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Abstract

Mimicking portfolios of macroeconomic factors are commonly constructed by project-

ing these factors on a set of base assets. We show that when macroeconomic factors

are associated with small betas, the beta estimator using their mimicking portfolios has

a non-standard limiting distribution. The non-standard behavior of the beta estimator

jeopardizes inference on risk premia in the commonly used Fama and MacBeth (1973)

two-pass procedure. To remedy this problem, we propose a test for risk premia on mim-

icking portfolios. The validity of this test does not depend on the magnitude of the betas.

Simulation evidence suggests that the proposed test performs well in size and power. We

use the test to analyze the risk premium on the leverage factor of Adrian et. al. (2014).

Our results indicate that the leverage factor is a weak factor which leads to substantially

di¤erent results for its risk premium.
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1 Introduction

An intersection of macroeconomics and �nance is that a large group of macroeconomic factors

have been found useful for �nancial asset pricing. These factors include, e.g., consumption

growth in Breeden et al. (1989), labor income growth in Jagannathan and Wang (1996),

consumption-wealth ratio in Lettau and Ludvigson (2001), GDP growth in Vassalou (2003),

investment growth in Li et al. (2006), among many others. The prevalence of these macro-

economic factors has recently led to a sizeable and growing literature that scrutinizes their

usefulness.

One major concern on macroeconomic factors is that their minor correlation with asset

returns (see, e.g., Bai and Ng 2006) invalidates conventional inference methods used in asset

pricing studies, such as the t-test on risk premia in the Fama and MacBeth (1973) (FM)

two-pass methodology. Consequently, empirical support for macroeconomic factors based on

conventional inference methods is up to careful scrutiny. An early contribution along this line

is Kan and Zhang (1999), who show that the t-test in the FM methodology can spuriously

support useless factors that are independent of asset returns. More recently, Kleibergen (2009)

further warns that when factors are only weakly correlated with asset returns so their betas are

small, inference on risk premia based on the FM two-pass procedure is also spurious.

Instead of using macroeconomic factors themselves, their mimicking portfolios are also

widely used to replace these factors in asset pricing studies. The theoretical support for such

practice is provided by Breeden (1979) and Huberman et al. (1987), who establish that factors

can be replaced by their mimicking portfolios for asset pricing tests. In terms of macroeconomic

factors, the norm of constructing their mimicking portfolios is to project these factors on a set

of base assets that span the asset space. This projection is implemented by regressing factors

on base assets in a time series regression. The resulting mimicking portfolios after projection

are also called maximum correlation portfolios. See, e.g., Breeden et al. (1989), Lamont (2001),

Vassalou (2003), Avramov and Chordia (2006) and Adrian et al. (2014).
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On the one hand, besides other potential advantages,1 using mimicking portfolios instead of

macroeconomic factors appears able to bypass the weak statistical correlation issue studied in

Kleibergen (2009), etc. By projecting macroeconomic factors on base assets, it is natural that

the resulting mimicking portfolios exhibit improved correlation with asset returns so their betas

can be ampli�ed. In existing studies (e.g., Vassalou 2003, Adrian et al. 2014), this projection

is commonly interpreted as a way to remove the noise in macroeconomic factors while keeping

only their relevant information for asset pricing. Alongside this interpretation, inference on risk

premia using mimicking portfolios is thus believed to be more informative, compared to that

using the original macroeconomic factors.

On the other hand, using mimicking portfolios instead of macroeconomic factors has its own

costs, which are rarely discussed in the existing literature. In this paper, we reveal the conse-

quences of using mimicking portfolios in the FM two-pass procedure, when their background

macroeconomic factors are only minorly correlated with asset returns. We show that although

these mimicking portfolios may appear relevant for asset pricing, the risk premia estimator in

the FM two-pass procedure has a non-standard distribution, which jeopardizes the t-test on

risk premia. The underlying reason is that when betas of macroeconomic factors are small, the

beta estimator of their mimicking portfolios is associated with non-standard limiting behavior,

which further puts the t-test under doubt.

Our �ndings, therefore, suggest that using mimicking portfolios instead of macroeconomic

factors for asset pricing does not necessarily imply improved inference on risk premia or more

generally, improved performance of asset pricing tests. Ironically, since macroeconomic factors

are almost indistinguishable from useless factors in terms of their minor correlation with asset

returns in �nite samples, empirical �ndings based on mimicking portfolios could be driven

by the noise occurred in the construction of such portfolios, rather than the relevant pricing

information contained in macroeconomic factors and preserved in the construction of their

mimicking portfolios.

1Such as extending the available data sets (Ang et al. 2006), providing the extra restriction for testing
purposes (Huberman et al. 1987).
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Since the conventional t-test on risk premia of mimicking portfolios resulting from macro-

economic factors is under doubt, we propose a novel test in this paper. Unlike the t-test, the

asymptotic size of our test does not depend on the magnitude of the betas, so it remains trust-

worthy when macroeconomic factors are associated with small betas. The suggested test is in

line with the robust tests proposed by Kleibergen (2009) for risk premia of factors, and the

extension to the mimicking portfolio setting is new. The performance of the test is examined

by Monte Carlo simulation.

For illustrative purposes, we apply the proposed test to the leverage factor model from

Adrian et al. (2014). Following Adrian et al. (2014), we construct mimicking portfolios by

regressing the leverage factor on seven base assets: excess returns of the six Fama-French

portfolios on size and book-to-market, plus the momentum factor. By inverting the proposed

test, we further obtain con�dence intervals for the risk premium of the constructed mimicking

portfolios, with the usage of various test assets. We show that these con�dence intervals di¤er

substantially from those that result from inverting the conventional t-test, which is consistent

with the fact that the leverage factor is associated with a small beta.

Related to our paper, there exists a sizeable literature that examines identi�cation and

inference issues in asset pricing. Besides those related articles we cite above, see, e.g., Burnside

(2016), Balduzzi and Robotti (2008). Unlike this paper, Burnside (2016) does not focus on

mimicking portfolios, but shows that when factors are weak, lack of identi�cation exists in

linear stochastic discount factor models. The rank test of Kleibergen and Paap (2006) is

consequently suggested in Burnside (2016) for model diagnostics. Balduzzi and Robotti (2008)

do not focus on the FM two-pass procedure, but argue that the use of mimicking portfolios

improves inference on risk premia estimated by time series regressions. Furthermore, Balduzzi

and Robotti (2008) do not consider the consequence of weak factors for inference on risk premia.

The paper proceeds as follows. In Section 2, we describe a linear factor model with observed

factors and present the limiting behavior of the beta estimator under constructed mimicking

portfolios. In Section 3, we propose the robust test for risk premia of mimicking portfolios and
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provide simulation evidence for its size and power. Our application to data from Adrian et

al. (2014) is also contained in Section 3. Section 4 concludes the paper. Proofs and technical

details are provided in the Appendix.

Throughout the paper, we use the following notation: � is used for mean, while V is for

covariance; �̂ and bV are the sample analogs of � and V , respectively; �N is the N�1 dimensional
vector of ones, vec(A) stands for the column vectorization of a matrix A, PA = A(A0A)�1A0,

MA = I �PA, I is the identity matrix; �
p!�and � d!�stand for convergence in probability and

convergence in distribution, respectively.

2 Weak identi�cation with mimicking portfolios

2.1 Linear factor model and observed factors

Asset returns are to a large extent explained by a small number of factors, see e.g. Merton

(1973), Ross (1976), Roll and Ross (1980), Chamberlain and Rothschild (1983) and Connor

and Korajczyk (1988, 1989). We therefore use a linear factor model for asset returns Rt (N�1)

with k (unobserved) factors Ft (k � 1):

Rt = �N�0 + �( �Ft + �F ) + vt (1)

where �Ft = Ft � �F , vt is the mean zero error term, t = 1, ..., T . Equation (1) implies the

moment condition for the risk premia, i.e.,

E(Rt) = �N�0 + ��F (2)

with �0 : the zero-� return, �F : the k � 1 vector of factor risk premia.

Moreover, there exists a partition of Rt = (R01t; R
0
2t)

0, with R1t : N1 � 1, R2t : N2 � 1,

N1 + N2 = N . From now on, we consider R1t as the returns on test assets, and R2t as the
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returns on base assets that are used for constructing mimicking portfolios.2 Correspondingly,

� = (�01; �
0
2)
0 with �1 : N1 � k, �2 : N2 � k, and vt = (v01t; v

0
2t)

0 with v1t: N1 � 1, v2t : N2 � 1.

Let Gt (m� 1) be the observed proxy for the unobserved factor Ft, i.e.,

�Ft = � �Gt + ut (3)

where �Gt = Gt � �G, ut is the error term. Note that � (k � m) re�ects the quality of the

approximation of Ft by Gt: Ideally Ft is observed so Gt coincides with it and � = Ik; ut = 0.

On the other hand, if � is approximately equal to zero, then Ft is poorly proxied by Gt.

Plugging (3) into (1), and if the vector of risk premia of Gt, denoted by �G, is de�ned by the

moment condition E(Rt) = �N�0+���G, then �F and �G are also related by � since �F = ��G.3

In addition, (1) is re-written as

Rt = �N�0 + ��( �Gt + �G) + et (4)

where et = (e01t; e
0
2t)

0 = �ut+vt, and � = ���0+
 with � = var(et), � = var(ut), 
 = var(vt).

We make the following assumptions for the model described above.

Assumption 1 1p
T

PT
t=1

0B@
0B@ 1

Ft

1CA
 (Rt � �N�0 � �( �Ft + �F ))

1CA d!

