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Abstract

We use identi�cation robust tests to show that di¤erence, level and non-linear moment

conditions, as proposed by Arellano and Bond (1991), Arellano and Bover (1995), Blundell

and Bond (1998) and Ahn and Schmidt (1995) for the linear dynamic panel data model,

do not separately identify the autoregressive parameter when its true value is close to

one and the variance of the initial observations is large. We prove that combinations

of these moment conditions, however, do so when there are more than three time series

observations. This identi�cation then solely results from a set of, so-called, robust moment

conditions. These robust moments are spanned by the combined di¤erence, level and non-

linear moment conditions and only depend on di¤erenced data. We show that, when only

the robust moments contain identifying information on the autoregressive parameter, the

discriminatory power of the Kleibergen (2005) LM test using the combined moments is

identical to the largest rejection frequencies that can be obtained from solely using the

robust moments. This shows that the KLM test implicitly uses the robust moments when

only they contain information on the autoregressive parameter.
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1 Introduction

It is common to estimate the parameters of linear dynamic panel data models using the

Generalized Method of Moments (GMM, Hansen (1982)). The moment conditions for the

linear dynamic panel data model either analyze it in �rst di¤erences using lagged levels of

the series as instruments, in levels using lagged �rst di¤erences as instruments or using a

product of levels and �rst di¤erences. We refer to the �rst set of moment conditions as

Dif(ference) moment conditions, see Arellano and Bond (1991), the second set as Lev(el)

moment conditions, see Arellano and Bover (1995), Blundell and Bond (1998) and the third

set as N(on-)L(inear) moment conditions, see Ahn and Schmidt (1995).

The Dif, Lev and NL moment conditions can be used separately to identify the parameters

of dynamic panel data models. To exhaust all information, however, two particular combina-

tions of Dif, Lev and NL moment conditions have been proposed. We refer to the combined

Dif and Lev moment conditions as the Sys(tem) moment conditions and the combination of

the Dif and NL moment conditions as the A(hn-)S(chmidt) moment conditions.1 The Sys

moment conditions exhaust all information on the autoregressive parameter that is present

under mean stationarity, see Arellano and Bover (1995) and Blundell and Bond (1998). The

AS moment conditions exhaust all information whilst not assuming mean stationarity, see

Ahn and Schmidt (1995).

We analyze the identi�cation of the autoregressive parameter by the various sets of mo-

ment conditions for a range of true values including the case of highly persistent panel data.

All moment conditions involve �rst di¤erences of the series to remove individual speci�c ef-

fects. The �rst di¤erence operator removes information in the time series at the unit root

value of the autoregressive parameter. It is well known that the Dif moment conditions there-

fore do not identify the autoregressive parameter when its true value is (close to) one, since

lagged levels are then weak predictors of �rst di¤erences. This has led to the development of

the NL and Lev, and hence AS and Sys, moment conditions which were originally considered

to identify the autoregressive parameter when the panel data are highly persistent.

To show the identi�cation issues at speci�c values of the autoregressive parameter, we

use identi�cation robust tests, i.e. the GMM-A(nderson-)R(ubin) statistic of Anderson and

Rubin (1949) and Stock and Wright (2000), and the K(leibergen) L(agrange) M(ultiplier)

statistic of Kleibergen (2005). At values of the parameters where identi�cation issues occur,

the rejection frequency of these tests provenly coincides with the signi�cance level so the

identi�cation issues are relatively easy to detect by inspecting the power curves. Using power

curves of the KLM test, we show that Dif, Lev and NL moment conditions separately do

not identify the autoregressive parameter for persistent values of it when paired with a large

1Note that in a combination of all three sets of moments conditions, the NL moment conditions are

redundant.
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variance of the initial observations. The same holds for the Sys moment conditions with

three times series observations. The power curves further show that Sys and AS moment

conditions generally identify the autoregressive parameter when the number of time series

observations exceeds three.

We formally prove these identi�cation results using an asymptotic sampling scheme in

which we jointly let the variance of the initial observations and the number of cross section

observations go to in�nity. For a range of relative convergences rates of the variance of

the initial observations compared to the cross section sample size, the Dif, Lev and NL

sample moments and their derivatives diverge. Both the population moment and the Jacobian

identi�cation condition are then ill de�ned which implies that the autoregressive parameter is

not separately identi�ed by the Dif, NL or Lev moment conditions. These results con�rm and

extend earlier �ndings in Madsen (2003), Bond et al: (2005), Hahn et al: (2007), Kruiniger

(2009) and Phillips (2018).

Using our asymptotic sampling scheme, we also prove that AS and Sys moment conditions

identify the autoregressive parameter irrespective of the variance of the initial observation

when the number of time series observations exceeds three. When the variance of the initial

observations is large, the identi�cation results from a set of, so-called, robust sample moments

that are a combination of the Dif, Lev and NL sample moments (other than AS and Sys)

and only depend on di¤erenced data. These robust sample moments are spanned by the

Sys sample moments and also by the AS sample moments. They identify the autoregressive

parameter irrespective of the variance of the initial observation and including the case of

highly persistent data. They are a subset of the moment conditions in Kruiniger (2002),

which are derived under the additional assumption of time series homoskedasticity.

Despite these positive identi�cation results for the Sys and AS moments, the large sample

distributions of corresponding one step and two step GMM estimators are known to be

non-standard when the variance of the initial observation is large and the autoregressive

parameter is close to one. This makes it hard to infer if and how standard GMM inference

using the original AS or Sys sample moments exploits the information contained in the

robust sample moments that they encompass. The non-standard limiting behavior results

since the identi�cation of the autoregressive parameter is then of, so-called, second order since

the Jacobian of the robust sample moments is rank de�cient but the Hessian is not, see e:g:

Dovonon and Renault (2013), Dovonon and Hall (2018) and Dovonon et al: (2020). It explains

the large biases of the one step and two step GMM estimators and the size distortions of their

corresponding t-statistics when the series are persistent, see e:g: Madsen (2003), Bond and

Windmeijer (2005), Bond et al: (2005), Dhaene and Jochmans (2016), Hahn et al: (2007),

Kruiniger (2009) and Bun and Windmeijer (2010). Because of the second order identi�cation,

GMM estimators based on the robust sample moments also have non-standard asymptotic

distributions when the data are persistent, see Dovonon et al: (2020).
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We therefore analyze how identi�cation robust test statistics exploit the identifying in-

formation in the robust sample moments. We prove that the identi�cation robust KLM test

procedure based on either AS or Sys sample moments exploits all the identifying information

contained in the robust sample moments. We do so by �rst determining the (infeasible)

optimal weighted average of the robust sample moments that maximizes the discriminatory

power of a GMM-AR test of the autoregressive parameter in settings where only the ro-

bust sample moments contain identifying information. Next we determine the discriminatory

power of KLM tests, based on AS or Sys moment conditions, under such settings and prove

that it equals that of the GMM-AR test using the optimal weighted average of the robust

sample moments. KLM tests using AS or Sys moment conditions thus resort to just using

the robust sample moments when only the latter contain information on the autoregressive

parameter. It is therefore not necessary to explicitly use the robust sample moments, which

provide identi�cation under mild conditions, since they are implicitly used in the KLM test

based on either AS or Sys sample moments.

The paper is organized as follows. Section 2 introduces the linear dynamic panel data

model and the di¤erent moment conditions we use to identify its parameters. It also discusses

identi�cation robust statistics, speci�cally the KLM test, that we use to illustrate the identi-

�cation issues that occur at persistent values of the autoregressive parameter. In Section 3,

we use a representation theorem, akin to the cointegration representation theorem, see Engle

and Granger (1987) and Johansen (1991), to pin down the identi�cation properties of the dif-

ferent moment conditions. This theorem also allows us to obtain the robust sample moments.

In Section 4, we de�ne the GMM-AR test that uses the (infeasible) optimal weighted average

of the robust sample moments and derive the large sample distribution of the KLM test using

AS or Sys moment conditions under settings where only the robust sample moments contain

information on the autoregressive parameter. The �fth (�nal) section concludes. Proofs of

theorems and de�nitions of sample moments are provided in the Appendix. We use the fol-

lowing notation throughout the paper: vec(A) stands for the (column) vectorization of the

k � n matrix A; vec(A) = (a01 : : : a
0
n)
0 for A = (a1 : : : an); PA = A(A0A)�1A0 is a projection

on the columns of the full rank matrix A and MA = IN � PA is a projection on the space

orthogonal to A: Convergence in probability is denoted by �!
p
�, convergence in distribution

by �!
d
�and �=

a
�means asymptotically equivalent.

2 Identi�cation robust GMM inference for dynamic panel data
models

In this section, we brie�y describe the dynamic panel data model and the di¤erent sets of

moment conditions. Thereafter we discuss identi�cation robust GMM inference including the

construction of con�dence intervals. Finally, we illustrate the identi�cation issues that occur
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when using the di¤erent moment conditions for dynamic panel data models, by computing

power curves based on the identi�cation robust KLM statistic.

2.1 Model and moment conditions

We analyze the �rst-order autoregressive linear dynamic panel data model

yit = ci + �yit�1 + uit; i = 1; : : : ; N; t = 2; : : : ; T; (1)

with T the number of time periods and N the number of cross section observations. We

assume that the initial observation yi1 is observed and that the vector of observations

(yi1; :::; yiT ) for individual i is independently distributed across the N individuals. We will

later on make further assumptions on the initial observations to properly de�ne the process

in (1). For expository purposes, we analyze the simple dynamic panel data model in (1)

which can be extended with additional lags of yit and explanatory variables.2 Estimation of

the parameter � by means of least squares leads to an inconsistent estimator in samples with

a �nite value of T and large N; see e:g: Nickell (1981). We therefore estimate it using GMM.

We obtain the GMM moment conditions from the unconditional moment assumptions:

E[uit] = 0; t = 2; : : : ; T;

E[uituis] = 0; s 6= t; s; t = 2; : : : ; T;

E[uitci] = 0; t = 2; : : : ; T;

E[uityi1] = 0; t = 2; : : : ; T:

(2)

Under these assumptions, the moments of the T (T � 1) interactions of �yit and yit :

E[�yityij ]; j = 1; : : : ; T; t = 2; : : : ; T (3)

can be used to construct functions which identify the parameter of interest �: We do not use

products of �yit to identify � since we would need further assumptions, i:e: homoskedasticity

or initial condition assumptions, see e:g: Han and Phillips (2010).

Two di¤erent sets of moment conditions, which are functions of the moments in (3), are

commonly used to identify � :

1. Di¤erence (Dif) moment conditions:

E[yij(�yit � ��yit�1)] = 0; j = 1; : : : ; t� 2; t = 3; : : : ; T; (4)

as proposed by e:g: Anderson and Hsiao (1981) and Arellano and Bond (1991). The

Dif moment conditions solely result from the conditions in (2).

2The extension to other explanatory variables would depend on the nature of these. For some settings such

an extension would be trivial but for others not so.
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2. Level (Lev) moment conditions:

E[�yit�1(yit � �yit�1)] = 0; t = 3; : : : ; T; (5)

as proposed by Arellano and Bover (1995), see also Blundell and Bond (1998). Besides

the conditions in (2), the Lev moment conditions use

E [�yitci] = 0; (6)

which implies that the original data in levels have constant correlation over time with

the individual-speci�c e¤ects. The Lev moment conditions (5) hold under the following

conditions regarding the initial observations yi1 (i = 1; :::; N) :

yi1 = �i + ui1; (7)

�i = ci=(1� �); (8)

E[ui1] = 0;

E[ui1ci] = 0;

E[ui1uit] = 0; t > 1:

(9)

The speci�cation of the initial observations in (7)-(9) is often referred to as mean

stationarity. In our analysis we maintain the assumption of mean stationarity.

The Dif and Lev moments can be used separately or jointly to identify �: When we use

the moment conditions in (4) and (5) jointly, we refer to them as system (Sys) moment

conditions,3 see Arellano and Bover (1995) and Blundell and Bond (1998). Another set of

nonlinear (NL) moment conditions, which just like the Dif moments only use the conditions

in (2), results from Ahn and Schmidt (1995):

E[(yit � �yit�1)(�yit�1 � ��yit�2)] = 0 t = 4; : : : ; T: (10)

The NL moments can be used separately or jointly with the Dif moments to identify �:When

we use the moment conditions in (4) and (10) jointly, we refer to them as Ahn-Schmidt (AS)

moment conditions.

Ahn and Schmidt (1995) show that their AS moment conditions exhaust the information

on � in the moment conditions (2) and are therefore complete. Mean stationarity adds one

moment condition (6) to the moment conditions in (2). Hence, the complete set of moment

conditions under (2) and (6) equals the AS moment conditions and (6). Upon rewriting we

can show that these combined moment conditions are identical to the Sys moment conditions

so they are complete under (2) and (6).
3We could extend the Lev moment conditions to 1

2
(T � 1)(T � 2) sample moments by including additional

interactions of �yit�j and yit��yit�1; for j = 2; : : : ; t�2: It can be shown, however, that all conditions on top
of those in (5) can be constructed as linear combinations of the Dif conditions in (4) and the Lev conditions

in (5).
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2.2 Identi�cation robust GMM tests

In GMM, we consider a k-dimensional vector of moment conditions, see Hansen (1982):

E[fi(�0)] = 0; i = 1; : : : ; N; (11)

where fi(�) is a k-dimensional (continuous and continuously di¤erentiable) function of the

observed data for individual i and the unknown parameter vector � whose functional expres-

sion is identical for all individuals. There is a unique true value of the p-dimensional vector �

where the moment conditions are satis�ed, which we denote by �0; and k is at least as large

as p:We only analyze the �rst-order autoregressive panel data model so p = 1 for our setting.

The population moments in (11) are estimated using the sample moments,

fN (�) =
1
N

PN
i=1 fi(�): (12)

The k � p dimensional matrix qN (�) contains the derivative of fN (�) with respect to � :

qN (�) =
@
@�0
fN (�) =

1
N

PN
i=1 qi(�); (13)

with qi(�) = @
@�0
fi(�): Speci�cations of the sample moment functions fN (�) and qN (�) for the

Dif, Lev, Sys, NL and AS moment conditions are provided in the Appendix.

Statistical inference based on the two step GMM estimator is known to be of poor quality

in the case of weak identi�cation, which leads to an inconsistent estimator with non-standard

behavior of its corresponding t-statistic, see e.g. Phillips (1989), Staiger and Stock (1997)

and Stock and Wright (2000). The non-standard limiting behavior of one and two step

GMM estimators for dynamic panel data models in the case of weak identi�cation has been

documented in e.g. Madsen (2003), Kruiniger (2009) and Phillips (2018).

In this study we therefore use identi�cation robust GMM statistics to overcome the afore-

mentioned problems. The main advantage of identi�cation robust statistics is that, unlike

conventional two step GMM statistics, their limiting distributions are una¤ected by the

identi�cation strength. De�ne �� as the hypothesized value under the null hypothesis. A

particularly simple to compute identi�cation robust GMM statistic to test H0 : � = �� is the

GMM extension of the Anderson-Rubin statistic, see Anderson and Rubin (1949) and Stock

and Wright (2000):

GMM -AR(��) = NfN (�
�)0V̂ff (�

�)�1fN (�
�); (14)

with V̂ff (�) the Eicker-White covariance matrix estimator:

V̂ff (�) =
1
N

PN
i=1(fi(�)� fN (�))(fi(�)� fN (�))0: (15)

The GMM-AR statistic equals the continuous updating objective function (Hansen et al.,

1996) evaluated in ��: A possible drawback of the GMM-AR statistic is its lower power in the
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case of overidenti�ed models. The KLM statistic of Kleibergen (2005) partly overcomes this.

