo) §(Bo '720) ©(Bov0)(* w)é-(/@[) Yo) 22+ (7m0 Y 0 (o, 70) ©(Borro) ()
9 #*€(Bo70)' MQ(BO»VO)(I%“’)&BOWO) , (Im“’) 9(B0,70)’ 9(50770)(1"””)
<¢2+(1n6w)19(50:’70)/@(507’70)(1%1“)) g"2+(I"6w) ©(Bo:70)’ @(30»70)(17"“’)
’ —1
{ B £(B0,70) M@(ﬁowo)(h%w)ﬁ(ﬁoﬁo) 4£(Bov0)’ @(ﬁoﬂo)(l%w)f(ﬁoﬁo) }

: + :
e +("5) 050101 0B010) ("5) (w24 ("mw ) (8010 ©(Bovo) ("))

1 (M) 0Bo70) € Borvo) (")
71 -
L+ [ (") ©(Bo,70)©(Bosvo) (gw)] g2+ (")’ (50770)'9(50770)(%“’)

@f(ﬁoﬂo)’M@(ﬂO ,YO)(Imw)f(Boﬂ/o) 2
T 7 ’ g T or
@2+ ("0 ) ©(B0,70) ©(Bo o) (")

. It shows

where we used that

that the error of approximating f(¢) by f(¢) is of the order of (

Bovo)'M o E(Bo, 2
O( @&( (;’Yo), ®(ﬁowo)(1 0w>£( (;70) ) .
@2+ (") ©(80,70) ©(Borv0) ()

Lemma 2. The derivative of the approximate conditional distribution of the subset LR statistic given

s2. =1 (23) with respect to r is strictly larger than minus one and strictly smaller than zero.

Proof.

81 2 1o 2 7 3 Arin) — 1 |_ v2—n'ntr
55 <1/ +n'n—r+ /(2 +nn+r)2—4dry 77) 5 [ 1+ T

since (V2 +n'n +1)? —dry'n = (V? —n'n +1r)? +4%'n > (V2 — 9'n + )2, the derivative lies between

minus one and zero:

_ 1|_ vi—n'ntr
1<} [ 1+ \/(u2—n’n+r)2+4u2nfn] <o

The strict lowerbound on the derivative results since it is an increasing function of so :

\/(Vz_n n+r)2+4v2n'n 2\/(V2+77’7]+7‘)2—47‘77’77 ((v2+n'n+r)2—4rn'n)
— 1 [ _ (V2—77/77+7”)2 } ~0
\/(V2+77'77+T)274r77’n (W2—n'n+r)2+42n'n | =

3@% |:_1 v2—n'n+r :| _ 1 [1 _ (V2 —n'n+r)? i|

so its smallest value is attained at »r = 0. When r = 0,

1|_ vi—n'n _1]|_ vi—n'n _1(_ vien'n| _ _ 2 _
2[ 14 (VQWW)Q]_Q{ 14 }_2[ 1+ 5728 = —1+ 7 > -1
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Proof of Theorem 1. The subset AR statistic equals the smallest root of (7). We first pre and

1 0

post multiply the characteristic polynomial by ( > , which since

—%Yo Imw

1 0
=1,

does not change the value of the determinant:

AQ(BO)—(Y—X[?OEW) PZ<Y—XBOEW>‘:0 &
( L 0 )[AQ(BO)—<Y—XBOEW> PZ<Y—X505W>]< 1 0 )}:0 &
Yo dmyw ) Yo Imw

,uEWW—<Y—W’yO—XﬁOEW> PZ<Y—W70—X505W>‘:0.

We conduct a Choleski decomposition of Xy = ( Tee eV

: ith :1x1 =o'
TV e EVWVW> , with oce y OViye = O

eVw :

m X 1 and Xy, vy, - mw X myy,

_1
—%/ Oce : 0
S = -5 1 omh ;
Xy Viy e T ViveTee Sy iy e

with Xviviv.e = Xvip iy — 0V 50551 OV » and use it to further transform the characteristic polynomial:

!
‘)\Eww— <Y—W70_X[305W> Pz <Y—W’YO_X505W)':O =
1 : / : 3
T A N (T I

(660700 e(ﬁo,fy())(%w))\ —0,

/

‘lﬂmﬂ - <§(50:70) 5 @(507’70)(%‘”))

with )
£(Bo,v0) =(Z2'Z) 27 (y — Wy — XBy) /0,
O(Bo,0) = (2'2)"3 7' [(W X))~ (y— Wy — Xﬂof;zi} Zyve
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TvipVip.e @ SV Ve

_ _ -1 _ _yv ) _
and Xyy. = Yyy—0oy.0_ 0y = (ZVXVW.E EvaX‘s) s DV Ve = Dy vipe - W XX, Ly Ve =

E/VXVX- . 1mx X my. Since my = 1, we can now specify the characteristic polynomial as

( A 5(50770)/5(50770) 5(50770)/6(507’70)([%W)>' -
(

Im i
) ©(Bo. 70)'(Bo 70) 1 A—s
A— —vVv—vn s*3
‘/7 ¥ 5 mn ‘P_ ) PN
ps 2 A—s
N =A@ +Vv+nn+s)+ (n'n+1V'v)s* =0,

with

wh—t

[(I »)'e O(Bo,70)'©(Bo, 7o) (I w)] (Imw) (Bo>70)"€(Bos 7o) ~ N(0, Inn,,)
(

[( Boﬂo) (Bos70)] - 17,? )}

( ) ﬁoﬁo) O(Bo,70)] " ©(Bo. 70)"€(Bos Vo)
n= (50a’Yo)Lf(50770) ~ N(0, Iy—m)
st = (Im“’) (8o, 7o) (507’70)(1787”)

so the smallest root is characterized by

o2+ 02 bt s — (@2 2 a5 - A2 4 )s”

Proof of Theorem 2. To obtain the conditional distribution of the roots of the characteristic

1 0 0
polynomial in (10), we pre and postmultiply it by | —8;, L, 0 , which since
—70 0 Imw
1 0 0
_BO ImX O = 17
—Yo 0 Imw
does not change the value of the determinant:
/
um(yfwfx)pz(yswzx)’:o -
1 0 o\ , 1 0 0
By Imy O [MQ—<Y5W5X> PZ<Y3WEX>] By Ime O —0 &
—Yo 0 Inmy —Yo 0 Inmy
/
us - <Y—W70—Xﬁo : WEX> Py (Y—W% XBy i W X)’ = 0.
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We conduct a Choleski decomposition of ¥ = (g‘i ‘ET\E/‘\//> , with o0zc : 1 X 1, oye = 0Ly, : m x 1 and

_1
_1, 0552 . 0
Y2 = -1 PR I
7ZVVASUVEUE€ 2VV@

with Yyye = Zyy — O'VEO';:.lo'gv, and use it to further transform the characteristic polynomial:

Evvzmxm,

!/
‘;E(YWVO XBy W X> PZ<YW70 XBy i W X)‘zo &
!/
’uz—%’[2—<y—w%—x505wéx> PZ<Y—W70—X60§W§X>}E_§‘_O &

plmg1 — <§(5o:70) : @(50770)>/ (5(/30770) : 9(50#0))‘ =0.