0B@ 'R

'F

1CA, where
0B@ 'R

'F

1CA �

N(0; QF 
 
), QF =

0B@ 1 �0F

�F VFF + �F�
0
F

1CA, 
 = var((v01t; v
0
2t)

0) =

0B@ 
11 
12


21 
22

1CA.
Assumption 2 All the covariance of R1t and R2t is captured by the factors so 
12 = 
021 = 0

and cov(R1t; R2t) = �1VFF�
0
2.

2We acknowledge that in practice test assets and base assets need not be in the same frequency or in the
same time period. For convenience, we focus on the same frequency and same time period setting, although the
message of this paper can be similarly extended to more generalized settings.

3Note that �G is not always well-de�ned: if Gt is useless with � = 0, then �G is not de�ned.
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Assumption 3 1p
T

PT
t=1

0B@
0B@ 1

Gt

1CA
 (Rt � �N�0 � �( �Ft + �F ))

1CA d!

0B@ 'R

'G

1CA, where
0B@ 'R

'G

1CA �

N(0; QG 
 
), QG =

0B@ 1 �0G

�G VGG + �G�
0
G

1CA.
Assumption 1 is a central limit theorem that is also imposed in Kleibergen (2009). Assump-

tion 2 is a necessary condition for the consistency of the mimicking portfolio estimator of �1,

which we show below.4 Assumption 3 is a corollary of Assumption 1, with Gt replacing the

unknown Ft.

Assumptions 1-3 just result from the model in (1) and (3) with i.i.d. mean zero errors and

�nite variance.

2.2 Beta of mimicking portfolios

In accordance with common practice, we construct mimicking portfolios by projecting Gt on

base assets R2t. The resulting feasible mimicking portfolios are then written as:

bVGR2 bV �1
R2R2

R2t (5)

where bVGR2 bV �1
R2R2

is the sample counterpart of the infeasible VGR2V
�1
R2R2

, and it can be obtained

by regressing Gt on R2t in a time series regression.

With R1t as test assets, the beta estimator for the mimicking portfolios in (5) reads:

~̂�1 = bVR1R2 bV �1
R2R2

bVR2G(bVGR2 bV �1
R2R2

bVR2G)�1 (6)

Theorem 1 When Assumptions 1-3 hold, the limiting behavior of ~̂�1 can be described as fol-

lows.

1. When � is �xed and the number of elements of G equals the number of elements of F; so

4When test assets R1t are base assets R2t, Assumption 2 is dropped.
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� is a square invertible matrix:

~̂�1
p! �1VFF �

�10V �1
GG

and when Gt = Ft; � = Ik : ~̂�1
p! �1:

2. When � = d=
p
T , with d a �xed full rank matrix:

T�
1
2 ~̂�1

d! �1VFF�
0
2(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�h�

�2(dVGG +  uG) +  v2G
�0
(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�i�1

where 1p
T

PT
t=1(

�Gt 
 ut)
d!vec( uG); 1p

T

PT
t=1(

�Gt 
 v2t)
d!vec( v2G):

Proof. see Appendix A.

The �rst part of Theorem 1 shows that the beta estimator of the mimicking portfolios is a

consistent estimator for the beta of the factors when mimicking portfolios are constructed from

accurate proxies of the underlying unobserved factors. The proof of Theorem 1 in Appendix

A also shows that the covariance of test assets and base assets must be fully captured by the

factors to render the beta estimator consistent as implied by Assumption 2. Put di¤erently,

if Assumption 2 is not satis�ed, then the estimated beta of the mimicking portfolios does not

converge to the beta of the factors, even when the true underlying factors are used to construct

the mimicking portfolios.

The motivation of this paper comes from the second part of Theorem 1, i.e., when mimicking

portfolios result from observed factors that are only poor (weak) proxies for underlying factors.

It is known that macroeconomic factors commonly exhibit minor correlation with asset returns,

so they are likely to be poor proxies for underlying factors, as re�ected by � = d=
p
T . In this

scenario, Theorem 1 shows that the beta estimator of the mimicking portfolios is increasing

with the sample size and has a non-standard distribution. In other words, when the betas of

the macroeconomic factors are small, the mimicking portfolios of such factors can be associated
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with betas that are spuriously large.

It is worth emphasizing that � = d=
p
T is adopted from the weak-instrument assumption

made in econometrics (see, e.g., Staiger and Stock 1997), in order to appropriately re�ect the

case when Gt is a poor proxy for Ft. A similar treatment can be found in Kleibergen (2009)

and Kleibergen and Zhan (2015).

In the commonly used FM two-pass procedure, the risk premia of the mimicking portfolios

are obtained by regressing the sample average of the test assets �̂R1 =
1
T

PT
t=1R1t on ~̂�1 and

an intercept, i.e., 0B@ ~̂�0

~̂�G

1CA =

�
(�N1

... ~̂�1)
0(�N1

... ~̂�1)
��1

(�N1
... ~̂�1)

0�̂R1 (7)

where ~̂�G (m � 1) denotes the estimated risk premia for the mimicking portfolios that are

constructed from Gt.

If ~̂�1 has a non-standard distribution, it is natural to expect that the performance of ~̂�G is

under doubt, as stated in the corollary below.

Corollary 1 When Assumptions 1-3 hold, the limiting behavior of ~̂�G can be described as

follows.

1. When � is �xed and the number of elements of G equals the number of elements of F; so

� is a square invertible matrix:

~̂�G
p! VGG�

0V �1
FF�F

and when Gt = Ft; � = Ik : ~̂�G
p! �F :

2. When � = d=
p
T :

p
T ~̂�G

d! (	0�1M�N1
	�1)

�1	0�1M�N1
�R1 +

1p
T
(	0�1M�N1

	�1)
�1	0�1M�N1

 R1
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where  R1 is from Assumption 1 with  R = ( 
0
R1
;  0R2)

0, M�N1
is a projection matrix with

M�N1
= IN1��N1(�0N1�N1)

�1�0N1, 	�1 � �1VFF�
0
2(�2VFF�

0
2+
22)

�1 ��2(dVGG +  uG) +  v2G
�h�

�2(dVGG +  uG) +  v2G
�0
(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�i�1

, see Theorem

1.

Proof. see Appendix B.

In line with Theorem 1, Corollary 1 also contains two cases. In the ideal �rst case, where

accurate proxies of the underlying factors are used for constructing mimicking portfolios, ~̂�G is

a consistent risk premia estimator. On the other hand in the second case where weak factors

are observed, as re�ected by � = d=
p
T ; because of the non-standard behavior of ~̂�1, ~̂�G also

has a non-standard limiting distribution.

Due to the non-standard behavior of ~̂�G in Corollary 1 under mimicking portfolios of weak

factors, the conventional FM t-statistic for testing risk premia does not have an asymptotic

standard normal distribution. Consequently, Corollary 1 implies that the conventional FM t-

test on risk premia is under doubt, when it is used for mimicking portfolios of macroeconomic

factors.

2.3 Covariance speci�cation

Instead of the beta speci�cation above, the alternative covariance speci�cation suggests that

with mimicking portfolios in (5), we could also use as an estimator for �1:

�̂1 = bVR1R2 bV �1
R2R2

bVR2G
Di¤erent from ~̂�1, the inverse part (bVGR2 bV �1

R2R2
bVR2G)�1 in ~̂�1 is omitted in �̂1. This corresponds

to the so-called covariance speci�cation of risk premia, see e.g., Kan et al. (2013).

Theorem 2 When Assumptions 1-3 hold, the limiting behavior of �̂1 can be described as fol-

lows.

10



1. When � is �xed and the number of elements of G equals the number of elements of F; so

� is a square invertible matrix:

�̂1
p! �1VFF�

0
2(�2VFF�

0
2 + 
22)

�1�2�VGG

and when the number of elements of �2 is large, �̂1
p! �1�VGG:

2. When � = d=
p
T :

T
1
2 �̂1

d! �1VFF�
0
2(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�

and when the number of elements of �2 is large, T
1
2 �̂1

d! �1dVGG+�1( uG+VFF�
0
2(�2VFF�

0
2+


22)
�1 v2G). The speci�cations of  uG and  v2G are stated in Theorem 1.

Proof. see Appendix C.

Unlike Theorem 1, the second part of Theorem 2 shows that the large sample behavior of the

weak factor mimicking portfolio�s beta estimator is now comparable to that of the pure weak

factor�s beta estimator, see Kleibergen (2009) and Kleibergen and Zhan (2015). Put di¤erently,

under the covariance speci�cation, the beta estimator of the mimicking portfolios (denoted by

�̂1) does not su¤er from the exaggeration problem of its counterpart (denoted by ~̂�1) which

exists under the beta speci�cation, as shown by Theorem 1.

However, it is known that small betas jeopardize risk premia estimation in the FM method-

ology, see e.g. Kleibergen (2009). Consequently, a malfunction of the FM two-pass procedure

also exists in the covariance speci�cation, albeit for opposite reasons of the beta speci�cation:

if mimicking portfolios are constructed from weak factors, the beta estimator is large in mag-

nitude in the beta speci�cation, and small in the covariance speci�cation, both could induce

failure of risk premia estimation in the FM methodology. In order to resolve this issue, we

develop a new inference method for risk premia of mimicking portfolios, which is presented

later on.
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2.4 Simulation study

To further illustrate the results in Theorem 1 and 2, we conduct a simple simulation experiment.