The KLM statistic is a quadratic form of the score of the GMM-AR statistic with respect to

�:
KLM(��) = NfN (�

�)0V̂ff (�
�)�1D̂N (�

�)
h
D̂N (�

�)0V̂ff (�
�)�1D̂N (�

�)
i�1

D̂N (�
�)0V̂ff (�

�)�1fN (�
�);

(16)

with D̂N (�) a k � p dimensional matrix,

vec(D̂N (�)) = vec(qN (�))� V̂qf (�)V̂ff (�)�1fN (�); (17)

and

V̂qf (�) =
1
N

PN
i=1 (vec[qi(�)� qN (�)]) (fi(�)� fN (�))0: (18)

The limiting distributions of the identi�cation robust GMM-AR and KLM statistics apply

under less restrictive assumptions than those of the traditional test statistics based on two

step GMM. The GMM-KLM and GMM-AR statistics converge under H0 to �2(p) and �2(k)

distributed random variables even when the Jacobian, J(�0) = E(qi(�0)); does not have a

full rank value, see Stock and Wright (2000), Kleibergen (2005) and Newey and Windmeijer

(2009). Other identi�cation robust statistics for GMM are proposed in Kleibergen (2005),

Andrews (2016) and Andrews and Mikusheva (2016) which all provide extensions of the

conditional likelihood ratio statistic of Moreira (2003) to GMM. The conditional likelihood

ratio statistic is optimal for the homoskedastic linear instrumental variables regression model

with one included endogenous variable, see Andrews et al: (2006). None of its extensions

to GMM has, however, shown to be optimal for our setting of the dynamic linear panel

autoregression so we just use the easier to implement GMM-AR and KLM statistics.4

The identi�cation robust tests can be inverted to obtain corresponding identi�cation

robust con�dence sets. The 100� (1� �)% con�dence set for � (denoted by CS�(�) below)

consists of all values of �� for which the respective identi�cation robust test does not reject

using its 100� �% asymptotic critical value:

CS�(�) = f�� : IRT (��) � CDFIRT (�)g ; (19)

with IRT (��) the identi�cation robust statistic evaluated at �� and CDFIRT (�) the (1 �
�)� 100-th percentile of the limiting distribution of IRT (�0):

The identi�cation robust tests are not quadratic functions of �� so they cannot directly be

inverted to obtain the con�dence set.5 The con�dence sets resulting from them do therefore
4Andrews et al. (2006) establish the optimality of the likelihood ratio test for the iid linear instrumental

variables regression model using the Neymann-Pearson lemma. We cannot do so here since the identi�cation

of � depends on other nuisance parameters besides the Jacobian, like the initial observations, so it is not

obvious how optimality can be established.
5An exception is the GMM-AR statistic in the homoskedastic linear instrumental variables regression

model, see Dufour and Taamouti (2003).
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not have the usual expression of an estimator plus or minus a multiple of the standard error.

Instead, we have to specify a p-dimensional grid of values of �� and compute the identi�cation

robust statistic for every value of �� on the grid to determine if it is less than the appropriate

critical value so �� is part of the con�dence set.

Speci�cally, the con�dence set in (19) can have three distinct shapes:

1. Bounded and convex: there is a closed compact set of values of �� for which the iden-

ti�cation robust test statistic does not exceed the critical value.

2. Unbounded: this occurs either when there are no values of �� for which the identi�cation

robust test statistic exceeds the critical value (unbounded and convex), or when there

are bounded sets of values of �� for which the identi�cation robust test statistic exceeds

the critical value (unbounded and disjoint).

3. Empty: the identi�cation robust test statistic exceeds the critical value for all values of

��:

Bounded and convex con�dence sets occur when the parameters of interest are well iden-

ti�ed. Unbounded con�dence sets are indicative of weak identi�cation so if we then test

H0 : � = �� at a very large, possibly in�nite, value of �� using an identi�cation robust test

at, say, the 5% signi�cance level, it does not necessarily reject. For such instances, we thus

often do not reject the hypothesis of an in�nite value of � so we obtain an unbounded 95%

con�dence set. In Dufour (1997, Theorems 3.3 and 3.6), it is shown that any size correct pro-

cedure used to test parameters which can be non-identi�ed must have a positive probability

of producing an unbounded 95% con�dence set. Conversely, also any test procedure, like,

for example, the Wald t-test, which can not generate an unbounded 95% con�dence set, can

not be a size correct test procedure when the tested parameter can be non-identi�ed. Empty

con�dence sets occur when the model is misspeci�ed so there is no value of � for which the

moment condition holds. Since the GMM-AR statistic tests whether all moment conditions

hold, it also tests misspeci�cation. It can therefore result in empty con�dence sets but the

KLM test cannot since it is equal to zero at the continuous updating estimator of Hansen et

al: (1996), which is the minimizer of the GMM-AR statistic.

The identi�cation robust statistics conduct tests on the full parameter vector �: Valid

(1 � �) � 100% con�dence sets for the individual elements of � then result by projecting

the joint p-dimensional (1 � �) � 100% con�dence set for � on the p di¤erent axes. These

projection based con�dence sets are size correct so they contain the true value of � with a

probability which is at least (1 � �) � 100% irrespective of the strength of identi�cation.

Projection based con�dence sets can face computational issues when p is rather large given

the large number of points on the p-dimensional grid for which the statistic then has to be

computed.
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Con�dence sets for the individual elements of � can also be obtained by plugging in an

estimator for the remaining elements of � after which the (conditional) limiting distribution

can be sharpened using the usual degrees of freedom correction of the �2 limiting distributions.

The resulting con�dence sets only have correct coverage when these remaining parameters are

well identi�ed, see Kleibergen (2005). Just in some isolated cases, such, as for example, when

using the GMM-AR statistic in the homoskedastic linear instrumental variables regression

model or in the linear factor model for determining risk premia in �nance, can we prove that

these con�dence sets are valid without requiring the partialled out parameters to be well

identi�ed, see Guggenberger et al: (2012, 2019), Kleibergen and Zhan (2020), Kleibergen

(2020) and Kleibergen et al: (2020).

2.3 Using identi�cation robust tests to highlight identi�cation issues

Identi�cation robust GMM tests are size correct irrespective of the identi�cation strength.

Therefore, their rejection frequencies can be used in a straightforward manner to illustrate

the identi�cation issues at particular values of the autoregressive parameter in the dynamic

panel data model. The conventional t-test based on the two step GMM estimator is not

suitable for this purpose as it is size distorted in the case of weak identi�cation and, hence,

rejection frequencies would not equal the signi�cance level.

To illustrate the identi�cation issues for the di¤erent moment conditions, we compute the

rejection frequencies of 5% signi�cance KLM tests of H0 : � = 0:5 for a range of (true data

generating) values �0: We do so by simulating data from the panel autoregressive model in

(1) with three or four time series observations, so T = 3 or 4; and two hundred and �fty

individuals, so N = 250: The individual speci�c e¤ects ci and idiosyncratic errors uit are

independently generated from N(0; �2c) and N(0; 1) distributions respectively. We vary the

value of �2c to show the sensitivity of the identi�cation of � using the panel moment conditions

to the variance of the initial observations. We assume mean stationarity so (7)-(9) hold.

We consider four KLM tests based on Dif, Lev, Sys and AS moment conditions, which

have been calculated according to equation (16) using �� = 0:5. The �gures in Panels 1 and

2 show the rejection frequencies of KLM tests of H0 : � = 0:5 with 5% signi�cance for four

values of �2c and a range of true values �0. Panel 1 does so for three times series observations

while Panel 2 covers four time series observations. The simulation experiment is designed

such that the variance of the initial observations becomes very large when �0 gets close to

one and �2c exceeds zero.
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Panel 1. Rejection frequencies of KLM test of H0 : � = 0:5 with 5% signi�cance

using di¤erent moment conditions for T = 3; N = 250 and �2c = 0 (dashed),

0.5 (solid), one (dashed-dot) and two (dotted)
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Figure 1.1: Dif moment conditions Figure 1.2: Lev moment conditions
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Figure 1.3: Sys moment conditions

Figures 1.1 and 2.1 show that the rejection frequencies of the KLM test with Dif moment

conditions for �0 close to one converges to the signi�cance level of 5%. It is well known that

the Jacobian of the Dif moment conditions is zero when �0 equals one so they then do not

identify �: The KLM test is identi�cation robust which explains why the rejection frequency

equals the signi�cance level both at the hypothesized value of �� = 0:5 and when �0 is close

to one for all values of �2c . The latter results since the Dif moment conditions do then not

identify �, hence the KLM test has no discriminating power so the power of the KLM test

equals the signi�cance level.
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Panel 2. Rejection frequencies of KLM test of H0 : � = 0:5 with 5% signi�cance

using di¤erent moment conditions for T = 4; N = 250 and �2c = 0 (dashed),

0.5 (solid), one (dashed-dot) and two (dotted)
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Figure 2.1: Dif moment conditions Figure 2.2: Lev moment conditions
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Figure 2.3: Sys moment conditions Figure 2.4: AS moment conditions

Figures 1.2 and 2.2 show the rejection frequencies of 5% signi�cance tests of H0 : � = 0:5

using the KLM test with Lev moment conditions. Interestingly, these �gures show that the

Lev moment conditions only identify � when the true value �0 is close to one when �2c = 0:

Non-zero values of �2c correspond with a large variance of the initial observations when �0 is

close to one and Figures 1.2 and 2.2 show that the Lev moment conditions do not identify

� in this case. This contradicts the common perception that the Lev moment conditions

generally identify � irrespective of the setting of nuisance parameters, like, the variance of

the initial observations.

Figures 1.3 and 2.3 show the rejection frequencies of 5% signi�cance tests of H0 : � = 0:5

using the KLM test with Sys moment conditions. Surprisingly, these �gures show that the

12



Sys moment conditions do not identify � when �0 is close to one and �2c > 0 when T = 3 but

do so when T = 4:

Figure 2.4 shows the rejection frequencies of 5% signi�cance tests of H0 : � = 0:5 using

the KLM test with AS moment conditions. These rejection frequencies show that the AS

moment conditions, which are not de�ned for T = 3; identify � when its true value is close

to one and the variance of the initial observations is very large. Interestingly, the rejection

frequencies of KLM tests of H0 using the Sys and AS moment conditions are very close when

�0 is near one when paired with large variances of the initial observations.

Summarizing, Panels 1 and 2 illustrate a few stylized facts that concern the identi�cation

of � for the DGP used in the simulation experiment:

1. Dif moment conditions do not identify � when �0 is close to one for general T:

2. Lev moment conditions do not identify � when �0 is close to one for large variances of

the initial observations for general T:

3. Sys moment conditions do not identify � when �0 is close to one for large variances of

the initial observations when T = 3:

4. Sys and AS moment conditions identify � when �0 is close to one for large variances of

the initial observations when T exceeds 3:

5. The rejection frequencies of KLM tests of H0 using AS and Sys moment conditions

when �0 is close to one and the variance of the initial observations is large are almost

identical.

Except for the �rst stylized fact, a theory backing them up is lacking so we aim to provide

one in the sections ahead. In doing so, we show that all information regarding �; when its

true value is close to one and the variance of the initial observations is large, is contained in

a set of, so-called, robust moment conditions which are a combination of either the AS or

Sys moment conditions. We furthermore show that the KLM test based on the original AS

or Sys moment conditions, as reported in Panels 1 and 2, makes optimal use of these robust

sample moments when only they contain information on �.

Alongside the identi�cation issues we can infer from the rejection frequencies in Panels 1

and 2, they are also indicative of the di¤erent kind of con�dence sets that can result from the

identi�cation robust tests as discussed previously. For example, the low rejection frequencies

occurring for �0 around one, that result from the identi�cation issues, show that the 95%

con�dence sets for � are then typically very wide, possibly unbounded, when �0 has such

a value paired with a large variance of the initial observations. To visualize this further,

Panel 3 contains the (one minus the) p-value plots of KLM tests using AS, Dif, Lev and Sys

moment conditions for four data sets using the same DGPs as in Panels 1-2 with N = 250
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and �0 = 0:95:6 The DGPs used for the four �gures di¤er over the values of T and �2c : The

intersections of the depicted p-value plots with the line at 0.95 indicate the 95% con�dence

sets of KLM tests with the respective moment condition.

In Figures 3.1 and 3.3, �2c = 0 so identi�cation issues only occur at �0 close to one when

using the Dif moment conditions. Since �0 is 0.95, this explains why the p-value plots of the

KLM test with the Dif moments conditions do not cross the line at 0.95 in Figures 3.1 and

3.3 so the resulting 95% con�dence sets are very wide. The p-value plots in Figures 3.1 and

3.3 of KLM tests with Sys and Lev moment conditions show that they lead to bounded 95%

con�dence sets since these moment conditions have no identi�cation issues when T = 3 and

�2c = 0:

In Figure 3.2, where T = 3 and �2c = 0:5; none of the p-value plots crosses the line at 0.95

so 95% con�dence sets that result from KLM tests with Dif, Lev and Sys moment conditions

are all very wide and possibly unbounded. This is indicative of the identi�cation issues when

T = 3 and �2c = 0:5 for true values of � close to one.

In Figure 3.4, where T = 4 and �2c = 0:5; KLM tests with Sys and AS moment conditions

both result in �nite 95% con�dence sets while the KLM test with Dif and Lev moment

conditions leads to very wide possibly unbounded con�dence sets. Hence, Sys and AS moment

conditions have no identi�cation issues while Dif and Lev moment conditions do. The AS

moment conditions are quadratic functions of � which explains the somewhat unusual shape

of their p-value plots in Figures 3.3 and 3.4.

6We note that the �gures in Panel 3 show (one minus) the p-value for one realized data set and do not

show the simulated empirical distribution function of the test under the null hypothesis which is sometimes

also referred to as a p-value plot, see Davidson and MacKinnon (2002).
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Panel 3. One minus p-value plots of KLM tests using di¤erent moments conditions: Sys

(solid), AS (dotted), Lev (dashed), Dif (dash-dot) for �0 = 0:95 and N = 250:
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Figure 3.1: T = 3; �2c = 0 Figure 3.2: T = 3; �2c = 0:5
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Figure 3.3: T = 4; �2c = 0 Figure 3.4: T = 4; �2c = 0:5

3 Identi�cation from di¤erent moment conditions

Stylized facts 1-4 illustrated by the �gures in Panels 1-3 show the identi�cation issues that

occur for the autoregressive parameter � when the variance of the initial observations is large

and �0, i.e. the true value in the DGP, is close to one. To pin these identi�cation issues down

precisely, we use an asymptotic sampling scheme which consists of joint drifting sequences

for the autoregressive parameter and the variance of the initial observation. We indicate this

dependence on the sample size N by �0;N and hN (�0;N ) = 1p
var(yi1)

respectively. The true

value of �; previously denoted by �0; is from now on therefore denoted by �0;N . Assumptions

1 and 2 group the di¤erent requirements needed to obtain our results.
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Assumption 1. a. The drifting sequences of the autoregressive parameter and variance of
the initial observations are such that:

limN!1 �0;N = 1

limN!1 hN (�0;N ) = d1;
(20)

with d1 a �nite, possibly zero constant.

b. The initial observations satisfy the mean stationarity conditions in (7)-(9).
c. The joint limit behavior of the variance of ui1 and (1� �0;N ) is such that

limN!1(1� �0;N )�21;N = d2; (21)

with �21;N =var(ui1), d2 a �nite, possibly zero constant and (1 � �0;N )
1
2ui1 is a random

variable with �nite fourth order moments.

d. The variance of the product of the initial observation yi1 and the disturbances uit is such
that

var(uityi1) = �2t var(yi1); t = 2; : : : ; T; (22)

with �2t = var(uit); t = 2; : : : ; T:

e. The errors ui1=�1;N ; ui2 : : : ; uiT and ci; i = 1; : : : ; N; are independently distributed within
individuals and over the di¤erent individuals and have mean zero, �nite variance and �nite

fourth order moments and satisfy the conditions in (2).

Assumption 1a concerns the joint limit behavior of the variance of the initial observations

and �0;N . By the de�nition of �i in (8) and Assumption 1a, �i is also drifting with the sample

size since it is a function of �0;N and so are yi1 and �21;N : Assumption 1b speci�es that the

initial observations follow the mean stationarity assumption, which is necessary for the Lev

and Sys moment conditions to hold. Assumptions 1c-e are mainly technical assumptions,

which are needed to obtain our theoretical results. Assumption 1c sets an upper bound on

the rate at which the variance of ui1 can diverge. It implies that the variance of ui1 is at most

proportional to (1� �0;N )�1 (so covariance stationarity is allowed for). Assumption 1d holds
under independence of uit and yi1 but it can also hold under less stringent conditions. In the

sequel, we analyze the identi�cation of � when the variance of the initial observations gets

large compared to that of the subsequent disturbances. Assumption 1d enables such settings.

Assumption 1e is a technical assumption which is needed to use a central limit theorem.

Assumption 1a allows the variance of the initial observations to be large jointly with

a large value for the autoregressive parameter. When d1 in (20) equals zero, the rate at

which hN (�0;N ) goes to zero, or the variance of the initial observation goes to in�nity, is key

to the identi�cation of � from the sample moment conditions. We therefore put down two

alternative assumptions regarding the joint convergence of the sample size and the variance

of the initial observations under which there is identi�cation or identi�cation is problematic

for speci�c moment conditions.

16



Assumption 2. a. d1 = 0 and the drifting sequence of the variance of the initial observation
is such that:

hN (�0;N )
p
N !

N!1
0: (23)

b. d1 6= 0 or the drifting sequence of the variance of the initial observation is such that:

hN (�0;N )
p
N !

N!1
1: (24)

Identi�cation generically holds under Assumption 2b but can become problematic under

Assumption 2a and then depends on the particular moment condition and number of time

series observations as we show later on. In the intermediate case where hN (�0;N )
p
N converges

to a �nite, but non-zero constant, we are in a case similar to that discussed in the weak

instrument literature where the sample Jacobian converges to a random variable which leads

to inconsistent estimators with non-standard behavior of their corresponding t-statistics.