A singular value decomposition (SVD) of O(5, ) yields, see e.g. Golub and van Loan (1989),

@(50,70) = Uusy'.

The k x m and m x m dimensional matrices &/ and V are orthonormal, i.e. U'U = I,,,, V'V = I,,,. The
m x m matrix S is diagonal and contains the m non-negative singular values (s ... sy,) in decreasing
order on the diagonal. The number of non-zero singular values determines the rank of a matrix. The

SVD leads to the specification of the characteristic polynomial,

0570) ﬁo%))l (5(607%) : 9(50770)>‘

£(B0,70)"€(Bosv0)  €(Bos 70)USV'
S'U'E(By, o) VSHY

) ( £(Bo>70)"€(Bos Y0) 5(/30,7())%18) ( 10 )
S'U'E(Bo, 7o) S? 0oV

Vv
(Bos0) Mug(ﬁoa’)’o) + 5(50770) Pu&(Bos o) 5(50770)743 > ‘

&(
= [Pl E S'U'E(Bo, 7o) S?

‘Mjm—&-l

= |pulpmi1 —

_ s Y'Y +n'n Y'S
= |Htm+1 — ¢Sl 2

v S
n 0
where we have used that V'V = I,, and ¢ = U'§(B0, 7o) = (@(607’70),@(50’70))7%@(ﬁ07’70),%.(/80770)7

n= uj_f(ﬁonO) = @(60770)3_5(607’70)’ such thatv since Z/{j_u =0 and Uj_UJ_ = Ik:—ma d}(BO) and T’(BO)
are independent and ¥ (5y) ~ N(0, I,n), n(Bg) ~ N(0, Iy_p).

= |plmq1 —
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Proof of Theorem 4. The derivative of the subset AR statistic with respect to s* reads:

0 AR — 1l|1_ o —n'n—v>+s* > 0.
o AR (o) 2 V(@ =n/n—v2+5%) +4(n/n+12) 02
We do not have an closed form expression for the smallest root of (16) so we show that its derivative

with respect to s2,.. is non-negative using the Implicit Function Theorem. When m, = m, = 1,

ax
we can specify (16) as a continuous and continuous differentiable function of s2. and s2,.. which is

needed to apply the Implicit Function Theorem:

f(#’ Smin> max) (M ¢ ¢ n 77)( mm)(/‘j’ - ) d} mln( - ) d} max( - 81211in) = 0’
where s2, and s, are resp. the smallest and largest elements of S2. The derivative of p,, the

smallest root of (16), with respect to s2 . then reads®

max

6:U'min _ 8f/8512nax
Bs?nax - o 8f/6“min
with 5
. 2
852f = _(:U’min - Wlﬁ - n/n)(ﬂmin - mm) + 7!} m1n ¢2 (“min - 512nin)

= _(:U’min - Q/J% - n/n)(umin - mln) + Q,Z) mm
afr];n = (/’Lmin - ¢/¢ - 77/77) (Mmin - ?nin) + (Mmin - W?b - 77/77) (:u’min - 812nax)+
(Mmin - 3r2nin)(:u’min - max) Tﬁ mln - w max

The derivative 65;1”

max

is a second order polynomial in ¢ whose smallest root is equal to

2 .
h_or =3 (%b? +0'0 + Shhin — \/ (01 + 00 + s3n) " — 477’??8?mn) < min(n'n, $hin) < Sthax-

953 max

We specify the original third order polynomial using 5 2f

Smax

as follows:

F (1 S3ins Stma) = (18— Sioa) | (1 = w B — '+ Yd ) (i — s3,) — ¥ mm}
= (M - S?nax) (% - 1> (/’L - Sr2nin):| :

This specification shows that when s2. . goes to 1nﬁn1ty, the smallest root of f(u,s2; ,s2..) equals

the smallest root of the second order polynomial 2 . We can also use this specification to show that

WhenWZO.

max

f('“” 512111117 S?nax) = _¢2/~L( mm) > 07

8Unless, p exactly equals s2,;, which again equals s2,,, which is a probability zero event, the derivative 22‘27‘“‘“ is well

max

defined. Hence, it exists almost surely.
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2

since oy < s2. . The third order polynomial equation f(u, s2; ,s2..) = 0 has three real roots and

max
8512nax
f 1y 8255 82,0x) goes off to minus infinity when p goes to minus infinity. Hence, the derivative of ‘
at [y, 1S positive:
o >0
8/1 H=Hmin :
This implies that p,,;, is less than or equal than the smallest root of agf =0, p _ar since

dsmax

fp, 82, 82..) is larger than or equal to zero at this value. Consequently, since i, is less than
of

662f - = 0, factorizing R using its smallest and largest

or equal to the smallest and largest root of

root yields:

6f 8N‘min
682 |iu’1'n1n - 0 = (951%,.&)( Z 0
2

2 <) = 0 is a non-decreasing function of s2,,

Hence, the smallest of root of f(u,s2; ;s

Proof of Theorem 5. When s* = s2

min’

2
R(Bo) = 3 [¢* + 12 +0'n— shy, + \/(902 F v+ k) — AW n)shi |

while when s* goes to infinity:
R(Bo) — vi+n'n.

§T—00

The smallest root of (16) results from the characteristic polynomial:

S 8 82ax) = (= ' — ') (= 25 (1 — sEax) — V1200 (1 — $2ay) — V3820, (1 — s25,) = 0.

