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Abstract

Mimicking portfolios of macroeconomic factors are commonly constructed by project-
ing these factors on a set of base assets. We show that when macroeconomic factors
are associated with small betas, the beta estimator using their mimicking portfolios has
a non-standard limiting distribution. The non-standard behavior of the beta estimator
jeopardizes inference on risk premia in the commonly used Fama and MacBeth (1973)
two-pass procedure. To remedy this problem, we propose a test for risk premia on mim-
icking portfolios. The validity of this test does not depend on the magnitude of the betas.
Simulation evidence suggests that the proposed test performs well in size and power. We
use the test to analyze the risk premium on the leverage factor of Adrian et. al. (2014).
Our results indicate that the leverage factor is a weak factor which leads to substantially

different results for its risk premium.
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1 Introduction

An intersection of macroeconomics and finance is that a large group of macroeconomic factors
have been found useful for financial asset pricing. These factors include, e.g., consumption
growth in Breeden et al. (1989), labor income growth in Jagannathan and Wang (1996),
consumption-wealth ratio in Lettau and Ludvigson (2001), GDP growth in Vassalou (2003),
investment growth in Li et al. (2006), among many others. The prevalence of these macro-
economic factors has recently led to a sizeable and growing literature that scrutinizes their
usefulness.

One major concern on macroeconomic factors is that their minor correlation with asset
returns (see, e.g., Bai and Ng 2006) invalidates conventional inference methods used in asset
pricing studies, such as the t-test on risk premia in the Fama and MacBeth (1973) (FM)
two-pass methodology. Consequently, empirical support for macroeconomic factors based on
conventional inference methods is up to careful scrutiny. An early contribution along this line
is Kan and Zhang (1999), who show that the ¢-test in the FM methodology can spuriously
support useless factors that are independent of asset returns. More recently, Kleibergen (2009)
further warns that when factors are only weakly correlated with asset returns so their betas are
small, inference on risk premia based on the FM two-pass procedure is also spurious.

Instead of using macroeconomic factors themselves, their mimicking portfolios are also
widely used to replace these factors in asset pricing studies. The theoretical support for such
practice is provided by Breeden (1979) and Huberman et al. (1987), who establish that factors
can be replaced by their mimicking portfolios for asset pricing tests. In terms of macroeconomic
factors, the norm of constructing their mimicking portfolios is to project these factors on a set
of base assets that span the asset space. This projection is implemented by regressing factors
on base assets in a time series regression. The resulting mimicking portfolios after projection
are also called maximum correlation portfolios. See, e.g., Breeden et al. (1989), Lamont (2001),

Vassalou (2003), Avramov and Chordia (2006) and Adrian et al. (2014).



On the one hand, besides other potential advantages,! using mimicking portfolios instead of
macroeconomic factors appears able to bypass the weak statistical correlation issue studied in
Kleibergen (2009), etc. By projecting macroeconomic factors on base assets, it is natural that
the resulting mimicking portfolios exhibit improved correlation with asset returns so their betas
can be amplified. In existing studies (e.g., Vassalou 2003, Adrian et al. 2014), this projection
is commonly interpreted as a way to remove the noise in macroeconomic factors while keeping
only their relevant information for asset pricing. Alongside this interpretation, inference on risk
premia using mimicking portfolios is thus believed to be more informative, compared to that
using the original macroeconomic factors.

On the other hand, using mimicking portfolios instead of macroeconomic factors has its own
costs, which are rarely discussed in the existing literature. In this paper, we reveal the conse-
quences of using mimicking portfolios in the FM two-pass procedure, when their background
macroeconomic factors are only minorly correlated with asset returns. We show that although
these mimicking portfolios may appear relevant for asset pricing, the risk premia estimator in
the FM two-pass procedure has a non-standard distribution, which jeopardizes the t-test on
risk premia. The underlying reason is that when betas of macroeconomic factors are small, the
beta estimator of their mimicking portfolios is associated with non-standard limiting behavior,
which further puts the ¢-test under doubt.

Our findings, therefore, suggest that using mimicking portfolios instead of macroeconomic
factors for asset pricing does not necessarily imply improved inference on risk premia or more
generally, improved performance of asset pricing tests. Ironically, since macroeconomic factors
are almost indistinguishable from useless factors in terms of their minor correlation with asset
returns in finite samples, empirical findings based on mimicking portfolios could be driven
by the noise occurred in the construction of such portfolios, rather than the relevant pricing
information contained in macroeconomic factors and preserved in the construction of their

mimicking portfolios.

