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Abstract

We use identification robust tests to show that difference, level and non-linear moment
conditions, as proposed by Arellano and Bond (1991), Arellano and Bover (1995), Blundell
and Bond (1998) and Ahn and Schmidt (1995) for the linear dynamic panel data model,
do not separately identify the autoregressive parameter when its true value is close to
one and the variance of the initial observations is large. We prove that combinations
of these moment conditions, however, do so when there are more than three time series
observations. This identification then solely results from a set of, so-called, robust moment
conditions. These robust moments are spanned by the combined difference, level and non-
linear moment conditions and only depend on differenced data. We show that, when only
the robust moments contain identifying information on the autoregressive parameter, the
discriminatory power of the Kleibergen (2005) LM test using the combined moments is
identical to the largest rejection frequencies that can be obtained from solely using the
robust moments. This shows that the KLM test implicitly uses the robust moments when

only they contain information on the autoregressive parameter.
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1 Introduction

It is common to estimate the parameters of linear dynamic panel data models using the
Generalized Method of Moments (GMM, Hansen (1982)). The moment conditions for the
linear dynamic panel data model either analyze it in first differences using lagged levels of
the series as instruments, in levels using lagged first differences as instruments or using a
product of levels and first differences. We refer to the first set of moment conditions as
Dif(ference) moment conditions, see Arellano and Bond (1991), the second set as Lev(el)
moment conditions, see Arellano and Bover (1995), Blundell and Bond (1998) and the third
set as N(on-)L(inear) moment conditions, see Ahn and Schmidt (1995).

The Dif, Lev and NL moment conditions can be used separately to identify the parameters
of dynamic panel data models. To exhaust all information, however, two particular combina-
tions of Dif, Lev and NL moment conditions have been proposed. We refer to the combined
Dif and Lev moment conditions as the Sys(tem) moment conditions and the combination of
the Dif and NL moment conditions as the A(hn-)S(chmidt) moment conditions.! The Sys
moment conditions exhaust all information on the autoregressive parameter that is present
under mean stationarity, see Arellano and Bover (1995) and Blundell and Bond (1998). The
AS moment conditions exhaust all information whilst not assuming mean stationarity, see
Ahn and Schmidt (1995).

We analyze the identification of the autoregressive parameter by the various sets of mo-
ment conditions for a range of true values including the case of highly persistent panel data.
All moment conditions involve first differences of the series to remove individual specific ef-
fects. The first difference operator removes information in the time series at the unit root
value of the autoregressive parameter. It is well known that the Dif moment conditions there-
fore do not identify the autoregressive parameter when its true value is (close to) one, since
lagged levels are then weak predictors of first differences. This has led to the development of
the NL and Lev, and hence AS and Sys, moment conditions which were originally considered
to identify the autoregressive parameter when the panel data are highly persistent.

To show the identification issues at specific values of the autoregressive parameter, we
use identification robust tests, i.e. the GMM-A (nderson-)R(ubin) statistic of Anderson and
Rubin (1949) and Stock and Wright (2000), and the K(leibergen) L(agrange) M/(ultiplier)
statistic of Kleibergen (2005). At values of the parameters where identification issues occur,
the rejection frequency of these tests provenly coincides with the significance level so the
identification issues are relatively easy to detect by inspecting the power curves. Using power
curves of the KLM test, we show that Dif, Lev and NL moment conditions separately do

not identify the autoregressive parameter for persistent values of it when paired with a large

'Note that in a combination of all three sets of moments conditions, the NL moment conditions are

redundant.



variance of the initial observations. The same holds for the Sys moment conditions with
three times series observations. The power curves further show that Sys and AS moment
conditions generally identify the autoregressive parameter when the number of time series
observations exceeds three.

We formally prove these identification results using an asymptotic sampling scheme in
which we jointly let the variance of the initial observations and the number of cross section
observations go to infinity. For a range of relative convergences rates of the variance of
the initial observations compared to the cross section sample size, the Dif, Lev and NL
sample moments and their derivatives diverge. Both the population moment and the Jacobian
identification condition are then ill defined which implies that the autoregressive parameter is
not separately identified by the Dif, NL or Lev moment conditions. These results confirm and
extend earlier findings in Madsen (2003), Bond et al. (2005), Hahn et al. (2007), Kruiniger
(2009) and Phillips (2018).

Using our asymptotic sampling scheme, we also prove that AS and Sys moment conditions
identify the autoregressive parameter irrespective of the variance of the initial observation
when the number of time series observations exceeds three. When the variance of the initial
observations is large, the identification results from a set of, so-called, robust sample moments
that are a combination of the Dif, Lev and NL sample moments (other than AS and Sys)
and only depend on differenced data. These robust sample moments are spanned by the
Sys sample moments and also by the AS sample moments. They identify the autoregressive
parameter irrespective of the variance of the initial observation and including the case of
highly persistent data. They are a subset of the moment conditions in Kruiniger (2002),
which are derived under the additional assumption of time series homoskedasticity.

Despite these positive identification results for the Sys and AS moments, the large sample
distributions of corresponding one step and two step GMM estimators are known to be
non-standard when the variance of the initial observation is large and the autoregressive
parameter is close to one. This makes it hard to infer if and how standard GMM inference
using the original AS or Sys sample moments exploits the information contained in the
robust sample moments that they encompass. The non-standard limiting behavior results
since the identification of the autoregressive parameter is then of, so-called, second order since
the Jacobian of the robust sample moments is rank deficient but the Hessian is not, see e.g.
Dovonon and Renault (2013), Dovonon and Hall (2018) and Dovonon et al. (2020). It explains
the large biases of the one step and two step GMM estimators and the size distortions of their
corresponding t-statistics when the series are persistent, see e.g. Madsen (2003), Bond and
Windmeijer (2005), Bond et al. (2005), Dhaene and Jochmans (2016), Hahn et al. (2007),
Kruiniger (2009) and Bun and Windmeijer (2010). Because of the second order identification,
GMM estimators based on the robust sample moments also have non-standard asymptotic

distributions when the data are persistent, see Dovonon et al. (2020).



We therefore analyze how identification robust test statistics exploit the identifying in-
formation in the robust sample moments. We prove that the identification robust KLM test
procedure based on either AS or Sys sample moments exploits all the identifying information
contained in the robust sample moments. We do so by first determining the (infeasible)
optimal weighted average of the robust sample moments that maximizes the discriminatory
power of a GMM-AR test of the autoregressive parameter in settings where only the ro-
bust sample moments contain identifying information. Next we determine the discriminatory
power of KLLM tests, based on AS or Sys moment conditions, under such settings and prove
that it equals that of the GMM-AR test using the optimal weighted average of the robust
sample moments. KLM tests using AS or Sys moment conditions thus resort to just using
the robust sample moments when only the latter contain information on the autoregressive
parameter. It is therefore not necessary to explicitly use the robust sample moments, which
provide identification under mild conditions, since they are implicitly used in the KLM test
based on either AS or Sys sample moments.

The paper is organized as follows. Section 2 introduces the linear dynamic panel data
model and the different moment conditions we use to identify its parameters. It also discusses
identification robust statistics, specifically the KLM test, that we use to illustrate the identi-
fication issues that occur at persistent values of the autoregressive parameter. In Section 3,
we use a representation theorem, akin to the cointegration representation theorem, see Engle
and Granger (1987) and Johansen (1991), to pin down the identification properties of the dif-
ferent moment conditions. This theorem also allows us to obtain the robust sample moments.
In Section 4, we define the GMM-AR test that uses the (infeasible) optimal weighted average
of the robust sample moments and derive the large sample distribution of the KLM test using
AS or Sys moment conditions under settings where only the robust sample moments contain
information on the autoregressive parameter. The fifth (final) section concludes. Proofs of
theorems and definitions of sample moments are provided in the Appendix. We use the fol-
lowing notation throughout the paper: vec(A) stands for the (column) vectorization of the
k x n matrix A, vec(A) = (a}...al) for A= (a1...a,), Pa = A(A’A)"1A’ is a projection
on the columns of the full rank matrix A and M4 = Iy — P4 is a projection on the space
orthogonal to A. Convergence in probability is denoted by “?”, convergence in distribution
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by “?” and “=" means asymptotically equivalent.
a

2 Identification robust GMM inference for dynamic panel data
models
In this section, we briefly describe the dynamic panel data model and the different sets of

moment conditions. Thereafter we discuss identification robust GMM inference including the

construction of confidence intervals. Finally, we illustrate the identification issues that occur



when using the different moment conditions for dynamic panel data models, by computing

power curves based on the identification robust KLM statistic.

2.1 Model and moment conditions

We analyze the first-order autoregressive linear dynamic panel data model
Yit = ci+9yit—1+uit7 izla"'ant:27"'7T7 (1)

with 7" the number of time periods and N the number of cross section observations. We
assume that the initial observation g;; is observed and that the vector of observations
(yi1, ..., yir) for individual 7 is independently distributed across the N individuals. We will
later on make further assumptions on the initial observations to properly define the process
in (1). For expository purposes, we analyze the simple dynamic panel data model in (1)
which can be extended with additional lags of v;; and explanatory variables.? Estimation of
the parameter 6 by means of least squares leads to an inconsistent estimator in samples with
a finite value of T and large N, see e.g. Nickell (1981). We therefore estimate it using GMM.

We obtain the GMM moment conditions from the unconditional moment assumptions:

Eluy) = 0, t=2,...,T,
Elujui) = 0, s#£t; s, t=2,...,T, @
Eluyc;) = 0, t=2,...,T,
Eluyyin] = 0, t=2,...,T.

Under these assumptions, the moments of the T'(T' — 1) interactions of Ay, and y;; :
E[Ayiyis), j=1....T, t=2,...,T 3)

can be used to construct functions which identify the parameter of interest . We do not use
products of Ay, to identify 8 since we would need further assumptions, i.e. homoskedasticity
or initial condition assumptions, see e.g. Han and Phillips (2010).

Two different sets of moment conditions, which are functions of the moments in (3), are

commonly used to identify 6 :
1. Difference (Dif) moment conditions:
E[ylj(Ay’Lt_eAyltfl)]:(L ]:lavt_27 t:377T7 (4)

as proposed by e.g. Anderson and Hsiao (1981) and Arellano and Bond (1991). The

Dif moment conditions solely result from the conditions in (2).

2The extension to other explanatory variables would depend on the nature of these. For some settings such

an extension would be trivial but for others not so.



2. Level (Lev) moment conditions:

E[Ayit—l(yit - Oyit—l)] = 0, t= 3, o ,T, (5)
as proposed by Arellano and Bover (1995), see also Blundell and Bond (1998). Besides
the conditions in (2), the Lev moment conditions use

E [Ayitci] = 0, (6)

which implies that the original data in levels have constant correlation over time with
the individual-specific effects. The Lev moment conditions (5) hold under the following

conditions regarding the initial observations y;; (i = 1,...,N):

Yil = py + i, (7)
pi = ci/(1—0), (8)
E[ull] = 0,
E[uilci] = 0, (9)
E[uﬂuit] =0 t>1.

The specification of the initial observations in (7)-(9) is often referred to as mean

stationarity. In our analysis we maintain the assumption of mean stationarity.

The Dif and Lev moments can be used separately or jointly to identify §. When we use
the moment conditions in (4) and (5) jointly, we refer to them as system (Sys) moment
conditions,® see Arellano and Bover (1995) and Blundell and Bond (1998). Another set of
nonlinear (NL) moment conditions, which just like the Dif moments only use the conditions
in (2), results from Ahn and Schmidt (1995):

E[(ylt — Oyit,l)(Ayit,1 — HAyit,g)] =0 t= 4, . ,T. (10)

The NL moments can be used separately or jointly with the Dif moments to identify 8. When
we use the moment conditions in (4) and (10) jointly, we refer to them as Ahn-Schmidt (AS)
moment conditions.

Ahn and Schmidt (1995) show that their AS moment conditions exhaust the information
on # in the moment conditions (2) and are therefore complete. Mean stationarity adds one
moment condition (6) to the moment conditions in (2). Hence, the complete set of moment
conditions under (2) and (6) equals the AS moment conditions and (6). Upon rewriting we
can show that these combined moment conditions are identical to the Sys moment conditions

so they are complete under (2) and (6).

*We could extend the Lev moment conditions to (7" — 1)(7 — 2) sample moments by including additional

interactions of Ay;—; and y; —Oyii—1, for j = 2,...,t—2. It can be shown, however, that all conditions on top
of those in (5) can be constructed as linear combinations of the Dif conditions in (4) and the Lev conditions
in (5).



2.2 Identification robust GMM tests

In GMM, we consider a k-dimensional vector of moment conditions, see Hansen (1982):
E[fi(60)] =0, t1=1,...,N, (11)

where f;(0) is a k-dimensional (continuous and continuously differentiable) function of the
observed data for individual 7 and the unknown parameter vector 6 whose functional expres-
sion is identical for all individuals. There is a unique true value of the p-dimensional vector 6
where the moment conditions are satisfied, which we denote by 6y, and k is at least as large
as p. We only analyze the first-order autoregressive panel data model so p = 1 for our setting.

The population moments in (11) are estimated using the sample moments,

fn(0) =% S £i6). (12)

The k X p dimensional matrix gy (#) contains the derivative of fn () with respect to 6 :

an(0) = 5 fn(0) = % 2L, ai(0), (13)

with ¢;(0) = %fz(ﬁ) Specifications of the sample moment functions fy(0) and gy (0) for the
Dif, Lev, Sys, NL and AS moment conditions are provided in the Appendix.

Statistical inference based on the two step GMM estimator is known to be of poor quality
in the case of weak identification, which leads to an inconsistent estimator with non-standard
behavior of its corresponding t-statistic, see e.g. Phillips (1989), Staiger and Stock (1997)
and Stock and Wright (2000). The non-standard limiting behavior of one and two step
GMM estimators for dynamic panel data models in the case of weak identification has been
documented in e.g. Madsen (2003), Kruiniger (2009) and Phillips (2018).