When s2,,, = this polynomial can be specified as

m1n7

f(:ua anm, 812nin) = (:LL m1n) [(:u 1/} 1/} n 77)( max) ,QD mm - 1/} mln] = 0’

so the smallest root results from the polynomial

(M - ¢’¢ - 77/77)(“ - mm) w 77/}$mm =

and equals

Hiow = 3 (w’w 0+ S — W+ 2,07 48?[“77’77) :

When s2,,. goes to infinity, we use that the third order polynomial can be specified as

f(u’ S?ninv S?nin) = (:U’ - Srznax) |:(:u - Wﬂ’ - 77/77) (lu’ - rnln) w mm - ,(bgﬂsnslgx ( - S?nin)} = 07
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which implies that when s2 . goes to infinity, the smallest root results from:

max

[(/—L - 77[}/77[) - 77,77)(:“ - mln) @b mm + w%( B 1211111)] =0
(:U' - ¢1 - )( mln) 1/} mln =0.

so it equals

Hup = 3 (dﬁ e+ s — W+ s2,)? - 483nm77’77> :

Proof of Theorem 6. The specification of D(f,) reads:

D(ﬁo) = ARUP - AR(ﬁO) + Hmin — % |:V2 + 77/7’ + Sr2nin - \/(V2 + 77 n + Smln) - 477/77512nin:| .

We analyze the conditional behavior of D(3,) for a given realized value of s2; over a range of values of
2 o). Alternatively, since s* = (cos(6))2s2,, + (sin(6))?s2,, we could also analyze the behavior
of D(B) over the different values of (6, s

for a given value of s2. . Our approximations are based
on the bounds on the subset AR statistic and p,,;, for a realized value of s2. stated in Theorem 5.

(s*, s

max)

Only negative values of D(f,) can lead to size distortions. Since the conditional distribution of
AR(f) is an increasing function of s*, Theorem 5 shows that the smallest discrepancy between ARy,

and AR(f,) occurs when s* = s2 . For determining the worst case setting of D(BO) over the range

X*

of values of (s*, s2

2 x), we therefore only need to analyze values for which s* = s2_ . We use three

different settings for s2,., : large, intermediate and small with an identical value of s*.
2

2« = s* large: For large values of s2 ., pm is well approximated by - Since s2

S max

¥, = v and ¥y = @ s0

2
Panin = Py = 3 [VQ o+ 2 — (R 2,)" - 477’ns?nm]

and

D(/BO) = ARUP - AR(BO) + Hmin — % |:V2 + 77,77 + Sr2nin - \/(Vz + 77 n + Smm) - 4n,n53nin:|

= v +7777—{<p +v2 '+ st —\/(w2+v2+n’n+8*)2—4(V2+77’77)8*]

since s* is large. The approximate bounding distribution provides a sharp upper bound so usage of
conditional critical values that result from CLR(f) given s2 . for LR(f) leads to rejection frequencies

that equal the size when s2,, = s* is large.

s2 x=s*=s2.  When s2_ = s2. . u.m is the smallest root from a second order polynomial and
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reads

2
Hiow = wlqv/) + 77/77 + SI2HiI1 - \/(wlw + 77,77 + 812nin) - 477/77812111n:|

N[

N[ —

O+ i+ 83, — \/ (@2 +v2+nn+ sﬁﬂn)2 — 4n’nsﬁﬁn] .

Hence, we can express D(f,) as

D(Bo) = v*+un—3 [af T2y 2~ (2 402 s,)” — AR+ n’n)siﬁn] +

L 402 bt s — (@2 02 b s - 477’n8?mn] -

3 |V s, — \/ (V2 + 0+ s%,)° — 4n’nsfmn]

2
= +n—; [¢2+V2+77’77+812mn—\/(@2—V2—77’77+8) +4(V2+77’77)s02]+

2
o2 b st — (02 402 — b 2,07 A2 w%’n] -

2
S+ sk, — \/(V2 —nn+ i)+ 4V27]I77:| .

We conduct Taylor approximations of the square root components in the above expressions around

zero and "infinite" values of s

2

min*

2

We start out with the approximations for small values of s; . for

which we use that

2 2 2+ / 2
VI +02 i+ 82,) =402 + st~ @R+ 0 4ol sk, —
2 2n'ns2
\/(4/32 HV b+ sh) T A nsh, ROV RN shn — e

min

2
2 / 2 N2 o002 ~ 12 ' o 2'msiy
\/(V + 4 s2,) —Annsiy m v +nn+ sty PR

The resulting expression for the approximation error then becomes:

For large values of s

2

2
B ’  Smin 2.2 ___ Smin
D(ﬁo) = nn [1 V2+77/77+3§nin] + V" Shin {1 P22 tnntss > 0.

2

in» We use the approximations:

2 21/2+/ 2
\/(902—V2—77’n+82 ) AW et~ = vt sk, + e

min P2t s,

2 2024 12) !
\/(¢2+V2—77’77+8?mn) +Afn(p? +02) m 4Rt s+

V02— 52,7+ vy~ sk, e

min V2_77/77+512nin 3
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so the expression for D(/3;) becomes:

D — V2 / 1 _ 1 2,/ 1 _ 1
(Bo) mn V?—ﬂ'ﬂ-f'sfmn e R . +e PR nrst,  PE—yntst, +
v?'n >0
P

The approximation error D(f3,) is thus non-negative for both settings.
2 2

Stax=S" > s2. . Since fi;, exceeds fi,,,, we obtain the lower bound for D(f,) :

2
D(/BO) = ARUP - AR(BO) + Hmin — % v? + 7’/,1’] + Sr2nin - \/(V2 + 77/77 + S?nin) - 4n,n5ﬁ1in

2
ARUP - AR(BO) =+ Hiow — % V2 + 77/77 + S?nin - \/(V2 + 77/7’ + S?nin) - 477/77812nin

v

We again use the two sets of approximations stated above and we first do so for small values of s* and
2

Sin-

*2 " ~ % 2 2 / *
\/(902+1/2+77’77+8) — A2 )t m @ P iy st - D

. 5 o s 9 20'nstin
\/(902 + 02+ n'n+ Smin) o 477,77Smin Rttt 77,77 T Smin GV 5T

2 gy 2 )2 e . a2 4 2 _2'nsh
\/(V +7777+Sm1n) _477,,78111111 ~ UV +nn+8min_y2+n1nr;?mn.