Because of the practical similarities with Assumption 2a, however, we do not separately

discuss it.

Since any assumption about the convergence rates of the sample size and the variance

of the initial observations is to a large extent arbitrary, also the identi�cation of � by these

conditions is arbitrary for DGPs for which the true value of � is close to one and the variance

of the initial observations is in�nite when the true value of � equals one. Some plausible

DGPs, all of which accord with mean stationarity (7)-(9), for the initial observations belong

to this category:

DGP 1. �2c =var(ci); �
2
1;N = �21; h(�0;N )

�2 = �2c=(1 � �0;N )
2 + �21; so when �0;N !

N!1
1;

(1� �0;N )�1h(�0;N ) !
N!1

��1c :

DGP 2. �2c =var(ci); �
2
1;N = �2

1��20;N
; �2 = var(uit); t = 2; : : : ; T; h(�0;N )

�2 = �2c=(1 �
�0;N )

2 + �2=(1� �20;N ); so when �0;N !
N!1

1; (1� �0;N )�1h(�0;N ) !
N!1

��1c :

DGP 3. �2� =var(�i); �
2
1;N =

�2

1��20;N
; �2 = var(uit); t = 2; : : : ; T; h(�0;N )

�2 = �2� + �
2=(1�

�20;N ); so when �0;N !
N!1

1; (1� �20;N )�
1
2h(�0;N ) !

N!1
��1:

DGP 4. �2� =var(�i); �
2
1;N = �2

1��2(g+1)0;N

1��20;N
; �2 = var(uit); t = 2; : : : ; T; h(�0;N )

�2 = �2� +

�2
1��2(g+1)0;N

1��20;N
; so when �0;N !

N!1
1;

�
1��20;N
1��2(g+1)0;N

�� 1
2

h(�0;N ) !
N!1

��1:

DGP 5. �2c =var(ci); �
2
1;N = �2

1��2(g+1)0;N

1��20;N
; �2 = var(uit); t = 2; : : : ; T; h(�0;N )

�2 = �2c=(1 �

�0;N )
2 + �2

1��2(g+1)0;N

1��20;N
; so when �0;N !

N!1
1; (1� �0;N )�1 h(�0;N ) !

N!1
��1c :
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DGPs 4 and 5 characterize an autoregressive process of order one that has started g periods

in the past while the initial observations that result from DGP 2 and 3 result from an

autoregressive process that has started an in�nite number of periods in the past. DGPs 2

and 3 are also used by Blundell and Bond (1998) and Arellano and Bover (1995) use DGP

2, but these studies keep the variance of the initial observations �xed.

For DGPs 1-5 to imply Assumption 2a, the limiting sequence �0;N has to be such that:

DGP 1; 2; 5 : (1� �0;N )
p
N !

N!1
0 for which it is su¢ cient that �0;N = 1� e

N
1
2 (1+�)

DGP 3 : (1� �20;N )N !
N!1

0 for which it is su¢ cient that �0;N = 1� e
N1+�

DGP 4 : N
g !
N!1; g!1

0;

(25)

with e a constant and � some real number larger than zero. In the case of DGP 4, (25) implies

that the process has been running longer than the sample size N: Kruiniger (2009) uses the

above speci�cation of DGP 3 with � = 0 and DGP 4 with N=g converging to a constant to

construct local to unity asymptotic approximations of the distributions of two step GMM

estimators that use the Dif, Lev or Sys moment conditions.

We do not con�ne ourselves to a speci�c DGP for the initial observations so we obtain

results that apply more generally. While the (non-) identi�cation conditions for identifying

� that result from the above data generating processes might be (in)plausible, it is the arbi-

trariness of them which is problematic. Additionally, the identi�cation condition might hold

but it can still lead to large size distortions of Wald test statistics, like, the t-test.

To analyze the identi�cation of � by the di¤erent moment conditions for a general number

of time periods T , we start out with a representation theorem. For the di¤erent moment con-

ditions, it states the behavior of the sample moments and their derivatives under Assumptions

1 and 2a.

Theorem 1 (Representation Theorem). Under Assumptions 1 and 2a, we can charac-

terize the large sample behavior of the Dif, Lev, NL, AS and Sys sample moments for T time

series observations and their derivatives by: 
f jN (�)

qjN (�)

!
=

 
Ajf (�)

Ajq(�)

!h
1

hN (�0;N )
p
N
( � hN (�0;N )�1;N �T�1 c)� �T�1d2

i
+ 

�jf (�; ��
2)

�jq(�; ��2)

!
+ op(1);

(26)

with j = Dif; Lev; NL; AS; Sys. The speci�cations of the kj-dimensional sample moments

f jN (�) and derivatives q
j
N (�) are given in the Appendix. Furthermore, A

j
f (�); A

j
q(�); �

j
f (�; ��

2)

and �jq(�; ��2) are constant kj � (T � 1); kj � (T � 1); kj � 1 and kj � 1 dimensional matrices,
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��2 = (�22 : : : �
2
T );

hN (�0;N )p
N

PN
i=1

0BB@
yi1ui2
...

yi1uiT

1CCA!
d

 

1p
N

PN
i=1

ui1
�1;N

ci !
d

 c;

(27)

so  is a (T � 1)-dimensional normal random vector,  � N(0;diag(�22 : : : �
2
T )),  c �

N(0;var( ci)) and independent from  ; and �T�1 is a (T � 1)-dimensional vector of ones.
The speci�cations of Ajf (�); A

j
q(�); �

j
f (�; ��

2); �jq(�; ��2) for values of T equal to 3-5 are all

stated in the Appendix.

Proof. see the Appendix.

The representation theorem in Theorem 1 is reminiscent of the cointegration represen-

tation theorem, see e:g: Engle and Granger (1987) and Johansen (1991). Identical to that

representation theorem, Theorem 1 shows that the behavior of the moment series changes

over di¤erent directions.

Theorem 1 implies that the sample moment and its derivative diverge in the direction

of
�Ajf (�)
Ajq(�)

�
since the latter components get multiplied by 1

h(�0;N )
p
N
; which under Assumption

2a goes o¤ to in�nity when the sample size increases. The only identifying information for

� then results from that part of the sample moment which does not depend on  . Since

 only a¤ects the part of the sample moments spanned by Ajf (�); the sample moments are

independent of  in the direction of the maximal non-degenerate space spanned by vectors

orthogonal to Ajf (�) to which we refer as the orthogonal complement of A
j
f (�). We construct

the orthogonal complement, which we denote by Ajf (�)?, as the full rank matrix projecting

on the orthogonal complement of the range space of Ajf (�). It consists of the minimal set

of vectors spanning the null space of the columns of Ajf (�). In the case the null space has

dimension zero, a full rank speci�cation of Ajf (�)? can not be constructed.

When we pre-multiply the sample moments by the orthogonal complement of Ajf (�); we

obtain

Ajf (�)
0
?f

j
N (�) = Ajf (�)

0
?�

j
f (�; ��

2) + op(1): (28)

Compared with expression (26) in Theorem 1, the elements multiplied by Ajf (�) have dropped

out since Ajf (�)
0
?A

j
f (�) � 0: The right hand side of (28) now contains all remaining identifying

elements of the original moment conditions. From expression (28), it is seen that identi�cation

results only when (1) Ajf (�)? is a full rank matrix; (2) A
j
f (�)

0
?�

j
f (�; ��

2) 6= 0 for all � 6= �0;N .

For an illustrative example of Theorem 1, consider the large sample behavior for T = 3

of the Lev sample moment, 1
N

PN
i=1�yi2(yi3 � �yi2); and its derivative, � 1

N

PN
i=1 yi2�yi2;

when �0;N converges to one according to (20) and mean stationarity (8)-(9) applies. The Lev

moment condition has been proposed by Arellano and Bover (1995) and Blundell and Bond
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(1998) to overcome the identi�cation problems of the Dif moment condition near the unit

root. Under Assumption 1, the relevant elements for the large sample behavior are:

fLevN (�) = 1
N

PN
i=1�yi2(yi3 � �yi2)

= (1� �)
n
1
N

PN
i=1 u

2
i2 +

1
N

PN
i=1 ui2yi1+

1
N

PN
i=1(�0;N � 1)ui1yi1

o
+ op(1);

qLevN (�) = � 1
N

PN
i=1 yi2�yi2

= � 1
N

PN
i=1 u

2
i2 � 1

N

PN
i=1 ui2yi1

� 1
N

PN
i=1(1� �0;N )ui1yi1 + op(1);

(29)

see the proof of Theorem 1 in the Appendix for a derivation. The op(1) remainder terms

contain all elements in (29) that can not dominate the large sample behavior when �0;N

goes to one according to the drifting parameter sequences de�ned in Assumption 1. The

components explicitly speci�ed in (29) either have a non-zero mean or depend on the initial

observations yi1. Under Assumption 1, we have that

hN (�0;N )
1p
N

PN
i=1 ui2yi1 !

d
 2;

1p
N

PN
i=1

ui1
�1;N

ci !
d
 c; (30)

which is proven in Lemma 1 in the Appendix and where  2 and  c are independent normal

random variables with mean zero and variance �22 and �2c ; �
2
c =var(ci). It explains why

1
N

PN
i=1 ui2yi1 and

1
N

PN
i=1(�0;N � 1)ui1yi1 = 1

N

PN
i=1(�0;N � 1)u2i1 + 1

N

PN
i=1 ui1ci explicitly

appear in (29). When d1 in (20) equals zero, the rate at which hN (�0;N ) goes to zero, or

the variance of the initial observation goes to in�nity, determines the behavior of the sample

moments in (29). For example, when d1 = 0 and these sequences are as in Assumption 2b, it

holds that
1
N

PN
i=1 yi2�yi2 !

p
�22 � d2: (31)

Although Assumption 1 does not fully pin down d2, which value depends on the particular

DGP for the initial observations, it is clear that the probability limit of the sample Jacobian

typically di¤ers from zero. Hence, the Lev moment condition seems to identify � irrespective

of its true value, see Arellano and Bover (1995) and Blundell and Bond (1998). There is a

caveat though since, under Assumption 2a, Theorem 1 shows that:

fLevN (�) = 1
hN (�0;N )

p
N

hN (�0;N )p
N

PN
i=1�yi2(yi3 � �yi2)

= (1� �)
n

1
hN (�0;N )

p
N
( 2 � hN (�0;N )�1;N c) + (�22 � d2)

o
+ op(1);

qLevN (�) = � 1
hN (�0;N )

p
N

hN (�0;N )p
N

PN
i=1 yi2�yi2;

= � 1
hN (�0;N )

p
N
( 2 � hN (�0;N )�1;N c)� (�22 � d2) + op(1);

(32)

which implies that the sample moments of the Lev population moment and Jacobian diverge

when the sample size increases. The Lev sample moment then no longer identi�es � since the
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components that would identify � in the Jacobian identi�cation condition, i.e. 1
N

PN
i=1 u

2
i2;

gets dominated by the component 1
N

PN
i=1 ui2yi1 and possibly

1
N

PN
i=1(1� �0;N )ui1yi1:

We next discuss what Theorem 1 implies for the di¤erent sets of moment conditions

discussed previously and their respective orthogonal complements of Af (�):

Dif and Lev conditions When T = 3 or 4; the speci�cations of �jf (�; ��
2), Ajf (�) and

Ajf (�)? for the Dif and Lev moment conditions, which are stated in the proof of Theorem 1

in the Appendix, are:

Dif: T = 3 �Diff (�; ��2) = 0; ADiff (�) = (�� 1); ADiff (�)? = (1 �)

T = 4 �Diff (�; ��2) =

0B@ 0

0

0

1CA ; ADiff (�) =

0B@ �� 1 0

0 �� 1

0 �� 1

1CA ; ADiff (�)? =

0B@ 0

�1
1

1CA :

Lev: T = 3 �Levf (�; ��2) = (1� �)
 
�22
0

!
; ALevf (�) = (1� � 0); ALevf (�)? does not exist

T = 4 �Levf (�; ��2) = (1� �)

0B@ �22
�23
0

1CA ; ALevf (�) =

 
1� � 0 0

0 1� � 0

!
;

ALevf (�)? does not exist.
(33)

The expressions of ALevf (�) are all such that we cannot specify a non-zero matrix ALevf (�)?

such that ALevf (�)0?A
Lev
f (�) = 0: This remains so when T exceeds four, see the Appendix.

Hence, ALevf (�)? does not exist (as a non-zero matrix). Regarding the Dif moments, when

T > 3 the rank of the orthogonal complement of ADiff (�); ADiff (�)?; is larger than zero.

However, since �Diff (�; ��2) equals zero for any value of T , ADiff (�)0?�
Dif
f (�; ��2) = 0 so the Dif

moment conditions do not identify �: Summarizing, we have:

Dif : �Diff (�; ��2) is vector of all zeros. No identi�cation when T � 3:
Lev: ALevf (�)? does not exist. No identi�cation when T � 3:

(34)

NL condition The NL moment condition is not de�ned for T = 3: When T = 4; the

expressions of �jf (�; ��
2), Ajf (�) and A

j
f (�)? read

NL: �NLf (�; ��2) = (1� �)
�
�23 � ��22

�
; ANLf (�) =

�
�(� � 1) 1� � 0

�
;

ANLf (�)? does not exist.
(35)

Since the orthogonal complement does not exist, the NL moment condition does not identify

�: The expression of ANLf (�) for a larger number of time series observations (see the Appendix)

is also such that the orthogonal complement ANLf (�)? also does not exist. Hence for larger

values of T; the NL moment conditions also do not identify �:
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AS and Sys conditions The expressions of �jf (�; ��
2), Ajf (�) and A

j
f (�)? when T = 3; 4

for the AS and Sys moment conditions result from stacking those of the Dif and NL and Dif

and Lev moment conditions respectively:

AS: T = 4 �ASf (�; ��2) =

0BBBB@
0

0

0

(1� �)
�
�23 � ��22

�

1CCCCA ; AASf (�) =

0BBBB@
�� 1 0

0 �� 1

0 �� 1

�(� � 1) 1� � 0

1CCCCA ;

AASf (�)? =

0BBBB@
� � 1 0

0 �1
0 1

1 0

1CCCCA :

Sys: T = 3 �Sysf (�; ��2) = (1� �)
 

0

�22

!
; ASysf (�) =

 
�� 1

1� � 0

!
;

ASysf (�)? does not exist.

Sys: T = 4 �Sysf (�; ��2) = (1� �)

0BBBBBB@
0

0

0

�22
�23

1CCCCCCA ; ASysf (�) =

0BBBBBB@
�� 1 0

0 �� 1

0 �� 1

1� � 0 0

0 1� � 0

1CCCCCCA ;

ASysf (�)? =

0BBBBBB@
� � 1 0

0 �1
0 1

�� 0

1 0

1CCCCCCA :

(36)

When T = 3; ASysf (�) is a full rank square matrix so its orthogonal complement does

not exist. It implies that the Sys moment conditions do not identify � when T = 3: When

T = 4, the orthogonal complement of Ajf (�); A
j
f (�)?; has rank larger than zero for both AS

and Sys moments. Furthermore, the speci�cation of �jf (�; ��
2) for the AS and Sys moment

conditions in (36) is such that Ajf (�)
0
?�

j
f (�; ��

2) 6= 0 for all � 6= �0;N , while it is not di¢ cult to

see that limN!1Ajf (�0;N )
0
?�

j
f (�0;N ; ��

2) = 0 which just re�ects that the moment conditions

hold at the true value. This implies that although the AS and Sys sample moments diverge

in the direction of Ajf (�); so that part cannot be used to identify �; the AS and Sys sample

moments identify � by their part which is spanned by the orthogonal complement of Ajf (�):

The expressions of �jf (�; ��
2) and Ajf (�) in the proof of Theorem 1 in the Appendix show that

this argument extends to all values of T larger than three.

Our preceding analysis is summarized by Corollary 1:
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Corollary 1 (Identi�cation of �). Under Assumptions 1 and 2a, � is identi�ed by the

AS and Sys moment conditions when T exceeds three. Furthermore, � is not identi�ed by

the Dif, Lev and NL moment conditions separately for any value of T and the Sys moment

conditions when T equals three.

Corollary 1 proves stylized facts 1-4 from Section 3, which are illustrated by Panels 1-2.

It also shows that the identi�cation from the Lev moment condition remains problematic for

larger values of T but the Sys and AS moment conditions generally identify � for values of T

larger than three.