In this study we therefore use identification robust GMM statistics to overcome the afore-
mentioned problems. The main advantage of identification robust statistics is that, unlike
conventional two step GMM statistics, their limiting distributions are unaffected by the
identification strength. Define #* as the hypothesized value under the null hypothesis. A
particularly simple to compute identification robust GMM statistic to test Hqg : § = 0™ is the
GMM extension of the Anderson-Rubin statistic, see Anderson and Rubin (1949) and Stock
and Wright (2000):

GMM-AR(6%) = N fn (67)' V7 (67) 7 I (67), (14)
with Vf #(0) the Eicker-White covariance matrix estimator:

Vip(0) = £ SoN(£:0) — fn(0))(f:(0) — fn(6))". (15)

The GMM-AR statistic equals the continuous updating objective function (Hansen et al.,
1996) evaluated in 6*. A possible drawback of the GMM-AR statistic is its lower power in the



case of overidentified models. The KLM statistic of Kleibergen (2005) partly overcomes this.
The KLM statistic is a quadratic form of the score of the GMM-AR statistic with respect to
0:

KLM(0*) = Nfn(0")Vip(0°) DN (0%) | DN (0%)'Vir(0F) Dy (67)

. . (16)
Dy (07) Vi (07) " fn(07),
with Dy (6) a k x p dimensional matrix,
vec(Dy (0)) = vec(qn (8)) — Var (0)Vir (6) " i (6), (17)
and
Var(0) = L4 (veelai(9) — an(9)]) (fi(6) — fn(6))'- (18)

The limiting distributions of the identification robust GMM-AR and KLM statistics apply
under less restrictive assumptions than those of the traditional test statistics based on two
step GMM. The GMM-KLM and GMM-AR statistics converge under Hg to x2(p) and x2(k)
distributed random variables even when the Jacobian, J(6y) = E(q;(0p)), does not have a
full rank value, see Stock and Wright (2000), Kleibergen (2005) and Newey and Windmeijer
(2009). Other identification robust statistics for GMM are proposed in Kleibergen (2005),
Andrews (2016) and Andrews and Mikusheva (2016) which all provide extensions of the
conditional likelihood ratio statistic of Moreira (2003) to GMM. The conditional likelihood
ratio statistic is optimal for the homoskedastic linear instrumental variables regression model
with one included endogenous variable, see Andrews et al. (2006). None of its extensions
to GMM has, however, shown to be optimal for our setting of the dynamic linear panel
autoregression so we just use the easier to implement GMM-AR and KLM statistics.*

The identification robust tests can be inverted to obtain corresponding identification
robust confidence sets. The 100 x (1 — )% confidence set for 6 (denoted by CSg(a) below)
consists of all values of 6* for which the respective identification robust test does not reject

using its 100 x a% asymptotic critical value:
CSg(a) = {0" : IRT(0") < CDFrrr(a)}, (19)

with IRT'(0*) the identification robust statistic evaluated at 6* and CDFjgrr(a) the (1 —
a) x 100-th percentile of the limiting distribution of I RT'(6p).
The identification robust tests are not quadratic functions of 8* so they cannot directly be

inverted to obtain the confidence set.” The confidence sets resulting from them do therefore

* Andrews et al. (2006) establish the optimality of the likelihood ratio test for the iid linear instrumental
variables regression model using the Neymann-Pearson lemma. We cannot do so here since the identification
of 0 depends on other nuisance parameters besides the Jacobian, like the initial observations, so it is not

obvious how optimality can be established.
®An exception is the GMM-AR statistic in the homoskedastic linear instrumental variables regression

model, see Dufour and Taamouti (2003).



not have the usual expression of an estimator plus or minus a multiple of the standard error.
Instead, we have to specify a p-dimensional grid of values of 8* and compute the identification
robust statistic for every value of 8* on the grid to determine if it is less than the appropriate
critical value so 6% is part of the confidence set.

Specifically, the confidence set in (19) can have three distinct shapes:

1. Bounded and convex: there is a closed compact set of values of #* for which the iden-

tification robust test statistic does not exceed the critical value.

2. Unbounded: this occurs either when there are no values of 6* for which the identification
robust test statistic exceeds the critical value (unbounded and convex), or when there
are bounded sets of values of 8* for which the identification robust test statistic exceeds

the critical value (unbounded and disjoint).

3. Empty: the identification robust test statistic exceeds the critical value for all values of
0*.

Bounded and convex confidence sets occur when the parameters of interest are well iden-
tified. Unbounded confidence sets are indicative of weak identification so if we then test
Hy : 0 = 6* at a very large, possibly infinite, value of #* using an identification robust test
at, say, the 5% significance level, it does not necessarily reject. For such instances, we thus
often do not reject the hypothesis of an infinite value of # so we obtain an unbounded 95%
confidence set. In Dufour (1997, Theorems 3.3 and 3.6), it is shown that any size correct pro-
cedure used to test parameters which can be non-identified must have a positive probability
of producing an unbounded 95% confidence set. Conversely, also any test procedure, like,
for example, the Wald t-test, which can not generate an unbounded 95% confidence set, can
not be a size correct test procedure when the tested parameter can be non-identified. Empty
confidence sets occur when the model is misspecified so there is no value of # for which the
moment condition holds. Since the GMM-AR statistic tests whether all moment conditions
hold, it also tests misspecification. It can therefore result in empty confidence sets but the
KLM test cannot since it is equal to zero at the continuous updating estimator of Hansen et
al. (1996), which is the minimizer of the GMM-AR statistic.

The identification robust statistics conduct tests on the full parameter vector 6. Valid
(1 — ) x 100% confidence sets for the individual elements of € then result by projecting
the joint p-dimensional (1 — «) x 100% confidence set for 6 on the p different axes. These
projection based confidence sets are size correct so they contain the true value of # with a
probability which is at least (1 — a) x 100% irrespective of the strength of identification.
Projection based confidence sets can face computational issues when p is rather large given
the large number of points on the p-dimensional grid for which the statistic then has to be

computed.



Confidence sets for the individual elements of # can also be obtained by plugging in an
estimator for the remaining elements of 6 after which the (conditional) limiting distribution
can be sharpened using the usual degrees of freedom correction of the x? limiting distributions.
The resulting confidence sets only have correct coverage when these remaining parameters are
well identified, see Kleibergen (2005). Just in some isolated cases, such, as for example, when
using the GMM-AR statistic in the homoskedastic linear instrumental variables regression
model or in the linear factor model for determining risk premia in finance, can we prove that
these confidence sets are valid without requiring the partialled out parameters to be well
identified, see Guggenberger et al. (2012, 2019), Kleibergen and Zhan (2020), Kleibergen
(2020) and Kleibergen et al. (2020).

2.3 Using identification robust tests to highlight identification issues

Identification robust GMM tests are size correct irrespective of the identification strength.
Therefore, their rejection frequencies can be used in a straightforward manner to illustrate
the identification issues at particular values of the autoregressive parameter in the dynamic
panel data model. The conventional t-test based on the two step GMM estimator is not
suitable for this purpose as it is size distorted in the case of weak identification and, hence,
rejection frequencies would not equal the significance level.

To illustrate the identification issues for the different moment conditions, we compute the
rejection frequencies of 5% significance KLM tests of Hy : § = 0.5 for a range of (true data
generating) values 6y. We do so by simulating data from the panel autoregressive model in
(1) with three or four time series observations, so T = 3 or 4, and two hundred and fifty
individuals, so N = 250. The individual specific effects ¢; and idiosyncratic errors u;; are
independently generated from N(0,02) and N (0, 1) distributions respectively. We vary the
value of 02 to show the sensitivity of the identification of # using the panel moment conditions
to the variance of the initial observations. We assume mean stationarity so (7)-(9) hold.

We consider four KLM tests based on Dif, Lev, Sys and AS moment conditions, which
have been calculated according to equation (16) using * = 0.5. The figures in Panels 1 and
2 show the rejection frequencies of KLM tests of Hy : € = 0.5 with 5% significance for four
values of 02 and a range of true values 6. Panel 1 does so for three times series observations
while Panel 2 covers four time series observations. The simulation experiment is designed
such that the variance of the initial observations becomes very large when 6y gets close to

one and o2 exceeds zero.
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Panel 1. Rejection frequencies of KLM test of Hy : 6 = 0.5 with 5% significance
using different moment conditions for 7= 3, N = 250 and o2 = 0 (dashed),
0.5 (solid), one (dashed-dot) and two (dotted)
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Figure 1.1: Dif moment conditions
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Figure 1.3: Sys moment conditions

Figures 1.1 and 2.1 show that the rejection frequencies of the KLM test with Dif moment
conditions for #j close to one converges to the significance level of 5%. It is well known that
the Jacobian of the Dif moment conditions is zero when 6y equals one so they then do not
identify 8. The KLM test is identification robust which explains why the rejection frequency
equals the significance level both at the hypothesized value of 6* = 0.5 and when 6 is close
to one for all values of o2. The latter results since the Dif moment conditions do then not
identify 6, hence the KLLM test has no discriminating power so the power of the KLM test

equals the significance level.
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Panel 2. Rejection frequencies of KLM test of Hy : = 0.5 with 5% significance
using different moment conditions for 7' = 4, N = 250 and o2 = 0 (dashed),
0.5 (solid), one (dashed-dot) and two (dotted)
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Figure 2.2: Lev moment conditions
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Figures 1.2 and 2.2 show the rejection frequencies of 5% significance tests of Hg : 6 = 0.5
using the KLM test with Lev moment conditions. Interestingly, these figures show that the
Lev moment conditions only identify # when the true value g is close to one when o2 = 0.
Non-zero values of 02 correspond with a large variance of the initial observations when 6 is
close to one and Figures 1.2 and 2.2 show that the Lev moment conditions do not identify
0 in this case. This contradicts the common perception that the Lev moment conditions
generally identify 6 irrespective of the setting of nuisance parameters, like, the variance of
the initial observations.

Figures 1.3 and 2.3 show the rejection frequencies of 5% significance tests of Hg : 6 = 0.5
using the KLM test with Sys moment conditions. Surprisingly, these figures show that the
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Sys moment conditions do not identify  when 6y is close to one and 2 > 0 when T' = 3 but
do so when T' = 4.

Figure 2.4 shows the rejection frequencies of 5% significance tests of Hg : # = 0.5 using
the KLM test with AS moment conditions. These rejection frequencies show that the AS
moment conditions, which are not defined for T' = 3, identify 8§ when its true value is close
to one and the variance of the initial observations is very large. Interestingly, the rejection
frequencies of KLM tests of Hy using the Sys and AS moment conditions are very close when
0y is near one when paired with large variances of the initial observations.

Summarizing, Panels 1 and 2 illustrate a few stylized facts that concern the identification

of 0 for the DGP used in the simulation experiment:

1. Dif moment conditions do not identify # when 0q is close to one for general T.

2. Lev moment conditions do not identify # when 6 is close to one for large variances of

the initial observations for general T.

3. Sys moment conditions do not identify § when 6 is close to one for large variances of

the initial observations when 7' = 3.

4. Sys and AS moment conditions identify # when 6q is close to one for large variances of

the initial observations when T exceeds 3.

5. The rejection frequencies of KLM tests of Hg using AS and Sys moment conditions
when 6 is close to one and the variance of the initial observations is large are almost

identical.

Except for the first stylized fact, a theory backing them up is lacking so we aim to provide
one in the sections ahead. In doing so, we show that all information regarding 6, when its
true value is close to one and the variance of the initial observations is large, is contained in
a set of, so-called, robust moment conditions which are a combination of either the AS or
Sys moment conditions. We furthermore show that the KLM test based on the original AS
or Sys moment conditions, as reported in Panels 1 and 2, makes optimal use of these robust
sample moments when only they contain information on 6.

Alongside the identification issues we can infer from the rejection frequencies in Panels 1
and 2, they are also indicative of the different kind of confidence sets that can result from the
identification robust tests as discussed previously. For example, the low rejection frequencies
occurring for #y around one, that result from the identification issues, show that the 95%
confidence sets for # are then typically very wide, possibly unbounded, when 6y has such
a value paired with a large variance of the initial observations. To visualize this further,
Panel 3 contains the (one minus the) p-value plots of KLM tests using AS, Dif, Lev and Sys

moment conditions for four data sets using the same DGPs as in Panels 1-2 with N = 250
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and p = 0.95.9 The DGPs used for the four figures differ over the values of T' and 2. The
intersections of the depicted p-value plots with the line at 0.95 indicate the 95% confidence
sets of KLM tests with the respective moment condition.

In Figures 3.1 and 3.3, 02 = 0 so identification issues only occur at gy close to one when
using the Dif moment conditions. Since 6q is 0.95, this explains why the p-value plots of the
KLM test with the Dif moments conditions do not cross the line at 0.95 in Figures 3.1 and
3.3 so the resulting 95% confidence sets are very wide. The p-value plots in Figures 3.1 and
3.3 of KLM tests with Sys and Lev moment conditions show that they lead to bounded 95%
confidence sets since these moment conditions have no identification issues when 7' = 3 and
o2 =0.

In Figure 3.2, where T' = 3 and a% = 0.5, none of the p-value plots crosses the line at 0.95
s0 95% confidence sets that result from KLM tests with Dif, Lev and Sys moment conditions
are all very wide and possibly unbounded. This is indicative of the identification issues when
T =3 and 02 = 0.5 for true values of 6 close to one.

In Figure 3.4, where T' = 4 and ¢ = 0.5, KLM tests with Sys and AS moment conditions
both result in finite 95% confidence sets while the KLM test with Dif and Lev moment
conditions leads to very wide possibly unbounded confidence sets. Hence, Sys and AS moment
conditions have no identification issues while Dif and Lev moment conditions do. The AS
moment conditions are quadratic functions of # which explains the somewhat unusual shape

of their p-value plots in Figures 3.3 and 3.4.

SWe note that the figures in Panel 3 show (one minus) the p-value for one realized data set and do not
show the simulated empirical distribution function of the test under the null hypothesis which is sometimes

also referred to as a p-value plot, see Davidson and MacKinnon (2002).
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Panel 3. One minus p-value plots of KLM tests using different moments conditions: Sys

(solid), AS (dotted), Lev (dashed), Dif (dash-dot) for 8y = 0.95 and N = 250.
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3 Identification from different moment conditions

Stylized facts 1-4 illustrated by the figures in Panels 1-3 show the identification issues that
occur for the autoregressive parameter 6 when the variance of the initial observations is large
and 6, i.e. the true value in the DGP, is close to one. To pin these identification issues down
precisely, we use an asymptotic sampling scheme which consists of joint drifting sequences

for the autoregressive parameter and the variance of the initial observation. We indicate this
1

var(yi1)
value of 6, previously denoted by 6, is from now on therefore denoted by 0y . Assumptions

dependence on the sample size N by 0g v and hy(6o,n) = respectively. The true

1 and 2 group the different requirements needed to obtain our results.
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Assumption 1. a. The drifting sequences of the autoregressive parameter and variance of

the initial observations are such that:

limNHoo GO,N =1

. (20)
limy oo hn(Oo.n) = di,
with dy a finite, possibly zero constant.
b. The initial observations satisfy the mean stationarity conditions in (7)-(9).
c. The joint limit behavior of the variance of wj1 and (1 — 6y n) is such that
lmy oo (1 = fo,n)07 v = da, (21)

with O'iN =var(u;1), d2 a finite, possibly zero constant and (1 — GO,N)%UH 18 a random
variable with finite fourth order moments.
d. The variance of the product of the initial observation y;1 and the disturbances w; is such
that

var(uyyn) = orvar(ya), t =2,...,T, (22)

with 0? = var(uy), t =2,...,T.
e. The errors Uﬂ/O'LN, Uiz ..., U7 and ¢, 1 =1,..., N, are independently distributed within
individuals and over the different individuals and have mean zero, finite variance and finite

fourth order moments and satisfy the conditions in (2).