!Such as extending the available data sets (Ang et al. 2006), providing the extra restriction for testing
purposes (Huberman et al. 1987).



Since the conventional ¢-test on risk premia of mimicking portfolios resulting from macro-
economic factors is under doubt, we propose a novel test in this paper. Unlike the ¢-test, the
asymptotic size of our test does not depend on the magnitude of the betas, so it remains trust-
worthy when macroeconomic factors are associated with small betas. The suggested test is in
line with the robust tests proposed by Kleibergen (2009) for risk premia of factors, and the
extension to the mimicking portfolio setting is new. The performance of the test is examined
by Monte Carlo simulation.

For illustrative purposes, we apply the proposed test to the leverage factor model from
Adrian et al. (2014). Following Adrian et al. (2014), we construct mimicking portfolios by
regressing the leverage factor on seven base assets: excess returns of the six Fama-French
portfolios on size and book-to-market, plus the momentum factor. By inverting the proposed
test, we further obtain confidence intervals for the risk premium of the constructed mimicking
portfolios, with the usage of various test assets. We show that these confidence intervals differ
substantially from those that result from inverting the conventional ¢-test, which is consistent
with the fact that the leverage factor is associated with a small beta.

Related to our paper, there exists a sizeable literature that examines identification and
inference issues in asset pricing. Besides those related articles we cite above, see, e.g., Burnside
(2016), Balduzzi and Robotti (2008). Unlike this paper, Burnside (2016) does not focus on
mimicking portfolios, but shows that when factors are weak, lack of identification exists in
linear stochastic discount factor models. The rank test of Kleibergen and Paap (2006) is
consequently suggested in Burnside (2016) for model diagnostics. Balduzzi and Robotti (2008)
do not focus on the FM two-pass procedure, but argue that the use of mimicking portfolios
improves inference on risk premia estimated by time series regressions. Furthermore, Balduzzi
and Robotti (2008) do not consider the consequence of weak factors for inference on risk premia.

The paper proceeds as follows. In Section 2, we describe a linear factor model with observed
factors and present the limiting behavior of the beta estimator under constructed mimicking

portfolios. In Section 3, we propose the robust test for risk premia of mimicking portfolios and



provide simulation evidence for its size and power. Our application to data from Adrian et
al. (2014) is also contained in Section 3. Section 4 concludes the paper. Proofs and technical
details are provided in the Appendix.

Throughout the paper, we use the following notation: u is used for mean, while V is for
covariance; j; and V are the sample analogs of 1 and V', respectively; ¢y is the N x 1 dimensional
vector of ones, vec(A) stands for the column vectorization of a matrix A, Py = A(A'A)~'4/,
My = I — Py, I is the identity matrix; “%” and « 4 stand for convergence in probability and

convergence in distribution, respectively.

2 Weak identification with mimicking portfolios

2.1 Linear factor model and observed factors

Asset returns are to a large extent explained by a small number of factors, see e.g. Merton
(1973), Ross (1976), Roll and Ross (1980), Chamberlain and Rothschild (1983) and Connor
and Korajczyk (1988, 1989). We therefore use a linear factor model for asset returns R; (N x 1)

with & (unobserved) factors F; (k x 1):
Ry = unXo + B(F, + Ap) + v, (1)

where Fy, = F, — jup, v; is the mean zero error term, t = 1, ..., T. Equation (1) implies the

moment condition for the risk premia, i.e.,
E(Rt) = LN)\() + ﬁ)\F (2)

with Ag : the zero-f return, Ar : the k x 1 vector of factor risk premia.
Moreover, there exists a partition of R, = (R}, RS,)’, with Ry : Ny x 1, Ry @ No X 1,

N1 + Ny = N. From now on, we consider Ri; as the returns on test assets, and Ry; as the



returns on base assets that are used for constructing mimicking portfolios.? Correspondingly,
B = (81, 3,) with B, : Ny X k, By : Ny X k, and vy = (v}, vh,) with vy: Ny X 1, vgy : N X 1.