Regarding the NL moments we �nd that they are not robust to all settings of nuisance

parameters like the variance of the initial observations. Alvarez and Arellano (2004) and

Kruiniger (2013) have shown that, when the data, including the initial observation, have

�nite second moments and the autoregressive parameter equals one, � is identi�ed by the NL

and, hence, the AS moment conditions if and only if T � 4: Furthermore, if T � 4, � is only
locally identi�ed when the unconditional variances of the errors change at a constant rate of

growth between t = 2 and t = T � 1 and only second-order but globally identi�ed when the
unconditional variances between t = 2 and t = T � 1 are equal. Unlike Alvarez and Arellano
(2004) and Kruiniger (2013), our limiting sequence for the variance of the initial observations

allows for unbounded values. Theorem 1 then shows that identi�cation by the NL moment

conditions is lost when its convergence rate accords with (23). The intuition is that the NL

moment conditions are a product of levels and �rst di¤erences so they are unlikely to identify

the parameters in limit sequences where the variance of the initial observations increases

faster than the sample size.

Theorem 1 can be used to construct the non-standard limiting behavior of one and two

step GMM estimators that result from the di¤erent moment conditions. These are similar

to the non-standard results in e.g. Madsen (2003) and Kruiniger (2009) so we, for reasons of

brevity, refrain from stating them.

Robust sample moments Theorem 1 shows that the identi�cation of � when the variance

of the initial observations is large results from the part of the (AS or Sys) moment conditions

that lies in the direction of Ajf (�)?. Expressions of the orthogonal complements of A
j
f (�) for

T = 4 and 5 for the AS and Sys moment conditions are stated in (36). They can be speci�ed

(see the Appendix) as

Ajf (�)? = (G
j
f;T (�)

... Gj2;T ); (37)

where T indicates the number of time periods and Gj2;T is such that G
j0
2;T�

j
f (�; ��

2) = 0 for

all �: Furthermore, Gjf;T (�) is the only part of A
j
f (�)? that depends on �. The orthogonal

complements are then such that the resulting, what we refer to as, robust moment conditions
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are quadratic in � :

gjf;T (�) = Af (�)
j0
?f

j
N (�) = a�2 + b� + d; (38)

where the expressions for a; b and d are constructed in the Appendix:

T=4: Sys a = 1
N

PN
i=1

�
(�yi2)

2

0

�
; b = � 1

N

PN
i=1

�(yi3�yi1)2
�yi2�yi3

�
; d = 1

N

PN
i=1

�(yi4�yi1)�yi3
�yi2�yi4

�
:

AS a = 1
N

PN
i=1

�
(yi3�yi1)�yi2

0

�
; b = � 1

N

PN
i=1

�(yi3�yi1)�yi3+(yi4�yi1)�yi2
�yi2�yi3

�
;

d = 1
N

PN
i=1

�(yi4�yi1)�yi3
�yi2�yi4

�
:

T=5: Sys a = 1
N

PN
i=1

0BBBBBB@
(�yi2)

2

(yi3 � yi1)�yi3
(�yi3)

2

0

0

1CCCCCCA ; b = � 1
N

PN
i=1

0BBBBBB@
(yi3 � yi1)2

(yi4 � yi1)(yi4 � yi2)
(yi4 � yi2)2

�yi2�yi4

�yi3�yi4

1CCCCCCA ;

d = 1
N

PN
i=1

0BBBBBB@
(yi4 � yi1)�yi3
(yi5 � yi1)�yi4
(yi5 � yi2)�yi4
�yi2�yi5

�yi3�yi5

1CCCCCCA :

AS a = 1
N

PN
i=1

0BBBBBB@
(yi3 � yi1)�yi2
(yi4 � yi1)�yi3
(yi4 � yi2)�yi3

0

0

1CCCCCCA ; b = � 1
N

PN
i=1

0BBBBBB@
(yi4 � yi1)�yi2 + (yi3 � yi1)�yi3
(yi4 � yi1)�yi4 + (yi5 � yi1)�yi3
(yi4 � yi2)�yi4 + (yi5 � yi2)�yi3

�yi2�yi4

�yi3�yi4

1CCCCCCA ;

d = 1
N

PN
i=1

0BBBBBB@
(yi4 � yi1)�yi3
(yi5 � yi1)�yi4
(yi5 � yi2)�yi4
�yi2�yi5

�yi3�yi5

1CCCCCCA ;

and similar speci�cations of a; b and d result for larger values of T:

It is interesting to see that these robust moments only depend on di¤erences of the data

so the initial observations get di¤erenced out. This explains why these moments are robust to

the variance of the initial observations. When the autoregressive parameter equals one and in

the case of iid normal errors and time series homoskedasticity, Ahn and Thomas (2006) and

Kruiniger (2013) show that the maximum likelihood estimator of Hsiao et al. (2002) and the

random e¤ects estimator of Anderson and Hsiao (1982) have the same limiting distributions.

These results show that, similar to our �ndings, moment conditions involving levels of the
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data are redundant in this setting and only moment conditions using di¤erences of the data,

like our robust moment conditions, are informative.

Large individual e¤ect variance So far we have focused on highly persistent panel data

resulting from a large autoregressive parameter. However, the representation theorem for

the moment conditions and their derivatives in Theorem 1 applies to any setting where the

variance of the initial observations gets large. The expression of the initial observation in

(7) shows that its variance becomes large when either the variance of the initial disturbance

term, ui1; or the individual speci�c e¤ect, �i; becomes large. Theorem 1 focusses on a large

variance that results from the autoregressive parameter converging to one. Theorem 1 does,

however, extend to the case where jointly with the sample size, the individual speci�c e¤ect

variance becomes large in such a manner that Assumption 2a holds. This drifting sequence

applies to any value of the autoregressive parameter so the resulting identi�cation issues are

then no longer con�ned to the unit root value. Hence, they also apply to the cases with only

moderate autoregressive dynamics, but a large variance of the unobserved heterogeneity. The

robust moments in (38) also apply to this case. Kruiniger (2002) extensively analyzes the

setting of a large variance of the individual speci�c e¤ects. He shows that only moment

conditions based on di¤erences of the data yield a consistent estimator so moment conditions

involving levels are redundant. He also constructs the set of optimal moment conditions

assuming time series homoskedasticity. Our robust moments (38) extend his set of optimal

moment conditions since they remain valid under a large variance of the individual speci�c

e¤ect and also allow for time series heteroskedasticity.

4 KLM test and robust sample moments

Theorem 1 establishes identi�cation results for the AS and Sys moment conditions, which are

based on the robust sample moments. It is not clear, however, how an identi�cation robust

test procedure makes use of it. In this section, we show that the KLM test based on the

original AS or Sys moment conditions just uses the robust sample moments when only the

latter contain identifying information on the autoregressive parameter. We show that, under

large variances of the initial observation and when the true value of � is close to one, the KLM

test based on either the AS or Sys moment conditions exploits the identifying information

from the robust moment conditions in an optimal manner. For practical purposes, this implies

that we do not have to explicitly use the robust sample moments since they are implicitly

used when conducting a KLM test using AS or Sys moment conditions.

We obtain the above result in four steps. First, we characterize the limit behavior of the

robust sample moments. Second, we use it to determine asymptotic sequences for the true

and hypothesized values so the power properties of the corresponding identi�cation robust
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test statistics when using the robust moments are not trivial and stay informative. Third, we

construct the largest (infeasible) discriminatory power that can be obtained from combining

the robust moments. Fourth, we show that it coincides with the rejection frequency of KLM

tests using either AS or Sys moment conditions. Summarizing, the KLM test based on

original AS or Sys moment conditions implicitly resorts to using the robust sample moments

in an optimal manner when only these contain information on �:

4.1 Large sample behavior of robust sample moments

To construct the limiting behavior of the robust sample moments for settings where only they

contain information on �; we �rst state the probability limits of the quantities a; b and d in

(38) under Assumption 1. The components that comprise the robust sample moments do not

depend on the variance of the initial observations so they are not a¤ected by Assumption

2. Since we analyze the behavior when the true value �0;N is converging to one, we specify

this convergence behavior of �0;N so it is dominated by the random components present in

the limit behavior of a; b and d which are of order Op(N� 1
2 ): This then implies that �0;N

converges rather rapidly to one with a convergence rate that is faster than N� 1
2 : Hence, �0;N

is considered to be in the close neighborhood of one.

Theorem 2. Under Assumption 1, the limit behavior of the di¤erent components of gjf;T (�),

j = AS; Sys; for �0;N = 1 + l
N� with l a �xed constant, l < 0; and � > 1

2 ; is characterized

by:

T=4: a =
��22
0

�
+Op(N

� 1
2 ); b = �

��22+�23
0

�
+Op(N

� 1
2 ); d =

��23
0

�
+Op(N

� 1
2 ):

T=5: a =

0BBBBBB@
�22
�23
�23
0

0

1CCCCCCA+Op(N
� 1
2 ); b =

0BBBBBB@
�22 + �

2
3

�23 + �
2
4

�23 + �
2
4

0

0

1CCCCCCA+Op(N
� 1
2 ); d =

0BBBBBB@
�23
�24
�24
0

0

1CCCCCCA+Op(N
� 1
2 ):

Proof. see the Appendix.

Although AS and Sys robust moments are di¤erent, Theorem 2 implies that under As-

sumption 1 the probability limits of a, b and d are identical. Furthermore, Theorem 2 implies

that the Jacobian of the robust moment equation (38) is of full column rank when �2t 6= �2

for at least one value of t = 2; :::; T . This ful�lls one of the su¢ cient conditions for standard

asymptotic theory for GMM inference based on the robust sample moments, which since the

other su¢ cient conditions can be shown to hold as well, applies for these settings.

26



4.2 Asymptotic sequence for the hypothesized value

We want to compare tests of H0 : � = �� using the robust sample moments to KLM tests

of H0 using the original AS and Sys moments for settings where the identi�cation can be

problematic, which occurred for true values of � close to one and large variances of the initial

observations. Because we want to analyze local asymptotic power while the true value �0;N
is converging to one according to �0;N = 1 + l

N� , we also consider a local to unity drifting

sequence for the hypothesized value ��; which we denote by �(e) with e < 0 the localizing

parameter. Although less common in asymptotic power analysis, the advantage of a drifting

hypothesized value is that our results hold for a range of hypothesized values.

The asymptotic sequence �(e) is such that the behavior of the identi�cation robust tests

is not diverging and informative about �; when the true value �0;N is converging to one.

Theorem 3 establishes the particular rate at which �(e) converges to one which makes these

conditions hold. Note that there is a slight abuse of notation as from now on we suppress the

superscript j in gjf;T (�(e)), j = AS; Sys; which is inconsequential for the results to follow.

Theorem 3. Under Assumption 1, �0;N = 1 + l
N� with l a �xed constant, l < 0; and

� > 1
2 ; the robust moments

p
Ngf;T (�(e)) are informative about � and converge to a bounded

in probability, non-degenerate random variable under the following local to unity drifting

sequence �(e):

1. �(e) = 1 + e
4pN

in the case of �2t = �2; t = 2; : : : T;

2. �(e) = 1 + ep
N
when �2t 6= �2; for at least one value of t; t = 2; : : : T � 1;

with e < 0 a �nite constant.

Proof. see the Appendix.

The quartic root convergence rate in Theorem 3.1 results since the Jacobian of the robust

moment equation (38) is then equal to zero but the Hessian is not. It is thus a setting

of so-called second order identi�cation with �rst order underidenti�cation. Estimators then

generally have quartic root convergence rates, see e:g: Dovonon and Renault (2013), Dovonon

and Hall (2018) and Dovonon et al: (2020). A quartic root convergence rate for estimators in

dynamic panel data models is also found by Ahn and Thomas (2006) and Kruiniger (2013).

The quartic root convergence rate for the robust sample moments results from specifying

�(e) = 1 + e
N1=4 and �

2
t = �2; t = 2; : : : T: All elements of the robust sample moments which

are linear in e then cancel out in the limit. We are then left with a quadratic term in e and

components that converge at the rate 1p
N
. A quartic root convergence rate makes all these

components of the same order of magnitude. Theorem 3 shows that error variances which

are constant over time, �2t = �2; t = 2; : : : T; lead to this slow convergence rate.
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4.3 Largest rejection frequencies of robust sample moments

To show that the KLM test of H0 using AS and Sys moment conditions just uses the robust

sample moments when only these contain information on �; we use the largest rejection

frequencies that result in such instances from the robust sample moments. To obtain these

largest rejection frequencies, we �rst consider the GMM-AR test of Hp : �(e) = 1+ e
4pN

using

the robust sample moments, which is speci�ed as:

GMM-AR(�(e)) = Ngf;T (�(e))
0V̂gg(�(e))�1gf;T (�(e)); (39)

with gf;T (�(e)) the moments in (38) evaluated at �(e) = 1 + e
4pN

and V̂gg(�(e)) the (Eicker-

White) covariance matrix estimator of the covariance matrix of gf;T (�(e)): For T = 4 and

5:7

T = 4 : gASf;T=4(�(e)) =

 
1 ��(e)
0 1

!
gSysf;T=4(�(e))

T = 5 : gASf;T=5(�(e)) =

0BBBBBB@
1 ��(e)=(1� �(e)) �(e)=(1� �(e)) 0 0

0 1 0 0 ��(e)
0 0 1 0 ��(e)
0 0 0 1 0

0 0 0 0 1

1CCCCCCA gSysf;T=5(�(e))

so GMM-AR(�(e)) is equivalent for the AS and Sys moment conditions since the invertible

matrix by which gSysf;T (�(e)) has to be pre-multiplied to obtain g
AS
f;T (�(e)) cancels out in GMM-

AR(�(e)): This result can be extended to larger values of T:

Theorem 4. Under Assumption 1, �0;N = 1+ l
N� with l a �xed constant, l < 0; and � > 1

2 ;

�2t = �2; t = 2; : : : T; the large sample distribution of the GMM-AR statistic (39) for testing

H p : �(e) = 1 +
e
4pN

; in a sample of size N is characterized by

�2(�(N); pmax); (40)

with �(N) = (e�)4
�
�p
0

�0
(B(N)0VabdB(N))

�1��p
0

�
; p the number of columns Gf;T (�); so when

T = 4; p = 1 and when T = 5; p = 3; and pmax the number of elements of gf;T (�(e)), so,

when T = 4; pmax = 2; while pmax = 5 for T = 5;

B(N) = (�3 
 Ipmax) + e
4pN

h
(2 + e

4pN
)(e1;3 
 Ipmax) + (e2;3 
 Ipmax)

i
; (41)

Vabd the covariance matrix of a; b and d, Ipmax the pmax� pmax dimensional identity matrix,
e1;3 and e2;3 the �rst and second 3�1 dimensional unity vectors and �2(�; pmax) a non-central
�2 distribution with non-centrality parameter � and pmax degrees of freedom.

7We thank an anonymous referee for showing this.
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Proof. see the Appendix.

The expression of the large sample distribution in Theorem 4 depends on the sample size.

Given the quartic root convergence rate, convergence to the limiting distribution is very slow

so it is important for the accuracy of the approximation of the �nite sample distribution to

incorporate higher order components. The proof of Theorem 4 in the Appendix therefore

from the outset considers all higher order components of gf;T (�(e)) in order to construct a

large sample approximation of the distribution of GMM-AR(�(e)):

To obtain the maximal rejection frequencies using the robust sample moments, we use

a (infeasible) weighted average of the moment equations in gf;T (�(e)) where the weights are

chosen such that the non-centrality parameter equals the one of the non-central �2 limiting

distribution of the GMM-AR statistic while the degrees of freedom is equal to one (i:e: the

number of elements of �). This value of the non-centrality parameter is also the maximal one

that can be obtained using a weighted average of the robust sample moments.

Theorem 5. Under Assumption 1, �0;N = 1+ l
N� with l a �xed constant, l < 0; and � > 1

2 ;

�2t = �2; t = 2; : : : T; an optimal (infeasible) GMM-AR test of H p : �(e) = 1 +
e
4pN

that uses

a weighted average of the robust sample moments can be constructed that has approximately

a

�2(�(N); 1); (42)

distribution in large samples of size N .

Proof. see the Appendix.

The GMM-AR statistics in Theorems 4 and 5 both have non-central �2 distributions with

the same non-centrality parameter so the one with the smallest number of degrees of freedom,

i.e. the statistic in Theorem 5, has the largest power.

Figure 4 illustrates Theorem 5 and shows the maximal rejection frequencies based on

combining the robust sample moments based on either AS or Sys moment condition in a

GMM-AR test8 for T = 4 and 5: It uses DGP 1 from Section 3 with a true value of � which

is very close to one (0.99) and a large value of �2c (ten) compared to �
2 (one), which ampli�es

the variance of the initial conditions. The DGP thus satis�es mean stationarity (7)-(9) and

also time series homoskedasticity, i:e: �2t = �2 for t = 2; : : : ; T . We use N = 2000, a relatively

large value and test for a wide range of values for �, which together withN provides a mapping

to the constant e (= 4
p
N(� � 1)) in Figure 4 (horizontal axis). The usual power curve, as

shown earlier in the Figures in Panels 1 and 2, reports the rejection frequencies of tests of the

hypothesized parameter value as a function of the parameter value used in the DGP where

the data is simulated from. Figure 4, however, reports for a �xed parameter value equal

8We use the covariance matrix estimator for each simulated data set to compute the GMM-AR statistics.