Assumption la concerns the joint limit behavior of the variance of the initial observations
and 0y y. By the definition of y; in (8) and Assumption la, y; is also drifting with the sample
size since it is a function of 6y x and so are y;; and 0’%7 ~- Assumption 1b specifies that the
initial observations follow the mean stationarity assumption, which is necessary for the Lev
and Sys moment conditions to hold. Assumptions lc-e are mainly technical assumptions,
which are needed to obtain our theoretical results. Assumption lc sets an upper bound on
the rate at which the variance of u;; can diverge. It implies that the variance of u;; is at most
proportional to (1 — 6 n)~* (so covariance stationarity is allowed for). Assumption 1d holds
under independence of u;; and y;; but it can also hold under less stringent conditions. In the
sequel, we analyze the identification of § when the variance of the initial observations gets
large compared to that of the subsequent disturbances. Assumption 1d enables such settings.
Assumption le is a technical assumption which is needed to use a central limit theorem.

Assumption la allows the variance of the initial observations to be large jointly with
a large value for the autoregressive parameter. When d; in (20) equals zero, the rate at
which hn (0o n) goes to zero, or the variance of the initial observation goes to infinity, is key
to the identification of # from the sample moment conditions. We therefore put down two
alternative assumptions regarding the joint convergence of the sample size and the variance
of the initial observations under which there is identification or identification is problematic

for specific moment conditions.
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Assumption 2. a. dy = 0 and the drifting sequence of the variance of the initial observation

18 such that:
hN(HO’N)\/N ij 0. (23)

b. dy # 0 or the drifting sequence of the variance of the initial observation is such that:
hN((g()’N)\/N — Q. (24)
N—o0

Identification generically holds under Assumption 2b but can become problematic under
Assumption 2a and then depends on the particular moment condition and number of time
series observations as we show later on. In the intermediate case where hy (69 x )V N converges
to a finite, but non-zero constant, we are in a case similar to that discussed in the weak
instrument literature where the sample Jacobian converges to a random variable which leads
to inconsistent estimators with non-standard behavior of their corresponding t-statistics.
Because of the practical similarities with Assumption 2a, however, we do not separately
discuss it.

Since any assumption about the convergence rates of the sample size and the variance
of the initial observations is to a large extent arbitrary, also the identification of 6 by these
conditions is arbitrary for DGPs for which the true value of 4 is close to one and the variance
of the initial observations is infinite when the true value of 6 equals one. Some plausible
DGPs, all of which accord with mean stationarity (7)-(9), for the initial observations belong

to this category:

DGP 1. 0% =var(¢;), 02 5y = 02, h(Oon)"2 = 02/(1 — Oy.N)? + 03, so when O N 1,
’ — 00
(1= 0on) " h(bon) — ot
N—o0

DGP 2. ¢? =var(c;), 02 5y = L — var(uit), t = 2,...,T, h(6on)"2 = 02/(1 —

2
1-05 n’

Oon)? +0%/(1— 037]\,), so when 6y x N 1, (1 —6o.n) " h(BoN) N ot

2

DGP 3. Ji =var(u,;), aiN = d’ﬁ’ o? =var(uy), t =2,...,T, (B n) 2 = Ui +02/(1 -
’ 1
62 »), so when bon — 1,(1— 02 ~N) 2h(6on) — o L.
) N—o00 ’ N—o0
2 2 2 1-00% 2 2
DGP 4. oj, =var(y;), ot y = 0 T = var(ug), t = 2,...,T, Mbon)™* = 05 +
5 1= 5 1-03 E 1
——5— 80 when 6 — 1, | —2=5 h(6 — o .
1_93,N ’ oN Nooo 179(2)(1%,+1) ( O’N) N—oo
2 2 g 1-0% 2 2
DGP 5. o; :Var(ci)a OIN=0 ﬁ, o° = var(uit), t=2,...,T, h(@()’N)* = UC/(l —
2 21005 | -1 1
Oon) + o %, sowhen Ogny — 1, (1—6on) h(bon) — o
0,N N—oo N—oo
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DGPs 4 and 5 characterize an autoregressive process of order one that has started g periods
in the past while the initial observations that result from DGP 2 and 3 result from an
autoregressive process that has started an infinite number of periods in the past. DGPs 2
and 3 are also used by Blundell and Bond (1998) and Arellano and Bover (1995) use DGP
2, but these studies keep the variance of the initial observations fixed.

For DGPs 1-5 to imply Assumption 2a, the limiting sequence 6y y has to be such that:

DGP 1, 2,5: (1-6ypn)VN — 0 for which it is sufficient that gy =1 — —5—
’ N—oo ’ N7(1+€)
DGP 3: (1- 9%7N)N e 0 for which it is sufficient that 0oy =1 — i
— 00
DGP4: X — 0,
9 N—oo, g—oo
(25)

with e a constant and € some real number larger than zero. In the case of DGP 4, (25) implies
that the process has been running longer than the sample size N. Kruiniger (2009) uses the
above specification of DGP 3 with ¢ = 0 and DGP 4 with N/g converging to a constant to
construct local to unity asymptotic approximations of the distributions of two step GMM
estimators that use the Dif, Lev or Sys moment conditions.

We do not confine ourselves to a specific DGP for the initial observations so we obtain
results that apply more generally. While the (non-) identification conditions for identifying
6 that result from the above data generating processes might be (in)plausible, it is the arbi-
trariness of them which is problematic. Additionally, the identification condition might hold
but it can still lead to large size distortions of Wald test statistics, like, the t-test.

To analyze the identification of 6 by the different moment conditions for a general number
of time periods T', we start out with a representation theorem. For the different moment con-
ditions, it states the behavior of the sample moments and their derivatives under Assumptions
1 and 2a.

Theorem 1 (Representation Theorem). Under Assumptions 1 and 2a, we can charac-

terize the large sample behavior of the Dif, Lev, NL, AS and Sys sample moments for T time

series observations and their derivatives by:

hn (8o,
_ (26)
’O- ; > +0p(1),

with j = Dif, Lev, NL, AS, Sys. The specifications of the k;-dimensional sample moments

( Z:/[EZ; ) = Agg&) ) [ﬁ (Y — hn(bo,N)o1,NiT-1%,) — tr—1d2| +

f]]V(H) and derivatives q{\,(e) are given in the Appendix. Furthermore, A;(H), Al (), ,Ll,fc(e, 52)

and ,ué(&, 52) are constant k; x (T —1), kj x (T —1), k;j x 1 and kj x 1 dimensional matrices,
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Yi1Ui2
hn(0o.N) =N .
N\/]%N Z¢:1 . 7 P

YiluiT

(27)

ﬁ Zi:l o’qﬁi\; Ci ? wcv
so ¥ is a (T — 1)-dimensional normal random vector, ¢ ~ N(0,diag(03...0%)), ¥, ~
N(0,var(c;)) and independent from 1, and vp—q is a (T — 1)-dimensional vector of ones.
The specifications of A?;(O), AZ(H), ugc(ﬁ,&Q), ué(@,&Q) for values of T equal to 3-5 are all
stated in the Appendiz.

Proof. see the Appendix. m

The representation theorem in Theorem 1 is reminiscent of the cointegration represen-
tation theorem, see e.g. Engle and Granger (1987) and Johansen (1991). Identical to that
representation theorem, Theorem 1 shows that the behavior of the moment series changes
over different directions.

Theorem 1 implies that the sample moment and its derivative diverge in the direction

A% (6
of ( Af E 9;) since the latter components get multiplied by - @

2a goes off to infinity when the sample size increases. The only identifying information for

) OO which under Assumption

0 then results from that part of the sample moment which does not depend on . Since
1 only affects the part of the sample moments spanned by Ajc(e), the sample moments are
independent of 1 in the direction of the maximal non-degenerate space spanned by vectors
orthogonal to A‘}(G) to which we refer as the orthogonal complement of Ajc(ﬁ). We construct
the orthogonal complement, which we denote by Agc (0)1, as the full rank matrix projecting
on the orthogonal complement of the range space of A;(G). It consists of the minimal set
of vectors spanning the null space of the columns of A;(H). In the case the null space has
dimension zero, a full rank specification of A;(@) | can not be constructed.
When we pre-multiply the sample moments by the orthogonal complement of Agc (0), we
obtain
ALOYLIN(0) = ALOYL15}(6.5%) + 0p(1). (28)
Compared with expression (26) in Theorem 1, the elements multiplied by A;(G) have dropped
out since A; (0)’1_14; (0) = 0. The right hand side of (28) now contains all remaining identifying
elements of the original moment conditions. From expression (28), it is seen that identification
results only when (1) A;(H)J_ is a full rank matrix; (2) A;(H)’L,ugc(& 52) # 0 for all § # 0 n.
For an illustrative example of Theorem 1, consider the large sample behavior for T' = 3
of the Lev sample moment, % Zf\il Ayio(yis — 0yi2), and its derivative, —% Ef\il YioAy;o,
when 6y n converges to one according to (20) and mean stationarity (8)-(9) applies. The Lev

moment condition has been proposed by Arellano and Bover (1995) and Blundell and Bond
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(1998) to overcome the identification problems of the Dif moment condition near the unit

root. Under Assumption 1, the relevant elements for the large sample behavior are:

Lev0) = £ 30N Ayio(yis — Oi2)
= (1-90) {% Sy ud 4§ Sy iy +
% SN0y = Duaga b +o0,(1), (29)
C]z%rev(e) = *% f\il Yio Ayio
= _% ﬁ\il U — % Zij\il Ui2Yi1
— & iy (1= fo N )unyi + 0p(1),

see the proof of Theorem 1 in the Appendix for a derivation. The o0,(1) remainder terms
contain all elements in (29) that can not dominate the large sample behavior when 6y x
goes to one according to the drifting parameter sequences defined in Assumption 1. The
components explicitly specified in (29) either have a non-zero mean or depend on the initial

observations ;1. Under Assumption 1, we have that

U

N N o u
hN(Qo,N)ﬁ 2im1 Uizyit — Yo, \/% Q=1 51y

¢ — (L (30)

which is proven in Lemma 1 in the Appendix and where ¢y and . are independent normal

2
c

# 2N  winyin and & S0 (0ov — Duayin = & Soey (fon — Dudy + & S00%, wine; explicitly

appear in (29). When d; in (20) equals zero, the rate at which hy(6o,n) goes to zero, or

random variables with mean zero and variance o3 and o2, 02 =var(c;). It explains why

the variance of the initial observation goes to infinity, determines the behavior of the sample
moments in (29). For example, when d; = 0 and these sequences are as in Assumption 2b, it
holds that

& i vin Ay > o5 — da. (31)

Although Assumption 1 does not fully pin down do, which value depends on the particular
DGP for the initial observations, it is clear that the probability limit of the sample Jacobian
typically differs from zero. Hence, the Lev moment condition seems to identify # irrespective
of its true value, see Arellano and Bover (1995) and Blundell and Bond (1998). There is a

caveat though since, under Assumption 2a, Theorem 1 shows that:

o I (0
o) = hN(golN)\/ﬁ N\(/%N) Soivy Ayia(yis — Oyiz)
_ 1 2
- (1-0) {W§¢2; Ax(Bon)o1ne) + (03 = o) |+ 0,(1),
Lev _ 1 ~N\(Vo,N ) )
an (6) - _hN(HO,N)\/N VN Zi:l ylZAy’Qa
= —W(% — h(o,n)o1,8%.) — (03 — d2) + 0p(1),

(32)

which implies that the sample moments of the Lev population moment and Jacobian diverge

when the sample size increases. The Lev sample moment then no longer identifies 6 since the
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components that would identify 6 in the Jacobian identification condition, i.e. % Zfil u?z,

gets dominated by the component % ZZ]L u;2y;1 and possibly % Zfil(l — 0o, N)ui1Yi1-
We next discuss what Theorem 1 implies for the different sets of moment conditions

discussed previously and their respective orthogonal complements of A¢(6).

Dif and Lev conditions When T = 3 or 4, the specifications of ,u?(&,&?), A;}(@) and
A?c (0), for the Dif and Lev moment conditions, which are stated in the proof of Theorem 1
in the Appendix, are:

Dif: T=3 u;"7(0,6% =0, A7 (0)=(-01), AY7(0), =(10)

0 9 1 0 0
T=4 70,60 =| 0 |, AP7@) = o -0 1|, A770) =] 1
0 0 -0 1 1

0.2

02 ) , Af;e”(ﬂ) =(1-60), Af;e”(ﬂ)L does not exist

2
02
B ev 1-0 0 0
T—4 M%ev(07a2):(1—9) U% ,A]Lc (9):< 0 1-0 0)’
0

AJLce”(H) 1 does not exist.
(33)
The expressions of A%ev(Q) are all such that we cannot specify a non-zero matrix A%ev(Q) I
such that AJLF”(G)'LAJI;“(H) = 0. This remains so when T exceeds four, see the Appendix.
Hence, AJLce”(H) 1 does not exist (as a non-zero matrix). Regarding the Dif moments, when
T > 3 the rank of the orthogonal complement of A?if (9), A?if (0)1, is larger than zero.
However, since u?if(ﬁ, 52) equals zero for any value of T, A?if(Q)lu?if(ﬁ, 52) = 0 so the Dif

moment conditions do not identify 6. Summarizing, we have:

Dif: ,u?if(Q, 5?) is vector of all zeros. No identification when T' > 3.

34
Lev: AJLce”(H) 1 does not exist. No identification when T" > 3. (34)

NL condition The NL moment condition is not defined for 7' = 3. When T = 4, the
expressions of Mj;(e, 72), A;(O) and A?(Q)l read

NL: p3"(0,5%) = (1-0) (03 — 003) , AFE(0) = < 0—1) 1—-60 0 ) ,

(35)
AjcVL(G)l does not exist.

Since the orthogonal complement does not exist, the NL. moment condition does not identify
6. The expression of Ajcv L(9) for a larger number of time series observations (see the Appendix)
is also such that the orthogonal complement A}V L(9) | also does not exist. Hence for larger

values of T, the NL. moment conditions also do not identify 6.
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AS and Sys conditions The expressions of /,L;(O, 7?), A;(Q) and A;(Q)L when T' = 3, 4
for the AS and Sys moment conditions result from stacking those of the Dif and NL and Dif

and Lev moment conditions respectively:

0 -6 1 0
0 0 -6 1
AS: T=4 p450,5%) = , A5(0) = ,
Mf( %) 0 f (0) 0 0 1
(1—0) (03 — 603) 90 —-1) 1—0 0
f—1 0
0 -1
A25(0) L = 0 .
1 0
0 -6 1
Sys: T = 5Us(0,62) = (1—0 , AV (0) = ,
ys " (0,0%) = ( )(U%> 7 (0) (19())
A?ys(ﬁ)l does not exist.
0 9 1 0
0 0 -6 1
Sys: T=4 ;0,63 =1-0)| 0 |, A (0) = o -6 1|,
o2 1-6 0 0
2 0 1-6 0
73 (36)
f—1 0
0 -1
AR (0), = 0
-6 0
1 0

When T = 3, A?ys(ﬁ) is a full rank square matrix so its orthogonal complement does
not exist. It implies that the Sys moment conditions do not identify # when T' = 3. When
T = 4, the orthogonal complement of Ai}(@), A?(H)L, has rank larger than zero for both AS
and Sys moments. Furthermore, the specification of ,u;c(ﬁ, 52) for the AS and Sys moment
conditions in (36) is such that A%(6)', 417(0,5%) # 0 for all 6 # 6o, n, while it is not difficult to
see that limy_, o Agc (Bo,n), u;(eo, ~,52) = 0 which just reflects that the moment conditions
hold at the true value. This implies that although the AS and Sys sample moments diverge
in the direction of Ajc (0), so that part cannot be used to identify 6, the AS and Sys sample
moments identify 6 by their part which is spanned by the orthogonal complement of A;(G).
The expressions of ,uic (0,52) and A;(Q) in the proof of Theorem 1 in the Appendix show that
this argument extends to all values of T" larger than three.