Let Gy (m x 1) be the observed proxy for the unobserved factor Fi, i.e.,

Ft = (Sét —+ Uy (3)

where G; = G; — g, u,; is the error term. Note that & (K x m) reflects the quality of the
approximation of F; by G;. Ideally F; is observed so G; coincides with it and 6 = I, u; = 0.
On the other hand, if § is approximately equal to zero, then F} is poorly proxied by G;.
Plugging (3) into (1), and if the vector of risk premia of G;, denoted by As, is defined by the
moment condition E(R;) = txyAo+ 30\, then Ar and \g are also related by d since Ap = d\g.?

In addition, (1) is re-written as

Ry = nXo+ B0(Gr + Ag) + & (4)

where e¢; = (€};, €h,) = Bus+v;, and ¥ = SAS' +Q with ¥ = var(e;), A = var(u), Q = var(vy).

We make the following assumptions for the model described above.

1 _
Assumption 1 \/LT ST ® (Ry — tndo — B(Fi + Ar)) d4 | PR , where f
Fy Pr Yr
1 M;: Q1 Qo
N(07 QF X Q)7 QF = ’ 0= UCLT((Uit, Uét>,) -
pp Ver + pppily Q91 (o

Assumption 2 All the covariance of Ry, and Ry, is captured by the factors so Q15 = Q5 = 0
and cov(Ryy, Rat) = 31 Vir[Ss.

2We acknowledge that in practice test assets and base assets need not be in the same frequency or in the
same time period. For convenience, we focus on the same frequency and same time period setting, although the
message of this paper can be similarly extended to more generalized settings.

3Note that A¢g is not always well-defined: if G is useless with 6 = 0, then A is not defined.



1 _
Assumption 3 \/if ST ® (Re — tndo — B(E: + Ar)) d4 | PR , where R

Gy Ya e

1 e
N(OaQG X Q); QG’ -
te Vaa + talic

Assumption 1 is a central limit theorem that is also imposed in Kleibergen (2009). Assump-
tion 2 is a necessary condition for the consistency of the mimicking portfolio estimator of 3,
which we show below.? Assumption 3 is a corollary of Assumption 1, with G, replacing the
unknown Fj.

Assumptions 1-3 just result from the model in (1) and (3) with i.i.d. mean zero errors and

finite variance.

2.2 Beta of mimicking portfolios

In accordance with common practice, we construct mimicking portfolios by projecting G; on

base assets Ry:;. The resulting feasible mimicking portfolios are then written as:
Var, VR_;RQ Ry (5)

where 17(; Ry ‘71%_2 le is the sample counterpart of the infeasible Vg, Vi, 1Rz, and it can be obtained
by regressing GGy on Ry in a time series regression.

With Ry, as test assets, the beta estimator for the mimicking portfolios in (5) reads:
51 - VR1R2 VR_QlRQ VR2G<VGR2 VR_Qle VRzG)il (6)

Theorem 1 When Assumptions 1-3 hold, the limiting behavior of Bl can be described as fol-

lows.

1. When ¢ is fixed and the number of elements of G equals the number of elements of F, so

4When test assets Ry; are base assets Ro, Assumption 2 is dropped.
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0 s a square invertible matrix:

~

31 E 51VFF5_1,VG_(§

and when Gy = Fy, 0 = I, él 2 B,

2. When 6 = d/NT, with d a fized full rank matriz:

T33, 5 BVerBy(BaVerSy + Q) (Ba(dVig + thue) + )
| (BaldVig + 6,6) + V1) (BoVirBh + 0) ™ (BaldVag + Yuc) + o) |

-1

where \/if S (G @ uy) Lvec(,e), \/if S (G @ vy) ivec(wwG).

Proof. see Appendix A. m

The first part of Theorem 1 shows that the beta estimator of the mimicking portfolios is a
consistent estimator for the beta of the factors when mimicking portfolios are constructed from
accurate proxies of the underlying unobserved factors. The proof of Theorem 1 in Appendix
A also shows that the covariance of test assets and base assets must be fully captured by the
factors to render the beta estimator consistent as implied by Assumption 2. Put differently,
if Assumption 2 is not satisfied, then the estimated beta of the mimicking portfolios does not
converge to the beta of the factors, even when the true underlying factors are used to construct
the mimicking portfolios.