29



to one in the DGP used to simulate the data, the rejection frequencies as a function of a

varying localizing parameter e and, hence, autoregressive parameter �(e); under the tested

null hypothesis. The rejection frequencies in Figure 4 thus report those observed at one for

a range of the usual power curves where the tested parameter values correspond with those

on the horizontal axes in Figure 4.

Because of the equivalence of the GMM-AR test for the AS and Sys robust moments, the

rejection frequencies are identical for the AS and Sys based robust sample moments and only

di¤er over T: Any remaining di¤erences in Figure 4 are due to sampling noise.

Figure 4. Rejection frequencies of GMM-AR tests of Hp : �(e) = 1 +
e
4pN

using weighted robust sample moments
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Note: 5% signi�cance level, true value of � is 0.99, N = 2000, Sys & T = 4 (dashed), AS &

T = 4 (dotted), Sys & T = 5 (solid), AS & T = 5 (dash-dotted).

4.4 Large sample behavior of the KLM test

Finally, we construct the large sample distribution of KLM tests of Hp : �(e) = 1+ e
4pN

using

AS and Sys moment conditions when �0;N accords with the drifting sequences in Assumptions

1 and 2a so only the robust sample moments contain information on �:

Theorem 6. Under Assumptions 1 and 2a, �0;N = 1 + l
N� with l a �xed constant, l < 0;

and � > 1
2 ; �

2
t = �2; t = 2; : : : T; the large sample distribution of the KLM statistic using the

AS or Sys moments for testing the hypothesis H p : �(e) = 1 +
e
4pN

is characterized by

KLM(�(e)) � �2(�(N); 1) (43)

with �(N) de�ned in Theorem 4 :

Proof. see the Appendix.
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Under Assumptions 1 and 2a, Theorem 1 implies that the GMM sample moments diverge

in one direction and converge in another one. Identical to tests for cointegration, Theorem 6

shows that the diverging parts of the GMM sample moments cancel out in the large sample

distribution of the KLM test so it only contains elements from the converging part of the

GMM sample moments. The proof of the large sample distribution of the KLM test is

therefore rather elaborate since this has to be shown for each of the di¤erent components of

the KLM test.

Theorem 6 shows that the large sample distribution of the KLM test using AS or Sys mo-

ment conditions when only the robust sample moments contain information on � is identical

to the limiting distribution of the GMM-AR test that optimally combines the robust sample

moments for these settings. It proves that KLM tests using the AS and Sys moment condi-

tions then only use the robust sample moments. It is similar to what happens in cointegration

where since the cointegrating vector and stochastic trends operate orthogonally, a likelihood

ratio test on the cointegration vector also does not depend on the stochastic trends, see e.g.

Johansen (1991).

Theorem 6 is illustrated by the Figures in Panel 5, which show the rejection frequencies

of 5% signi�cance tests using a KLM test of Hp : �(e) = 1 + e
4pN

with AS and Sys moment

conditions when T equals four, Figure 5.1, and �ve, Figure 5.2, respectively. It uses the same

DGP as for Figure 4. Also identical to Figure 4, the rejection frequencies in Panel 5 report

the rejection frequencies when using a �xed parameter value in the DGP where we simulate

the data from, as a function of a varying parameter value under the tested hypothesis.

Panel 5 shows, for both T = 4 and T = 5, that the rejection frequencies that result

from using the KLM test with either AS or Sys moment conditions are equal to the largest

rejection frequencies, that can be obtained with the robust moments when only they contain

information on �. It illustrates that the robust sample moments are (implicitly) used when

you conduct KLM tests with AS or Sys moment conditions. Hence, in practice one can just

use AS or Sys moment conditions in the construction of the KLM test, i.e. there is no need

to switch to the robust sample moments.

Panel 5 also provides a visual proof of stylized fact 5 from Section 3, i.e. rejection

frequencies for the KLM test using AS or Sys moment conditions are almost identical when

the true value of � is close to one and for large variances of the initial observations, and that

it is not speci�c for the tested values used there but holds generally for di¤erent tested values

of �:
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Panel 5: Rejection frequencies of KLM tests of Hp : �(e) = 1 +
e
4pN

using AS (dashed)

and Sys (dash-dotted) and GMM-AR tests using (infeasible) optimal weighted average

of robust sample moments (solid line)
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Figure 5.1: T = 4 Figure 5.2: T = 5

Note: 5% signi�cance level, true value of � is 0.99, N=2000.

5 Conclusions

We have analyzed GMM inference for dynamic panel data models involving highly persis-

tent panel data. We show that the Dif, Lev and NL moment conditions separately do not

identify the parameters in dynamic panel data models for a general number of time periods.

This results from the divergence of the initial observations for some plausible data generating

processes involving highly persistent panel data. When there are more than three time peri-

ods, the AS and Sys moment conditions, however, do lead to identi�cation. The identi�cation

based on the AS and Sys moment conditions for the problematic cases of divergent initial

observations results from so-called robust sample moments. They are combinations of either

the AS or Sys sample moments and do not depend on the initial observations.

Despite the positive identi�cation results for AS and Sys moment conditions, conventional

inference based on two step GMM estimators is not valid since these estimators have non-

standard limiting distributions near the unit root. Similar results hold for two step GMM

estimators based on our robust sample moments. We have therefore analyzed the large

sample properties of identi�cation robust GMM test procedures. These test statistics are

size correct, easy to implement and have been used in a variety of models analyzed using

GMM. We show that the identi�cation robust KLM statistic based on the AS and Sys sample

moments implicitly resorts to using the robust sample moments when only the latter contain
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identifying information.

Based on the theoretical analysis and numerical results a number of remarks can be

made regarding the implementation of GMM inference for applied linear dynamic panel data

analysis. First, statistical inference, i.e. hypothesis testing and con�dence intervals, should

be based on identi�cation robust tests, like, for example, the KLM or GMM-AR test. The

non-standard limiting behavior of the two step GMM coe¢ cient estimator makes the use

of conventional GMM inference hazardous in applied research when there are identi�cation

issues. Second, one should always use either AS or Sys moment conditions since these deliver

identi�cation under more general conditions when T > 3: An advantage of the AS moments

is that they are valid under less restrictive assumptions than the Sys moments. Third, when

mean stationarity applies, the Sys moments are preferred. Although AS and Sys moments

contain the same amount of identifying information when � is close to one and the variance

of the initial observations is large, in practice the opposite may well be the case if one is

not close to the unit root (or if time series heteroskedasticity is present). This is shown, for

example, by our simulated KLM power curves in Section 2. Fourth, the original AS or Sys

moments should be used in an identi�cation robust GMM test statistic and not the implied

robust sample moments. Although only the latter preserve identi�cation when the variance

of the initial observations is large, we have shown that the identi�cation robust KLM test

based on the AS or Sys moments implicitly uses the robust sample moments.

Finally, for expository purposes we have only analyzed the �rst-order autoregressive panel

data model. The extension to panel data models with multiple endogenous regressors, e.g.

dynamic models with additional endogenous regressors, is an important area for future re-

search.
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Appendix. Speci�cation of GMM sample moments and proofs

Speci�cation of sample moment functions For the Dif moment conditions in (4), kDif
equals 12(T � 2)(T � 1) while f

Dif
i (�) and qDifi (�) read

fDifi (�) = ZDifi 'Difi (�)

qDifi (�) = �ZDifi �y�1;i;

with 'Difi (�) = (�yi3 � ��yi2 : : :�yiT � ��yiT�1)0; �y�1;i = (�yi2 : : :�yiT�1)0 and

ZDifi =

0BBBBBBB@

yi1 0 : : : 0 0

0
. . . 0

0 0 : : : 0

0BB@
yi1
...

yiT�2

1CCA

1CCCCCCCA
: 12(T � 1)(T � 2)� (T � 2):

For the Lev moment conditions in (5), kLev equals T � 2 while the sample moment functions
are

fLevi (�) = ZLevi 'Levi (�)

qLevi (�) = �ZLevi y�1;i;

with 'Levi (�) = (yi3 � �yi2 : : : yiT � �yiT�1)0; y�1;i = (yi2 : : : yiT�1)0; and

ZLevi =

0BB@
�yi2 0 : : : 0 0

0
. . . 0

0 0 : : : 0 �yiT�1

1CCA : (T � 2)� (T � 2):

For the NL moment conditions in (10), kNL equals T � 3 while the sample moment functions
can be speci�ed as

fNLi (�) = ZNLi (�)'NLi (�)

qNLi (�) =
�
@
@�Z

NL
i (�)

�
'NLi (�) + ZNLi (�)

�
@
@�'

NL
i (�)

�
;

with 'NLi (�) = ((yi4 � �yi3) : : : (yiT � �yiT�1))0 and

ZNLi (�) =

0BB@
(�yi3 � ��yi2) 0 : : : 0 0

0
. . . 0

0 0 : : : 0 (�yiT�1 � ��yiT�2)

1CCA : (T � 3)� (T � 3):

The sample moments for the AS moment conditions result by just stacking the appropriate

sample moments stated above so kAS equals 12(T � 1)(T � 2) + T � 3. In a similar manner,
the Sys sample moments result so kSys equals 12(T + 1)(T � 2).
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Lemma 1. We state some intermediate results, which involve the di¤erent terms in the

sample moments and their derivatives. Assumption 1 implies the following:

i: 1
N

PN
i=1(�0;N � 1)yi1ui1 = �d2 � �1;Np

N
 c + op(1);

ii: 1
N

PN
i=1(1� �0;N )ui1uit !p 0; t > 1;

iii: 1
N

PN
i=1 u

2
it !p �2t ; t > 1;

iv: 1
N

PN
i=1�yit�yit !p �2t ; t > 1;

v: 1
N

PN
i=1�yit�yis !p 0; t; s > 1; t 6= s:

vi:
hN (�0;N )p

N

PN
i=1

0BB@
yi1ui2
...

yi1uiT

1CCA!
d

 ;

with  = ( 2 : : :  T )
0 � N(0;diag(�22; : : : ; �

2
T )) independent from  c � N(0; �2c); �

2
c =var(ci):

Proof of Lemma 1. i. Under mean stationarity, we have:

1
N

PN
i=1(�0;N � 1)yi1ui1 = 1

N

PN
i=1(�0;N � 1)u2i1 + 1

N

PN
i=1(�0;N � 1)ui1�i:

Assumption 1c implies that (1 � �0;N )
1
2ui1 is a random variable with �nite fourth moments

so a law of large numbers applies:

1
N

PN
i=1(�0;N � 1)u2i1 !p �d2:

Since ci = (1� �0;N )�i; we can specify:

1
N

PN
i=1(�0;N � 1)ui1�i = � 1

N

PN
i=1 ui1ci = �

�1;Np
N

1p
N

PN
i=1

ui1
�1;N

ci;

because
1p
N

PN
i=1

ui1
�1;N

ci !
d
 c;

with  c independent of  j ; j = 2; : : : ; T; as ci is independent from uij ; j = 2; ; : : : ; T: Upon

combining, we obtain:

1
N

PN
i=1(�0;N � 1)yi1�i = �d2 �

�1;Np
N
 c + op(1):

ii. Since uit are independently distributed, t = 1; : : : ; T; and (1� �0;N )
1
2ui1 is a random

variable with �nite fourth moments, a law of large numbers applies:

1
N

PN
i=1(1� �0;N )ui1uit !p 0; t > 1:

iii. Finite fourth moments of uit implies that a law of large numbers applies:

1
N

PN
i=1 u

2
it !p �2t ; t > 1:
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iv. Mean stationarity implies �yi2 = ui2 + (�0;N � 1)ui1; so

1
N

PN
i=1�yi2�yi2 =

1
N

PN
i=1 u

2
i2 + (�0;N � 1) 1N

PN
i=1 (�0;N � 1)u2i1 + 2

N

PN
i=1 (�0;N � 1)ui1ui2:

Because 1
N

PN
i=1(1� �0;N )u2i1 !p d2 and (1� �0;N ) !

N!1
0, we have

(�0;N � 1) 1N
PN

i=1 (�0;N � 1)u2i1 !p 0;

which shows that (�0;N � 1) 1N
PN

i=1 (�0;N � 1)u2i1 = op(1). Furthermore, since both (�0;N � 1)
1
2 ui1

and ui2 have �nite fourth moments and are independent, 2
N

PN
i=1 (�0;N � 1)ui1ui2 = op(1),

which implies that
1
N

PN
i=1�yi2�yi2 =

1
N

PN
i=1 u

2
i2 + op(1):

Finally, we have E
�
u2i2
�
= �22 and �nite fourth moment, hence

1
N

PN
i=1�y

2
i2 !p �22:

Along the same lines as the above this can be shown to hold for other values of t as well.

v. Similar to the above, when substituting for �yi2 and �yi3 we have

1
N

PN
i=1�yi2�yi3 =

1
N

PN
i=1 ui2ui3 + (�0;N � 1) 1N

PN
i=1 u

2
i2 + �0;N (�0;N � 1) 1N

PN
i=1 ui1ui2+

+(�0;N � 1) 1N
PN

i=1 ui1ui3 + (�0;N � 1)2 1N
PN

i=1 ui1ui2 + �0;N (�0;N � 1)2 1N
PN

i=1 u
2
i1:

Similar derivations as before show that 1
N

PN
i=1 �0;N (�0;N � 1)

2 u2i1 !p 0; 1
N

PN
i=1(�0;N �

1)2ui1ui2 !
p
0; 1N

PN
i=1(�0;N�1)ui1ui3 !p 0;

1
N

PN
i=1 �0;N (�0;N � 1)ui1ui2 !p 0;

1
N

PN
i=1(�0;N�

1)u2i2 !p 0,
1
N

PN
i=1 ui2ui3 !p 0, so all these terms are op(1) and have probability limit 0, im-

plying that
1
N

PN
i=1�yi2�yi3 !p 0:

Along similar lines this can be proven to extend to the �rst di¤erences at other time periods.

vi. Since hN (�0;N )�2 = var(yi1); the random variable hN (�0;N )yi1 has variance equal to

one. Since yi1 and uit; t > 1; are independent, because of Assumption 1e, E(hN (�0;N )yi1uit) =

0. Furthermore, Assumption 1d implies that V ar (hN (�0;N )yi1uit) = �2t , which is �nite. A

central limit theorem therefore applies:

hN (�0;N )p
N

PN
i=1

0BB@
yi1ui2
...

yi1uiT

1CCA = 1p
N

PN
i=1

0BB@
hN (�0;N )yi1ui2

...

hN (�0;N )yi1uiT

1CCA!
d

 ;

with  = ( y1iui2 : : :  y1iuiT )
0 a T � 1 dimensional, mean zero normal random vector. As-

sumption 1e states that ui1=�1;N ; ui2 : : : ; uiT and ci are independently distributed within in-

dividuals and over the di¤erent individuals. It implies that ui1ci and yi1uit are uncorrelated.
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Since  and  c are the limits of the scaled sums of yi1uit and ui1ci, they are uncorrelated

normal random variables and therefore independent. As a result of this, the T �T covariance
matrix of  and  c is diagonal:

V(   c)(
 
 c
) = var( ; c) =

 
V  V  c
V c V c c

!