Combining, we obtain

/ _ s* 2 1 _ 1
D(BO) Z nn |:1 @24_1,2_‘_7]/77_’_3* + smin {4p2+l’2+77’77+52 V2+77’T]+S$nin }:| +

min
201 s
v |:1 s@2_i_VQ_;'_,,7177_;’_5*i|
2

. / 2 02 +124n'n / ©? Smin
= v == T |
(77 77 + ) |:<P2+V2+T]’n+s* 77 77<p2+l/2+n/,r]+sfnin V2+7],17+312nin

so a sufficient condition for D(53;) to be non-negative is that

4,02%0?1;”—&?;2:78* Z ‘P2+V2‘:0772/T]+S?nin =
TR 2 TR P <
s /(@ + v ') < (P '+ sk /¢ <
s* < (V2 41'n) (1 + Vz;rznl”) + ”2;;7'”sgﬁn.
This upperbound does, however, not use that it is based on a lower bound for pu,;, so when s* =
(V2 +1'n) (1 + V2;§',77) + ”ﬁ;l%fmn, s2 . = 8% > s2. so the lower bound isn’t binding and i,

exceeds the lower bound. To assess the magnitude of the difference between p;,, and ,,,,, we analyze
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the characteristic polynomial using s* = s2, = s2. +h:

(b — s25) [(1% = p(" +0'n + s250) + n'nsti] —
h[p? = p(t +n'n) + s2n'n] = 0.

The above expression of the characteristic polynomial consists of the difference between two poly-
nomials. The smallest root of the first of these two polynomials is the lower bound of the smallest
root of the characteristic polynomial while the smallest root of the second polynomial is the upper
bound of the smallest root of the characteristic polynomial. When h = 0, the first polynomial thus
provides the smallest root of the characteristic polynomial while when h goes to infinity, the second
polynomial provides the smallest root. For a non-zero value of h, the smallest root of the characteristic

polynomial is thus a weighted combination of the two smallest roots of the different polynomials with

: |/Jmm 12n1n| 1 3
weights roughly equal to o and o When we use this for D(), we obtain
24,24, g2 2 2
D(By) 2 (n/n+12) |ty |y Wimin TR

Qv ntsy;, +h Hmin =St [ Th @2 H2 0 n+s0 0 V2 n+sg,

so a sufficient condition for D(3,) to be non-negative is that

Q>+’ |Hmin—52 0| 2
PPV ST = i —Spin TR @20 08T
1 1
1+s*/(p2+v2+n'n) 14+ (hp2+ (| foamin — S [ +R) (V2417 n+smm)/(902|umm75iﬁnl)

‘9*/(802 + V2 + 77,77) S (hSD + (|1urn1n - min| + h)( + 77 n + S?nin)/(<p2|/‘bmin - S?nin’)
mln + h < (1 + (SO + 1)/|/’Lmin ; S?nin’)(VQ + 77/77 + S?nin)(l + (V2 + 77/77)/‘P2)
Zanth <[5+ (PP + 1) i | (14 (02 4 /) )+

Y

(I R

7Sm1n

(1+h(@® + 1)/l ppmin — 2 ) +1') (1 + (V2 +0'0) /©?)

2
which always holds since —— =iz, > 1. Hence, for small values of s* and s2. , D(8,) is non-negative.

I Hmin— in‘

For larger values of s* and s

min’

2 in» We use the approximations:

2 2 *)2 2 2 a2 2 * 2(v2+1'n)e?
\/(SO —v2—nn+s) +4(2+n)e? =e*—vi—n'n+s + e

2 2024 12) !
\/(¢2+V2—77’77+8?nin) (P2 +02) m Rt s+

~ ) ) 22/
\/( —7777+Smm) —|-41/277/77 ~ U _n’n+5min+%,
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to specify D(5,) as

v

2
D(By) ARup — AR(Bo) + thiow — 3 [VQ + 00+ $hin — \/(”2 0+ $hin)” — 477/773?nin]

% % 2 2 / 2
V2+77/7]—%[902+V2+77,77+S — P2+ 4+yn—s —%]-F

Q

1] 2 2 ' 2 2 9 o2 2+’ ]
2 Q)O + v + 7] 77 + Smin Q)O v + 7] 77 Smin Lp2+l/2_n/n+sfnin
1.2 / 2 2 / 2 2v%n'n
2 |V NN+ Smin — VT TN~ Siin — V2ot
_ _@Prme® (@)’ v2n'n
P2—vi—n'nts* QAlonintst,, L vionntsls
2 2 2 2
) ® _ ® v _ v
T =2 =nts* — Pl st + V2= N+ S i ¢2+u2—n’n+sfﬂin} +

V22
902_1’2_77,774'5* .

Since both s* and s?nin are reasonably large, all the elements in the above expression are small. When
we further incorporate, as we did directly above that we can specify p,;, as a weighted combination

of ey and p,,,, we obtain

in—82;
D(By) =~ AR,, — AR(S) + i =il

|N’min75;2nin|+h
2
{uzow L2 b S~ (2 52,) 477’7783nin] }

V2 4y — % [<p2 b2 44 st — @+ gy — s — 2% +n'n)? 4

Q

5 w2_y2_nln+s*
|Nmin*5min| 2 2 / 2 2 2 ’ 2 2(902""”2)77,77
T 2 Loh v §Z . — — Vv —gc., — = Tr )l
imin— Tyl 1 [P TV H TN Sin = @ TN Smin T Gr st

1
2
1 lmin =525 [2 / 2 2 2 2029y ]
1 M=ol 2 4y 22 gy 2 2
2 |/‘Lmin783nin|+h 77 T’ min 77 TI min V2777/77+312nin

_ e min—Shinl  (@P4rPn'n |min =S| v3n'n
902_1/2_71177_‘—82* |#min_sfnin|+h2¢2_|‘—y2_n,17+8%in |lu‘min_s1?nin|+h2V2Tn,n+sEnin
/ Hmin—Smi Hmin —Smi v V2
= nn 2_V2f/+*_ S s+ fmi2mmh{2_/ 2 T 2apints2 }]4
(102 9 nnrs |/J“mm sminH— ® +V 7777+5min |:U‘m1n ’smin|+ v 7777+$min (4 +l/ 7777+$min
vie
2,27 ¥ -
©2—vZ—n'n+s

Except for the first difference in the above expression, all parts are non-negative. When we further
decompose the first using,

1 |1umin7512nin| 1 1

22—/t Ah imin— 52l TR G212 —n+52 T ([min— 52 HR) (@2 =02 —n/n+s*) (@2 +12—n/n+s2 )
2 2 2 2 2
[ ftmin — Shinl [20% = h] + h(@* + V% — /0 + shs,)]