Our preceding analysis is summarized by Corollary 1:
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Corollary 1 (Identification of ). Under Assumptions 1 and 2a, 0 is identified by the
AS and Sys moment conditions when T exceeds three. Furthermore, 0 is not identified by
the Dif, Lev and NL moment conditions separately for any value of T and the Sys moment

conditions when T equals three.

Corollary 1 proves stylized facts 1-4 from Section 3, which are illustrated by Panels 1-2.
It also shows that the identification from the Lev moment condition remains problematic for
larger values of T but the Sys and AS moment conditions generally identify 8 for values of T
larger than three.

Regarding the NL moments we find that they are not robust to all settings of nuisance
parameters like the variance of the initial observations. Alvarez and Arellano (2004) and
Kruiniger (2013) have shown that, when the data, including the initial observation, have
finite second moments and the autoregressive parameter equals one, 6 is identified by the NL
and, hence, the AS moment conditions if and only if 7' > 4. Furthermore, if 7' > 4, 0 is only
locally identified when the unconditional variances of the errors change at a constant rate of
growth between ¢t = 2 and t =T — 1 and only second-order but globally identified when the
unconditional variances between ¢t = 2 and t = T — 1 are equal. Unlike Alvarez and Arellano
(2004) and Kruiniger (2013), our limiting sequence for the variance of the initial observations
allows for unbounded values. Theorem 1 then shows that identification by the NL moment
conditions is lost when its convergence rate accords with (23). The intuition is that the NL
moment conditions are a product of levels and first differences so they are unlikely to identify
the parameters in limit sequences where the variance of the initial observations increases
faster than the sample size.

Theorem 1 can be used to construct the non-standard limiting behavior of one and two
step GMM estimators that result from the different moment conditions. These are similar
to the non-standard results in e.g. Madsen (2003) and Kruiniger (2009) so we, for reasons of

brevity, refrain from stating them.

Robust sample moments Theorem 1 shows that the identification of # when the variance
of the initial observations is large results from the part of the (AS or Sys) moment conditions
that lies in the direction of Ai}(@) 1. Expressions of the orthogonal complements of Ai}(@) for
T = 4 and 5 for the AS and Sys moment conditions are stated in (36). They can be specified
(see the Appendix) as

AL0) L = (G)1(0) 1 GL 1), (37)

where T' indicates the number of time periods and G%T is such that G%'Tujc(ﬂ,&Q) = 0 for
all 6. Furthermore, G;T(G) is the only part of Ai;(@) 1 that depends on 6. The orthogonal

complements are then such that the resulting, what we refer to as, robust moment conditions
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are quadratic in 6 :

97.0(0) = Ap(0) f1,(6) = ab® + b6 + 4, (38)

where the expressions for a, b and d are constructed in the Appendix:

T=4: Sys a = % Zi\il ((Azgz)Q)’ h= LN ((yiS—yil)Z)’ d — % Zf\il ((yi4—yi1)Ayi3).

N £=i=1 \ Ay Ay;s AyizAyia
AS a = % Ziil ((yiS_yEl)l)AyiQ), b= _% sz\il ((yiafyu)AAy;?;rA(Zng*yn)Aym)’
1 N ia—Yi1) Ay;
d= N Zi:l ((yZyiyzi)ymy 3)'
(Ayiz)z (yiS - y’il)2
(yi3 — vi1) Ayiz (Yia — yi1) (Yia — Vi)

T=5: S :LZN Agia)2 b:_izN a2
2 8ys a= )i (Ayiz) ; N D=1 (Yia — Yi2) ,

0 Ayia Ayig

0 AyizAyia

(Yia — yi1)Ayiz
(%5 - yil)Ayi4

d= % Zi]\il (Yis — vi2) Ayia
AyiaAyis
AyizAyis
(viz — yi1) Ayio (Yia — yi1) Ayiz + (Yiz — vi1) Ayiz
(Yia — yi1) Ayis (Yia — vi1) Ayia + (yis — yi1) Ayia
AS o=y Yty | (i —yi2)Ayis | b= ~¥ S (Wia — yi2) Agia + (yis — yiz) Ayis
0 AyinAyig
0 AyizAyig

(Yia — vi1)Ayis
(Yis — Yi1) Ayia
d=% S | (s —v)Ayis |
Ayin Ayis
AyisAyis

and similar specifications of a, b and d result for larger values of 7.

It is interesting to see that these robust moments only depend on differences of the data
so the initial observations get differenced out. This explains why these moments are robust to
the variance of the initial observations. When the autoregressive parameter equals one and in
the case of iid normal errors and time series homoskedasticity, Ahn and Thomas (2006) and
Kruiniger (2013) show that the maximum likelihood estimator of Hsiao et al. (2002) and the
random effects estimator of Anderson and Hsiao (1982) have the same limiting distributions.

These results show that, similar to our findings, moment conditions involving levels of the
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data are redundant in this setting and only moment conditions using differences of the data,

like our robust moment conditions, are informative.

Large individual effect variance So far we have focused on highly persistent panel data
resulting from a large autoregressive parameter. However, the representation theorem for
the moment conditions and their derivatives in Theorem 1 applies to any setting where the
variance of the initial observations gets large. The expression of the initial observation in
(7) shows that its variance becomes large when either the variance of the initial disturbance
term, u;1, or the individual specific effect, p,;, becomes large. Theorem 1 focusses on a large
variance that results from the autoregressive parameter converging to one. Theorem 1 does,
however, extend to the case where jointly with the sample size, the individual specific effect
variance becomes large in such a manner that Assumption 2a holds. This drifting sequence
applies to any value of the autoregressive parameter so the resulting identification issues are
then no longer confined to the unit root value. Hence, they also apply to the cases with only
moderate autoregressive dynamics, but a large variance of the unobserved heterogeneity. The
robust moments in (38) also apply to this case. Kruiniger (2002) extensively analyzes the
setting of a large variance of the individual specific effects. He shows that only moment
conditions based on differences of the data yield a consistent estimator so moment conditions
involving levels are redundant. He also constructs the set of optimal moment conditions
assuming time series homoskedasticity. Our robust moments (38) extend his set of optimal
moment conditions since they remain valid under a large variance of the individual specific

effect and also allow for time series heteroskedasticity.

4 KLM test and robust sample moments

Theorem 1 establishes identification results for the AS and Sys moment conditions, which are
based on the robust sample moments. It is not clear, however, how an identification robust
test procedure makes use of it. In this section, we show that the KLM test based on the
original AS or Sys moment conditions just uses the robust sample moments when only the
latter contain identifying information on the autoregressive parameter. We show that, under
large variances of the initial observation and when the true value of 6 is close to one, the KLM
test based on either the AS or Sys moment conditions exploits the identifying information
from the robust moment conditions in an optimal manner. For practical purposes, this implies
that we do not have to explicitly use the robust sample moments since they are implicitly
used when conducting a KLM test using AS or Sys moment conditions.

We obtain the above result in four steps. First, we characterize the limit behavior of the
robust sample moments. Second, we use it to determine asymptotic sequences for the true

and hypothesized values so the power properties of the corresponding identification robust
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test statistics when using the robust moments are not trivial and stay informative. Third, we
construct the largest (infeasible) discriminatory power that can be obtained from combining
the robust moments. Fourth, we show that it coincides with the rejection frequency of KLM
tests using either AS or Sys moment conditions. Summarizing, the KLM test based on
original AS or Sys moment conditions implicitly resorts to using the robust sample moments

in an optimal manner when only these contain information on 6.

4.1 Large sample behavior of robust sample moments

To construct the limiting behavior of the robust sample moments for settings where only they
contain information on @, we first state the probability limits of the quantities a, b and d in
(38) under Assumption 1. The components that comprise the robust sample moments do not
depend on the variance of the initial observations so they are not affected by Assumption
2. Since we analyze the behavior when the true value g n is converging to one, we specify
this convergence behavior of g x so it is dominated by the random components present in
the limit behavior of a, b and d which are of order O,(N _%) This then implies that 0g v
converges rather rapidly to one with a convergence rate that is faster than N -3, Hence, 09 n

is considered to be in the close neighborhood of one.

Theorem 2. Under Assumption 1, the limit behavior of the different components of ggc 7(0),
j=AS, Sys, for Ogn =1+ % with 1 a fized constant, | < 0, and T > %, is characterized
by:

[N

|
~—

T=4: a= () +0,(N"2),b=—("2}7) + O,(N"2), d = (5) + Op(N"2

0 0
a% a% + a% 0:2,)
ag U§+Ui ai
T=5: a=| o2 |+0,(N"2), b= 02402 |+0,(N"2), d=| o2 |+0,(N"2).
0 0 0
0 0 0

Proof. see the Appendix. m

Although AS and Sys robust moments are different, Theorem 2 implies that under As-
sumption 1 the probability limits of a, b and d are identical. Furthermore, Theorem 2 implies
that the Jacobian of the robust moment equation (38) is of full column rank when o? # o2
for at least one value of t = 2, ..., T. This fulfills one of the sufficient conditions for standard
asymptotic theory for GMM inference based on the robust sample moments, which since the

other sufficient conditions can be shown to hold as well, applies for these settings.
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4.2 Asymptotic sequence for the hypothesized value

We want to compare tests of Hg : § = 0" using the robust sample moments to KLM tests
of Hp using the original AS and Sys moments for settings where the identification can be
problematic, which occurred for true values of 0 close to one and large variances of the initial
observations. Because we want to analyze local asymptotic power while the true value 6y x
is converging to one according to Og ny = 1 + %, we also consider a local to unity drifting
sequence for the hypothesized value 0*, which we denote by 6(e) with e < 0 the localizing
parameter. Although less common in asymptotic power analysis, the advantage of a drifting
hypothesized value is that our results hold for a range of hypothesized values.

The asymptotic sequence 6(e) is such that the behavior of the identification robust tests
is not diverging and informative about 6, when the true value 0y is converging to one.
Theorem 3 establishes the particular rate at which 6(e) converges to one which makes these
conditions hold. Note that there is a slight abuse of notation as from now on we suppress the

superscript j in g}vT(H(e)), j = AS, Sys, which is inconsequential for the results to follow.

Theorem 3. Under Assumption 1, Ogn = 1 + % with | o fixed constant, | < 0, and
T > %, the robust moments v Nggr(0(e)) are informative about § and converge to a bounded
in probability, mon-degenerate random wvariable under the following local to unity drifting
sequence 0(e):

1. O(e) = 1+%}V in the case of 02 =0, t=2,...T,

T

2. 0(e) =1+ ﬁ when o? # o2, for at least one value of t, t=2,...T — 1,

with e < 0 a finite constant.
Proof. see the Appendix. m

The quartic root convergence rate in Theorem 3.1 results since the Jacobian of the robust
moment equation (38) is then equal to zero but the Hessian is not. It is thus a setting
of so-called second order identification with first order underidentification. Estimators then
generally have quartic root convergence rates, see e.g. Dovonon and Renault (2013), Dovonon
and Hall (2018) and Dovonon et al. (2020). A quartic root convergence rate for estimators in
dynamic panel data models is also found by Ahn and Thomas (2006) and Kruiniger (2013).

The quartic root convergence rate for the robust sample moments results from specifying
0(e) =1+ iz and 0? =02, t=2,...T. All elements of the robust sample moments which
are linear in e then cancel out in the limit. We are then left with a quadratic term in e and
components that converge at the rate ﬁ A quartic root convergence rate makes all these
components of the same order of magnitude. Theorem 3 shows that error variances which

are constant over time, 07 = 02, t = 2,...T, lead to this slow convergence rate.
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4.3 Largest rejection frequencies of robust sample moments

To show that the KLLM test of Hyg using AS and Sys moment conditions just uses the robust
sample moments when only these contain information on 6, we use the largest rejection

frequencies that result in such instances from the robust sample moments. To obtain these

largest rejection frequencies, we first consider the GMM-AR test of Hy, : f(e) = 1+ é/eﬁ using
the robust sample moments, which is specified as:
GMM-AR(6(e)) = Ngzr(0(e)) Vyg(0(e) 1 g.0(0(e)), (39)

with g¢7(6(e)) the moments in (38) evaluated at f(e) = 1 + %\/N and Vgg(H(e)) the (Eicker-
White) covariance matrix estimator of the covariance matrix of g¢r(6(e)). For T' = 4 and

5:7

=
Il

40 gu(6) = (é ) )gi%;(e(e))

1 —0(e)/(1—0(e)) O(e)/(1—0(e)) 0 0
0 1 0 0 —6(e)
T=5: g/% (0e)= | 0 0 1 0 —6(e) |gihs(0(e)
0 0 0 1 0
0 0 0 0 1

so GMM-AR(6(e)) is equivalent for the AS and Sys moment conditions since the invertible
matrix by which gi?(@(e)) has to be pre-multiplied to obtain gﬁ%(@(e)) cancels out in GMM-
AR(6(e)). This result can be extended to larger values of T.

Theorem 4. Under Assumption 1, gy = 1+ ﬁ with | a fived constant, I < 0, and T > %,
02 =% t=2,...T, the large sample distribution of the GMM-AR statistic (39) for testing

Hy,:0(e)=1+ %}\7’ in a sample of size N is characterized by

X*(6(N), Pmax), (40)

with §(N) = (6(7)4(Lé’)/(B(N)’Vade(N))*1 (%), p the number of columns Gy r(0), so when
T =4,p=1 and when T =5, p = 3, and pmax the number of elements of gsr(0(e)), so,
when T = 4, pmax = 2, while ppmax =5 for T =15,

B(N) = (Lg ® [pmax) + %ﬁ |:(2 + %)(6173 ® Ipmax) + (6273 ® [pmax) ’ (41)

Vabd the covariance matriz of a, b and d, I the Pmax X Pmax dimensional identity matrix,

max

e1,3 and ez 3 the first and second 3 x 1 dimensional unity vectors and X2(5,pmax) a non-central

x? distribution with non-centrality parameter § and pmax degrees of freedom.

"We thank an anonymous referee for showing this.
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Proof. see the Appendix. m

The expression of the large sample distribution in Theorem 4 depends on the sample size.
Given the quartic root convergence rate, convergence to the limiting distribution is very slow
so it is important for the accuracy of the approximation of the finite sample distribution to
incorporate higher order components. The proof of Theorem 4 in the Appendix therefore
from the outset considers all higher order components of gy (f(e)) in order to construct a
large sample approximation of the distribution of GMM-AR(6(e)).