The motivation of this paper comes from the second part of Theorem 1, i.e., when mimicking
portfolios result from observed factors that are only poor (weak) proxies for underlying factors.
It is known that macroeconomic factors commonly exhibit minor correlation with asset returns,
so they are likely to be poor proxies for underlying factors, as reflected by § = d/+/T. In this
scenario, Theorem 1 shows that the beta estimator of the mimicking portfolios is increasing
with the sample size and has a non-standard distribution. In other words, when the betas of

the macroeconomic factors are small, the mimicking portfolios of such factors can be associated



with betas that are spuriously large.

It is worth emphasizing that § = d/ VT is adopted from the weak-instrument assumption
made in econometrics (see, e.g., Staiger and Stock 1997), in order to appropriately reflect the
case when G is a poor proxy for F;. A similar treatment can be found in Kleibergen (2009)
and Kleibergen and Zhan (2015).

In the commonly used FM two-pass procedure, the risk premia of the mimicking portfolios
are obtained by regressing the sample average of the test assets fip, = %Zle Ry on 2’1 and

an intercept, i.e.,

j\ 2 2 -1 2
S = e B e B (s By i, (7)
Ac

where Ag (m x 1) denotes the estimated risk premia for the mimicking portfolios that are

constructed from G;.

If 3 , has a non-standard distribution, it is natural to expect that the performance of A¢ is

under doubt, as stated in the corollary below.

Corollary 1 When Assumptions 1-8 hold, the limiting behavior of 3\(; can be described as

follows.

1. When ¢ is fized and the number of elements of G equals the number of elements of F, so

0 s a square invertible matriz:
S\G 2, ché/VEFlw)\p

and when Gy = Fy, 6 = I}, : j\G 2 N\p.

2. When 6 = d/\T:

g _ 1 _
ﬁAG - (\II,& N Vs,) 1\III61MLN1MR1 + ﬁ( //31MLN1 Ws,) 1qj/ﬁ1MLN1le



where )y, is from Assumption 1 with ¢y = (wlpq,w'RZ)’ » M,y is a projection matriz with
M,y = Iny—tn, (U, evy) s W, = By VirBy(BoVir Byt Q22) ™ (B2(dVaa + tug) + Yuye)

[(52(dVGG + Vua) + Uuya) (BaVerBy + Qa2) ™t (By(dViae + tug) + ?/JUQG)} _1: see Theorem
1.

Proof. see Appendix B. m

In line with Theorem 1, Corollary 1 also contains two cases. In the ideal first case, where
accurate proxies of the underlying factors are used for constructing mimicking portfolios, j\G is
a consistent risk premia estimator. On the other hand in the second case where weak factors
are observed, as reflected by 6 = d/ VT, because of the non-standard behavior of él, j\G also
has a non-standard limiting distribution.

Due to the non-standard behavior of j\G in Corollary 1 under mimicking portfolios of weak
factors, the conventional FM t-statistic for testing risk premia does not have an asymptotic
standard normal distribution. Consequently, Corollary 1 implies that the conventional FM ¢-
test on risk premia is under doubt, when it is used for mimicking portfolios of macroeconomic

factors.

2.3 Covariance specification

Instead of the beta specification above, the alternative covariance specification suggests that

with mimicking portfolios in (5), we could also use as an estimator for (;:
61 = VRlR2 VR_glRQVPQG

Different from /3, the inverse part (YA/G Ro 17152 132 ‘732g)_1 in /3, is omitted in Bl. This corresponds

to the so-called covariance specification of risk premia, see e.g., Kan et al. (2013).

Theorem 2 When Assumptions 1-3 hold, the limiting behavior of //\31 can be described as fol-

lows.
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1. When ¢ is fized and the number of elements of G equals the number of elements of F, so

0 s a square invertible matriz:

Br L B VerBy(ByVerSy 4+ Q22) " BadVee

and when the number of elements of B, is large, ﬁl LN B10Vee.

2. When 6 = d/VT:

T2f, 5 B, VirBy(ByVir By + Qo) ! (Bo(dVaa + tug) + Vi)

and when the number of elements of 35 is large, T%BI KR B1dVaa+B1(VuatVrr By (B VEr Byt

Q20) "), ). The specifications of Y, and ¥, are stated in Theorem 1.

Proof. see Appendix C. m

Unlike Theorem 1, the second part of Theorem 2 shows that the large sample behavior of the
weak factor mimicking portfolio’s beta estimator is now comparable to that of the pure weak
factor’s beta estimator, see Kleibergen (2009) and Kleibergen and Zhan (2015). Put differently,
under the covariance specification, the beta estimator of the mimicking portfolios (denoted by
3,) does not suffer from the exaggeration problem of its counterpart (denoted by El) which
exists under the beta specification, as shown by Theorem 1.