Asset returns are generated from the factor model (1), with T = 1000 and k = 1. Speci�cally,

Ft � NID (0; VFF ), vt � NID (0;
), where VFF is calibrated from the market portfolio in

Fama-French (1993), 
 is calibrated from a regression of N1 industry portfolios and N2 size and

book-to-market sorted portfolios on the market portfolio. We consider N1 = N2 for convenience

in the data generation process (d.g.p.) and set them equal to 1, 2, 3, 4 and 5, as reported in

the �rst column of Table 1. The values of the parameters �0, �F and � used in d.g.p. result

from the Fama-MacBeth (1973) two-pass procedure using the described portfolios.5

In the simulation exercise, we consider two di¤erent types of observed factors which are en-

countered in empirical studies. The �rst case is the one of observed factors that are good/strong

proxies for the underlying factors Ft: Here we use Gt = Ft: The second case is the one of ob-

served factors that are poor/weak proxies of the underlying factors. We therefore use observed

factors Gt that are independently generated as N(0; VFF ) distributed random variables so the

observed factor is completely useless for asset returns. In Panel A of Table 1, we present the

outcome of the simulation study for the strong factor case, while the useless factor case is in

Panel B.

Both the beta speci�cation and the covariance speci�cation for constructing the beta esti-

mator are considered in our simulation study. In addition, for each speci�cation, we consider

three di¤erent manners of using the simulated factors. Under �Fac�in Table 1, the simulated

factor is directly used for estimating �1 in the time series regression using the simulated asset

returns R1t. Under �MP�in Table 1, we construct mimicking portfolios of simulated factors as

in (5); with the constructed mimicking portfolios, we proceed to compute their beta estimator

~̂�1 (beta speci�cation) or �̂1 (covariance speci�cation); furthermore, the asymptotic variances

of such estimators are derived by �rst-order asymptotics (see Appendix D for details). Under

5The sample period used for calibration is Jan 1927 - Dec 2015. The data is downloaded from French�s online
data library, �http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html�.
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�MP as Fac� in Table 1, we treat constructed mimicking portfolios in the same manner as

observed factors for beta estimation (hence the estimation error contained in the mimicking

portfolios is ignored when computing the variance of their beta estimator), which is common

in existing empirical studies.

We apply the rank test of Kleibergen and Paap (2006) for the estimator of �1 in the various

scenarios described above. In particular, we test whether the estimand has reduced rank k� 1

and document the rejection frequency of the null at the nominal 5% and 10% level using

standard �2 critical values. Since �1 has full rank under strong factors, we expect that the

rank test will strongly reject the null. This is in line with the rejection frequencies reported in

Panel A of Table 1. In fact, we show that the rejection frequencies based on 2000 Monte Carlo

replications are all equal to one, so the outcome of the rank test shows support for the strong

factor, as expected.

On the contrary, under useless factors, we expect the rejection frequency of the rank test

to be close to the nominal size, since useless factors are associated with zero beta�s so the null

holds. This is in line with the rejection frequencies reported under �Fac�in Panel B of Table

1. Under �MP�, the rank test appears conservative, since the rejection frequencies quickly

decrease from nominal sizes as N1 and N2 increase.6

What is astonishing in Panel B of Table 1 lies in the columns of �MP as Fac�, i.e., mimicking

portfolios are naively treated as alternatives of factors and used for rank tests. Panel B shows

that the rejection frequencies under �MP as Fac�are very large (albeit decrease as N1 and N2

increase). Consequently, mimicking portfolios of useless factors may signal strong factor pricing

in rank tests, if they are treated in the same manner as factors. Theorem 1 and 2 show that

such treatment is improper, since the beta estimator under mimicking portfolios does not have

the same limiting distribution as under factors.

6There are two reasons that may help explain the conservative performance. First, the beta estimator of
mimicking portfolios may have a non-standard distribution (as in Theorem 1), so �rst-order asymptotics do not
approximate its variance well, which further jeopardizes the rank test. Second, as N1 and N2 increase, larger
sample sizes are generally needed to estimate the covariance matrix of asset returns, a component that appears
when beta�s are computed using mimicking portfolios.
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Table 1: Rejection Frequencies of the Rank Test by Monte Carlo
Panel A: Strong Factor

Beta Speci�cation Covariance Speci�cation
Fac MP MP as Fac Fac MP MP as Fac

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: Useless Factor
Beta Speci�cation Covariance Speci�cation

Fac MP MP as Fac Fac MP MP as Fac
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 0.051 0.107 0.060 0.112 1.000 1.000 0.050 0.106 0.059 0.112 1.000 1.000

2 0.053 0.105 0.014 0.031 0.936 0.949 0.051 0.102 0.013 0.030 0.935 0.949

3 0.050 0.104 0.005 0.012 0.898 0.916 0.048 0.101 0.005 0.012 0.895 0.914

4 0.052 0.102 0.003 0.011 0.879 0.899 0.050 0.097 0.002 0.009 0.878 0.897

5 0.050 0.090 0.001 0.002 0.841 0.864 0.046 0.085 0.000 0.002 0.837 0.860

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

H0 : rank(�1) = k� 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The

d.g.p. is described in the main text, with T = 1000 and k = 1. Column 1 lists �ve choices of N1 = N2: 1, 2, 3,

4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B for a useless factor

in the single factor model. For �Fac": the observed factor is used for beta estimation. For �MP": the

mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the beta

estimator is derived by �rst-order asymptotics (see Appendix D). For �MP as Fac": the mimicking portfolio of

the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed factor.
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Overall, Table 1 suggests that the rank test can serve as a diagnostic tool for the quality

of the factors, if implemented properly so correcting for the estimation error that results from

using mimicking portfolios. When factors are strong (weak), the null is rejected (accepted with

the probability close to the nominal size), if these factors are used for beta estimation. When

mimicking portfolios are used for beta estimation, Table 1 suggests that the rank test outcome

needs to be taken with caution. In particular, if mimicking portfolios are improperly treated

as alternative to factors, then the rank test may spuriously favor useless factors.

2.4.1 Sensitivity to the strength of the factor structure

Instead of calibrating 
 to the estimated b
 as described above, we also consider two alternatives
in our simulation experiments: 
 = 0:04b
 and 
 = 25b
. The strength of the factor structure
alters when the magnitude of 
 changes with 
 = 0:04b
 having a very strong factor structure
and 
 = 25b
 a weak factor structure. The other settings remain unchanged in the simulation.
Our purpose is to re-examine the result reported in Table 1, as the strength of the factor

structure changes.

Table 2 and Table 3 present the updated results, for 
 = 0:04b
 and 
 = 25b
, respectively.
It is found that the strength of the factor structure does not alter the two main �ndings conveyed

in Table 1: (i) for rank testing, factors seem to perform better than mimicking portfolios; (ii)

improperly treating mimicking portfolios as factors may yield to spurious rank test outcomes

that favor poor factors.

3 Robust inference

The previous section shows that the beta estimator under mimicking portfolios is problematic

when their underlying factors are weak. This jeopardizes risk premia estimation in the com-

monly used Fama-MacBeth (1973) methodology. To resolve this issue, we propose a robust

inference procedure on risk premia of mimicking portfolios.
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Table 2: Rejection Frequencies of the Rank Test by Monte Carlo (
 = 0:04b
)
Panel A: Strong Factor

Beta Speci�cation Covariance Speci�cation
Fac MP MP as Fac Fac MP MP as Fac

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: Useless Factor
Beta Speci�cation Covariance Speci�cation

Fac MP MP as Fac Fac MP MP as Fac
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 0.063 0.110 0.066 0.116 1.000 1.000 0.062 0.110 0.064 0.116 1.000 1.000

2 0.053 0.103 0.016 0.035 0.956 0.960 0.051 0.102 0.016 0.034 0.955 0.960

3 0.055 0.111 0.005 0.014 0.915 0.931 0.051 0.103 0.005 0.015 0.914 0.931

4 0.052 0.100 0.006 0.009 0.911 0.921 0.047 0.095 0.005 0.009 0.908 0.920

5 0.045 0.091 0.001 0.004 0.884 0.902 0.042 0.086 0.001 0.004 0.881 0.900

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

H0 : rank(�1) = k� 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The

d.g.p. is described in the main text, with T = 1000 and k = 1, 
 = 0:04b
. Column 1 lists �ve choices of
N1 = N2: 1, 2, 3, 4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B

for a useless factor in the single factor model. For �Fac": the observed factor is used for beta estimation. For

�MP": the mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the

beta estimator is derived by �rst-order asymptotics (see Appendix D). For �MP as Fac": the mimicking

portfolio of the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed

factor.
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Table 3: Rejection Frequencies of the Rank Test by Monte Carlo (
 = 25b
)
Panel A: Strong Factor

Beta Speci�cation Covariance Speci�cation
Fac MP MP as Fac Fac MP MP as Fac

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
1 1.000 1.000 0.465 0.583 0.429 0.556 1.000 1.000 0.319 0.486 0.426 0.554

2 1.000 1.000 0.663 0.760 0.636 0.742 1.000 1.000 0.489 0.648 0.629 0.742

3 1.000 1.000 0.688 0.782 0.666 0.761 1.000 1.000 0.495 0.650 0.656 0.758

4 1.000 1.000 0.878 0.930 0.856 0.914 1.000 1.000 0.642 0.793 0.848 0.911

5 1.000 1.000 0.922 0.953 0.902 0.936 1.000 1.000 0.635 0.805 0.896 0.935

Panel B: Useless Factor
Beta Speci�cation Covariance Speci�cation

Fac MP MP as Fac Fac MP MP as Fac
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

1 0.055 0.105 0.003 0.014 0.429 0.556 0.054 0.105 0.004 0.015 0.426 0.554

2 0.055 0.100 0.001 0.004 0.335 0.443 0.051 0.099 0.000 0.003 0.330 0.439

3 0.057 0.107 0.000 0.000 0.252 0.344 0.055 0.103 0.000 0.000 0.247 0.337

4 0.055 0.098 0.001 0.001 0.275 0.367 0.050 0.092 0.001 0.001 0.266 0.358

5 0.046 0.094 0.000 0.000 0.237 0.328 0.044 0.086 0.000 0.000 0.224 0.320

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

H0 : rank(�1) = k� 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The

d.g.p. is described in the main text, with T = 1000 and k = 1, 
 = 25b
. Column 1 lists �ve choices of
N1 = N2: 1, 2, 3, 4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B

for a useless factor in the single factor model. For �Fac": the observed factor is used for beta estimation. For

�MP": the mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the

beta estimator is derived by �rst-order asymptotics (see Appendix D). For �MP as Fac": the mimicking

portfolio of the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed

factor.
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3.1 Scaled risk premia under mimicking portfolios

Speci�cally, we suggest to test the risk premium �G;cov on mimicking portfolios using the mo-

ment condition:

E(R1t) = �N1�0 + VR1R2V
�1
R2R2

VR2GV
�1
GG�G;cov (8)

where VR1R2V
�1
R2R2

VR2G is the covariance of the test assets R1t with the (infeasible) mimicking

portfolios VGR2V
�1
R2R2

R2t, so �G;cov is the scaled risk premium in the covariance speci�cation

(scaled by V �1
GG).