To obtain the maximal rejection frequencies using the robust sample moments, we use
a (infeasible) weighted average of the moment equations in g7 (6(e)) where the weights are
chosen such that the non-centrality parameter equals the one of the non-central x? limiting
distribution of the GMM-AR statistic while the degrees of freedom is equal to one (i.e. the
number of elements of #). This value of the non-centrality parameter is also the maximal one

that can be obtained using a weighted average of the robust sample moments.

Theorem 5. Under Assumption 1, oy =1+ % with | a fived constant, [ <0, and T > %,
0?2 =0% t=2,...T, an optimal (infeasible) GMM-AR test of Hy:0(e)=1+ %\/N

a weighted average of the robust sample moments can be constructed that has approximately

that uses

X*(6(N), 1), (42)

distribution in large samples of size N.
Proof. see the Appendix. m

The GMM-AR statistics in Theorems 4 and 5 both have non-central y? distributions with
the same non-centrality parameter so the one with the smallest number of degrees of freedom,
i.e. the statistic in Theorem 5, has the largest power.

Figure 4 illustrates Theorem 5 and shows the maximal rejection frequencies based on
combining the robust sample moments based on either AS or Sys moment condition in a
GMM-AR test® for T = 4 and 5. It uses DGP 1 from Section 3 with a true value of § which
is very close to one (0.99) and a large value of o2 (ten) compared to o2 (one), which amplifies
the variance of the initial conditions. The DGP thus satisfies mean stationarity (7)-(9) and
also time series homoskedasticity, i.e. 07 = o2 for t = 2,...,T. We use N = 2000, a relatively
large value and test for a wide range of values for 6, which together with N provides a mapping
to the constant e (= v/N(# — 1)) in Figure 4 (horizontal axis). The usual power curve, as
shown earlier in the Figures in Panels 1 and 2, reports the rejection frequencies of tests of the
hypothesized parameter value as a function of the parameter value used in the DGP where

the data is simulated from. Figure 4, however, reports for a fixed parameter value equal

8We use the covariance matrix estimator for each simulated data set to compute the GMM-AR statistics.
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to one in the DGP used to simulate the data, the rejection frequencies as a function of a
varying localizing parameter e and, hence, autoregressive parameter 6(e), under the tested
null hypothesis. The rejection frequencies in Figure 4 thus report those observed at one for
a range of the usual power curves where the tested parameter values correspond with those
on the horizontal axes in Figure 4.

Because of the equivalence of the GMM-AR test for the AS and Sys robust moments, the
rejection frequencies are identical for the AS and Sys based robust sample moments and only

differ over T. Any remaining differences in Figure 4 are due to sampling noise.

Figure 4. Rejection frequencies of GMM-AR tests of H, : 6(e) = 1 + 7

B

using weighted robust sample moments

1

Rejection frequency
o
o

Note: 5% significance level, true value of 6 is 0.99, N = 2000, Sys & T = 4 (dashed), AS &
T = 4 (dotted), Sys & T' =5 (solid), AS & T = 5 (dash-dotted).

4.4 Large sample behavior of the KLM test

e
VN
AS and Sys moment conditions when 6y accords with the drifting sequences in Assumptions

Finally, we construct the large sample distribution of KLM tests of Hy, : 6(e) = 1+

using
1 and 2a so only the robust sample moments contain information on 6.

Theorem 6. Under Assumptions 1 and 2a, 0oy = 1+ # with | a fixed constant, | < 0,
and T > %, a% =02, t=2,...T, the large sample distribution of the KLM statistic using the

AS or Sys moments for testing the hypothesis Hy : 0(e) =1+ é/eﬁ s characterized by
KLM(0(e)) ~ x2(5(V), 1) (43)
with 6(N) defined in Theorem 4.
Proof. see the Appendix. m
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Under Assumptions 1 and 2a, Theorem 1 implies that the GMM sample moments diverge
in one direction and converge in another one. Identical to tests for cointegration, Theorem 6
shows that the diverging parts of the GMM sample moments cancel out in the large sample
distribution of the KLM test so it only contains elements from the converging part of the
GMM sample moments. The proof of the large sample distribution of the KLM test is
therefore rather elaborate since this has to be shown for each of the different components of
the KLM test.

Theorem 6 shows that the large sample distribution of the KLM test using AS or Sys mo-
ment conditions when only the robust sample moments contain information on 6 is identical
to the limiting distribution of the GMM-AR test that optimally combines the robust sample
moments for these settings. It proves that KLM tests using the AS and Sys moment condi-
tions then only use the robust sample moments. It is similar to what happens in cointegration
where since the cointegrating vector and stochastic trends operate orthogonally, a likelihood
ratio test on the cointegration vector also does not depend on the stochastic trends, see e.g.
Johansen (1991).

Theorem 6 is illustrated by the Figures in Panel 5, which show the rejection frequencies
of 5% significance tests using a KLM test of H, : 6(e) = 1 + %\/ﬁ

conditions when T" equals four, Figure 5.1, and five, Figure 5.2, respectively. It uses the same

with AS and Sys moment

DGP as for Figure 4. Also identical to Figure 4, the rejection frequencies in Panel 5 report
the rejection frequencies when using a fixed parameter value in the DGP where we simulate
the data from, as a function of a varying parameter value under the tested hypothesis.

Panel 5 shows, for both T" = 4 and T = 5, that the rejection frequencies that result
from using the KLM test with either AS or Sys moment conditions are equal to the largest
rejection frequencies, that can be obtained with the robust moments when only they contain
information on 6. It illustrates that the robust sample moments are (implicitly) used when
you conduct KLM tests with AS or Sys moment conditions. Hence, in practice one can just
use AS or Sys moment conditions in the construction of the KLM test, i.e. there is no need
to switch to the robust sample moments.

Panel 5 also provides a visual proof of stylized fact 5 from Section 3, i.e. rejection
frequencies for the KLM test using AS or Sys moment conditions are almost identical when
the true value of 0 is close to one and for large variances of the initial observations, and that
it is not specific for the tested values used there but holds generally for different tested values
of 6.
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Panel 5: Rejection frequencies of KLM tests of H,, : f(e) = 1 + %\/ﬁ using AS (dashed)
and Sys (dash-dotted) and GMM-AR tests using (infeasible) optimal weighted average

of robust sample moments (solid line)
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Figure 5.1: T'=4 Figure 5.2: T'=15

Note: 5% significance level, true value of 4 is 0.99, N=2000.

5 Conclusions

We have analyzed GMM inference for dynamic panel data models involving highly persis-
tent panel data. We show that the Dif, Lev and NL moment conditions separately do not
identify the parameters in dynamic panel data models for a general number of time periods.
This results from the divergence of the initial observations for some plausible data generating
processes involving highly persistent panel data. When there are more than three time peri-
ods, the AS and Sys moment conditions, however, do lead to identification. The identification
based on the AS and Sys moment conditions for the problematic cases of divergent initial
observations results from so-called robust sample moments. They are combinations of either
the AS or Sys sample moments and do not depend on the initial observations.

Despite the positive identification results for AS and Sys moment conditions, conventional
inference based on two step GMM estimators is not valid since these estimators have non-
standard limiting distributions near the unit root. Similar results hold for two step GMM
estimators based on our robust sample moments. We have therefore analyzed the large
sample properties of identification robust GMM test procedures. These test statistics are
size correct, easy to implement and have been used in a variety of models analyzed using
GMM. We show that the identification robust KLM statistic based on the AS and Sys sample

moments implicitly resorts to using the robust sample moments when only the latter contain
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identifying information.

Based on the theoretical analysis and numerical results a number of remarks can be
made regarding the implementation of GMM inference for applied linear dynamic panel data
analysis. First, statistical inference, i.e. hypothesis testing and confidence intervals, should
be based on identification robust tests, like, for example, the KLM or GMM-AR test. The
non-standard limiting behavior of the two step GMM coefficient estimator makes the use
of conventional GMM inference hazardous in applied research when there are identification
issues. Second, one should always use either AS or Sys moment conditions since these deliver
identification under more general conditions when 7" > 3. An advantage of the AS moments
is that they are valid under less restrictive assumptions than the Sys moments. Third, when
mean stationarity applies, the Sys moments are preferred. Although AS and Sys moments
contain the same amount of identifying information when 6 is close to one and the variance
of the initial observations is large, in practice the opposite may well be the case if one is
not close to the unit root (or if time series heteroskedasticity is present). This is shown, for
example, by our simulated KLM power curves in Section 2. Fourth, the original AS or Sys
moments should be used in an identification robust GMM test statistic and not the implied
robust sample moments. Although only the latter preserve identification when the variance
of the initial observations is large, we have shown that the identification robust KLM test
based on the AS or Sys moments implicitly uses the robust sample moments.

Finally, for expository purposes we have only analyzed the first-order autoregressive panel
data model. The extension to panel data models with multiple endogenous regressors, e.g.
dynamic models with additional endogenous regressors, is an important area for future re-

search.
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Appendix. Specification of GMM sample moments and proofs

Specification of sample moment functions For the Dif moment conditions in (4), kp;¢
equals 3(T — 2)(T — 1) while fiDif(Q) and q»Dif(Q) read

)

1770 = 270 0)

3 3 7

a7 0) = -z Ay,

with (plsz((9> = (Ayzg — HAyzg e Ayz‘T — eAyiT_l)/, Ay—l,i = (Ayzg e AyiT—l)/ and

i1 0...0 0
0o . 0
ZPi — Yi1 LM - 1)(T - 2) x (T - 2).
0 0...0 :
YiT—2

For the Lev moment conditions in (5), kre, equals T'— 2 while the sample moment functions
are

1l = ZEeeke )

g’ 0) = —Zfy 14,

with pX(0) = (yis — 0yia - .. vir — Oyir—1)'s Y—1; = (Yiz - - - yir—1)’, and

Ayio 0...0 0
7 0 (T —2) x (T —2).
0 0...0 AyiT—l

For the NL moment conditions in (10), knz, equals T'— 3 while the sample moment functions

can be specified as

FYEO0) = ZIH0)9(0)
a"H(0) = (HZN"(0)) 9NH(0) + ZNH(0) (550] " (0)) |

with gDiVL(e) = ((%4 — 0y¢3) .. (yz’T — GyiT_l))’ and

ZNH(0) = 0 0 (T —3) x (T — 3).
0 0...0 (Ayinl — QAyZ-T,Q)

The sample moments for the AS moment conditions result by just stacking the appropriate

sample moments stated above so kag equals 3(T'— 1)(T — 2) + T — 3. In a similar manner,

1

the Sys sample moments result so kgys equals 5(7"+ 1)(T — 2).
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Lemma 1. We state some intermediate results, which involve the different terms in the

sample moments and their derivatives. Assumption 1 implies the following;:

. N
1 ¥ ici(Bon = Dyinui = —do = T4, + 0p(1),
. N
1. N 2ict (1= Oo,n)uirui > 0, t>1,
iii. AR r o7, t>1,
iv. ¥ 2iey Ay Ay > o7, t>1,
N
V. % > ic1 Ayt Ayis 7 0, t,s > 1,t#s.
Yi1Ui2
. hn(fo,n) <N .
vt % Ziil . 7 ¢a
Yi1uiT

with ¢ = (¥, ... %) ~ N(0,diag(3,...,0%)) independent from ¢, ~ N(0,02), 0% =var(c;).

Proof of Lemma 1. i. Under mean stationarity, we have:
N N N
% >im1(Oon — Dyiuin = % >iz1(fon — Duf; + % >iz1(0o,n — Duirpu;.

Assumption 1lc implies that (1 — 6o, N)%Uil is a random variable with finite fourth moments

so a law of large numbers applies:
1 N 2
~ iz (o, — Dugy ;’ —dy.

Since ¢; = (1 — 0y n) 14, We can specify:

1 N 1 N o1, 1 N i
N Zz‘:1(90,N — Dujrp; = N Zizl Ui1C; = — \}% N Zi:l aziiv G
because
1 N i
VN 2i=1 ;iij\,ci - Ve,
with 9. independent of ©;, j = 2,...,T, as ¢; is independent from w;;, j = 2,,...,7. Upon

combining, we obtain:

N Sisi (o = Dyinpy = —do — Tap, + 0y(1).

ii. Since u; are independently distributed, t = 1,...,7, and (1 — (907]\/')%’&1'1 is a random

variable with finite fourth moments, a law of large numbers applies:
1 <N
N Eizl(l — 907N)ul-1uit ? 0, t>1.
iii. Finite fourth moments of u; implies that a law of large numbers applies:

1N 2 2
sz':ﬂ%t? op, t>1
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iv. Mean stationarity implies Ay;o = w2 + (fo,nv — 1) w1, so

AN AypAyp = £ SN wh + oy — 1) & N (Boy — D) ud + 2N, (Bon — 1) upuio.

Because + Zi]\il(l —Oo.n)u? — dz and (1 — 6 n) N 0, we have
p —00

(Boy —1) = SN, (Bon — 1) ud —0,
which shows that (6o, x — 1) 4 Zf\il (6o.n — 1) u?, = 0,(1). Furthermore, since both (6 y — 1)% ;1
and u;o have finite fourth moments and are independent, % ZZ]\L 1 (o, — D) upue = op(1),
which implies that
N N
% Zi:1 AyinAyin = % Z¢:1 “?2 + Op(l)-

Finally, we have E (u2,) = 03 and finite fourth moment, hence
1 N
N im1 Avh W o3.

Along the same lines as the above this can be shown to hold for other values of ¢ as well.

v. Similar to the above, when substituting for Ay, and Ay;3 we have

% 2511 AyinAyis = % Zfil uipuiz + (Bo v — 1) % Zfil u + 0o (Oon — 1) % Zfil Ui U2+
+(0o,n — 1) % SN wiuiz + (Bon — 1)%% SN winuis + 0o v (BN — 1)2% SN U

Similar derivations as before show that % Zf\il Oo,n (Bo,N — 1)2 “121 — 0, % Zi]\;(@O,N —
P
1)2ui1uiz > 0, + SN (Bo.n—1)uius > 0, + SN Gon (Boy — 1) uinuin ” 0, + SN (Bon—

Du — 0, + Zf\il uipuiz — 0, so all these terms are o,(1) and have probability limit 0, im-
P P
plying that
3N AyinAyis ~ 0.