— 1 2 _ L o2 L Q2 2
B (l/"’min_s2 |+h)(502_’/2_77/77+5*)(302+V2_77/77+512nin) [h(smln ’Hmll’l Smll’l‘) + 2|/’Lm1n Smln’V +

min

h(? + 1% —n'n)] >0,

since s2. > |fmin — S2ia|, We obtain that D(8;) > 0.
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Proof of Theorem 7. Using the SVD from the proof of Theorem 2, we can specify

(wmo) 5 @(50,7@) = U SV Ui 0)

SO

(f(ﬁoﬁo) E @(50770)> (5(50,70) : @(507’70)>
= V*S*VY + ( 0 ) ;
0 0

with §* = diag(st...sk,), st = s2 + 4?2, i = 1,...,m; S* = <S‘%ax : 805)7 8 e = S2ax + UL,

Sy = diag(sh...sk), V¥ = S*_%(@b : SV'). We note that V* is not orthonormal but all of its rows
!/

have length one. The quadratic form of (f(ﬁo,fyo) : @(60,’)/0)> <§(50,70) : @(,60,70)> with respect

_1 .
to v] = (Vlf;ax)s;a,%, V* = (v} : V3), is now such that

ot (6020 100070 (€020) 1 006070)) v

'n 0
= o} | VISV ( "077 . ) vt
/
0
= S T 07 VESIVE o | )0
2
= St + U1 + - (Whthy + 1)

*
Smax

2
2 S%nax +’¢)17

with ¢ = (1 1 5), 1y : 1x1. As a consequence, since fi,,, > v}’ <§(ﬂ0,’yo) : @(50,70)) ({(50,70) 1 0(Bo,0

we can specify the largest root ji,,,, as

Mmax = S?nax +/llz)% +

2
Y1
S:nax

(¢/2¢2 + 77,77) + h’a

with h > 0.

To assess the magnitude of h, we specify the function g(d) :

with

!
B= V*S*v*'+(”” 0).
0 0
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We use d = —uv3; /vl; with vi = (Zgi) = ( 1 )sjn;)% so (L) =0, )

15max V1 Smax /%1

The largest root p,,,, can be specified as:

Hmax = MaXqg g(d)

To assess the approximation error of using our lower bound for the largest root, we conduct a first

order Taylor approximation:

g(d) = g<d>+(afg|)<d d)
oz(agu = <%|J>+( d’|d>(d_d)

0%g
0do
o) = o)~ (21) (al)~ (%12)-

The first and second order derivatives are such that

o (i D) O
TN (O (TR IR RN O (SR
T ER R EA U ER R EN (N

o (o) C) C'B8,) (o) () (o),
CoTh) (G~ o) G
()0 )80 ()R

We now use that (Vlsmix/¢l)

BCD= (3 V) Guted + (9 Gl
_ ( Pt smaxtn'n )
B VS ptstaxVi/¥1

0 \/ 1
(L7,) BCD) = —(VS'Y +shu1/v1)
!/
(_?m (,15'[ = _Vlsmax/d}l
(—15)(—1d')l — (Vlsmix/wl)(vl~€;/w1) — (vlfriax)(vlféax)
(,J)/(,ld_) 1+s?ﬂax/w§ S?nax"”‘b%
. 13/ 1 0 ) 0
. SV/ I - M - b . bisqv!
(¥ ) [ m+1 ()% o (1— Smai+w2) Sminvi_fgliﬁw%
: ,1" ,1' ' P . SmaxV]
(w . SV’)E c’l‘il(( L1i~) == w2i’% : wleSmaiU/l
—dlAd sthax+¥7 sBax+v7

o7



(L9) MgV SVM () = (vosmin — v1 220525 ) (sminvh — 320
(7%71) ( 1d) V*S*V*IP( d)( ?m) — (’UQSmm vy 181121¢2j23x) (Tl} innllpalxv
0 / 0\ _ 2 b1y 2
(7Im) ( 1d)V*S*V*IP( 1 )( Im) = vlv'lsmax(l + (m) )
/
0 ! 77 77 O 0 — ( '[pzsmax )2
() M(JJ) 0 ) M(fg) (L7,) = v2vin'n O

‘/\
~NO
3
SN—
=
5
SN—
d\
=
oS O o O

I
SO
I

V1 Smax 2
—owiif (3225)

2
v’ (71%,(2)
max +w
1+ 82, /01

! 2 / 2 4 2
¢ w + Smax + mn + Smax + Smax/wl
R O o ) O L

7d),(7(2) 1+Sl?nax/w1
—_ ¢2¢1+¢ ¢2w2+2wlsmax 1n1n+s?nax
N YT+ ax
— (Vi +shan)’ +1/11(¢27/12+77 )
¢1+Smax
= 0+ S g (W 1)
- 1 max ¢2+52 o 2%2 7777
(*?m)l(fld) _Vlsmax/¢1 o _VlSmax'(/f’l
(L)' (% 14520 /07 YitsZiax
(2)BCD) _ vS'oksZaVi/tr _ Ysmac it 452 Vit +93 Vo Sminths
()1 820 /¥7 Ui +5Zax
Since
(22 )C)B(Y) 2, 2 3
A Ty - [ e wm (Wt )| g
= W+ () Whes + ')
= Wi+ <1Z,2+752X) (Vahy + 1)) (v1v] + vav))
and

el

) My = Poy] B My = P

—d —d
2
192 Smax Y19¥58max /.2
kop (1o — 2038255 ) (rnoon 20024525 ) vt
/,./,2 w 771’2 ¢ wQSmax 1/1 ¢ Smax !
oL (1_ mxiwl) BT {(“23‘“1“ 201 gz e ) \V28min = 20175

o8

(0 =

)



we then obtain for the second order derivative that

= ey () My = o] B My =Pl (5,)-
(L2,) (1) (C2)'B(LD)
) (L ] ) ] o
— oo () |1+ () Watoo + 0m)| + s (6F + () (Watoo + 1))+
i [(vzsmin Y1 Pasmax %sma") (UZSmin — 201 wl%sma")l]

max+w1 max%kw2 max+w2

where we used that I,, — vjv] = Mvw& = vaé = vyvh. While for the first order derivative, we have
that

QU‘Q‘)
QU

maxv + maxv + V Smln V 2
= 2[ Y2 smaV19y % 1+S;il ¥V Sminthy +w2f;§f; (1 + shhax + 32 +52 (Vavs +1'n))

m [ 7/’1V25mm1/12 + V18max1/11¢2+32 (Yohy +1 77))}

To assess the magnitude of the error of approximating g(d) by g(d), we note that the first order deriva-
tive, %\J, is of the order %(1/}21/12 +1'n) (= O(s53,(Vy1s+n'n))) in the direction of vy while it

(vi+s2
is of the order ngrmsig (= O(SminSmay)) in the direction of va. The second order derivative, %| g is
1 max
of the order wir pp (= O(s,2,)) in the direction of v;v] while it is of the order O(1) in the direction of
max 1

o ~ / -1
v9vh. Combining this implies that the error of approximating g(d) by g(d), <%| CZ) <%] J> (%\ j> ,
is of the order max(O(spa (Vhihy +1'N)2, 82 Sma ).