7 If the base assets in R2t span the test assets in R1t, then VR1R2V
�1
R2R2

VR2G

reduces to VR1G and �G;cov equals �G in (4). For instance, in the special case that R1t = R2t; so

test and base assets coincide, �G;cov reduces to �G. If so, inference on �G;cov reduces to inference

on �G, which has been resolved by Kleibergen (2009). Since it is common that R2t does not

fully span R1t; �G;cov is consequently not necessarily equal to �G. We thus proceed to consider

inference on �G;cov de�ned in (8).

As a starting point, we remove �0 since our interest lies in �G;cov. This is done by removing

the return on the N1-th test asset and taking all other test asset returns in deviation from the

return on the N1-th asset. Equation (8) is then re-written as

E(R1t) = VR1R2V
�1
R2R2

VR2GV
�1
GG�G;cov

= ��2��G;cov (9)

where � = VR1R2V
�1
R2R2

, R1t = R1t;1:(N1�1) � �N1�1R1t;N1 ; with R1t = (R
0
1t;1:(N1�1); R

0
1t;N1

)0, and

VR2GV
�1
GG = �2� as in (4).

7If VGG is normalized to Im, then �G;cov is the risk premium of the mimicking portfolios in the covariance
speci�cation. Furthermore, �G;cov could also be viewed as the scaled risk premium of mimicking portfolios in the
beta speci�cation: since E(R1t) = �N1

�0 + VR1R2
V �1R2R2

VR2G(VGR2
V �1R2R2

VR2G)
�1(VGR2

V �1R2R2
VR2G)V

�1
GG�G;cov,

(VGR2
V �1R2R2

VR2G)V
�1
GG�G;cov is the risk premium in the beta speci�cation. If the projection error during the

construction of mimicking portfolios is negligible, i.e., VGR2V
�1
R2R2

VR2G � VGG, then �G;cov approximately equals
the risk premium of mimicking portfolios in the beta speci�cation.

18



3.2 Mimicking portfolio Anderson-Rubin test

To conduct inference on �G;cov, we state the joint behavior of �R1, B̂2 and �̂ in Theorem 3, with

�R1 =
1
T

PT
t=1R1t, B̂2 = bVR2GbV �1

GG and �̂ = bVR1R2
bV �1
R2R2

.

Theorem 3 When Assumptions 1-3 hold:

p
T

0BBBB@
�R1 � ��2��G;cov

vec(B̂2 � �2�)

vec(�̂� �)

1CCCCA d!

0BBBB@
 1

vec( 2)

vec( 3)

1CCCCA � N(0;W) (10)

and

W =

0BBBB@
VR1R1 0 0

0 V �1
GG 
 �22 C 0

0 C V �1
R2R2


 (VR1R1 � VR1R2V
�1
R2R2

VR2R1)

1CCCCA
with

C = K(N1�1)N2(VR1FV
�1
FF � 
 V �1

R2R2
�22) + (V

�1
R2R2

�2� 
�12)�

(V �1
R2R2


 �)(IN2
2
+KN2N2)(�2� 
 �22);

K is the commutation matrix and �12 = cov(e1t; e2t) with e1t = R1t � VR1FV
�1
FF �(

�Gt + �G).

Proof. see Appendix E.

Theorem 3 implies that the limiting distribution of
p
T ( �R1 � �̂B̂2�G;cov) is normal.

Corollary 2 When Assumptions 1-3 hold and � has a full rank value:

p
T ( �R1 � �̂B̂2�G;cov)

d!  1 � � 2�G;cov �  3�2��G;cov � N(0;V); (11)

with

V = VR1R1 + (�
0
G;covV

�1
GG�G;cov 
 ��22�0)+

((�2��G;cov)
0V �1
R2R2

(�2��G;cov)
 (VR1R1 � VR1R2V
�1
R2R2

VR2R1))�

f[(�2��G;cov)0 
 IN1�1]C(�G;cov 
 �0)g � f[(�2��G;cov)0 
 IN1�1]C(�G;cov 
 �0)g
0 :
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Proof. see Appendix F.

Since the unobserved factor Ft a¤ects both R1 and R2; � has a full rank value. We do

not make a full rank assumption on � so we allow for weak correlation between observed and

unobserved factors. Using Corollary 2, it is straightforward to obtain an asymptotic result to

test H0 : �G;cov = �G;cov;0.

Corollary 3 (MPAR) Under H0 : �G;cov = �G;cov;0,

MPAR(�G;cov;0) = T ( �R1 � �̂B̂2�G;cov;0)0bV�1( �R1 � �̂B̂2�G;cov;0)
d! �2N1�1 (12)

with

bV = bVR1R1 + (�
0
G;cov;0

bV �1
GG�G;cov;0 
 �̂�̂22�̂0)+

((B̂2�G;cov;0)
0bV �1
R2R2

(B̂2�G;cov;0)
 (bVR1R1 � bVR1R2
bV �1
R2R2

bVR2R1))�

[(B̂2�G;cov;0)
0 
 IN1�1]Ĉ(�G;cov;0 
 �̂0)� (�0G;cov;0 
 �̂)Ĉ 0[(B̂2�G;cov;0)
 IN1�1]

Ĉ = K(N1�1)N2(B̂1 
 bV �1
R2R2

�̂22) + (bV �1
R2R2

B̂2 
 �̂12)� (bV �1
R2R2


 �̂)(IN2
2
+KN2N2)(B̂2 
 �̂22)

and �̂12 =
1
T

PT
t=1 ê1tê

0
2t, �̂22 =

1
T

PT
t=1 ê2tê

0
2t, ê2t = R2t� �R2� B̂2(Gt� �̂G), ê1t = R1t� �R1�

B̂1(Gt � �̂G), B̂1 = bVR1G
bV �1
GG.

Proof. Results from Corollary 2, with bV a consistent estimator for V.
We refer to this statistic as the Mimicking Portfolio Anderson-Rubin (MPAR) statistic,

since it is in line with the Anderson and Rubin (1949) statistic for robust inference and it is

proposed using mimicking portfolios. Similar tests in the factor rather than mimicking portfolio

setting include the Factor Anderson Rubin (FAR) test proposed in Kleibergen (2009) and the

Hotelling-type statistic proposed in Beaulieu et al. (2013).8

Because of Corollary 3, a test of H0 : �G;cov = �G;cov;0 that rejects H0, if MPAR(�G;cov;0)

exceeds the 1�� quantile of the �2 distribution withN1�1 degrees of freedom has an asymptotic
8Kleibergen (2009) also proposes several other tests (e.g., a score test). Our paper focuses on extending the

FAR statistic to the MPAR statistic, because extending other tests appears, because of the structure of the
covariance matrix in Theorem 3, di¢ cult.
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size that equals � irrespective of the value of �. Values of �G;cov;0 that are not rejected by this

test thus constitute a 100(1� �)% con�dence set of �G;cov.

3.3 Size of the MPAR statistic in simulations

To examine the size of the proposed MPAR test, we conduct a simple simulation experiment.

The d.g.p. is similar to the one used in Section 2. Speci�cally, asset returns are generated

from Equation (1), with T = 1000 and k = 1. In addition, Ft and vt are generated as indepen-

dent NID (0; VFF ) and NID (0;
) random variables, with VFF calibrated from the market

portfolio in Fama-French (1993) and 
 calibrated from the regression of N1 industry and N2

size and book-to-market sorted portfolios on the market portfolio. We consider N1 = N2 for

convenience and set them equal to 5, 10, 15, 20 and 25, as reported in the �rst column of Table

4. The values of �0, �F and � used in d.g.p. result from the Fama-MacBeth (1973) two-pass

procedure using the portfolios described above.

The observed Gt is simulated as follows: Gt = � �Ft+
p
1� �2 �NID(0; VFF ), so � coincides

with the speci�cation in (3) and re�ects the quality of Gt for approximating Ft. When � is close

to zero, Gt is a weak factor which becomes stronger for an increasing value of �: We consider a

sequence of values for �: � 2 f0:01; 0:25; 0:50; 0:75; 0:99g, which covers a wide range of settings

of Gt as the observed proxy for Ft.

With the simulated asset returns and Gt, we conduct the MPAR test on the risk premia of

the mimicking portfolios as described in Corollary 3. The resulting sizes of the test are reported

in Table 4.