Along similar lines this can be proven to extend to the first differences at other time periods.

vi. Since hN(907N)_2

= var(y;1), the random variable hy (6o, n)y;1 has variance equal to
one. Since y;1 and u;, t > 1, are independent, because of Assumption le, E(hy (6o n)yiruit) =
0. Furthermore, Assumption 1d implies that Var (hn (0o n)yinui) = o2, which is finite. A

central limit theorem therefore applies:

Yi1Us2 h (0o, N ) yin iz

hn (8 . .
N\(/%N) Zi\il : = \/% Zz]\il : 7 P,

YilUiT h (0o, N )yi i

with ¥ = (¥y, 0 - Pyruipe) @ T — 1 dimensional, mean zero normal random vector. As-
sumption le states that u;;/ O1,N, U2 ..., u;7 and ¢; are independently distributed within in-

dividuals and over the different individuals. It implies that u;1¢; and y;1u;: are uncorrelated.
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Since 1 and 1, are the limits of the scaled sums of y;;u;x and wu;1¢;, they are uncorrelated
normal random variables and therefore independent. As a result of this, the T' x T' covariance

matrix of ¢ and 1, is diagonal:

Vieye) = var(z/;,zpc)_( Vi Vi, )

vel e Vo Vo,
h (0o, N )yi1 iz h (0o, N )yi1 iz
= FE th—mo%Zil
' h (0o, )y wir h (Oo, )y wir
Uil . Uil .
L o1,N * o1LN b ]
h (00,8 )yi1 iz h (Bo,n)yi1 iz
= F lirnN_wO
hy (0o, N )yiruir hn (0o, )y i
e sra )|

= dia_g(ag ...0% o).
Proof of Theorem 1. T=3. Under mean stationarity we have
Ayio = uio + (Oo.n — 1) ui
Ayiz = uig + (fon — 1) uia + 0o.n (Bo.n — 1) win.
Substituting these expressions, we can specify the Dif sample moment and its derivative as
Di
le(e) = % Zf\il (yi1Ayiz — Oy Ayio)
LN s+ (Gon —1—0) L3N yiwin + (Bon — 0) % SN (Bo.n — Vyiui,
Di N
a7 (0) = =% Y, v Avio
— 1 N 1 N
= =% Dim1 Yittiz — 5 2imq (Oo,n — D)yaua.
Combining convergence results stated in Lemma 1, the large sample behavior of the Dif

sample moment and derivative can thus be characterized by

N 10) = v (s = 0u) — (1= O)hn (Bon)ornte] — (1= 6) dz + 0y (1),
an'! (0) = — v W2~ hn(Bon)ointd +da+0p (1),

where we note that hy (6o, n)o1,n < 1, since var(y;1) >var(u;; ), from which it is readily seen
that

AgO)=( -0 1), w057 =0,
AP0y =( -1 0), w(9.5% =0.
Regarding the Lev moment, using

Yiz = Ayiz + yin

vis = Ayiz + Ayia + yi1,

37



we have

fz%/w(g) = % Zé\il(yi?, - 9%’2)Ayi2
= 25V (Ayiz + (1= 0)Ayin) Ayio + (1 — 0) 5 SN, yin Ayso.

Exploiting mean stationarity and substituting for Ay;o and Ay;3, we write

(1-0)% ZZJL Y Ayio = (1 —0)% Zf\il Yz + (1 —0) (Gon — 1) & Zf\il YilUi1,

and using Lemma 1, we have

N i (Ayis + (1= 0)Ayiz) Ay = (1—0) § ¥ ufy + 0y (1)
Regarding the Lev derivative, we have

N
QJLVEU(Q) = —% Zizl Yi2Ayia
N N
= —% Zizl AyinAyiz — % Zizl Yi1 Ayiz,

where
¥ SNy Ayin = % SN v + (Gon — 1) ¥ SNy,
and
¥ 2N Aynlyin = % YN ub + o0, (1).
Therefore, we can write the Lev moment condition and derivative as
o) = -0 {F el v+ F 2N yavet
& (BN — 1)%’1%’1} + 0p(1).

N N
q]%/ev(e) = _% >t u122 - % D im1 Yilli2

— LS (Bo.n — D)y + 0p(1).

Combining this and other convergence results from Lemma 1, the large sample behavior of

the Lev sample moment and derivative can thus be characterized by

1500 = (1= 0) {grivm V2 — hv(o)ornis] + (03 = da) } + 0, (1)
ax(0) = —W [¥2 — hn(Bo,n)o1,n0] — (03 — d2) + 0, (1),

so this implies that

AFer(0) = (1-00), uf(0,5%) = (1-6) 03,
ALev(0) = (=1 0), pkte(0,52) = —o3.

From this last result, it is not difficult to see that, under Assumption 2b, we have

1 N 2
N Dim1 Yi2Ayio 502~ ds.
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The reason for this is that Assumption 2b amounts to hy (6o n)VN = N, and,

var(yi1) N—oo

since var(y;1) >var(u; ), it implies that o2 /N — 0. Finally, the Sys sample moment and
Y P LN N—oo

derivative simply result from stacking the Dif and Lev sample moments and derivatives:

1AYi3 — Oyin Ay;
Jiy.ﬂ(e): %Zi\;l Yi1AY;3 Yi1 Y52 7
Yi3Ayio — 0Yi2 Ayio

Sys gy 1 =N Vi1 Ayio
ay (0)= —F i
N N o=t Yio Ayio

Combining earlier convergence results, the large sample behavior of the Sys sample moment

and derivative can thus be characterized by

-6 1
]‘\g[ys(H) = ( Lo 0 > [W {( ZZ ) - hN(eo,N)Ul,N@DCLz} — tado

(1-0) ( ) o),

03

(0= — ( 1 8 ) oV {( Zz ) - hN(Qo,N)O'LN%@} - L2d2] -

( 02 ) +0P(1)7
92

from which it is readily seen that
ASyS(e) = b1 usys(H 62) =(1-90)
f 1-6 0 ) "1 7 2 )

s -1 0 o 0
A= O),uiy <e,a2>=< 02>~
- Y2

T=4. Under mean stationarity, we have

_|_

Ayio = uio + (bon — 1) uin
Ayiz = uiz + (Bo,n — 1) 2 + Oo,n (Bo,n — 1) usn
Ayis = uia + (Oo,n — 1) uz + Oo.n (Oo,n — 1) use + 9(2),1\7 (Bon — 1) wir.

Substituting these expressions and ;2 = Ay;2 + y;1, we can specify the Dif sample moments
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and their derivatives as

Yi1Ayiz — 0y Ayiz
V() = 00 | yinAyia — 0y Ayis
YioAyia — 0yinAyi3

bovn —1—10 1 0 Yi1Ug2
=| (Gon—0)(Bon—1) bon—1-0 1 | £3XN | yaws |+
(Bon —0)(Oon—1) Oon—1—-6 1

Yi1Ui4
1 0
(Bon —0)(Oon — 1) | bon | 2, vaua + 5 SN, 0 ,
o,N Ayin(Ayia — 0Ay;3)
‘ Vi1 Ayio
g (0) =% o5 | vy
Yi2AYi3
1 0 0 Yi1Ui2 1
= bon—1 10 |2V vauws | —Gon 1) | oy | &N, virua
bon—1 1 0 Yi1Ui4 0o, N
0
_% i]\il 0
AyinAy;3

The limit behavior of the first two terms in each expression has been established before.
Furthermore, Lemma 1 shows that the last term in each expression is o,(1). Therefore, the
large Dif sample moment and derivative can be expressed as:

9 1 0 1 s
Dif g 0 -6 1 - W — hn(Oo,N)o1,NYets p — t3da | + 0p(1),
N () hN(QO,N)\/N 3 ) s P
0 -6 1 by
10 0 X by
Difgy = -1 o010 ||—— — hn (0o n)o L3 9 — 13ds | + 0p(1),
ay "’ (0) TSN V3 N(OoN)o1NY L3 3d2 (1)
010 ’ by
from which it is readily seen that
-6 1 0 0
ATy = o -6 1 |, w705 =] 0 |,
0o -0 1 0
1 0 0 0
AP () = 010 |, le,6%)=] 0
010 0
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After some algebra, we can specify the Lev sample moments and their derivatives as

ev YisAyiz — 0yinAyio
50) = % X
YiaAyiz — 0y;3Ay;3

Yi1Ui2
1-6 0 0 1
1 1 «N
= N — i 1U; +(1— 0)(6 -1 = i=1 Yi1u;
NZZI((l_Q)(QO’N_l) 1-0 0) Yi1Uq3 ( )( 0,N )<907N>N21y1u1
Yi1lia
AyinAyio AyizAyio
+(1_0)% Zi:1 A +%Z@']\L1 ’
YisAy;3 (Ayia + (1 — 0)Ayio) Ayss
v Yi2 Ayio
k' (0) = —F i, ( )
Vi3 Ay;3
Yi1tui2
1 0 0 1
1 N 1 N
N z—1<907N_1 1 0> Yi1Ui3 (6o, )(007N>NZ_1?41 1
Yi1Uia
_1yN AyioAyia \ 4 N 0 .
M=\ AyisAyis N ==\ AynAyis
Using Lemma 1, the large sample behavior of these expressions is equal to:
Py
1-46 0 0 1
Lev
9) = - — hy(0 oo p —lada| +
~(0) ( 0 1_49 0) T (G0 ) VN (0B N(Bo,n)o1Net2 2ds
Py
o
(1 - 0) ) + Op(l)v
03
Levigy = — ooyt Zz — hn(Oo.N)o1 N Ly p — tody | —
aN 01 0 hN(OON)\/N 3 N\Wo,N)O1, NP L2 202

’ Py

so this implies that
1-0 0 0 o3
ALeve — ’ Lev 9772 —(1-6 2
ke (o) (0 190) ke (0,5%) = ( ><U§

1 00 o2
ALev(g) = — , Lev 97—2 — _ 2 )
" (0) (010) Ha (6,77 (o?,
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We can specify the NL sample moment and its derivative as

NEO) = LN (yia — 0yiz) (Ayis — 0Ay;o)
Yi1 U2
o O ( (1-0)(Oon—0-1) (1-0) 0 ) yituig | +
Yi1Uid
% Zi]il(e(LN —1)(0o,n — 0)(1 — O)yirua + (1 —0) % Zfil (AyisAyis — Ay Ay2) +
2N (Ayia + (1= 0) Ayin) Ayis — (Ayia + (1= 0) Ayis)0Ayss) ,
Yi1Us2
aN=(0) = —% o ( bonv—20 —1 0 ) Yiluis
Yi1Uia

¥ SV (AyizAyis + (1 — 20) AyinAyyo) — ¥ SN (AyiAyis + (Ayis + (1 — 260) Ayiz) Ayin) .

+ % Z?;(QO,N —1)(1 460N — 20)yi1uin—

Using Lemma 1, the large sample behavior of these expressions is equal to:

(&
NE@O) = £ 3N, < g0—1) 1—6 0 ) W VY3 | —hn(bon)o1NYete p — tada | +
Yy
(1= 0) (05 — 003) + 0p(1),
(&)
gNE(0) = —+ PR < 1-20 1 0 ) W g | —hn(OoN)o1, N2 p — tada| —
Yy

a3 — (1= 20)05 + 0p(1),
so this implies that:
AFEO) = (00 -1) 1-0 0 ), pE(0,5%) = (1-6) (0} — 003)
AFEO) = (201 —1 0 ), piH(0,6%) = (20— 1) o} — 3.

Finally, regarding AS and Sys moment conditions, we simply have

ADZf(G) Dif(a 52)
ASys _ f Sys 72) = /~Lf )
o (A?w>0>’w o <u%wﬁ%)’
AP (g) Dif (g 52)
Sys _ q Sys —9\ _ Hq ’
4 (0) = ( ALev(gyio )’ He(0,7°) = ( pkev(9,5%) )
AP (g) Dif (9, 52)
AS(p\ — f AS(p 52) — Ky ’
A7) (A;VL(Q) ‘o ) 0.7 ( py(0,5%) )
AZY(0) uPit (9, 52)
AS (g — AS(p 52) — g U
A0 = ( ANL(@6) 1 0 ) ™. ( po - (0,5%) )



T=5. Using similar calculations, we obtain:

-6 1 0 0 0
0 -6 1 0 0
: 0 -6 1 0 ; 0
AD'Lf 0 — , D’Lf 97 -2 — ,

f (0) 0 0 -0 1 H (0,57) 0
0 0 -6 1 0
0 0 -6 1 0

1-0 0 0 0 o3

Afe(0) = 0 1-6 0 0 |,pf™0.6)=010-0] o3 |,
0 0 1-60 0 o2

00 —-1) 1-0 0 0 B o3 — 003
ANLO — ’ NLQ, 2 —(1—6 3 2 )
s ( 0 00-1) 1-0 0) ni 0,97 = (1 -6) o2 — 0o

General T. Along the lines of the above, it is also possible to construct the expressions of
Agc (6), AL (), ,ujc(ﬁ, 52) and i (0,52) for larger values of T which we, for reasons of brevity,

refrain from.

Orthogonal complements of A‘;‘S () and A?ys(ﬁ) for T =4 and 5 and the specifica-
tion of the robust sample moments We specify the orthogonal complements as in (37),

which we repeat here for convenience:

A;(G)L = (G?TW) Gg,T)?

where 7' indicates the number of time periods and G% o is such that G%IT[L?@(Q, 52) = 0. This
notation is used in the proofs of subsequent theorems.
T=4. From the expressions of A;(@) and ,u,gf(Q, 52) in (36), G§;7T:4(9) and G%7T24 for j = AS,

Sys result as:

—(1-190) 0
0 -1
GA,§=4(9) = 0 ; G?,:é;:4 = e
1 0
—(1-19) 0
-1
Sys Sys
Gf,yT:zl(e) = 0 J Gz,%/T:4 = 1
—0 0
1 0
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From these expressions and (36), it is easily seen that

AP 0,5%) = ( (=85 -6e3) ) ,

2_9 2
A0 5 (0,0%) = (“3 ) “2),

from which follows that Ai;(@l)ﬁ_ugc(ﬁl, %) #£0 fqr all 6 # 6y N, ] = AS, Sys.
T=5. The expressions for A%(6), u}(0,5°), G p_5(0) and G ;_ for j = AS, Sys are:

—0 1 0 0
0 -0 1 0 0
0 —0 1 0 0
435(0) = ’ L e =a-n| )
0 0 -0 1 0
00 —-1) 1-0 0 0 03 — 003
0 90 —1) 1—-60 0 03 — 003
—(1-0) 0 0 0
0 —(1-10) 0 0 0
0 0 —(1-9) 0 0
AS 0 0 0 AS -1 0
G ,T:5(‘9) = 0 0 0 ) GQ,T:S = 1 -1 )
0 0 0 0 1
1 0 0 0 0
0 1 1 0
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-0 1 0 0 0
0o - 0 0
0o -6 1 0 0
0 0 -0 1 0
A 0) = 0 0 -0 1 [,u"0.6)=0-0] 0 |,
0 0o -0 1 0
1-6 0 0 0 o3
0 1-6 0 0 o3
0 0 1-6 0 o3
—(1-0) 0 0 0 0
0 —(1-0) 0 0
0 0 —(1-0) 0 0
0 0 0 -1 0
GHos(0) = 0 0 0 LGy = 1 -1
0 0 0 0 1
—0 0 0 0 0
1 -0 -0 0 0
0 1 1 0 0

Straightforward algebra shows that Ai}(@)’l,ug;(e, 52) # 0 for all § # Oy v, 7 = AS, Sys.
The robust sample moments are defined as

ghp(0) = Ap(0)] £,(0),

with Af(e)ﬂ_ = (G;,T(G) : GQT). For the Sys moment conditions, G?T(H) is a linear function
of 6 and G ;. does not depend on 6. Since f3;(0) is linear in 6 as well for the Sys sample
moments, the part of g} ,-(f) resulting from G% 1.(0)' fy,(¢) is quadratic in ¢ while the part
that results from G%:T f(0) is linear in 0. Given the specification of G?T(Q), GJZT and f%,(9),
it is then straightforward to compute the specification of a, b and d.