= E

2666664limN!1
1
N

PN
i=1

0BBBB@
hN (�0;N )yi1ui2

...

hN (�0;N )yi1uiT
ui1
�1;N

ci

1CCCCA
0BBBB@

hN (�0;N )yi1ui2
...

hN (�0;N )yi1uiT
ui1
�1;N

ci

1CCCCA
03777775

= E

2666664limN!1

0BBBB@
hN (�0;N )yi1ui2

...

hN (�0;N )yi1uiT
ui1
�1;N

ci

1CCCCA
0BBBB@

hN (�0;N )yi1ui2
...

hN (�0;N )yi1uiT
ui1
�1;N

ci

1CCCCA
03777775

= diag(�22 : : : �
2
T �

2
c):

Proof of Theorem 1. T=3. Under mean stationarity we have

�yi2 = ui2 + (�0;N � 1)ui1
�yi3 = ui3 + (�0;N � 1)ui2 + �0;N (�0;N � 1)ui1:

Substituting these expressions, we can specify the Dif sample moment and its derivative as

fDifN (�) = 1
N

PN
i=1 (yi1�yi3 � �yi1�yi2)

= 1
N

PN
i=1 yi1ui3 + (�0;N � 1� �) 1N

PN
i=1 yi1ui2 + (�0;N � �) 1N

PN
i=1(�0;N � 1)yi1ui1;

qDifN (�) = � 1
N

PN
i=1 yi1�yi2

= � 1
N

PN
i=1 yi1ui2 � 1

N

PN
i=1(�0;N � 1)yi1ui1:

Combining convergence results stated in Lemma 1, the large sample behavior of the Dif

sample moment and derivative can thus be characterized by

fDifN (�) = 1
hN (�0;N )

p
N
[( 3 � � 2)� (1� �)hN (�0;N )�1;N c]� (1� �) d2 + op (1) ;

qDifN (�) = � 1
hN (�0;N )

p
N
[ 2 � hN (�0;N )�1;N c] + d2 + op (1) ;

where we note that hN (�0;N )�1;N � 1; since var(yi1) �var(ui1); from which it is readily seen

that
ADiff (�) =

�
�� 1

�
; �Diff (�; ��2) = 0;

ADifq (�) =
�
�1 0

�
; �Difq (�; ��2) = 0:

Regarding the Lev moment, using

yi2 = �yi2 + yi1

yi3 = �yi3 +�yi2 + yi1;
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we have

fLevN (�) = 1
N

PN
i=1(yi3 � �yi2)�yi2

= 1
N

PN
i=1 (�yi3 + (1� �)�yi2)�yi2 + (1� �) 1N

PN
i=1 yi1�yi2:

Exploiting mean stationarity and substituting for �yi2 and �yi3; we write

(1� �) 1N
PN

i=1 yi1�yi2 = (1� �) 1N
PN

i=1 yi1ui2 + (1� �) (�0;N � 1) 1N
PN

i=1 yi1ui1;

and using Lemma 1, we have

1
N

PN
i=1 (�yi3 + (1� �)�yi2)�yi2 = (1� �) 1N

PN
i=1 u

2
i2 + op (1) :

Regarding the Lev derivative, we have

qLevN (�) = � 1
N

PN
i=1 yi2�yi2

= � 1
N

PN
i=1�yi2�yi2 � 1

N

PN
i=1 yi1�yi2;

where
1
N

PN
i=1 yi1�yi2 =

1
N

PN
i=1 yi1ui2 + (�0;N � 1) 1N

PN
i=1 yi1ui1;

and
1
N

PN
i=1�yi2�yi2 =

1
N

PN
i=1 u

2
i2 + op (1) :

Therefore, we can write the Lev moment condition and derivative as

fLevN (�) = (1� �)
n
1
N

PN
i=1 u

2
i2 +

1
N

PN
i=1 yi1ui2+

1
N

PN
i=1(�0;N � 1)yi1ui1

o
+ op(1):

qLevN (�) = � 1
N

PN
i=1 u

2
i2 � 1

N

PN
i=1 yi1ui2

� 1
N

PN
i=1(�0;N � 1)yi1ui1 + op(1):

Combining this and other convergence results from Lemma 1, the large sample behavior of

the Lev sample moment and derivative can thus be characterized by

fLevN (�) = (1� �)
n

1
hN (�0;N )

p
N
[ 2 � hN (�0;N )�1;N c] +

�
�22 � d2

�o
+ op (1)

qLevN (�) = � 1
hN (�0;N )

p
N
[ 2 � hN (�0;N )�1;N c]�

�
�22 � d2

�
+ op (1) ;

so this implies that

ALevf (�) = (1� � 0); �Levf (�; ��2) = (1� �)�22;
ALevq (�) = (�1 0); �Levq (�; ��2) = ��22:

From this last result, it is not di¢ cult to see that, under Assumption 2b, we have

1
N

PN
i=1 yi2�yi2 !p �22 � d2:
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The reason for this is that Assumption 2b amounts to hN (�0;N )
p
N =

p
Np

var(yi1)
!

N!1
1 and,

since var(yi1) �var(ui1), it implies that �21;N=N !
N!1

0: Finally, the Sys sample moment and

derivative simply result from stacking the Dif and Lev sample moments and derivatives:

fSysN (�) = 1
N

PN
i=1

 
yi1�yi3 � �yi1�yi2
yi3�yi2 � �yi2�yi2

!
;

qSysN (�) = � 1
N

PN
i=1

 
yi1�yi2

yi2�yi2

!
:

Combining earlier convergence results, the large sample behavior of the Sys sample moment

and derivative can thus be characterized by

fSysN (�) =

 
�� 1

1� � 0

!"
1

hN (�0;N )
p
N

( 
 2

 3

!
� hN (�0;N )�1;N c�2

)
� �2d2

#
+

(1� �)
 

0

�22

!
+ op(1);

qSysN (�) = �
 
1 0

1 0

!"
1

hN (�0;N )
p
N

( 
 2

 3

!
� hN (�0;N )�1;N c�2

)
� �2d2

#
� 

0

�22

!
+ op(1);

from which it is readily seen that

ASysf (�) =

 
�� 1

1� � 0

!
; �Sysf (�; ��2) = (1� �)

 
0

�22

!
;

ASysq (�) =

 
�1 0

�1 0

!
; �Sysq (�; ��2) =

 
0

��22

!
:

T=4. Under mean stationarity, we have

�yi2 = ui2 + (�0;N � 1)ui1
�yi3 = ui3 + (�0;N � 1)ui2 + �0;N (�0;N � 1)ui1
�yi4 = ui4 + (�0;N � 1)ui3 + �0;N (�0;N � 1)ui2 + �20;N (�0;N � 1)ui1:

Substituting these expressions and yi2 = �yi2 + yi1, we can specify the Dif sample moments
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and their derivatives as

fDifN (�) = 1
N

PN
i=1

0B@ yi1�yi3 � �yi1�yi2
yi1�yi4 � �yi1�yi3
yi2�yi4 � �yi2�yi3

1CA
=

0B@ �0;N � 1� � 1 0

(�0;N � �) (�0;N � 1) �0;N � 1� � 1

(�0;N � �) (�0;N � 1) �0;N � 1� � 1

1CA 1
N

PN
i=1

0B@ yi1ui2

yi1ui3

yi1ui4

1CA+
(�0;N � �)(�0;N � 1)

0B@ 1

�0;N

�0;N

1CA 1
N

PN
i=1 yi1ui1 +

1
N

PN
i=1

0B@ 0

0

�yi2(�yi4 � ��yi3)

1CA ;

qDifN (�) = � 1
N

PN
i=1

0B@ yi1�yi2

yi1�yi3

yi2�yi3

1CA
= �

0B@ 1 0 0

�0;N � 1 1 0

�0;N � 1 1 0

1CA 1
N

PN
i=1

0B@ yi1ui2

yi1ui3

yi1ui4

1CA� (�0;N � 1)
0B@ 1

�0;N

�0;N

1CA 1
N

PN
i=1 yi1ui1

� 1
N

PN
i=1

0B@ 0

0

�yi2�yi3

1CA :

The limit behavior of the �rst two terms in each expression has been established before.

Furthermore, Lemma 1 shows that the last term in each expression is op(1). Therefore, the

large Dif sample moment and derivative can be expressed as:

fDifN (�) =

0B@ �� 1 0

0 �� 1

0 �� 1

1CA
264 1

hN (�0;N )
p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�3
9>=>;� �3d2

375+ op(1);

qDifN (�) = �

0B@ 1 0 0

0 1 0

0 1 0

1CA
264 1

hN (�0;N )
p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�3
9>=>;� �3d2

375+ op(1);
from which it is readily seen that

ADiff (�) =

0B@ �� 1 0

0 �� 1

0 �� 1

1CA ; �Diff (�; ��2) =

0B@ 0

0

0

1CA ;

ADifq (�) = �

0B@ 1 0 0

0 1 0

0 1 0

1CA ; �Difq (�; ��2) =

0B@ 0

0

0

1CA :
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After some algebra, we can specify the Lev sample moments and their derivatives as

fLevN (�) = 1
N

PN
i=1

 
yi3�yi2 � �yi2�yi2
yi4�yi3 � �yi3�yi3

!

= 1
N

PN
i=1

 
1� � 0 0

(1� �)(�0;N � 1) 1� � 0

!0B@ yi1ui2

yi1ui3

yi1ui4

1CA+ (1� �)(�0;N � 1) 1

�0;N

!
1
N

PN
i=1 yi1ui1

+(1� �) 1N
PN

i=1

 
�yi2�yi2

�yi3�yi3

!
+ 1

N

PN
i=1

 
�yi3�yi2

(�yi4 + (1� �)�yi2)�yi3

!
;

qLevN (�) = � 1
N

PN
i=1

 
yi2�yi2

yi3�yi3

!

= � 1
N

PN
i=1

 
1 0 0

�0;N � 1 1 0

!0B@ yi1ui2

yi1ui3

yi1ui4

1CA� (�0;N � 1) 1

�0;N

!
1
N

PN
i=1 yi1ui1

� 1
N

PN
i=1

 
�yi2�yi2

�yi3�yi3

!
� 1

N

PN
i=1

 
0

�yi2�yi3

!
:

Using Lemma 1, the large sample behavior of these expressions is equal to:

fLevN (�) =

 
1� � 0 0

0 1� � 0

!264 1

hN (�0;N )
p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�2
9>=>;� �2d2

375+
(1� �)

 
�22
�23

!
+ op(1);

qLevN (�) = �
 
1 0 0

0 1 0

!264 1

hN (�0;N )
p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�2
9>=>;� �2d2

375�
 
�22
�23

!
+ op(1);

so this implies that

ALevf (�) =

 
1� � 0 0

0 1� � 0

!
; �Levf (�; ��2) = (1� �)

 
�22
�23

!

ALevq (�) = �
 
1 0 0

0 1 0

!
; �Levq (�; ��2) = �

 
�22
�23

!
:
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We can specify the NL sample moment and its derivative as

fNLN (�) = 1
N

PN
i=1 (yi4 � �yi3) (�yi3 � ��yi2)

= 1
N

PN
i=1

�
(1� �)(�0;N � � � 1) (1� �) 0

�0B@ yi1ui2

yi1ui3

yi1ui4

1CA+
1
N

PN
i=1(�0;N � 1)(�0;N � �)(1� �)yi1ui1 + (1� �) 1N

PN
i=1 (�yi3�yi3 � ��yi2�yi2)+

1
N

PN
i=1 ((�yi4 + (1� �)�yi2)�yi3 � (�yi4 + (1� �)�yi3)��yi2) ;

qNLN (�) = � 1
N

PN
i=1

�
�0;N � 2� �1 0

�0B@ yi1ui2

yi1ui3

yi1ui4

1CA+ 1
N

PN
i=1(�0;N � 1)(1 + �0;N � 2�)yi1ui1�

1
N

PN
i=1 (�yi3�yi3 + (1� 2�)�yi2�yi2)� 1

N

PN
i=1 (�yi2�yi3 + (�yi4 + (1� 2�)�yi3)�yi2) :

Using Lemma 1, the large sample behavior of these expressions is equal to:

fNLN (�) = 1
N

PN
i=1

�
�(� � 1) 1� � 0

�264 1
hN (�0;N )

p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�2
9>=>;� �2d2

375+
(1� �)

�
�23 � ��22

�
+ op(1);

qNLN (�) = � 1
N

PN
i=1

�
1� 2� 1 0

�264 1
hN (�0;N )

p
N

8><>:
0B@  2

 3

 4

1CA� hN (�0;N )�1;N c�2
9>=>;� �2d2

375�
�23 � (1� 2�)�22 + op(1);

so this implies that:

ANLf (�) =
�
�(� � 1) 1� � 0

�
; �NLf (�; ��2) = (1� �)

�
�23 � ��22

�
ANLq (�) =

�
2� � 1 �1 0

�
; �NLq (�; ��2) = (2� � 1)�22 � �23:

Finally, regarding AS and Sys moment conditions, we simply have

ASysf (�) =

0@ ADiff (�)

ALevf (�)
... 0

1A ; �Sysf (�; ��2) =

 
�Diff (�; ��2)

�Levf (�; ��2)

!
;

ASysq (�) =

 
ADifq (�)

ALevq (�)
... 0

!
; �Sysq (�; ��2) =

 
�Difq (�; ��2)

�Levq (�; ��2)

!
:

AASf (�) =

0@ ADiff (�)

ANLf (�)
... 0

1A ; �ASf (�; ��2) =

 
�Diff (�; ��2)

�NLf (�; ��2)

!
;

AASq (�) =

 
ADifq (�)

ANLq (�)
... 0

!
; �ASq (�; ��2) =

 
�Difq (�; ��2)

�NLq (�; ��2)

!
:
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T=5. Using similar calculations, we obtain:

ADiff (�) =

0BBBBBBBBB@

�� 1 0 0

0 �� 1 0

0 �� 1 0

0 0 �� 1

0 0 �� 1

0 0 �� 1

1CCCCCCCCCA
; �Diff (�; ��2) =

0BBBBBBBBB@

0

0

0

0

0

0

1CCCCCCCCCA
;

ALevf (�) =

0B@ 1� � 0 0 0

0 1� � 0 0

0 0 1� � 0

1CA ; �Levf (�; ��2) = (1� �)

0B@ �22
�23
�24

1CA ;

ANLf (�) =

 
�(� � 1) 1� � 0 0

0 �(� � 1) 1� � 0

!
; �NLf (�; ��2) = (1� �)

 
�23 � ��22
�24 � ��23

!
:

General T. Along the lines of the above, it is also possible to construct the expressions of
Ajf (�); A

j
q(�); �

j
f (�; ��

2) and �jq(�; ��2) for larger values of T which we, for reasons of brevity,

refrain from.

Orthogonal complements of AASf (�) and ASysf (�) for T = 4 and 5 and the speci�ca-
tion of the robust sample moments We specify the orthogonal complements as in (37),

which we repeat here for convenience:

Ajf (�)? = (G
j
f;T (�)

... Gj2;T );

where T indicates the number of time periods and Gj2;T is such that G
j0
2;T�

j
f (�; ��

2) = 0: This

notation is used in the proofs of subsequent theorems.

T=4. From the expressions of Ajf (�) and �
j
f (�; ��

2) in (36), Gjf;T=4(�) and G
j
2;T=4 for j = AS;

Sys result as:

GASf;T=4(�) =

0BBBB@
�(1� �)

0

0

1

1CCCCA ; GAS2;T=4 =

0BBBB@
0

�1
1

0

1CCCCA ;

GSysf;T=4(�) =

0BBBBBB@
� (1� �)

0

0

��
1

1CCCCCCA ; GSys2;T=4 =

0BBBBBB@
0

�1
1

0

0

1CCCCCCA :
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From these expressions and (36), it is easily seen that

AASf (�)0?�
AS
f (�; ��2) =

 
(1� �)

�
�23 � ��22

�
0

!
;

ASysf (�)0?�
Sys
f (�; ��2) =

 
�23 � ��22

0

!
;

from which follows that Ajf (�)
0
?�

j
f (�; ��

2) 6= 0 for all � 6= �0;N ; j = AS; Sys:

T=5. The expressions for Ajf (�); �
j
f (�; ��

2); Gjf;T=5(�) and G
j
2;T=5 for j = AS; Sys are:

AASf (�) =

0BBBBBBBBBBBBBB@

�� 1 0 0

0 �� 1 0

0 �� 1 0

0 0 �� 1

0 0 �� 1

0 0 �� 1

�(� � 1) 1� � 0 0

0 �(� � 1) 1� � 0

1CCCCCCCCCCCCCCA
, �ASf (�; ��2) = (1� �)

0BBBBBBBBBBBBBB@

0

0

0

0

0

0

�23 � ��22
�24 � ��23

1CCCCCCCCCCCCCCA
;

GASf;T=5(�) =

0BBBBBBBBBBBBBB@

�(1� �) 0 0

0 �(1� �) 0

0 0 �(1� �)
0 0 0

0 0 0

0 0 0

1 0 0

0 1 1

1CCCCCCCCCCCCCCA
; GAS2;T=5 =

0BBBBBBBBBBBBBB@

0 0

0 0

0 0

�1 0

1 �1
0 1

0 0

0 0

1CCCCCCCCCCCCCCA
;
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ASysf (�) =

0BBBBBBBBBBBBBBBB@

�� 1 0 0

0 �� 1 0

0 �� 1 0

0 0 �� 1

0 0 �� 1

0 0 �� 1

1� � 0 0 0

0 1� � 0 0

0 0 1� � 0

1CCCCCCCCCCCCCCCCA
, �Sysf (�; ��2) = (1� �)

0BBBBBBBBBBBBBBBB@

0

0

0

0

0

0

�22
�23
�24

1CCCCCCCCCCCCCCCCA
;

GSysf;T=5(�) =

0BBBBBBBBBBBBBBBB@

�(1� �) 0 0

0 �(1� �) 0

0 0 �(1� �)
0 0 0

0 0 0

0 0 0

�� 0 0

1 �� ��
0 1 1

1CCCCCCCCCCCCCCCCA
; GSys2;T=5 =

0BBBBBBBBBBBBBBBB@

0 0

0 0

0 0

�1 0

1 �1
0 1

0 0

0 0

0 0

1CCCCCCCCCCCCCCCCA
:

Straightforward algebra shows that Ajf (�)
0
?�

j
f (�; ��

2) 6= 0 for all � 6= �0;N ; j = AS; Sys:

The robust sample moments are de�ned as

gjf;T (�) = Af (�)
j0
?f

j
N (�);

with Af (�)
j
? = (G

j
f;T (�)

... Gj2;T ): For the Sys moment conditions, G
j
f;T (�) is a linear function

of � and Gj2;T does not depend on �: Since f
j
N (�) is linear in � as well for the Sys sample

moments, the part of gjf;T (�) resulting from Gjf;T (�)
0f jN (�) is quadratic in � while the part

that results from Gj02;T f
j
N (�) is linear in �: Given the speci�cation of G

j
f;T (�); G

j
2;T and f

j
N (�);

it is then straightforward to compute the speci�cation of a; b and d:

For the AS moment conditions, Gjf;T (�) is a linear function of � and G
j
2;T does not depend

on �: For the AS sample moments, f jN (�) is quadratic in � but the part of g
j
f;T (�) resulting

from Gjf;T (�)
0f jN (�) is not of third order in � as expected but just a quadratic function of

�: The part of gjf;T (�) that results from Gj02;T f
j
N (�) is linear in �: Given the speci�cation of

Gjf;T (�); G
j
2;T and f

j
N (�); it is then again straightforward to compute the speci�cation of a;

b and d:
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Proof of Theorem 2. Under mean stationarity, we can write

�yi2 = (�0;N � 1)ui1 + ui2
�yi3 = �0;N (�0;N � 1)ui1 + (�0;N � 1)ui2 + ui3
�yi4 = �20;N (�0;N � 1)ui1 + �0;N (�0;N � 1)ui2 + (�0;N � 1)ui3 + ui4
�yi5 = �30;N (�0;N � 1)ui1 + �20;N (�0;N � 1)ui2 + �0;N (�0;N � 1)ui3 + (�0;N � 1)ui4 + ui5

yi3 � yi1 = (1 + �0;N )(�0;N � 1)ui1 + �0;Nui2 + ui3
yi4 � yi1 = (1 + �0;N + �

2
0;N )(�0;N � 1)ui1 + �20;Nui2 + �0;Nui3 + ui4

yi4 � yi2 = (�0;N + �
2
0;N )(�0;N � 1)ui1 + (�20;N � 1)ui2 + �0;Nui3 + ui4

yi5 � yi1 = (1 + �0;N + �
2
0;N + �

3
0;N )(�0;N � 1)ui1 + �30;Nui2 + �20;Nui3 + �0;Nui4 + ui5

yi5 � yi2 = (�0;N + �
2
0;N + �

3
0;N )(�0;N � 1)ui1 + (�30;N � 1)ui2 + �20;Nui3 + �0;Nui4 + ui5:

The robust sample moments consist of products of the above expressions. To obtain the

probability limits in Theorem 2 of the elements comprising the robust sample moments, we

use that
1
N

PN
i=1(�0;N � 1)u2it !

p
0;

1
N

PN
i=1(�0;N � 1)uituis !

p
0;

for all s and t, t > 1; t 6= s; which is implied by Assumption 1. Therefore, the a; b and d

components of the robust sample moments simplify to:

T=4, Sys:

a =
1

N

NX
i=1

�
(�yi2)

2

0

�
=
1

N

NX
i=1

�
(�0;N � 1)2u2i1 + u2i2

0

�
+Op(N

�1=2);

b = � 1
N

NX
i=1

�
(yi3 � yi1)2
�yi2�yi3

�

= � 1
N

NX
i=1

�
((1 + �0;N )

2(�0;N � 1)2u2i1 + �20;Nu2i2 + u2i3
�0;N (�0;N � 1)2u2i1 + (�0;N � 1)u2i2

�
+Op(N

�1=2);

d =
1

N

NX
i=1

�
(yi4 � yi1)�yi3
�yi2�yi4

�

=
1

N

NX
i=1

�
�0;N (1 + �0 + �

2
0;N )(�0;N � 1)2u2i1 + �20;N (�0;N � 1)u2i2 + �0;Nu2i3

�20;N (�0;N � 1)2u2i1 + �0;N (�0;N � 1)u2i2

�
+Op(N

�1=2);

where the Op(N�1=2) remainder terms result from the interaction terms between the di¤erent

errors, like, for example 1
N

PN
i=1 ui2ui3; which converge at rate N

� 1
2 ; since their correlation

equals zero.

Using next that, because of Assumption 1c, 1N
PN

i=1(1��0;N )2u2i1 !p 0; and �0;N = 1+
l
N� ;
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with l a �xed constant, l < 0; we have that

a =
��22
0

�
+Op(N

�1=2)

b = �
�(1+2 l

N�
+ l2

N2�
)�22+�

2
3

l
N�

�22

�
+Op(N

�1=2)

d =
�( l
N�

+2 l2

N2�
+ l3

N3�
)2�22+(1+

l
N�

)�23

( l
N�

+ l2

N2�
)�22

�
+Op(N

�1=2);

so, if � > 1
2 ;

a =
��22
0

�
+Op(N

�1=2)

b = �
��22+�23

0

�
+Op(N

�1=2)

d =
��23
0

�
+Op(N

�1=2):

T=4, AS:

a =
1

N

NX
i=1

�
(yi3 � yi1)�yi2

0

�
=
1

N

NX
i=1

�
(1 + �0;N )(1� �0;N )2u2i1 + �0;Nu2i2

0

�
+Op(N

�1=2);

b = � 1
N

NX
i=1

�
(yi3 � yi1)�yi3 + (yi4 � yi1)�yi2

�yi2�yi3

�

= � 1
N

NX
i=1

�
(1� �0;N )2[(1 + 2�0;N (1 + �0;N )]u2i;1 + (2�20;N � �0;N )u2i;2 + u2i;3

�0;N (�0;N � 1)2u2i1 + (�0;N � 1)u2i2

�
+Op(N

�1=2);

d =
1

N

NX
i=1

�
(yi4 � yi1)�yi3
�yi2�yi4

�

=
1

N

NX
i=1

�
�0;N (1 + �0 + �

2
0;N )(�0;N � 1)2u2i1 + �20;N (�0;N � 1)u2i2 + �0;Nu2i3

�20;N (�0;N � 1)2u2i1 + �0;N (�0;N � 1)u2i2

�
+Op(N

�1=2);

so also,
a =

��22
0

�
+Op(N

�1=2)

b = �
��22+�23

0

�
+Op(N

�1=2)

d =
��23
0

�
+Op(N

�1=2):

We use similar calculations for T = 5 to obtain that:
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T=5, Sys:

a =
1

N

NX
i=1

0BBBBBB@
(�yi2)

2

(yi3 � yi1)�yi3
(�yi3)

2

0

0

1CCCCCCA =

0BBBBBB@
�22
�23
�23
0

0

1CCCCCCA+Op(N
� 1
2 );

b = � 1
N

NX
i=1

0BBBBBB@
(yi3 � yi1)2

(yi4 � yi1)(yi4 � yi2)
(yi4 � yi2)2

�yi2�yi4

�yi3�yi4

1CCCCCCA = �

0BBBBBB@
�22 + �

2
3

�23 + �
2
4

�23 + �
2
4

0

0

1CCCCCCA+Op(N
� 1
2 );

d =
1

N

NX
i=1

0BBBBBB@
(yi4 � yi1)�yi3
(yi5 � yi1)�yi4
(yi5 � yi2)�yi4
�yi2�yi5

�yi3�yi5

1CCCCCCA =

0BBBBBB@
�23
�24
�24
0

0

1CCCCCCA+Op(N
� 1
2 ):

T=5, AS:

a =
1

N

NX
i=1

0BBBBBB@
(yi3 � yi1)�yi2
(yi4 � yi1)�yi3
(yi4 � yi2)�yi3

0

0

1CCCCCCA =

0BBBBBB@
�22
�23
�23
0

0

1CCCCCCA+Op(N
� 1
2 );

b = � 1
N

NX
i=1

0BBBBBB@
(yi4 � yi1)�yi2 + (yi3 � yi1)�yi3
(yi4 � yi1)�yi4 + (yi5 � yi1)�yi3
(yi4 � yi2)�yi4 + (yi5 � yi2)�yi3

�yi2�yi4

�yi3�yi4

1CCCCCCA = �

0BBBBBB@
�22 + �

2
3

�23 + �
2
4

�23 + �
2
4

0

0

1CCCCCCA+Op(N
� 1
2 );

d =
1

N

NX
i=1

0BBBBBB@
(yi4 � yi1)�yi3
(yi5 � yi1)�yi4
(yi5 � yi2)�yi4
�yi2�yi5

�yi3�yi5

1CCCCCCA =

0BBBBBB@
�23
�24
�24
0

0

1CCCCCCA+Op(N
� 1
2 ):

Proof of Theorem 3. The proof of Theorem 3 establishes the probability limits of a; b

and d for �0;N = 1+ l
N� ; l < 0; and � > 1

2 : Denoting these probability limits by, ap; bp and dp;
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the large sample behavior of a; b; and d is characterized by, for �0;N = 1 + l
N� with � > 1

2 :

p
N(a� ap)!

d
"a;

p
N(b� bp)!

d
"b;

p
N(d� dp)!

d
"d;

with ("a; "b; "d) jointly normal, mean zero random variables, which follows straightforwardly

from an appropriate CLT applied to the highest order remainder terms in the proof of The-

orem 2 which are all sample averages over iid mean zero random variables. We want to

determine the appropriate rate for � in gf;T (�(e)); so we can analyze its behavior in a neigh-

borhood of the true value �0;N = 1 + l
N� ; l < 0; with � > 1

2 while N goes to in�nity,

with

�(e) = 1 + e
N� :

Substituting �(e) and the above large sample characterizations of a; b and d in (38), we can

write:

gf;T (�(e)) = (1 +
e
N� )

2(ap +
"ap
N
) + (1 + e

N� )(bp +
"bp
N
) + dp +

"dp
N
+ op(N

�1=2):

To determine � we impose two conditions: (1)
p
Ngf;T (�(e)) converges to a non-degenerate

bounded random variable of order Op(1); (2) gf;T (�(e)) is informative about the value of e

when N gets large. We discriminate between two di¤erent cases for �2t :

1. For �2t = �2; t = 2; : : : ; T :

gf;T (�(e)) =

(1 + e
N� )

2(ap +
"ap
N
) + (1 + e

N� )(bp +
"bp
N
) + dp +

"dp
N
+ op(N

�1=2) =

ap + bp + dp +
1p
N
("a + "b + "d) +

�
e
N�

�2
ap+

e
N� (bp + 2ap) +

e
N�
p
N
("b + 2"a) +

e2

N2�N1=2 "a + op(N
�1=2)

since ap + bp + dp = 0 and bp + 2ap = 0; we distinguish three settings:

� < 1=4 :

gf;T (�(e)) =
e2

N2� ap + op(N
�2�)

� = 1=4 :

gf;T (�(e)) =
1p
N
("a + "b + "d + e

2ap) +
ep

N 4pN
("b + 2"a) +

e2"a
N + op(N

�1=2)

= 1p
N
("a + "b + "d + e

2ap) + op(N
�1=2)

� > 1=4 :

gf;T (�(e)) =
1p
N
("a + "b + "d) + op(N

�1=2):
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This shows that the appropriate rate corresponds with � = 1=4. For a smaller value of �;p
Ngf;T (�(e)) diverges. For a larger value,

p
Ngf;T (�(e)) converges to a mean zero normal

random variable una¤ected by the choice of e. Although in this case
p
Ngf;T (�(e)) is not

informative about e, we do not need to worry about e because standard asymptotics apply:

2. When �2t 6= �2s; for at least one t 6= s; ap + bp + dp = 0 but bp + 2ap 6= 0; we can

establish along the lines of the above that the appropriate rate corresponds with � = 1=2 :

gf;T (�(e)) =

(1 + ep
N
)2(ap +

"ap
N
) + (1 + ep

N
)(bp +

"bp
N
) + dp +

"dp
N
+ op(N

�1=2) =

ap + bp + dp +
1p
N
("a + "b + "d + e(bp + ap))+

e
N (2"a + "b + eE(a)) +

e2"a
N
p
N
+ op(N

�1=2) =
1p
N
("a + "b + "d + e(bp + 2ap)) +

e
N (2"a + "b + eap) +

e2"a
N
p
N
+ op(N

�1=2) =
1p
N
("a + "b + "d + e(bp + 2ap)) + op(N

�1=2):

Proof of Theorem 4. Denote with gf;T (�(e)) the moments in (38) evaluated at �(e) =

1 + e
4pN
. When �2t = �2 and substituting the large sample characterization of a, b and d;

p
Ngf;T (�(e)) can be expressed as:

p
Ngf;T (�(e)) = e2ap + "a(1 +

2e
4pN

+ e2p
N
) + "b(1 +

e
4pN
) + "d + op(1):

De�ne

�(N) = e2ap + "a

�
1 + 2e

4pN
+ e2p

N

�
+ "b

�
1 + e

4pN

�
+ "d:

Since ("a; "b; "d) are jointly normal distributed,

�(N) � N(e2ap; B(N)
0VabdB(N))

with

B(N) = (�3 
 Ipmax) + e
4pN

h
(2 + e

4pN
)(e1;3 
 Ipmax) + (e2;3 
 Ipmax)

i
;

and Vabd the covariance matrix of ("0a
... "0b

... "0d)
0; �3 a 3� 1 dimensional vector of ones, Ipmax

the pmax � pmax dimensional identity matrix, pmax equals the number of elements of a and

e1;3 and e2;3 the �rst and second 3� 1 dimensional unity vectors.
Hence, p

Ngf;T (�(e)) = �(N) + op(1);

so in a sample of size N;
p
Ngf;T (�(e)) is normally distributed up to a op(1) term. While

some of the components in �(N) are essentially also op(1); it is important to incorporate

them for an accurate approximation of the distribution of
p
Ngf;T (�(e)) for a given sample

of size N since the low order components, of order N�1=4, converge very slowly to zero.
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The individual moments gf;n(�(e)) in the sample average gf;T (�(e)) = 1
N

NP
n=1

gf;n(�(e))

can be speci�ed as:

gf;n(�(e)) = (1 + e
4pN
)2an + (1 +

e
4pN
)bn + dn

= (1 + e
4pN
)2[ap + "an ] + (1 +

e
4pN
)[bp + "bn ] + [dp + "dn ]

= (ap + bp + dp) +
e
4pN
(2ap + bp) +

e2p
N
ap+

"an + "bn + "dn +
e
4pN
(2"an + "bn) +

e2p
N
"an

= e2p
N
ap + "an + "bn + "dn +

e
4pN
(2"an + "bn) +

e2p
N
"an ;

with a = 1
N

NP
n=1

an; b =
1
N

NP
n=1

bn; d =
1
N

NP
n=1

dn; "an = an � ap; "bn = bn � bp; "dn = dn � dp;

so taking gf;n(�(e)) in deviation from its sample average gf;T (�(e)) results in

gf;n(�(e))� gf;T (�(e)) = "an � "a + "bn � "b + "dn � "d+
e
4pN
(2("an � "a) + "bn � "b) + e2p

N
("an � "a) + op(N�1=2)

From the above, it then straightforwardly follows that

V̂gg(e) =
1
N

PN
i=1 (gf;n(�(e))� gf;T (�(e))) (gf;n(�(e))� gf;T (�(e)))

0 = B(N)0VabdB(N) + op(1);

so the distribution of the GMM-AR statistic testing Hp for a sample of size N is characterized

by

�2(�(N); pmax) + op(1);

with �(N) = e4a0p [B(N)
0VabdB(N)]

�1 ap:

Proof of Theorem 5. When we instead of the full vector gf;T (�(e)) use a linear com-

bination of it, say w0gf;T (�(e)) with w an orthonormal pmax � 1 vector, the approximating
distribution of the GMM-AR statistic for testing Hp : �(e) = 1 + e

4pN
that uses w0gf;T (�(e))

as the moment vector reads

�2(e4(w0ap)0 [w0B(N)0VabdB(N)w]
�1 (w0ap); 1):

The optimal combination w is the one that leads to the largest value of the non-centrality

parameter. The non-centrality parameter can be speci�ed as

e4(w0ap)0 [w0B(N)0VabdB(N)w]
�1 (w0ap) = e4

(w0ap)2

w0B(N)0VabdB(N)w
:

The maximal value of (w0ap)2

w0B(N)0VabdB(N)w
results from the largest root of the generalized eigen-

value problem ���B(N)0VabdB(N)� apa0p�� = 0
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and the optimal value of w equals the eigenvector associated with the largest root. Since ap
is only a vector, just one root of the generalized eigenvalue problem is non-zero so it is also

the largest one. This root results from using

w = (B(N)0VabdB(N))
�1ap

and the largest root then equals

�max = a0p(B(N)
0VabdB(N))

�1ap

so the maximal value of the non-centrality parameter is

�(N) = e4a0p(B(N)
0VabdB(N))

�1ap = (e�)4
�
�p
0

�0
(B(N)0VabdB(N))

�1��p
0

�
since ap = �2

�
�p
0

�
with �p a p� 1 dimensional vector of ones and p the number of columns of

Gf;T (�):

Proof of Theorem 6. Before we start out to prove Theorem 6, we �rst state an addendum

to Theorem 1, which incorporates some higher order components of order Op(N�1=2) that

are needed for some of the intermediate results.