Table 4 shows that the MPAR test does not severely over reject in any of the settings. Its

rejection frequency approximately equals the size of the test in many instances. Table 4 shows

that the MPAR test is conservative when the factors are weak. It indicates that the covariance

matrix estimator bV is on average too large in this simulation setting. Using the properties of
the partitioned inference and that �̂ does not depend on the strength of the factors, the too

large value of bV can be attributed to the realized values of B̂1 and B̂2 being away from their
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Table 4: Actual Sizes of the MPAR Test by Monte Carlo, T = 1000
� = 0:01 � = 0:25 � = 0:50 � = 0:75 � = 0:99
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

N1, N2 = 5 0.050 0.105 0.059 0.105 0.058 0.103 0.057 0.104 0.057 0.104

N1, N2 = 10 0.020 0.051 0.052 0.108 0.051 0.108 0.050 0.108 0.051 0.108

N1, N2 = 15 0.018 0.047 0.064 0.115 0.063 0.116 0.063 0.116 0.063 0.116

N1, N2 = 20 0.002 0.008 0.063 0.127 0.064 0.128 0.063 0.126 0.062 0.126

N1, N2 = 25 0.001 0.002 0.064 0.124 0.064 0.127 0.063 0.127 0.063 0.126

Note: The reported sizes are rejection frequencies of the MPAR test for H0 : �G;cov = �G;cov;0 at the nominal

5% and 10% respectively, based on the average of 2000 replications. The d.g.p. is described in the main text,

with T = 1000.

expected values (zero). This explains also why the under rejection increases when N1 and N2

get larger. When we increase the sample size, the estimates of B̂1 and B̂2 become more precise

and the under rejection of the MPAR test disappears. This is shown in Table 5 where we use a

sample size of 1000; 000: Table 5 shows that the MPAR test is now size correct in all instances.

Table 5: Actual Sizes of the MPAR Test by Monte Carlo, T = 1000; 000
� = 0:01 � = 0:25 � = 0:50 � = 0:75 � = 0:99
5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

N1, N2 = 5 0.053 0.102 0.059 0.098 0.058 0.097 0.058 0.097 0.058 0.097

N1, N2 = 10 0.060 0.112 0.057 0.111 0.058 0.110 0.058 0.111 0.059 0.110

N1, N2 = 15 0.055 0.115 0.056 0.110 0.057 0.111 0.058 0.110 0.058 0.109

N1, N2 = 20 0.057 0.104 0.054 0.098 0.055 0.099 0.054 0.098 0.054 0.098

N1, N2 = 25 0.056 0.104 0.053 0.107 0.053 0.107 0.054 0.107 0.054 0.107

Note: The reported sizes are rejection frequencies of the MPAR test for H0 : �G;cov = �G;cov;0 at the nominal

5% and 10% respectively, based on the average of 2000 replications. The d.g.p. is described in the main text,

with T = 1000; 000.

Tables 4 and 5 show that the behavior of the MPAR test accords with Corollary 3 since

the under rejection reported in Table 4 results from the estimation of the covariance matrix V.

The size of a test is de�ned as the maximal rejection frequency under the null hypothesis so

under rejection does not indicate size distortion.
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3.4 Power of the MPAR test

To illustrate the power of the MPAR test, we consider a sequence of �G;cov (between �5 and 5)

in the d.g.p. described above with T = 1000 and N1 = N2 = 5.9 We then test H0 : �G;cov = 0

at the 5% level using the generated data. The resulting rejection frequencies of the MPAR test

are in Figure 1.

We use a range of values of � to re�ect the di¤erent qualities of the observed factors. Figure

1 has �ve power plots of the MPAR test, corresponding to � = 0:01 (plus), � = 0:25 (dotted),

� = 0:50 (dash-dot), � = 0:75 (dashed) and � = 0:99 (solid line), respectively.

Figure 1: Power Plots of the MPAR Test
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Note: This �gure presents the power plot of the MPAR test for H0 : �G;cov = 0 at the 5% level, with � = 0:01

(plus), � = 0:25 (dotted), � = 0:50 (dash-dot), � = 0:75 (dashed), � = 0:99 (solid line). The d.g.p. is described

in the main text, with T = 1000 and N1 = N2 = 5.

9Note that �1�F = VR1R2V
�1
R2R2

VR2GV
�1
GG�G;cov, so �F = (�

0
1�1)

�1�01VR1R2V
�1
R2R2

VR2GV
�1
GG�G;cov is used for

d.g.p., and we use 20; 000 Monte Carlo replications for the power plots.

23



Figure 1 shows that the MPAR test has good power, as � gets large. This is as expected, since

a larger value of � implies more informative factors and thus mimicking portfolios. Consequently,

when con�dence sets of risk premia are to be constructed by inverting the MPAR test, wider

con�dence sets indicate that the corresponding factors are less informative, while narrower sets

signal that the factors are stronger for asset pricing. Note that when � = 0:01 so the factor is

close to being useless, Figure 1 shows that the corresponding power plot is close to the nominal

5%.

We further compare the MPAR test with the FAR test in Kleibergen (2009). As stated

above, in the special case that test assets and base assets coincide so R1t = R2t, the mimicking

portfolio risk premia �G;cov coincides with the factor risk premia �G. In this scenario, both

MPAR and FAR tests are applicable, and we plot their power curves in Figure 2. As shown by

Figure 2, the power of the MPAR test is almost identical to that of the FAR test.

3.5 Application

We illustrate practical usage of the MPAR test by employing it to the leverage factor model

proposed by Adrian et al. (2014). Speci�cally, Adrian et al. (2014) consider a leverage factor

�LevFac" in a single factor model, so k = 1. Their empirical study uses data for the leverage

factor from 1968Q1-2009Q4, so T = 168. For illustrative purposes, we adopt the same data

set.10 For base assets, we follow Adrian et al. (2014) who consider seven assets, so N2 = 7: the

excess returns of the six Fama-French portfolios on size and book-to-market (�BL�, �BM�,

�BH�, �SL�, �SM�, �SH�), plus the momentum factor �Mom�. These seven assets are widely

acknowledged for their ability to span the asset space.11 To construct mimicking portfolios, we

project the leverage factor on these seven base assets.

We obtained estimates for the coe¢ cients (denoted by bVGR2 bV �1
R2R2

in Section 2) when pro-

jecting the leverage factor �LevFac�on the base assets (�BL�, �BM�, �BH�, �SL�, �SM�,

10We thank the authors for making the data publicly available.
11Monthly data for these assets is available at French�s online data library, which is then compounded to

construct the quarterly data. Excess returns result from the di¤erence of raw returns and risk-free returns.
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Figure 2: Power Plots of the MPAR Test and the FAR Test
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(e) � = 0:99

Note: This �gure presents the power plots of the MPAR test (solid) and the FAR test (dashed) for

H0 : �G;cov = 0 at the 5% level, with � = 0:01 in (a), � = 0:25 in (b), � = 0:50 in (c), � = 0:75 in (d) and

� = 0:99 in (e). The d.g.p. is described in the main text, with T = 1000 and N1 = N2 = 5.
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�SH�, �Mom�) equal to: (�0:22;�0:10; 0:56;�0:57; 1:24;�0:43; 0:43). These coe¢ cients (af-

ter normalizing their sum to one) are almost identical to those in Adrian et al. (2014) for the

reported weights of the mimicking portfolio.

Adrian et al. (2014) show the mimicking portfolio of the leverage factor performs well in

various asset pricing tests, e.g., it is associated with large R-squareds and low intercepts in

cross-sectional regressions. Adrian et al. (2014) do not study the risk premium associated with

the mimicking portfolio in cross-sectional regressions, while we focus on it. Speci�cally, we are

interested in the risk premium of the mimicking portfolio �LevMP�that results from projecting

�LevFac�on the seven base assets. We use as test assets the commonly used twenty-�ve Fama-

French portfolios on size and book-to-market (25 FF). Since both test assets and base assets

are on size and book-to-market, they are likely driven by the same underlying factors, as in the

model setup in (1). In addition, since T = 168 is relatively small, while our simulation study

suggests that the size of the MPAR test is more reliable under small N1 and N2 for small T , we

divide the twenty-�ve FF portfolios into �ve equal sized groups (denoted by I - V in the �rst

column of Table 6), and use each group as test assets with N1 = 5.12

To gauge the statistical quality of the leverage factor, we conduct the Kleibergen and Paap

(2006) rank test, which is commonly used as a diagnostic tool in the asset pricing literature.

The null of the rank test is that the leverage factor beta has reduced rank, and the resulting p

values are found to be 0:09, 0:01, 0:26, 0:27, 0:08 for I - V, respectively.13 Since most p values

exceed 5%, the leverage factor appears to be weakly correlated with asset returns and its beta

is small. Consequently, the conventional t-test on the risk premium of the leverage factor is

under doubt.

Table 6 starts out with the FM two-pass methodology. When the leverage factor LevFac is

tested using the FM procedure, Table 6 reports that the estimated risk premium is positive and

12Groups I - V are built in the order of 25 FF, i.e., the �rst 5 portfolios of 25 FF make Group I, ..., the last
5 portfolios of 25 FF make Group V.
13In accordance with the FAR and MPAR tests, we similarly remove the last asset and take all other asset

returns in deviation from the return on the last asset when implementing the rank test. This is one way of

conducting a rank test on (�N
... �) which is the regressor matrix in the second pass of the FM procedure.
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the conventional FM t-statistics are signi�cant in I and II at the 95% signi�cance level. Similarly,

when the mimicking portfolio LevMP is tested in the FM procedure, Table 6 shows positive risk

premium, associated with slightly larger FM t-statistics compared to the factor counterparts.

These results thus appear to support the leverage factor for asset pricing. If the Shanken (1992)

correction is adopted, however, none of the t-statistics remain signi�cant. Furthermore, since

the construction error in mimicking portfolios also contributes to the variance of the risk premia

estimator, t-statistics under �LevMP�are expected to further decrease, if this error is taken

into account. See Jiang et al. (2015).

Table 6: Risk Premium of the Leverage Factor (LevFac) and its Mimicking Portfolio (LevMP )
LevFac LevMP

t-test FAR test t-test MPAR test
Coef. FM t Shanken t 95% C.I. Coef. FM t Shanken t 95% C.I.