For the AS moment conditions, G;,T(H) is a linear function of 6 and G%’T does not depend
on 6. For the AS sample moments, f3;() is quadratic in 6 but the part of g?)T(H) resulting
from G?T(O)’ f%(0) is not of third order in # as expected but just a quadratic function of
. The part of giT(H) that results from G%foJJV(G) is linear in #. Given the specification of
G?T(H), GQT and f3,(6), it is then again straightforward to compute the specification of a,
b and d.
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Proof of Theorem 2. Under mean stationarity, we can write

Ayio = (o n — 1)uir + uso
Ayiz = Oo,n(0o,n — Dug + (Bo,n — 1)use + us3
Ayig = Qg,N(QO,N — Duir + 0o,n(Go,n — Dusa + (B0 v — 1)uiz + wia
Ayis = 03 x(0o,n — Dui + 05 n (00,8 — iz + 0o n (0o, — Duss + (Bo,n — 1)uis + uss
viz —¥i1 = (1+00n)(0on — 1)us1 + 0o Nz + 43
yia —yir = (1+0on + 05 n)(Oo,n — Duir + 05 yuiz + 0o nuis + uig
Yis — yiz = (BN + 05 n)(Bo,n — Duir + (0 y — L)z + 0o, nttiz + uis
yis —yin = (L+ 008 + 05 n + 05 5)(Oo.n — Duin + 05 yio + 05 s + 0o, vwia + uss
Yis — Yiz = (Bon + 05 v + 6’0,1\/)(90,N — Dugt + (65 5 — iz + 05 yuis + o nuis + is.
The robust sample moments consist of products of the above expressions. To obtain the

probability limits in Theorem 2 of the elements comprising the robust sample moments, we

use that

N Y (Bon — Dud > 0,
o S (Bo.y — Duisuss ~ 0,

for all s and ¢, t > 1, t # s, which is implied by Assumption 1. Therefore, the a, b and d

components of the robust sample moments simplify to:

T=4, Sys:
N N
1 (Ayi2)2 1 (90 N — 1)2U21 + u22 —1/2
= —_— — ’ ] (2 N
— _i Yi3 — Yi1 2>
N Ayz2Ayz3

(1+06 Oon — 1 62
+00,5)% (o — 1)%ufy + 05 yuds + s )+Op(N1/2),

1
_N HONQON—l)Qu +(00N—1)u2

> (
2 (¢

1

Yia — Yil Ayz3>

N
i—1 < Ayz2Ayz4
1 < (Go,n( L+ 6o + 63 n) (Bo.v — 1)*uly + 603 n(Bo.n — Dudy + b vus ~1/2
= v ) +Op(N712),
N i=1 90,N(00,N - 1) uil + 0o,n (00N — Dug Ui

where the O, (N ~1/2) remainder terms result from the interaction terms between the different
errors, like, for example % sz\il u;oU;3, Which converge at rate N _%, since their correlation
equals zero.

Using next that, because of Assumption 1lc, % Zi]il(l—ﬁo,N)Zufl — 0, and Oy n = l—i—%,
P
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with [ a fixed constant, [ < 0, we have that

a= (§)+O0p(N 1)

i
h— ((1+2 T""]ﬁ;)UZ‘f’UB) + Op(Nfl/Z)
N"'U
2
1= (T o v,
(NT +N27) 2
so, if 7 > %,
a= () +0N"1)
b= (02+03) + 9] (N_1/2)
d=(7)+O0y(N712).
T=4, AS:
. = X iv: (yis —yin)Ayi _ 1 i (14 600,5)(1 — o, n)*udy + 0o Nud, + O, (N-12)
NI 0 NI 0 ’ ,
b — 1 Z (Yis — yi1) Ayiz + (Yia — Yi1) Ao
N =1 AyiaAyis
_ 1 i < (1= 60o,5)2[(1 + 200,n (1 + Oo.n)]u? | + (205 5 — Oo,n)uiy + U?s) + O, (NV/2)
N = Oo,n (o.n — 1)%uf; + (HO,N — Duj : 7

b2

IS8

|
==
Mz

7

1

< Yia — Yil Ayz3>
1 Ayz2Ayz4

< + OP(N_1/2)7

0o N 1 + 6 + (9 )(9071\] — 1) ull + (90 N(GUN ) ?2 + 907Nu123>
90,N(90,N —1)2u? + 6o (Bo.n — 1)ud,

I
==
M=

1

%

so also,
a= @ﬁ+0( N-1/2)
b= —(H7h) + 0N
d= (%) +O,(N~12).

We use similar calculations for T = 5 to obtain that:
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T=5, Sys:

(Ayi2)? 03
| X (Yis — yi1) Ayis o2 1
o= y2| @ =] 6} [+0(NH),
i—1 0 0
0 0
(yis — yin)? o3+ 02
L (yia — yi1) (Yia — Yi2) 0%+ 03
_1
b = _NZ (yi4_yz‘2)2 = - U%—i—ai + Op(N™2),
= AyiaAyia 0
AyizAyia 0
(Yia — vi1) Ayis o2
L& (Yis — Yi1) AYia o2 1
d = N Z (yis —vi2)Ayia | = | oF | +Op(N72).
= AyiaAyis
AyizAyis 0
T=5, AS:
(Yis — Yi1) AYia o3
(Yia — yi1)Ayis o’
_ 1 o 9 1
a = ﬁz (yia —vi2)Ayis | = | 03 | +Op(N"2),
=1 0 0
0 0
(Yia — yi1) Ayiz2 + (Yis — yi1) Ay o3 + o}
1 (yia — Y1) Ayia + (yis — yi1) Ayis o3 + 03
1
b= % Z (via — vi2) Ayis + (yis — yi2)Ayiz | = — | o3+ | +Op(N"2),
= AyiaAyia 0
AyizAyia 0
(Yia — Yi1) Ayis o2
| X (Yis — vi1) Ayia o} 1
d = + S wis—y2)Ayu | = o} [ +0,(N72).
= AyinAyis 0
AyisAyis 0

Proof of Theorem 3. The proof of Theorem 3 establishes the probability limits of a, b
and d for g v = 1+ %, l<0,and 7 > % Denoting these probability limits by, a,, b, and d,,,
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the large sample behavior of a, b, and d is characterized by, for 0 y = 1 + % with 7 > % :
\/N(a—ap) — €a; \/N(b—bp) — b, \/N(d—dp) — €4,

with (g4, €5, £4) jointly normal, mean zero random variables, which follows straightforwardly
from an appropriate CLT applied to the highest order remainder terms in the proof of The-
orem 2 which are all sample averages over iid mean zero random variables. We want to
determine the appropriate rate for £ in gs7(6(e)), so we can analyze its behavior in a neigh-
borhood of the true value gy = 1+ %, [ < 0, with 7 > % while N goes to infinity,
with
0(e) =1+ w%-

Substituting (e) and the above large sample characterizations of a, b and d in (38), we can

write:

957(0(e)) = (L+ ) (ap + J4) + (L4 o) (by + J) + dp + 7 + 0p(N7H2).

To determine & we impose two conditions: (1) v/Ng;7(6(e)) converges to a non-degenerate
bounded random variable of order O,(1); (2) grr(f(e)) is informative about the value of e
when N gets large. We discriminate between two different cases for o2 :

1. Foro? =02, t=2,...,T:

957(0(€)) =
(1+ ﬁ)Q(% + ;}Zv) + (14 372)(bp + %) +dp + % + OP(N71/2) =
ap+bp + dp + (e + e +2a) + (5e) apt
2
ﬁ(bp —+ 2ap) —+ N%;/N(Eb —+ 26(1) —+ Wé—a =+ Op(Nfl/Q)

since ap, + b, +dp, = 0 and b, + 2a, = 0, we distinguish three settings:

E<1/4:
9r.7(0(e)) = Saeap + 0p(N7%)
E=1/4:
grr(0(e)) = Tlﬁ(ea +éep+eq+ ezap) + \/Nei*/ﬁ(eb + 2,) + 63\?& + Op(N—l/z)
= Tlﬁ(sa + &b+ ea + €%ap) + 0y (N71/2)
£E>1/4:

95.7(0(e)) = 5 (ea + 1 +2a) + 0, (N71/2).
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This shows that the appropriate rate corresponds with £ = 1/4. For a smaller value of &,
VNgsr(0(e)) diverges. For a larger value, vV Ngsr(f(e)) converges to a mean zero normal
random variable unaffected by the choice of e. Although in this case v Ng;7(6(e)) is not
informative about e, we do not need to worry about e because standard asymptotics apply.
2. When o? # o2, for at least one t # s, a, + b, + d, = 0 but b, + 2a, # 0, we can
establish along the hnes of the above that the appropriate rate corresponds with £ =1/2:

grr(0(e)) =

(14 )% (ap + %) + (L4 o) (bp + k) +dp + T+ 0p(N71/2) =
ap+bp+dp+m(sa+sb+ed+e(bp+ap))+

& (220 + 2+ eB(0) + £ + 0, (NV2) =
\/iﬁ(sa + e+ eq + e(by + 2a,)) + (264 + b + €ayp) + e\j‘L + 0,(N~1/2)

Le(ea+ep+ea+ by +20y)) + 0)(N71/2).

Proof of Theorem 4. Denote with gr7(f(e)) the moments in (38) evaluated at f(e) =
1+ é/eﬁ. When o7 = 02 and substituting the large sample characterization of a, b and d,

VNgsr(0(e)) can be expressed as:

VNgpr(0(e)) = €ap +ca(l + 5 + 50) +en(l+ ) +a+ 0p(1),

ﬂ

Define

A(N) = e*ap + e, (1+ éﬁ—i-f)—l—sb (1+ eﬁ>+6d

Since (g4, €p, £4) are jointly normal distributed,
¢(N) ~ N(e*ap, B(N)'VapaB(N))

with

B(N) (LS ® Ipmax) eN ( é/eﬁ)(el 3 ® Ipmax) (6273 ® Ipmax) )

and Vgpq the covariance matrix of (¢, : ¢} : €)', t3 a 3 x 1 dimensional vector of ones, I,
the Pmax X pmax dimensional identity matrix, pmax equals the number of elements of a and
e1,3 and ep 3 the first and second 3 x 1 dimensional unity vectors.

Hence,
VNgsr(0(e)) = ¢(N) + 0p(1),

so in a sample of size N, vV Ng¢r(6(e)) is normally distributed up to a o,(1) term. While
some of the components in ¢(IN) are essentially also 0,(1), it is important to incorporate
them for an accurate approximation of the distribution of vV Ngsr(0(e)) for a given sample
1/4

of size N since the low order components, of order N~%/% converge very slowly to zero.
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N
The individual moments gy, (6(e)) in the sample average grr(0(e)) = + > grn(0(e))

can be specified as:

ﬁ

gra(0(e) = (14 55)%an + (14 575 )bn + dn
= (1+ 35)%lap +ea,] + (1 + 55 bp + €6,] + [dp + 24, ]
= (ap+ by +dp) + 35 (20, + by) + Foapt
2
5a2n + b, +€a, + %\/N(Qean +ep,) + %ean 2
- jiﬁap + San + gbn + 8dn + %JN(QSGH + Sbn) + %60«71’

N N N

: 1 1 1

w1tha:N§ an,bzﬁ§ bn,d:WE dn, €a, = Qn — p, €p, = by — by, €q,, = dy, — dp,
n=1 n=1 n=1

so taking g7, (0(e)) in deviation from its sample average g¢r(6(e)) results in

9n(0(€)) — 957(0(€)) = €a, — €a + &b, — €p + €a, — €at

e

W(Z(Ea" a 5‘1) + &b, — gb) + %(Ean - 5(1) + Op(N_1/2)

From the above, it then straightforwardly follows that

Vig(e) = & i1 (97.n(0(0)) = g7.0(0(e))) (g7.(0(€)) = g5,7(0(e))) = B(N) Vapa B(N) + 0,(1),

so the distribution of the GMM-AR statistic testing H,, for a sample of size N is characterized
by
X2(6(N), Pmax) + 0p(1),

with §(N) = ela, [B(N)' Vapa B(N)] " ay.

/
P
Proof of Theorem 5. When we instead of the full vector grr(6(e)) use a linear com-
bination of it, say w'gsr(0(e)) with w an orthonormal pmax x 1 vector, the approximating
distribution of the GMM-AR statistic for testing H, : 6(e) = 1+

as the moment vector reads

%\;ﬁ that uses w'grr(6(e))

X (e*(w'ay) [w' B(N) Vipa B(Nw] ™ (w'ap), 1).

The optimal combination w is the one that leads to the largest value of the non-centrality

parameter. The non-centrality parameter can be specified as

_ w'ap)?
et(w'ap) [w'B(N) Vapa B(N)w] ™" (w'ay) = e4w’B(N()’ GZZB(N)w'

The maximal value of B N()u,’ /(ziiz( Ny results from the largest root of the generalized eigen-

value problem
‘)\B(N)’Vade(N) — apa;| =0
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and the optimal value of w equals the eigenvector associated with the largest root. Since a,
is only a vector, just one root of the generalized eigenvalue problem is non-zero so it is also

the largest one. This root results from using
w= (B(N)VaaB(N)) 'y
and the largest root then equals

Amax = a;(B(N)/Vade(N))_lap

so the maximal value of the non-centrality parameter is
5(N) = e*al(B(N)' VapaB(N)) " a = (e0)* (%) (B(N) Vara B(N)) 1 (4)

since a, = o? (Lé’) with ¢, a p x 1 dimensional vector of ones and p the number of columns of

Gyrr(0).

Proof of Theorem 6. Before we start out to prove Theorem 6, we first state an addendum
to Theorem 1, which incorporates some higher order components of order O,(N ~1/2) that

are needed for some of the intermediate results.

Addendum to Theorem 1: Theorem 1* (Representation Theorem). Under As-
sumptions 1 and 2a, we can characterize the large sample behavior of the Dif, Lev, NL, AS

and Sys sample moments and their derivatives by:

S

J Al
( fN(‘g) ) _ 29) ) [W(zp — hN(HO,N)Ul,nLT—lwc) + vp_1da| +

an(0) Aq(0) |
170, 52) Bi(0) .
i0.5°) ) " ( B50) ) Y+ 0p(N 712,

with j = Dif, Lev, NL, AS, Sys and B;(Q), Bg(&) ki xmj and kj xmj, kj x 1 dimensional
matrices and 1, 1S a mean zero, finite variance, normal random vector that is possibly

dependent on .