Theorem 7*. When m exceeds two:

Zz 1M1>Zz 1 z+w

with j1; > py > ... > p,., the largest v characteristic roots of (10) and s? > s3 > ... > s2 the largest

r eigenvalues of ©(By,70)'O(Bo,0)-
Proof. Using that

(5(5()’70) 5 @(50>70)> = Uy : SV')+ ULn :0)

SO

<§(50a’¥0) 5 @(50>70)>, <§(507’Yo) : @(ﬁo,'yo))

'n 0
— V*S*V*/ + 77 77 ,
0 O

)

with S* = diag(st...s5,), sf = s+ ¢ i=1,...,m; S* = (‘Sof : 802*) , ST = diag(sy...sk), 85 =
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diag(siii...s5,), V¥ = S*_%(w : SV'). We note that V* is not orthonormal but all of its rows have

!/
length one. The trace of the quadratic form of <£(50,70) : @(60,70)> <§(ﬂ0,’yo) : @(50,70)> with

N

respect to Vi = (Y1 )5 2, ¢ = (4 P 9h), ¢y v x 1, V* = (Vi 1 V3), and scaled by A = (Vi'V})~2,

V181
is now such that

tr(A'Vy (5(50770) : @(50,70)> (5(50770) : @(30,70)> ViA)

m 0
= tr | AV} *S*V*'V{A+A'v;'<”0" 0)1};34
n'n 0
— tr [AVIVESTVIVE A + tr [AVIVESIVEVE A + tr | AVY o | via
n'n 0
— tr [VEVESTVIVEAA + tr [AVEVES VIV A + tr | AVY ) | via

= tr [VY'VIS]] + tr [AV]VsS*V3VEA] + tr "

/
AV ( 0 ) ViA

!/

w— L / / x— L ! 0
= tr |:Sl 2’( ¥ ) ( Py )Sl 2Sf:| +tr [A/VTIVSS*VSIVTA] +tr A/Vf/ ( 77077 . VTA

V1S max V1S max
ave [0 ) via
1 0 0 1

'm0
AV ( ’70” . ) ViA

= tr [(W5) (V5] +tr [AVivss Vv + tr

=Y UF 4 57+ tr [AVYV3 STV VAl 4 tr

> Y vi+ s
As a consequence, since 337 p; > tr(AVY’ (f(ﬁmo) : @(ﬁm@) <§(50770) : @(ﬁo,m) ViA):

22:1 B > 22:1 512 + 7/’12

Proof of Theorem 8. Theorem 7 states a bound on pu,,,, while Lemma 1 states a bound on the

subset AR statistic. Upon combining, we then obtain that:

g?nin = sr2nin +9,
with
— o o) ©? / R Y, 'm) —
9= e Y Y 6o 0ema) () YY) T (Wt ) e,
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The approximation error g consists of four x2(1) distributed random variables multiplied by weights
which are all basically less than one. The six covariances of these standard normal random variables

that constitute the x2(1) random variables are:

(48, )V s

(G wimee) s (01 Y vronn)

( OX )/VQ/smin

Im

cov(ihy,v) = \/((M?X)/vl/smax)2+((bfx)/"?/s‘“i“f

J AN
( 01u> V1 8max

cov(thy, p) = . : large when (I”BW) is spanned by Vi
< Imw Vlsmax < Imw V25mm>

e
cov(ifr, ) = e
)

\/ Imw V1Smax (Imw V25min>2
cov(v,) = 0
cov(Yq,95) = 0

cov(q, V) =

large when ( I 0 ) is spanned by V;
TVLX

large when ( I 0 ) is spanned by Vs,
TVLX

large when (I“BW) is spanned by Vs

The covariances show the extent in which @(60,70)(1”61”) and @(50,70)(10 ) are spanned by the
mx
eigenvectors associated with the largest and smallest eigenvalues of ©(3y,7¢) ©(8g,70)-

Proof of Theorem 9. The first part of the proof of Lemma la shows that the roots of the polynomial
AQ50) = (5 = X W) Paly = X6 W)| =0
are identical to the roots of the polynomial:
/
‘)\Imw-i-l - [5(50770) (5(),70)( )] [5(50770) (50770)(1"“”)]‘ =0.
Similarly, the proof of Theorem 2 shows that the roots of
/
‘m-(%wfx) pz<yzwzx)’:o
are identical to the roots of

‘MImH - (5(/30770) : @(50770))/ <§(50770) (ﬁoﬁo))‘ =0.

Hence, the distribution of the roots involved in the subset LR statistic only depend on the parameters

of the IV regression model through (£(5,7¢), ©(89, Vo)) which are under H* independently normal
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, 1
distributed with means zero and (Z'Z )%(HW : IIx)E,¢ . and identity covariance matrices.

_1
Proof of Theorem 10. We conduct a singular value decomposition of (Z'Z )%(HW Cx)E 2 o

_1
(Z'Z)2(Iy : Tx)Sy 2. = FAR),

with F' and R orthonormal k x k and m x m dimensional matrices and A a diagonal k£ x m dimensional

matrix that has the singular values in decreasing order on the main diagonal. We specify &(8¢, ) as

5([30’70) = FC(ﬁO?VO)?

so ¢(Bosv0) ~ N(0,Ix) and independent of O(8,7y). We substitute the expression of &(8y, ) into

the expressions of the characteristic polynomial:

Moy 11— :wm) : @(60,7())(”3”)]/ [wm) : @(ﬁomox%w)” =0¢&
Moy +1 — _FC(BO) E FAR’(I’gw)]/ [FC(BO) : FAR’(I’gw)H =0
Moy 11~ [(50) AR’(I’gw)]' <o) AR’(%w)” 0

and similarly

!/

’)\Imwﬂ - [5(5&70) : 9(50»’70)] [5(5077@) : @(50»70)” =0

]AImw+1 - |etso: AR’]' () AR ~0

so the dependence on the parameters of the linear IV regression model can be characterized by the m

non-zero parameters of A and the %m(m — 1) parameters of the orthonormal m x m matrix R.