I. 22.35 2.11 1.30 (-1;�126:02] [ [13:96;1) 4.11 3.41 0.81 (-1;�104:78] [ [16:82;1)
II. 11.78 2.10 0.80 [�1:23; 98:81] 2.73 2.56 0.54 (-1;�25:57] [ [�2:43;1)
III. 16.59 1.64 0.98 (-1;�43:11] [ [1:67;1) 2.32 2.32 0.46 (-1;�191:49] [ [3:08;1)
IV. 8.32 1.12 0.54 (-1;1) 1.01 1.32 0.20 (-1;1)
V. 4.85 0.88 0.33 (-1;1) 0.80 0.93 0.16 (-1;1)

Note: LevFac stands for the leverage factor suggested in Adrian et al. (2014), while LevMP stands for the

constructed mimicking portfolio of the leverage factor. Test assets are from twenty-�ve Fama-French portfolios

on size and book-to-market (25 FF) in the sample period of 1968Q1-2009Q4, and we divide them into 5

groups of test assets, I-V, so each group contains 5 portfolios. Three tests on risk premia are employed,

namely, the conventional FM-t test for the Fama and MacBeth (1973) methodology, the Factor

Anderson-Rubin (FAR) test of Kleibergen (2009), and the proposed Mimicking Portfolio Anderson-Rubin

(MPAR) test in this paper. The Shanken (1992) correction is also considered for the t-test.

It is now known that the FM methodology and its associated t-test are doubtful when the

factor is associated with a small beta. As an alternative to the t-test for the factor risk premia,

the Factor Anderson Rubin (FAR) test is proposed by Kleibergen (2009). Unlike the FM t-test,

the FAR test is size-correct since its limiting distribution does not depend on the quality of

the observed factors. Table 6 presents the 95% con�dence sets of the risk premium that results

from inverting the FAR test. These sets are found to be substantially di¤erent from those

obtained by inverting the FM t-test. Such di¤erences put the quality of the leverage factor
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under doubt, see also Kleibergen (2009) for a further comparison of the FM-t test and the FAR

test. Furthermore, in Appendix G, we present the p-value plots of the FAR test which show

how we obtained the 95% FAR con�dence sets reported in Table 6.

The last column of Table 6 shows the 95% con�dence sets that result from the MPAR test.

In line with the conventional FM t-test, it shows rejection of the null hypothesis of a zero risk

premium for LevMP for I and III; however, unlike the FM t-test, it does not reject a zero risk

premium in II. In IV and V, identical to the FAR test but unlike the FM t-test, we �nd that

no information about the risk premium is contained in the leverage factor or its mimicking

portfolio. In Appendix G, we also present the p-value plots of the MPAR test, which helps to

explain the 95% MPAR con�dence sets reported in Table 6.

Overall, Table 6 indicates that inference on the risk premium of the leverage factor may

substantially change, when robust tests (FAR or MPAR) are employed.14 This is consistent

with the fact that the leverage factor is only weakly correlated with asset returns and thus

likely to be a weak proxy for the underlying factor(s).

4 Conclusions

We document the threats involved in using mimicking portfolios of macroeconomic factors in the

Fama and MacBeth (1973) two-pass procedure. When these factors have small betas, we show

that their mimicking portfolios have betas that are spurious. These spurious betas induce non-

standard behavior of the risk premia estimator so conventional t-tests on risk premia become

unreliable.

A rank test on beta is used in the literature to serve as a diagnostic tool for the quality of the

factors. We, however, �nd that the outcome of the rank test needs to be taken with caution when

using mimicking portfolios. This results from the estimation error in the mimicking portfolio

14Note that the factor risk premia de�ned in (2)(4) and the mimicking portfolio risk premia de�ned in (8)
are not identical in this application. Thus we do not expect the FAR con�dence set for factor risk premia to
coincide with the MPAR con�dence set for the mimicking portfolio risk premia.
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which we have to account for in the rank test. It implies a more challenging expression for

the covariance matrix estimator employed in the rank test. When we do not account for this

estimation error, the rank test performs poorly. When we account for it, the rank test still has

some issues when the covariance matrix becomes of large dimension but generally works well.

Instead of gauging the quality of factors or mimicking portfolios, inference methods are

available for analyzing risk premia that are reliable irrespective of the quality of the factors.

These methods are robust in the sense that their limiting distributions do not not depend on

the quality of factors as re�ected by the magnitude of the betas. To the best of our knowledge,

the method we propose here is the �rst one which deals with mimicking portfolios. Robust

methods do exist for tests on risk premia in the standard factor pricing setting, see Kleibergen

(2009) and Beaulieu et al. (2013). This clearly indicates the need for our developed methods

for which the empirical relevance is further emphasized by our application to the risk premium

on the leverage factor from Adrian et al. (2014).
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Appendix

A. Proof of Theorem 1

Proof. Let�s start with bVR1R2, bVR2R2 and bVR2G. Assumptions 1 and 2 imply that:
bVR1R2 p! �1VFF�

0
2bVR2R2 p! �2VFF�
0
2 + 
22

where we used that bVRR p! �VFF�
0 + 
 and 
12 = 0.

The convergence of bVR2G is a bit more tricky. Note that:
Rt = �N�0 + �[(� �Gt + ut) + �F ] + vt = �N�0 + ��F + �� �Gt + �ut + vt

When � is �xed and the number of elements of G equals the number of elements of F; so �

is a square invertible matrix: bVR2G p! �2�VGG

so

~̂�1
p! �1VFF�

0
2(�2VFF�

0
2 + 
22)

�1�2�VGG[VGG�
0�02(�2VFF�

0
2 + 
22)

�1�2�VGG]
�1

= �1VFF �
�10V �1

GG;

and when Gt = Ft; � = Ik, ~̂�1
p! �1:

When � = d=
p
T :

p
T bVR2G d! �2(dVGG +  uG) +  v2G

where 1p
T

PT
t=1(

�Gt 
 ut)
d!vec( uG); 1p

T

PT
t=1(

�Gt 
 v2t)
d!vec( v2G); so

T�
1
2 ~̂�1

d! �1VFF�
0
2(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�h�

�2(dVGG +  uG) +  v2G
�0
(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�i�1

:
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B. Proof of Corollary 1

Proof.  
~̂�0
~̂�G

!
=

�
(�N1

...~̂�1)
0(�N1

...~̂�1)
��1

(�N1
...~̂�1)

0�̂R1 =

 
(�0N1M~̂�1

�N1)
�1�0N1M~̂�1

�̂R1

(~̂�01M�N1
~̂�1)

�1 ~̂�01M�N1
�̂R1

!

where from Assumption 1: �̂R1 = �R1 +
 R1p
T
+ op(1=

p
T ), while the limiting behavior of ~̂�1 is

provided by Theorem 1.

The strong factor case: ~̂�1
p! �1VFF �

�10V �1
GG, �̂R1

p! �N1�0 + �1�F , so

~̂�G =(~̂�
0
1M�N1

~̂�1)
�1 ~̂�01M�N1

�̂R1
p!((�1VFF ��10V �1

GG)
0M�N1

(�1VFF �
�10V �1

GG))
�1(�1VFF �

�10V �1
GG)

0M�N1
(�N1�0 + �1�F )

=((�1VFF �
�10V �1

GG)
0M�N1

(�1VFF �
�10V �1

GG))
�1(�1VFF �

�10V �1
GG)

0M�N1
�1�F

=VGG�
0V �1
FF�F

The weak factor case with � = d=
p
T : for convenience, we write T�

1
2 ~̂�1

d! 	�1, where 	�1
is the non-standard distribution in Theorem 1, so

~̂�G =(~̂�
0
1M�N1

~̂�1)
�1 ~̂�01M�N1

�̂R1

' 1p
T
(	0�1M�N1

	�1)
�1	0�1M�N1

(�R1 +
 R1p
T
)

which implies

T ~̂�G �
p
T (	0�1M�N1

	�1)
�1	0�1M�N1

�R1
d!(	0�1M�N1

	�1)
�1	0�1M�N1

 R1

C. Proof of Theorem 2

Proof. To derive the limiting behavior of �̂1, we �rst study bVR1R2, bVR2R2 and bVR2G:
bVR1R2 p! �1VFF�

0
2bVR2R2 p! �2VFF�
0
2 + 
22

Consider

VR2R2 = �2A�
0
2 + �2;?B�

0
2;? + �2C�

0
2;? + �2;?D�

0
2
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with A = VFF + (�
0
2�2)

�1�02
22�2(�
0
2�2)

�1; B = (�02;?�2;?)
�1�02;?
22�2;?(�

0
2;?�2;?)

�1; C =

(�02�2)
�1�02
22�2;?(�

0
2;?�2;?)

�1; D = (�02;?�2;?)
�1�02;?
22�2(�

0
2�2)

�1 so the inverse of VR2R2
can be speci�ed as

V �1
R2R2

= �2 ~A�
0
2 + �2;? ~B�

0
2;? + �2 ~C�

0
2;? + �2;? ~D�

0
2

1. When � is �xed and the number of elements of G equals the number of elements of F; so

� is a square invertible matrix:

bVR2G p! �2�VGG

so

�̂1
p! �1VFF�

0
2(�2VFF�

0
2 + 
22)

�1�2�VGG:

Since we only need the inverse in the direction of �2; we can now use that when the

number of elements of �2 increases:

VFF�
0
2(�2VFF�

0
2 + 
22)

�1�2 � I

since ~A � (�02�2)�1VFF (�02�2)�1 when the number of elements of �2 is large, so

�̂1
p! �1�VGG

2. When � = d=
p
T :

p
T bVR2G d! �2(dVGG +  uG) +  v2G

so

T
1
2 �̂1

d! �1VFF�
0
2(�2VFF�

0
2 + 
22)

�1 ��2(dVGG +  uG) +  v2G
�

When the number of elements of �2 increases, VFF�
0
2(�2VFF�

0
2 + 
22)

�1�2 � I, so:

T
1
2 �̂1 � �1dVGG + �1( uG + VFF�

0
2(�2VFF�

0
2 + 
22)

�1 v2G)
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D. Asymptotic Variance of Beta Estimators for Rank Testing

D0. Joint Behavior of bVR2G; bVR1R2 and bVR2R2
Here we present the joint behavior of bVR2G; bVR1R2 and bVR2R2, since they make the beta estimator
of mimicking portfolios.