Proof of large sample distribution KLM statistic. For the construction of the large
sample distribution of the KLM statistic under Assumptions 1 and 2a, we use that the part
of the sample moments spanned by A‘}(@(e)) and the part spanned by A;(Q(e))J_ converge
at different rates. We use the normalized large sample behavior of each of these parts to

construct it. This amounts to pre-multiplying the sample moments in the expression of the
KLM statistic by (4% (0(e)) : A}(0(e))1) to which it is invariant if (A%(6(e)) © A}(0(e)).) is
invertible. The specification of A?(@(e))L as equal to (G?T(@(e)) : GQT), see (37), is such
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that (A?(G(e)) : A&(G(e))L) is invertible for the Sys moment conditions but not for the AS

moment conditions both when 7' = 4 and 5 since A;(Q(e)) does not have full column rank. To

have an invertible specification of (A;(H(e)) : A;(H(e))L), we use that we can specify A?(O(e))
for the AS moments as:

—0 1 0
0 -0 1
T=4: A0 =
70 0 -0 1
00—1) 1-6 0
= AA,L;=4(9)1AﬁéTw:4(9)2
/ —0 1 0 0
0 —0 1 0
0 —0 1 0
-0 1
T=5: AJ‘?S(O) = X 0
0 0 -0 1
0 0 -0 1
90 —1) 1-—46 0 0
0 00 —1) 1—0 0

= Aﬁ§:5(0)1Aﬁ§:5(6)2

where
—0 0
0 1 1 -0t 0
T=4: AY_, (), = : A4S ().,
rr=a(0)1 0 ) 7r=4(0)2 ( 0 o 1 )
06 —1) 0
—0 1 0
0 -0 0
0 -0 0 10 —62 0
A 0 0 1 AS 1
T=5: AfyT:5(6’)1: 0 0 ) Af,T=5(0)2: 01 —6 0
0 0 . 00 -6 1
00 —1) 1-0 0
0  606-1) 0

so unlike A?S (), A?S (0)1 has full column rank. For the Sys moments, for which A?yS(Q)

has full column rank, we use A?ys(é’)l = A?yS(G). The matrix (A?(H(e))l : A;(G(e))L) is now
invertible for both j = AS, Sys, so we use it to construct the large sample behavior of the
KLM statistic to test H, : §(e) =1+ %\}N

with Assumption 2a. We separately construct the behavior of the following four components:

whilst the true value of 6 is drifting to one in line
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1. VNV (0(e) " fn(0(e))
2. qn(0(e))
3. Vef( (e))

Dy (0(e))
which provide the building blocks for the large sample distribution of the KLM statis-
tic. For each of these components, we determine their limit behavior when multiplied by
(hn(Bo,n)Af(0(e))1 = Af(e) 1) for the last three components and its inverse for the first one.

Taken all together this implies that (hy(6o,n)Af(6(e))1 : Af(e)1) cancels out of the overall
expression of the KLM statistic.

1. To determine the limit behavior of v NV ;(6(e)) ! fn(6(e)), we disentangle the compo-
nents with different convergence rates which we do by pre-multiplying it by (hn (6o,n)Af(0(€))1

P Af(e) )t
(A (Bo,8)Af(0(e))1 i Ag(e) 1)V NVis(0(e) " fn(0(e)) = |
(hv (Bo.8)Ap(0(e))1 : Ag(e) 1) Vyp(e)(hn(Bon)Ap(e)r t Aple)r)
VN (hy(0o,n)Af(e)1 : Ap(e) L) fa(e)| -

We next determine the large sample behavior of the different components under Assumptions
1 and 2a. Our specification of A¢(6(e)) is such that:

VNAg(6(e)) fn(0(e) = VNgsr(6(e)),

so using the large sample behavior of v/ Ng;7(0(e)) stated in the proof of Theorem 4, we
have that the large sample behavior of VN A (6(e)) fn(6(e)) for a (large) sample of size N
results as:

€a
VNAp(O(e)) fn(b(e)) = |20 (F) + BIN) | e || +op(D).
€d
The large sample behavior of vV Nhy (0o n)As(0(e)); fn(0(e)) result from Theorem 1 (the
representation theorem) and accords with, since by Assumption 2a v/ Nh N(Oon) — 0,

VNI (Bo.n)Ap(0(e))1 v (0(e) = Ap(0(e));1As(6(e))d + 0p(1),

where 1) = ¢ — hn(6o,N)01ntT—17,., SO upon combining:

Ap(O(e) As(0())
Vv o) A0 AT O IO = | o 4 gy | o | | 0
0
&d

o4



We next focus on the components of [(hN(HO,N)Af(H(e))l : Af(e)L)’f/ff(e)(hN(907N)Af(e)1

Since gy r(6(e)) does not depend on the initial observations y;1, the (normalized) covariance
of A¢(0(e));fn(0(e)) and A¢(0(e))| fn(0(e)) equals zero:

hv (60,5) A7 (0(€))1 V7 (0(e)) Ap(B(e) L = 0p(1).
Under Assumption 2a also:

I (B0.3)> A7 (0(e)) Vi () A ()1 = Ap(8(e))1 Af(B(e)AAF(B(e)) Af(B(e))1 + (1),
Ap(0(e)) Vip(e)Ap(0(e))x = B(N)'Vapa B(N) + 0p(1),

where ~
A= war (limN_>oo @Z))
= diag(c?) + [limNHoo (hN(e[]’N)QO'%n)] Lp—1tp_qvar(c;)
SO

(hv(Bon)Af(0(e))1  Ap(0(e)) L) Vis(0(e)) (hn (Bo,n) Ap(B(e))1 : Ap(B(e)) L) =
( Ap(0(e))1 Af(0(e))AAF(0(e)) Ar(0(e))1 0

0 B(N)VaB(N) +op(1).

Because hy(0o,n)Af(0(e))) fn(0(e)) and Af(0(e)), fn(0(e)) are uncorrelated under Assump-

tion 2a,

{(hN(%,N)Af(Q(@))l D Ap(0(e)) L)' Vip(0(e)) (v (Bon) Ap(B(e))1 Af@(@h)}

D Ag(e))] -

convergences to a block diagonal matrix so we obtain the large sample behavior of VN ((hn (6o,n)Af(6(€))1
L Af(0(e)) L)' Vi (0(e))(hav (Bo,n) A (B(e))1 : Ap(8(e)) 1)~ (A (B0.5)Ar(B(e))1 : A7 (6(e)) 1) v (8e)) :

0(e))1)'Vr(8(e))(hy (Bon) A (0(e))1 T Ap(0(e)) 1)) " x

€a
- (B(N)'VapaB(N)) ™! (e%? (5) + B(NY ( & ) ) *opll):

2. To obtain the large sample behavior of gn(f(e)) under Assumptions 1 and 2a, we

characterize the behavior of the different components of

(A (Oo.n)Af(0(e)1 = Ap(6(e)) L) an (0(e))

for which we use the representation of gy (6(e)) in Theorem 1 (and Theorem 1*).
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Under DGPs according with Assumptions 1 and 2a, vV Nhy(0on)As(0(e))ian(0(e)) is

characterized by
VN (0o,3) Ay (0(e) 1an (0(e)) =
Af(0(e) [Aq(O(e))i) + v (00,5) VN (1 (8(e), %)~
Aq(0(€))ir—1da] + 0p(1),

which converges to

since under Assumption 2a:

VNhy (00,5) (1y(0(e),5%) — Aq(0(e)))er-1d2 — O,

which results from Assumption 1b and hy (6o n )V N — 0.
Regarding A¢(6(e))’ gn(0(e)), we distinguish between the AS and Sys moment conditions.
For the Sys moment conditions:

" , . Gyrr(0(e))qan(0(e))
vNA e e)) =+VvVN ’

| edy 1 me(G(e))’Aq(H(e))ﬂhtsaq —1/4
e T

for which we used the representation for gn(6(e)) that results from Theorem 1* in the Ap-
pendix which includes Bg(6)i,,, since for the Sys moment conditions G 74,(0(e)) = 0,
Gy pil0(e),5%) = 0, Grr(6(e) A(6())er—1 = 0, Gpr(B(e))u(b(e),5?) = 0ty and
€ag = Gf(0(e)) By(0(€)) Yy, and epy = G 1B,4(6(e))1,, are mean zero normal random vari-

ables that capture the remaining random parts.

For the AS moment conditions:

VNAp(0(e)) an(0(e)) =

1 e / e "
_ ( e(20? - i)t ) - ( Tt G (0 >€>b;4q<e< )+ €aq ) 4oy (N1

since for the AS moment conditions G 7 A4(0(e)) = 0, G4 7u(0(e), 52) =0,Grr(0(e)) Ag(6(e))ir—1 =
et G (0(0)) 1(6(e), 52) = — 35021, and 2ug = G (0(6)) By(B() by and 21y = Gy 7 By(0(c) b
are mean zero normal random variables that capture the remaining random parts.

Overall, the large sample behavior of Af(6(e))’ gn(6(e)) for both the AS and Sys moment
conditions reads:

e 1 e N + ¢
VNAf(0(e)) qn(0(e)) = [— ( egp ) b ( (o) O (0 >€>b;4q(0< )Y + €aq )

+ OP(N71/4)7
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where for
Sys: é= eo?,
AS: = e [20’2 — dg] .

Combining our results for the two components:

(VNhy (00,5)Af(0(e))1 : VNAf(0(€)) L) an(0(e)

— (VNh (o) Ar (0(e)1 F VN(Grr(8(e)) | Gar) Yan(8(e))
Ap(0(e)) A, _ 0

( lf((g)fl(e(e))'Aq) )¢+ (—ébp+%aaq) + o (N4,

( h(90,n) YN
0

Iw b

where it is again important to incorporate the higher order components. We can also specify

the above convergence as

VN (hn(80,8) A (0(e)1  Ap(B(e)) 1) an(8(e))

(O ABR4, - 0 1

o (me(e(e))/Aq) Qp + (— WéLp+saq) + OP( )’
0

3. We next determine the behavior of Vy;(6(e)) :

( A(0(e)); 4, )A A45(6())

(mif(e(e))’/‘q)

( 0 0 ) +oy(1)
Va ,a B(N) Op )
O (VbZ,a:ZB(N))

with Vog.abds Vagaba the covariance between e, and (g, : g : )

and ep, and (), : €} :
e!))' respectively, which results directly from the specifications in Theorem 1 (and 1* in the

Appendix) and those above.
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Combining with the large sample behavior of /N ((hx (fo,n)Af(0(e))1 Af(H(e))L)’f/ff (0(e))
(v (B0, ) A (O())1  Ap(B(e)) 1))~ (in (o)A (B())r | As(0(e)) 1) fn(6(c)), we have:

VN (hy(00,5) A (B(e) : Af( (€)) 1) Vas(0(e)) Vs (0(e)) " fn(6(e))

= VN(hn(0on)As(0(e )) Ag(0(e)) L) Var(0(e)) (hn(Bo,n)As(0(e))1  Ap(0(e)) L)
((hn(Bo,n)Afp(0(e))1 = Ap(0(e)) 1 )fo( ( ))(hN(90 N)Af(0(e))1  Ap(B(e)) 1))~
(hN(GON)Af 0(e))1 = Ap(0(e))L)

)1 1)
B ( )’1 g +< >
- 6(e)) A @ B
) f ) va :ZB(N)

(B(N)'VapaB(N))~ (62 (%) +B(NY (8 )) + op(1).
d

€

4. For the large sample behavior of Dy (6(e)), we next combine the behaviors of v/ N (hx (6o x) A (6(e))1

P A(0(e)) 1) qn(8(e)) constructed under 2 and /N (hy (Bo.n)Af(0(e))1: A(6(e)) 1) Var(8(e))
fo (8(e))~1 fn(0(e)) which is constructed under 3. Upon combining them, the large sample

behavior of VN (hy(6o.n)As(0(e))1 Af(e(e))l)’f)N(H(e)) results as

YN (b (0o n) Ar(0(e)1 § Ar(0(e)) 1) D (60(e))
:{[ (v (Bo.x) A (B(e))1 + A7(B(e)) ) an (6(e))—

(o,v) Af( ( D1t Ap(0(e)) 1) Vor(0(e)) Vs (0(e) ™ Fiv (0(e ))]
1 {
=

VN(hy
B 0
( hN(GON)Gf(e e) A, ) Y+ < - {‘/NsébL:Jrsaq) ) -
( B 0
( (b OO0 A ) o ( (virevesin) ) ’

(B(N)'VaraB(N)) ™! | €20?(3) + B(N) | & )) } +0p(1),

- ( (?p)é > 4%/N ( S ) +op(N7H4)
0

:‘< @ )é””(”

where we have rescaled since all the higher order terms have dropped out and which shows

that the additional components in Theorem 1* compared to Theorem 1 do not affect the limit
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behavior of Dy (6(e)) up to order N=1/4. The specification of v is:

Vag,aba B(N)
Vhg,aba B(IV)

)~

v=—((

(

€aq
9 bq

Vaq,ade(N)
Vbq,ade(N)

) (B(N)'VasaB(N)) ™" B(N)' (

)) (BONYVaaaB(N) ™ (5)e20™+

€a
€b

)

&d

which is independent of the limit behavior of v Ngy7(6(e)).
We obtain the limit behavior of \/NﬁN(Q(e))’fo(Q(e))_lDN(H(e)) from:

\/Nlj_N(9(e))'fo(9(6))_1ﬁzv(9(6))

VN (hn(0o,n)Af(0(e))1

(v (B0 ) A5 (0(e))s
YR (o) A5 (0(0)):

= (1) (B(N)VapaB(N))™

and

NiDy(0(e)) Vis(0(e)) ™ fn(B(e

[Wh]vwo,zv)Afw(e))l 5 Afw(e)m'ﬁzv(o(e))] x

P Ap(0(e)) 1) D (6(e))

:Af(a( )1 )'fo(f)( ))(hN(:QO,N)Af(‘g(e))l

A7 (6(€)) 1) D (6(e)

( ) + 0p(1)

)

1/
X

P Ap(0(e)) 1))t x

(LP)GJF %V}/(B(N) ade( ) [(b”)e—F % ]+op(1)

) + op(1)
b )) + 0p(1).

Upon combining the behavior of the above two components, we obtain the large sample

behavior of the KLM statistic to test Hy : 0(e) = 1+ 4%

VN
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can for samples of (large) size N be specified as:
KLM(6(e)) »
= NSx(0(e))'Vr1(0(e) " D (0(€)) [ Da(6(e))' Vs (0() D (0(e))]
(

= [+ [x+n]+o0p(1)
~ X3 (6(N),1) + op(1),

1
where € cancels out since it is a scalar, Kk = ((%’)/(B(N)’Vade(N))fl (L”)>2 e2o?, n =

0
1 €a
((5) (BONYVanaBIN) ™ (5)) 7 (5) (BIN)Vara BN) " BINY' | &, | ~ N(0,1) and
€d

S(N) = (e0)*(3) (B(N)VapaB(N))"1('3)

on the right hand side of the above specification depends on IV, which is important to obtain

an accurate approximation because of the quartic root convergence rates.
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