Proof of Theorem 11. We specify the structural equation
y—XB-—Wy=e

as

y—Xa=c¢

with X = (X 1 W), a = (8" : 4/). The derivative of the joint AR statistic

AR(a) = 1 (y—X’a)’PZ(y—X’a)

oee()
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with respect to « is:
12 AR(a) = LT () Z'(y — Xa)

with Mg (a) = (2/2)71Z/(X — (y — Xa)ZX9) o (a) = (L)Q(L), o.5(a) = wyg — gy,

«

wy g = (wyx :wyw), Lgx = (gv’;’; : g;%) . To construct the second order derivative of the AR

statistic, we use the following derivatives:

%(y — Xa) = X

82/ Uag(a)_l = 20, () 055((04)
8a,vec(aa)~((oz)) = —Yss
s vec(ll ¢ (o)) = J;igg; Q@I g(a)| +

S ()®(2'2)1 2 (y - Xa)#}

oee()

where ¥ ¢ _(Bg) =X g5 — %&ff@ All the derivatives except that of IZIX () result in a straight-

forward manner. For the derivative of II (), we use that

o o (22 510 x5
x (o

[ @ (2'2)" ] [%vec(Z’(y—ffa))} -
©(2'2)"12'(y Xa)m} [2vec(o_ ¢ (a))] —
0.5(0) ®(2'2)7 2y = Xa)| [gr0ee(0) 7]
_ ax(a> © (2'2) 1] 7'X + [Im®(Z’Z) 1Z’(y*f<a)ggj(a)]2;2x*

ec(a)
2_ [agx(a) z Z)—lzl(y — Xa)} Uaa(a)_205X(a)
- [k [s o)

Sgg - ) @ (212) 17/ (y - Xa)

oee()

oee ()

I s |

so the second derivative of the AR statistic testing the full parameter vector reads:
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192 L_(y— Xa) Py — Xa) = 8‘?1 {#Hj(( ) Z'(y — Xav)
1

2 0ada’ ogg(a) oec(a)
(@ ((3/ Xa )'Z @ I, )aa,vec(HX(a)')+ (a)(1®H (a ))aa/Z/( XO‘)+

< 2y — Xo) |5k

=

= o (Y = XQ)'Z @ Lp) K g vee(Tl g () — 52 g (@) 2/ X +
e a2y - Xl
= e (0~ XY Z © In) Kin Hocfigzil@ﬁx(a)} + [Eﬁ.e(a)®(Z'Z)‘1Z’(y—5fa)$(a)ﬂ -
P () 15 () 2' 21 ¢ (a)
= sUn®(y - Xa)2) H”oxgji ®1:[)~((04)] + [EXXE(a)®(Z’Z)*1Z’(y—)~(a)mﬂ _
() ()2 21 ¢ ()
= 0'85( )ﬁ () Z' Z11 ¢ () + ﬁm) {U;igzg/®(y—)~(a)’Z’ﬁX(a)}+
o [Pxsa(e) @ - Xay2(2/2) 2/(y - Xa) ;1]
- asgmz e o |7 (v = XY Paly - Xa) I - S gz.(0) 3T (0) 2/ 21 g (0)8 g 5..(0) 72
Sixe(@)7 + 52 ["5:’;%253' ® (y - on)’Z’Hx(a)} :

with Kk, a commutation matrix (maps vec(A) into vec(A’)). When the first order condition holds,
(y — X&)’ Z'M (&) = 0, with & a value of @ where the first order condition holds. The second order
derivative at such values of o then becomes:

0?2 1

%&laa’ oee () (y - X&)/PZ(?/ - Xd)

_ 0

- 0d’ |:Use(04)

= @ik @)’[ L (y — X&)'Pz(y — X&) In—
)"

Oce (a)

Mg () 2/ 20 (8) D55 (8) 7| T (@)

>_.

Yixela

There are (m + 1) different values of & where the first order condition holds. These are such that
c(f&) corresponds with one of the (m + 1) eigenvectors of the characteristic polynomial (so ¢ is the
top element of such an eigenvector). When (_1&) is proportional to the eigenvector of the j-th root of

the characteristic polynomial, ;, we can specify:

(( 2) 52y — Xa) [\ Joe(@ <Z'Z>%ﬁ;<<&>zﬁ.g<&>-é) ((Z’Z>-%Z'<y—5<a>/ @)
(2'2)3 1 ¢ (8) g5 .(8)F) = diag(igs s o 11y Mgt o)

with gy, .., 4,41 the (m+ 1) characteristic roots in descending order. Hence, we have three different

cases:

1. pj = i1 50

2 % ~ ~
r 9% s (y — X&) Ps(y — X&) =

1 : i)z
2 Z 55 (@) [ g1 T — diag(pg, )] T 5 ()2
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which is negative definite since 1y > fi,, 1, .-, fyy > Hya1 SO the value of the AR statistic at & is a

minimum.
2. p; = py so
Vo s (v — X&) Py — X&) =
mzfi,s(d)%/ [ Im — diag(pg, - - - s pg1)] EXX.E(@)%
which is positive definite since py > o, ..., p; > i1 so the value of the AR statistic at & is a
maximum.

2. 1<j<m+1so
2 ~"’ ~
%%@(Q—X@’Pz@—){a) = 1
1 . .
ﬁ@z)}j{'.a(a)2/ [N]Im - dlag(/j’:l? tee )lu’j—lhufj_;’_l,. . .,Mm+1)] EXXE(O[)Q

which is negative definite in m — j+1 directions, since p; > 41, .., fj > fpy1, and positive definite

in j — 1 directions, since p1y > pj, ..., j_1 > fi;, so the value of the AR statistic at & is a saddle point.