We use the following notation:

1p
T

PT
t=1

0BBBBBB@

�Gt 
 e1t
�Gt 
 e2t

e1t 
 e2t � vec(�12)
e2t 
 e2t � vec(�22)
�Gt 
 �Gt � vec(VGG)

1CCCCCCA
d!

0BBBBBB@
vec( e1G)

vec( e2G)

vec( e1e2)

vec( e2e2)

vec( GG)

1CCCCCCA ;

bVR2G; bVR1R2 and bVR2R2 can be rewritten as follows.
bVR2G = 1

T

PT
t=1

�R2t �G
0
t

= 1
T

PT
t=1(�2�

�Gt + e2t) �G
0
t

= �2�VGG + �2�
�
1
T

PT
t=1

�GtG
0
t � VGG

�
+ 1

T

PT
t=1 e2t

�G0t

bVR1R2 = 1
T

PT
t=1

�R1t �R
0
2t

= 1
T

PT
t=1(�1�

�Gt + e1t)(�2� �Gt + e2t)
0

= �1�VGG�
0�02 + �1�

�
1
T

PT
t=1

�Gt
�G0t � VGG

�
�0�02 + �1�

�
1
T

PT
t=1

�Gte
0
2t

�
+
�
1
T

PT
t=1 e1t

�G0t

�
�0�02 +

1
T

PT
t=1 e1te

0
2t � �12 + �12

bVR2R2 = 1
T

PT
t=1

�R2t �R
0
2t

= 1
T

PT
t=1(�2�

�Gt + e2t)(�2� �Gt + e2t)
0

= �2�VGG�
0�02 + �2�

�
1
T

PT
t=1

�Gt
�G0t � VGG

�
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�
1
T

PT
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�Gte
0
2t

�
+
�
1
T

PT
t=1 e2t
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�
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The convergence of bVR2G; bVR2R1 and bVR2R2 is thus characterized by:
p
T (bVR2G � �2�VGG)

d! �2� GG +  e2G denoted by UR2Gp
T
�bVR1R2 � �1�VGG�

0�02 � �12
�

d! �1� GG�
0�02 + �1� 

0
e2G
+  e1G�

0�02 +  e1e2 denoted by UR1R2
p
T
�bVR2R2 � �2�VGG�

0�02 � �22
�

d! �2� GG�
0�02 + �2� 

0
e2G
+  e2G�

0�02 +  e2e2 denoted by UR2R2

and in our simulation setup, their variances read:

vec(UR2G) � N(0; VGG 
 (VR2R2 + �2�VGG�
0�02) � W1;1)
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vec(UR1R2) � N(0; VR2R2 
 (VR1R1 + VR1R2V
�1
R2R2

VR2R1) � W2;2)

vec(UR2R2) � N(0; 2VR2R2 
 VR2R2 � W3;3)

In addition, their covariances read:

cov(vec(UR1R2); vec(UR2G)) = 2�2�VGG 
 �1�VGG�
0�02 +KN1N2(�1�VGG 
 �22) + �2�VGG 
 �12

� W2;1 = W 0
1;2

cov(vec(UR2R2); vec(UR2G)) = 2�2�VGG 
 �2�VGG�
0�02 + (IN2

2
+KN2N2)(�2�VGG 
 �22)

� W3;1 = W 0
1;3

cov(vec(UR1R2); vec(UR2R2)) = 2VR2R2 
 VR1R2

� W2;3 = W 0
3;2

To summarize:

p
Tvec

0B@ bVR2G � VR2GbVR1R2 � VR1R2bVR2R2 � VR1R2

1CA = vec

0B@ UR2G

UR1R2

UR2R2

1CA d! N(0;WU);WU =

0B@ W1;1 W1;2 W1;3

W2;1 W2;2 W2;3

W3;1 W3;2 W3;3

1CA
This result will be useful, when we derive asymptotic variance of the beta estimator with

mimicking portfolios. Note that WU can be consistently estimated by data, so there existscWU
p! WU . Speci�cally:

cW1;1 = bVGG 
 (bVR2R2 + B̂2bVGGB̂0
2)cW2;2 = bVR2R2 
 (bVR1R1 + bVR1R2 bV �1

R2R2
bVR2R1)cW3;3 = 2bVR2R2 
 bVR2R2cW2;1 = cW 0

1;2 = 2B̂2
bVGG 
 B̂1bVGGB̂0

2 +KN1N2(B̂1bVGG 
 b�22) + B̂2bVGG 
 b�12cW3;1 = cW 0
1;3 = 2B̂2bVGG 
 B̂2bVGGB̂0

2 + (IN2
2
+KN2N2)(B̂2bVGG 
 b�22)cW2;3 = cW 0

3;2 = 2
bVR2R2 
 bVR1R2
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D1. Beta Speci�cation with Factors

Let Gt be the observed factors, R1t be test assets. Consider the estimand

VR1GV
�1
GG

and the estimator bVR1GbV �1
GG

Then:

p
Tvec(bVR1GbV �1

GG � VR1GV
�1
GG)

d! N(0; V �1
GG 
 (VR1R1 � VR1GV

�1
GGVGR1))

This result allows us to conduct the rank test. That is, the estimator bVR1GbV �1
GG and its estimated

variance bV �1
GG 
 (bVR1R1 � bVR1GbV �1

GG
bVGR1) are used for the rank test.

D2. Beta Speci�cation with Mimicking Portfolios

Let Gt be the observed factors, R1t be test assets. De�ne

~�1 = VR1R2V
�1
R2R2

VR2G(VGR2V
�1
R2R2

VR2G)
�1

and the estimator
~̂�1 = bVR1R2 bV �1

R2R2
bVR2G(bVGR2 bV �1

R2R2
bVR2G)�1

Using that bVR1R2 = VR1R2 +
1p
T
UR1R2 ; bVR2R2 = VR2R2 +

1p
T
UR2R2 ; bVR2G = VR2G +

1p
T
UR2G:

bVR1R2 bV �1
R2R2

bVR2G = h
VR1R2 +

1p
T
UR1R2

i h
VR2R2 +

1p
T
UR2R2

i�1 h
VR2G +

1p
T
UR2G

i
� VR1R2V

�1
R2R2

VR2G+
1p
T

�
UR1R2V

�1
R2R2

VR2G + VR1R2V
�1
R2R2

UR2G � VR1R2V
�1
R2R2

UR2R2V
�1
R2R2

VR2G
�

and similarly,

bVGR2 bV �1
R2R2

bVR2G = h
VR2G +

1p
T
UR2G

i0 h
VR2R2 +

1p
T
UR2R2

i�1 h
VR2G +

1p
T
UR2G

i
� VGR2V

�1
R2R2

VR2G+
1p
T

�
U 0R2GV

�1
R2R2

VR2G + V 0
R2G

V �1
R2R2

UR2G � V 0
R2G

V �1
R2R2

UR2R2V
�1
R2R2

VR2G
�
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Use the expansion of the inverse, ~̂�1 is rewritten as:

~̂�1 � ~�1

+ 1p
T

�
UR1R2V

�1
R2R2

VR2G + VR1R2V
�1
R2R2

UR2G � VR1R2V
�1
R2R2

UR2R2V
�1
R2R2

VR2G
�
(VGR2V

�1
R2R2

VR2G)
�1

� 1p
T
~�1
�
U 0R2GV

�1
R2R2

VR2G + V 0
R2G

V �1
R2R2

UR2G � V 0
R2G

V �1
R2R2

UR2R2V
�1
R2R2

VR2G
�
(VGR2V

�1
R2R2

VR2G)
�1

So

p
Tvec(~̂�1 � ~�1) �

[(VGR2V
�1
R2R2

VR2G)
�1 
 (VR1R2V

�1
R2R2

� ~�1VGR2V
�1
R2R2

)� (VGR2V
�1
R2R2

VR2G)
�1VGR2

V �1R2R2

 ~�1 �KN2K ]vec(UR2G)

+ [(VGR2
V �1R2R2

VR2G)
�1VGR2

V �1R2R2

 IN1

]vec(UR1R2
)

+ [(VGR2V
�1
R2R2

VR2G)
�1VGR2V

�1
R2R2


 (~�1VGR2V
�1
R2R2

� VR1R2V
�1
R2R2

)]vec(UR2R2)

where KN2K is a commutation matrix such that vec(U
0
R2G
) = KN2Kvec(UR2G).