Addendum to Theorem 1: Theorem 1� (Representation Theorem). Under As-

sumptions 1 and 2a, we can characterize the large sample behavior of the Dif, Lev, NL, AS

and Sys sample moments and their derivatives by: 
f jN (�)

qjN (�)

!
=

 
Ajf (�)

Ajq(�)

!h
1

hN (�0;N )
p
N
( � hN (�0;N )�1;n�T�1 c) + �T�1d2

i
+ 

�jf (�; ��
2)

�jq(�; ��2)

!
+ 1p

N

 
Bj
f (�)

Bj
q(�)

!
 uu + op(N

�1=2);

with j = Dif; Lev; NL; AS; Sys and Bj
f (�); B

j
q(�) : kj�mj and kj�mj ; kj�1 dimensional

matrices and  uu is a mean zero, �nite variance, normal random vector that is possibly

dependent on  :

Proof of large sample distribution KLM statistic. For the construction of the large

sample distribution of the KLM statistic under Assumptions 1 and 2a, we use that the part

of the sample moments spanned by Ajf (�(e)) and the part spanned by A
j
f (�(e))? converge

at di¤erent rates. We use the normalized large sample behavior of each of these parts to

construct it. This amounts to pre-multiplying the sample moments in the expression of the

KLM statistic by (Ajf (�(e))
... Ajf (�(e))?) to which it is invariant if (A

j
f (�(e))

... Ajf (�(e))?) is

invertible. The speci�cation of Ajf (�(e))? as equal to (G
j
f;T (�(e))

... Gj2;T ), see (37), is such
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that (Ajf (�(e))
... Ajf (�(e))?) is invertible for the Sys moment conditions but not for the AS

moment conditions both when T = 4 and 5 since Ajf (�(e)) does not have full column rank. To

have an invertible speci�cation of (Ajf (�(e))
... Ajf (�(e))?); we use that we can specify A

j
f (�(e))

for the AS moments as:

T = 4 : AASf (�) =

0BBBB@
�� 1 0

0 �� 1

0 �� 1

�(� � 1) 1� � 0

1CCCCA
= AASf;T=4(�)1A

AS
f;T=4(�)2

T = 5 : AASf (�) =

0BBBBBBBBBBBBBB@

�� 1 0 0

0 �� 1 0

0 �� 1 0

0 0 �� 1

0 0 �� 1

0 0 �� 1

�(� � 1) 1� � 0 0

0 �(� � 1) 1� � 0

1CCCCCCCCCCCCCCA
= AASf;T=5(�)1A

AS
f;T=5(�)2

where

T = 4 : AASf;T=4(�)1 =

0BBBB@
�� 0

0 1

0 1

�(� � 1) 0

1CCCCA ; AASf;T=4(�)2;

 
1 ���1 0

0 �� 1

!

T = 5 : AASf;T=5(�)1 =

0BBBBBBBBBBBBBB@

�� 1 0

0 �� 0

0 �� 0

0 0 1

0 0 1

0 0 1

�(� � 1) 1� � 0

0 �(� � 1) 0

1CCCCCCCCCCCCCCA
AASf;T=5(�)2 =

0B@ 1 0 ���2 0

0 1 ���1 0

0 0 �� 1

1CA

so unlike AASf (�); AASf (�)1 has full column rank. For the Sys moments, for which A
Sys
f (�)

has full column rank, we use ASysf (�)1 = ASysf (�): The matrix (Ajf (�(e))1
... Ajf (�(e))?) is now

invertible for both j = AS; Sys; so we use it to construct the large sample behavior of the

KLM statistic to test Hp : �(e) = 1 + e
4pN

whilst the true value of � is drifting to one in line

with Assumption 2a. We separately construct the behavior of the following four components:
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1.
p
NV̂ff (�(e))

�1fN (�(e))

2. qN (�(e))

3. V̂�f (�(e))

4. D̂N (�(e))

which provide the building blocks for the large sample distribution of the KLM statis-

tic. For each of these components, we determine their limit behavior when multiplied by

(hN (�0;N )Af (�(e))1
... Af (e)?) for the last three components and its inverse for the �rst one.

Taken all together this implies that (hN (�0;N )Af (�(e))1
... Af (e)?) cancels out of the overall

expression of the KLM statistic.

1. To determine the limit behavior of
p
NV̂ff (�(e))

�1fN (�(e)); we disentangle the compo-

nents with di¤erent convergence rates which we do by pre-multiplying it by (hN (�0;N )Af (�(e))1
... Af (e)?)�1 :

(hN (�0;N )Af (�(e))1
... Af (e)?)�1

p
NV̂ff (�(e))

�1fN (�(e)) =�
(hN (�0;N )Af (�(e))1

... Af (e)?)0V̂ff (e)(hN (�0;N )Af (e)1
... Af (e)?)

��1
�p

N(hN (�0;N )Af (e)1
... Af (e)?)0fN (e)

�
:

We next determine the large sample behavior of the di¤erent components under Assumptions

1 and 2a. Our speci�cation of Af (�(e))? is such that:
p
NAf (�(e))

0
?fN (�(e)) =

p
Ngf;T (�(e));

so using the large sample behavior of
p
Ngf;T (�(e)) stated in the proof of Theorem 4, we

have that the large sample behavior of
p
NAf (�(e))

0
?fN (�(e)) for a (large) sample of size N

results as:

p
NAf (�(e))

0
?fN (�(e)) =

264e2�2��p0 �+B(N)0
0B@ "a

"b

"d

1CA
375+ op(1):

The large sample behavior of
p
NhN (�0;N )Af (�(e))

0
1fN (�(e)) result from Theorem 1 (the

representation theorem) and accords with, since by Assumption 2a
p
NhN (�0;N )! 0;

p
NhN (�0;N )Af (�(e))

0
1fN (�(e)) = Af (�(e))

0
1Af (�(e))

� + op(1);

where � =  � hN (�0;N )�1;n�T�1 c; so upon combining:

�p
N(hN (�0;N )Af (�(e))1

... Af (�(e))?)0fN (�(e))
�
=

266664
Af (�(e))

0
1Af (�(e))

� 

e2�2
�
�p
0

�
+B(N)0

0B@ "a

"b

"d

1CA
377775+ op(1):
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We next focus on the components of
�
(hN (�0;N )Af (�(e))1

... Af (e)?)0V̂ff (e)(hN (�0;N )Af (e)1
... Af (e)?)

�
:

Since gf;T (�(e)) does not depend on the initial observations yi1; the (normalized) covariance

of Af (�(e))01fN (�(e)) and Af (�(e))
0
?fN (�(e)) equals zero:

hN (�0;N )Af (�(e))
0
1V̂ff (�(e))Af (�(e))? = op(1):

Under Assumption 2a also:

hN (�0;N )
2Af (�(e))

0
1V̂ff (�(e))Af (�(e))1 = Af (�(e))

0
1Af (�(e))�Af (�(e))

0Af (�(e))1 + op(1);

Af (�(e))
0
?V̂ff (e)Af (�(e))? = B(N)0VabdB(N) + op(1);

where
� = var

�
limN!1 � 

�
= diag(��2) +

�
limN!1

�
hN (�0;N )

2�21;n
��
�T�1�

0
T�1var(ci)

so

(hN (�0;N )Af (�(e))1
... Af (�(e))?)0V̂ff (�(e))(hN (�0;N )Af (�(e))1

... Af (�(e))?) = 
Af (�(e))

0
1Af (�(e))�Af (�(e))

0Af (�(e))1 0

0 B(N)0VabdB(N)

!
+ op(1):

Because hN (�0;N )Af (�(e))01fN (�(e)) and Af (�(e))
0
?fN (�(e)) are uncorrelated under Assump-

tion 2a,�
(hN (�0;N )Af (�(e))1

... Af (�(e))?)0V̂ff (�(e))(hN (�0;N )Af (�(e))1
... Af (�(e))?)

�
convergences to a block diagonal matrix so we obtain the large sample behavior of

p
N((hN (�0;N )Af (�(e))1

...Af (�(e))?)0V̂ff (�(e))(hN (�0;N )Af (�(e))1
...Af (�(e))?))�1(hN (�0;N )Af (�(e))1

...Af (�(e))?)0fN (�(e)) :

p
N((hN (�0;N )Af (�(e))1

... Af (�(e))?)0V̂ff (�(e))(hN (�0;N )Af (�(e))1
... Af (�(e))?))�1�

(hN (�0;N )Af (�(e))1
... Af (�(e))?)0fN (�(e))

=

0BBBB@
[Af (�(e))

0
1Af (�(e))�Af (�(e))

0Af (�(e))1]
�1Af (�(e))

0
1Af (�(e))

� 

(B(N)0VabdB(N))
�1

0B@e2�2��p0 �+B(N)0
0B@ "a

"b

"d

1CA
1CA

1CCCCA+ op(1):
2. To obtain the large sample behavior of qN (�(e)) under Assumptions 1 and 2a, we

characterize the behavior of the di¤erent components of

(hN (�0;N )Af (�(e))1
... Af (�(e))?)0qN (�(e))

for which we use the representation of qN (�(e)) in Theorem 1 (and Theorem 1�).
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Under DGPs according with Assumptions 1 and 2a,
p
NhN (�0;N )Af (�(e))

0
1qN (�(e)) is

characterized by

p
NhN (�0;N )Af (�(e))

0
1qN (�(e)) =

Af (�(e))
0
1

h
Aq(�(e))� + hN (�0;N )

p
N(�q(�(e); ��

2)�
Aq(�(e))�T�1d2] + op(1);

which converges to

Af (�(e))
0
1Aq(�(e))

� 

since under Assumption 2a:

p
NhN (�0;N )(�q(�(e); ��

2)�Aq(�(e)))�T�1d2 ! 0;

which results from Assumption 1b and hN (�0;N )
p
N ! 0:

Regarding Af (�(e))0?qN (�(e)); we distinguish between the AS and Sys moment conditions.

For the Sys moment conditions:

4
p
NAf (�(e))

0
?qN (�(e)) =

4
p
N

 
Gf;T (�(e))

0qN (�(e))

G02;T qN (�(e))

!

= �
 
e�2�p

0

!
+ 1

4pN

 
1

hN (�0;N )
Gf (�(e))

0Aq(�(e))� + "aq

"bq

!
+ op(N

�1=4);

for which we used the representation for qN (�(e)) that results from Theorem 1* in the Ap-

pendix which includes Bq(�) uu, since for the Sys moment conditions G
0
2;TAq(�(e)) = 0;

G02;T�(�(e); ��
2) = 0; Gf;T (�(e))

0Aq(�(e))�T�1 = 0; Gf;T (�(e))
0�(�(e); ��2) = � e

4pN
�2�p and

"aq = Gf (�(e))
0Bq(�(e)) uu and "bq = G02;TBq(�(e)) uu are mean zero normal random vari-

ables that capture the remaining random parts.

For the AS moment conditions:

4
p
NAf (�(e))

0
?qN (�(e)) =

�
 
e(2�2 � d2)�p

0

!
+ 1

4pN

 
1

hN (�0;N )
Gf (�(e))

0Aq(�(e))� + "aq

"bq

!
+ op(N

�1=4)

since for the AS moment conditionsG02;TAq(�(e)) = 0; G
0
2;T�(�(e); ��

2) = 0; Gf;T (�(e))
0Aq(�(e))�T�1 =

e
4pN

�p; Gf (�(e))
0�(�(e); ��2) = � 2e

4pN
�2�p and "aq = Gf (�(e))

0Bq(�(e)) cu and "bq = G02;TBq(�(e)) cu
are mean zero normal random variables that capture the remaining random parts.

Overall, the large sample behavior of Af (�(e))0?qN (�(e)) for both the AS and Sys moment

conditions reads:

4
p
NAf (�(e))

0
?qN (�(e)) =

"
�
 
�e�p

0

!
+ 1

4pN

 
1

hN (�0;N )
Gf (�(e))

0Aq(�(e))� + "aq

"bq

!#
+ op(N

�1=4);
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where for
Sys: �e = e�2;

AS: = e
�
2�2 � d2

�
:

Combining our results for the two components:

(
p
NhN (�0;N )Af (�(e))1

... 4
p
NAf (�(e))?)

0qN (�(e))

= (
p
NhN (�0;N )Af (�(e))1

... 4
p
N(Gf;T (�(e))

... G2;T ) )0qN (�(e))

=

0@ Af (�(e))
0
1Aq� 1

hN (�0;N )
4p
N
Gf (�(e))

0Aq

0

�
1A � +

0B@ 0���e�p+ 1
4p
N
"aq

1
4p
N
"bq

�
1CA+ op(N�1=4);

where it is again important to incorporate the higher order components. We can also specify

the above convergence as

p
N(hN (�0;N )Af (�(e))1

... Af (�(e))?)0qN (�(e))

=

 
Af (�(e))

0
1Aq� 1

hN (�0;N )
Gf (�(e))

0Aq

0

� ! � + 0�� 4pN�e�p+"aq
"bq

� !+ op(1);
3. We next determine the behavior of V̂�f (�(e)) :

(hN (�0;N )Af (�(e))1
... Af (�(e))?)0V̂�f (�(e))(hN (�0;N )Af (�(e))1

... Af (�(e))?) = 
Af (�(e))

0
1Aq� 1

hN (�0;N )
Gf (�(e))

0Aq

0

� !�
0B@ Af (�(e))

0
1Af (�(e))

0

0

1CA
0

+

 
0 0

0
�Vaq;abdB(N)
Vbq;abdB(N)

� !+ op(1);
with Vaq;abd; Vaq;abd the covariance between "aq and ("0a

... "0b
... "0d)

0 and "bq and ("0a
... "0b

...

"0d)
0 respectively, which results directly from the speci�cations in Theorem 1 (and 1* in the

Appendix) and those above.
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Combining with the large sample behavior of
p
N((hN (�0;N )Af (�(e))1

...Af (�(e))?)0V̂ff (�(e))

(hN (�0;N )Af (�(e))1
... Af (�(e))?))�1(hN (�0;N )Af (�(e))1

... Af (�(e))?)0fN (�(e)); we have:

p
N(hN (�0;N )Af (�(e))1

... Af (�(e))?)
0V̂�f (�(e))V̂ff (�(e))

�1fN (�(e))

=
p
N(hN (�0;N )Af (�(e))1

... Af (�(e))?)0V̂�f (�(e))(hN (�0;N )Af (�(e))1
... Af (�(e))?)

((hN (�0;N )Af (�(e))1
... Af (�(e))?)0V̂ff (�(e))(hN (�0;N )Af (�(e))1

... Af (�(e))?))�1

(hN (�0;N )Af (�(e))1
... Af (�(e))?)0fN (�(e))

=

 
Af (�(e))

0
1Aq� 1

hN (�0;N )
Gf (�(e))

0Aq

0

� ! � + 0�Vaq;abdB(N)
Vbq;abdB(N)

� !�
(B(N)0VabdB(N))

�1

0B@e2�2��p0 �+B(N)0
0B@ "a

"b

"d

1CA
1CA+ op(1):

4. For the large sample behavior of D̂N (�(e)); we next combine the behaviors of
p
N(hN (�0;N )Af (�(e))1
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= �
 

0�
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� ! �e+ op(1)
where we have rescaled since all the higher order terms have dropped out and which shows

that the additional components in Theorem 1� compared to Theorem 1 do not a¤ect the limit
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behavior of D̂N (�(e)) up to order N�1=4: The speci�cation of � is:
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which is independent of the limit behavior of
p
Ngf;T (�(e)):

We obtain the limit behavior of
p
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and
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Upon combining the behavior of the above two components, we obtain the large sample

behavior of the KLM statistic to test Hp : �(e) = 1+ e
4pN

under Assumptions 1 and 2a which
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can for samples of (large) size N be speci�ed as:
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= [�+ �]0 [�+ �] + op(1)

� �2(�(N); 1) + op(1);

where �e cancels out since it is a scalar, � =
��

�p
0

�0
(B(N)0VabdB(N))
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�� 12
e2�2; � =
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0
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�
on the right hand side of the above speci�cation depends on N , which is important to obtain

an accurate approximation because of the quartic root convergence rates.
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