Proof of Theorem 12. a. When we test Hyg : § = 3, and [ is large compared to the true value

oo\ 10
3, the different elements of Q(8y) = | -8, 0 Q =By 0 can be characterized by
0 In, 0 Iy,

2

%(WYY — 2Bgwyx + fiwxx) = wxx — B%Wyx + %wyy
1 1

—g;(Wyw — Bowxw) = wxw — gowyw

WwWw = WWWw,

~1 ! ~1
— 0 - 0 2 0
Bo Q(5,) Bo = Qxw — A ijX “yw ) L Wyy 7
0 Iny 0 Iy " Wy 0 B\ 0 0

with Qxw = (“’XX wXW) . The LIML estimator 4(5,) is obtained from the smallest root of the

WW X WWw
characteristic polynomial:

SO

'mw (g~ XBy  W)Psly - Xy W)\ —0,

and the smallest root of this polynomial, Ani,, equals the subset AR statistic to test Hy. The smallest

root does not alter when we respecify the characteristic polynomial as

‘”’“w“ —QBo) F(y — XBy i WY Psly — XBy : W)RUBy) 3| =0,
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Using the specification of £2(8,), we can specify Q(5,)~ 3 a

0 I

mw

_p-1 1
Q(Bg) "2 = ( SO >QX%V+0<602>,

where O(8; 2) indicates that the highest order of the remaining terms is Bo 2. Using the above spec-

ification, for large values of S, Q(ﬁo)_%’(y — XBy : WY Py(y — XBy : W)Q(ﬁo)_% is characterized
by

9(50)_%/(9—)(@) : W)/PZ(y—XﬁoS W)Q(By)~ %: I%/V(X w) PZ(X W) %erO(ﬁEl)-

_1 .
For large values of f3,, the AR statistic thus corresponds to the smallest eigenvalue of QX%,II,(X :

1
W) Pz(X : W)Q%, which is a statistic that tests for a reduced rank value of (Ix : Iyy).

b. Follows directly from a and since the smallest root of (10) does not depend on /.

Proof of Theorem 13. We use the (infeasible) covariance matrix estimator

!
N A . o4 1 0 N 1 0
s—(zra)- (0ol 4 D)o
e v —72 Im —72 Im P

OVenOeV,n

3 . s s .
and define Lyy.. = Lyy — 257, Tyven = Ty — — 5277 and Tyve — Lyven.

For a subsequence £, of n, let Hy Ty, R}, be a singular value decomposition of ©(x,) with
©=HTR,

the limit of O(ky,), so O(k,) — O, H,, — H,T,, — T and R,, — R. We then also have the following
convergence results for this subsequence:

1 _1 1
(leinZﬁn)_gz.{cn (yﬁn - WKn’YI{n - XﬁnBO)UEE?ﬁn( 255:71) 2 7 5(60, )

1 .
(Zl{anNn)_§Zflm |:(Wiin : Xh?n) - (ynn - Wn%n — Xﬁo) {JELM” +

Oce,kn

_1 1
M + o V( _1 - Us_a%nn)}] Eva.eynn (EVV~€,HnZ\7Vs) ’ - 9(5077)7

Oce,kn d

with «,, — v and £(5,,y) and vec(©(By, 7)) independent normal k and km dimensional random vectors
with means zero and vec(©) and identity covariance matrices. The limiting random variable of this

subsequence O(f,,7) can be specified as

6(507 70) =0+ C(BO)’Y)a
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with vec(¢(5y, 7)) a standard normal km dimensional random vector independent of £(5,,v). We
can now specify the limit behaviors of the subset AR statistic and the smallest root pi;,, the two

components of the subset LR statistic, as in Theorems 1 and 2:

R(By) = mingegmu ﬁ (5(50770) - 9(50770)(1%w)9),
(5(50770) - 9(50770)(%’”)9) + op(1)

Homin = MiNpeRma | geRmw m (5(50770) - (ﬁo»’Yo)(b))/
(£(80:70) = ©(Bo, 1) () ) + 0p(1):

Theorem 10 then shows that the limit behavior of the subset LR statistic under Hy and the subsequence
K only depends on the m(m + 1) elements of ©'0.

To determine the size of the subset LR test, we determine the worst case subsequence k,, such that

AsySzig o = limsup,,_, Supycy Pra [LR (Bo) > CLR1-a(Bo |57 = g?nin,n)]
= limsup,,_ ., Pr,, {LRM(@)) > CLR1_a(Bols2, = &2, )} ,

min min,kp,

with LR, (8y) the subset LR statistic for a sample of size n and CLR;_ a(60|s ) the (1 —
@) x 100% quantile of the conditional distribution of CLR(8,) given that s2, = §2. . Theorem 6 runs

min mm

over the different settings of the conditioning statistic ©(5,,) to analyze if the subset LR test over
rejects. All these settings originate from the limit value © that results from a specific subsequence &y,.

We next list the different settings for the limit value © with respect to the identification strengths of
~v and f3 :

1. Strong identification of v and 3 : The limit value © is such that both of its singular values

are large. For subsequences k, that lead to such limit values:

limsup,, o Pry, |LRy, (B9) > CLR1—a(B|s2 = ~12nm,nn) = a.

2. Strong identification of -, weak identification of [ : Since 7 is strongly identified,
(Im“’) o’ @(Im“’) is large so the limit value © is such that one of its singular values is large
while the other is small. Theorem 5 shows that both the subset AR statistic and the smallest
root pu,;, are at their upperbounds. Hence, for all subsequences &, for which (I’gw)/@’ © (I’gw)
is large, so «y is well identified:

limsup,,_, Py, |LRy, (Bg) > CLR1_a (8|82, = 52 )} = a.

min, K<y,

3. Weak identification of -, strong identification of /3 : Since 7y is weakly identified, (I’"w) o’ @(Imw)

is small. Since f is strongly identified, the limit value ©® has one small and one large singular
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value. Theorem 5 then shows that the subset AR statistic is close to its lower bound while the
smallest root p,,;, is at its upperbound. Hence, for such subsequences rp:

limsup,, . Prx, LRk, (Bg) > CLR1_o(Bo|s%,;, = 52 )| < a,

min min,knp,

so the subset LR test is conservative. As mentioned previously, this covers the setting where
Iy, = cllx , with IIx , large and c small so Iy, is small as well. The subset LM test is size
distorted for this setting, see Guggenberger et al. (2012).

4. Weak identification of v and [ : The limit value © is such that both of its singular values are
small. Both the subset AR statistic and the smallest root p,;, are close to their lower bounds.

The conditional critical values do, however, result from the difference between the upper bounds
2

of these statistics, which is for this realized value of s , larger than the difference between the

lower bounds. For subsequences k,, for which both v and § are weakly identified:

limsup,,_,o, Pry, |LRs, (Bg) > CLR1_o(Bo|s2,, = &

min min, Ky,

)| <a
so the subset LR test is conservative.

Combining:

AsySzig o = @,

where strong instrument sequences for W make the asymptotic null rejection probability of the subset

LR statistic equal to the nominal size.
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