Consequently, in order to further derive variance of ~̂�1, we use the joint behavior of UR2G,

UR1R2 and UR2R2 (which has been derived earlier, see the detail of WU and cWU in the D0

sub-section):

vec

0B@ UR2G

UR1R2

UR2R2

1CA d! N(0;WU);WU =

0B@ W1;1 W1;2 W1;3

W2;1 W2;2 W2;3

W3;1 W3;2 W3;3

1CA
Combining all these pieces, the asymptotic variance of

p
Tvec(~̂�1 � ~�1) reads:

v ~̂�1
WUv

0
~̂�1

where v ~̂�1
is de�ned as

0BBB@
h
(VGR2V

�1
R2R2

VR2G)
�1 
 (VR1R2V �1R2R2

� ~�1VGR2V �1R2R2
)� (VGR2V �1R2R2

VR2G)
�1VGR2V

�1
R2R2


 ~�1 �KN2K

i0h
(VGR2V

�1
R2R2

VR2G)
�1VGR2V

�1
R2R2


 IN1
i0h

(VGR2V
�1
R2R2

VR2G)
�1VGR2V

�1
R2R2


 (~�1VGR2V �1R2R2
� VR1R2V �1R2R2

)
i0

1CCCA
0

with v̂ ~̂�1
equals

0BBB@
h
(bVGR2 bV �1R2R2

bVR2G)�1 
 (bVR1R2 bV �1R2R2
� ~̂�1 bVGR2 bV �1R2R2

)� (bVGR2 bV �1R2R2
bVR2G)�1 bVGR2 bV �1R2R2


 ~̂�1 �KN2K

i0h
(bVGR2 bV �1R2R2

bVR2G)�1 bVGR2 bV �1R2R2

 IN1

i0h
(bVGR2 bV �1R2R2

bVR2G)�1 bVGR2 bV �1R2R2

 (~̂�1 bVGR2 bV �1R2R2

� bVR1R2 bV �1R2R2
)
i0

1CCCA
0
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This result allows us to conduct the rank test. That is, the estimator ~̂�1 and its estimated

variance v̂ ~̂�1
cWU v̂

0
~̂�1
are used for the rank test.

D3. Covariance Speci�cation with Factors

Let Gt be the observed factors, R1t be test assets. Consider the estimand

VR1G

and the estimator bVR1G
Then: p

Tvec(bVR1G � VR1G)
d! N(0; VGG 
 (VR1R1 + VR1GV

�1
GGVGR1))

This result allows us to conduct the rank test. That is, the estimator bVR1G and its estimated
variance bVGG 
 (bVR1R1 + bVR1GbV �1

GG
bVGR1) are used for the rank test.

D4. Covariance Speci�cation with Mimicking Portfolios

Consider the estimator

�̂1 = bVR1R2 bV �1
R2R2

bVR2G
Using that bVR1R2 = VR1R2 +

1p
T
UR1R2 ; bVR2R2 = VR2R2 +

1p
T
UR2R2 ; bVR2G = VR2G +

1p
T
UR2G; we

can specify the above estimator as

�̂1 = bVR1R2 bV �1
R2R2

bVR2G
=

h
VR1R2 +

1p
T
UR1R2

i h
VR2R2 +

1p
T
UR2R2

i�1 h
VR2G +

1p
T
UR2G

i
= VR1R2V

�1
R2R2

VR2G+
1p
T

�
UR1R2V

�1
R2R2

VR2G + VR1R2V
�1
R2R2

UR2G � VR1R2V
�1
R2R2

UR2R2V
�1
R2R2

VR2G
�
+ op(T

�1=2):

Here we used an expansion of the inverse. Hence

p
T (�̂1� VR1R2V �1

R2R2
VR2G) � VR1R2V

�1
R2R2

UR2G +UR1R2V
�1
R2R2

VR2G� VR1R2V �1
R2R2

UR2R2V
�1
R2R2

VR2G

Consequently, in order to further derive variance of �̂1, we use the joint behavior of UR2G,

UR1R2 and UR2R2 (which has been derived earlier, see the detail of WU and cWU in the D0

40



sub-section):

vec

0B@ UR2G

UR1R2

UR2R2

1CA d! N(0;WU);WU =

0B@ W1;1 W1;2 W1;3

W2;1 W2;2 W2;3

W3;1 W3;2 W3;3

1CA
Combining all these pieces, the asymptotic variance of

p
Tvec(�̂1�VR1R2V �1

R2R2
VR2G) reads:

v�̂1WUv
0
�̂1

where v�̂1 is de�ned as�
Im 
 VR1R2V

�1
R2R2

VGR2V
�1
R2R2


 IN1 �VGR2V �1
R2R2


 VR1R2V
�1
R2R2

�
with v̂�̂1 equals�

Im 
 bVR1R2 bV �1
R2R2

bVGR2 bV �1
R2R2


 IN1 �bVGR2 bV �1
R2R2


 bVR1R2 bV �1
R2R2

�
This result allows us to conduct the rank test. That is, the estimator �̂1 and its estimated

variance v̂�̂1
cWU v̂

0
�̂1
are used for the rank test.

E. Proof of Theorem 3

Proof. For �R1, by the central limit theorem, we have:

p
T ( �R1 � ��2��G;cov)

d!  1 � N(0; VR1R1)

B̂2 results from linear regression of R2t on Gt, so:

p
Tvec(B̂2 � �2�)

d! vec( 2) � N(0; V �1
GG 
 �22)

where �22 is the covariance matrix of residuals.

Similarly for �̂ that results from linear regression of R1t on R2t:

p
Tvec(�̂� �) d! vec( 3) � N(0; V �1

R2R2

 (VR1R1 � VR1R2V

�1
R2R2

VR2R1))

Note that  1 and  2 are independent (see Kleibergen 2009). By the same logic,  1 and  3
are also independent. So what remains to derive is cov(vec( 3); vec( 2)).
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For  3, using that bVR1R2 = VR1R2 +
1p
T
UR1R2 ; bVR2R2 = VR2R2 +

1p
T
UR2R2 ;

�̂ = V̂R1R2V̂
�1
R2R2

=
�
VR1R2 +

1p
T
UR1R2

��
VR2R2 +

1p
T
UR2R2

��1
= VR1R2V

�1
R2R2

+ 1p
T

�
UR1R2V

�1
R2R2

� VR1R2V
�1
R2R2

UR2R2V
�1
R2R2

�
+ op(

1p
T
)

so, with � = VR1R2V
�1
R2R2

;

p
Tvec(�̂� �) d! (V �1

R2R2

 IN1�1)vec(UR1R2)� (V �1

R2R2

 VR1R2V

�1
R2R2

)vec(UR2R2) = vec( 3):

where, as in Appendix D,15

UR1R2 = �1� GG�
0�02 + �1� 

0
e2G
+  e1G�

0�02 +  e1e2
UR2R2 = �2� GG�

0�02 + �2� 
0
e2G
+  e2G�

0�02 +  e2e2

For  2:  2 =  e2GV
�1
GG. So

cov(vec(UR1R2); vec( 2)) = K(N1�1)N2(�1� 
 �22) + �2� 
�12

cov(vec(UR2R2); vec( 2)) = (IN2
2
+KN2N2)(�2� 
 �22)

which implies that cov(vec( 3); vec( 2)) equals

K(N1�1)N2(�1�
V �1
R2R2

�22)+V
�1
R2R2

�2�
�12�(V �1
R2R2


VR1R2V
�1
R2R2

)(IN2
2
+KN2N2)(�2�
�22) � C

F. Proof of Corollary 2

Proof. Rewrite �R1 � �̂B̂2�G;cov as follows.

�R1 � �̂B̂2�G;cov
= �R1 � ��2��G;cov � (�̂B̂2 � ��2�)�G;cov
= �R1 � ��2��G;cov � (�̂� �)�2��G;cov � �̂(B̂2 � �2�)�G;cov

= �R1 � ��2��G;cov � (�̂� �)�2��G;cov � �(B̂2 � �2�)�G;cov � (�̂� �)(B̂2 � �2�)�G;cov

15Notation: here �1� and e1 are the beta and error that correspond to R1 under Gt, while �1� and e1 are
the beta and error that correspond to R1. Similarly, �12 = cov(e1; e2), while �12 = cov(e1; e2).
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Applying Theorem 3, we get
p
T ( �R1 � �̂B̂2�G;cov)

d!  1 � � 2�G;cov �  3�2��G;cov. Since �

has a full rank value, the last element of the above expression converges to zero for every value

of � since
p
T (�̂� �) d!  3:

For the analytical expression of the resulting variance, we use the elements in W from

Theorem 3. Speci�cally, for the three terms in  1�� 2�G;cov� 3�2��G;cov, their variances read:
VR1R1, �

0
G;covV

�1
GG�G;cov
��22�0 and (�2��G;cov)0V �1

R2R2
(�2��G;cov)
 (VR1R1�VR1R2V

�1
R2R2

VR2R1).

In addition, since  2 and  3 are not independent, we also consider the resulting covariance:

cov(vec( 3�2��G;cov); vec(� 2�G;cov)) = [(�2��G;cov)
0 
 IN1�1]C(�G;cov 
 �0)

So the asymptotic variance of
p
T ( �R1 � �̂B̂2�G;cov) results from combining the variance and

covariance terms above:

VR1R1 + �0G;covV
�1
GG�G;cov 
 ��22�0 + (�2��G;cov)0V �1

R2R2
(�2��G;cov)
 (VR1R1 � VR1R2V

�1
R2R2

VR2R1)

�f[(�2��G;cov)0 
 IN1�1]C(�G;cov 
 �0)g � f[(�2��G;cov)0 
 IN1�1]C(�G;cov 
 �0)g
0

G. p-value of FAR and MPAR tests for Table 6, Figures 3-7
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Figure 3: p-value of FAR and MPAR tests for Table 6 - I
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Note: This �gure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in I. The 5% line is also plotted for

benchmark (dotted).

Figure 4: p-value of FAR and MPAR tests for Table 6 - II
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Note: This �gure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in II. The 5% line is also plotted for

benchmark (dotted).
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Figure 5: p-value of FAR and MPAR tests for Table 6 - III
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Note: This �gure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in III. The 5% line is also plotted for

benchmark (dotted).

Figure 6: p-value of FAR and MPAR tests for Table 6 - IV
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Note: This �gure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in IV. The 5% line is also plotted for

benchmark (dotted).
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Figure 7: p-value of FAR and MPAR tests for Table 6 - V
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Note: This �gure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in V. The 5% line is also plotted for

benchmark (dotted).
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