However, it is known that small betas jeopardize risk premia estimation in the FM method-
ology, see e.g. Kleibergen (2009). Consequently, a malfunction of the FM two-pass procedure
also exists in the covariance specification, albeit for opposite reasons of the beta specification:
if mimicking portfolios are constructed from weak factors, the beta estimator is large in mag-
nitude in the beta specification, and small in the covariance specification, both could induce
failure of risk premia estimation in the FM methodology. In order to resolve this issue, we
develop a new inference method for risk premia of mimicking portfolios, which is presented

later on.
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2.4 Simulation study

To further illustrate the results in Theorem 1 and 2, we conduct a simple simulation experiment.

Asset returns are generated from the factor model (1), with 7' = 1000 and k& = 1. Specifically,
F, ~ NID (0,Vgg), vy ~ NID (0,9), where Vpp is calibrated from the market portfolio in
Fama-French (1993), Q2 is calibrated from a regression of N; industry portfolios and N, size and
book-to-market sorted portfolios on the market portfolio. We consider N; = N, for convenience
in the data generation process (d.g.p.) and set them equal to 1, 2, 3, 4 and 5, as reported in
the first column of Table 1. The values of the parameters \g, A\r and [ used in d.g.p. result
from the Fama-MacBeth (1973) two-pass procedure using the described portfolios.?

In the simulation exercise, we consider two different types of observed factors which are en-
countered in empirical studies. The first case is the one of observed factors that are good/strong
proxies for the underlying factors F;. Here we use G; = F;. The second case is the one of ob-
served factors that are poor/weak proxies of the underlying factors. We therefore use observed
factors G; that are independently generated as N (0, Vpr) distributed random variables so the
observed factor is completely useless for asset returns. In Panel A of Table 1, we present the
outcome of the simulation study for the strong factor case, while the useless factor case is in
Panel B.

Both the beta specification and the covariance specification for constructing the beta esti-
mator are considered in our simulation study. In addition, for each specification, we consider
three different manners of using the simulated factors. Under “Fac” in Table 1, the simulated
factor is directly used for estimating 3, in the time series regression using the simulated asset
returns Ry;. Under “MP” in Table 1, we construct mimicking portfolios of simulated factors as
in (5); with the constructed mimicking portfolios, we proceed to compute their beta estimator
él (beta specification) or Bl (covariance specification); furthermore, the asymptotic variances

of such estimators are derived by first-order asymptotics (see Appendix D for details). Under

>The sample period used for calibration is Jan 1927 - Dec 2015. The data is downloaded from French’s online
data library, “http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html”.

12



“MP as Fac” in Table 1, we treat constructed mimicking portfolios in the same manner as
observed factors for beta estimation (hence the estimation error contained in the mimicking
portfolios is ignored when computing the variance of their beta estimator), which is common
in existing empirical studies.

We apply the rank test of Kleibergen and Paap (2006) for the estimator of 3, in the various
scenarios described above. In particular, we test whether the estimand has reduced rank £ — 1
and document the rejection frequency of the null at the nominal 5% and 10% level using
standard x? critical values. Since [3; has full rank under strong factors, we expect that the
rank test will strongly reject the null. This is in line with the rejection frequencies reported in
Panel A of Table 1. In fact, we show that the rejection frequencies based on 2000 Monte Carlo
replications are all equal to one, so the outcome of the rank test shows support for the strong
factor, as expected.

On the contrary, under useless factors, we expect the rejection frequency of the rank test
to be close to the nominal size, since useless factors are associated with zero beta’s so the null
holds. This is in line with the rejection frequencies reported under “Fac” in Panel B of Table
1. Under “MP”, the rank test appears conservative, since the rejection frequencies quickly
decrease from nominal sizes as N; and N, increase.’

What is astonishing in Panel B of Table 1 lies in the columns of “MP as Fac”, i.e., mimicking
portfolios are naively treated as alternatives of factors and used for rank tests. Panel B shows
that the rejection frequencies under “MP as Fac” are very large (albeit decrease as Ny and N
increase). Consequently, mimicking portfolios of useless factors may signal strong factor pricing
in rank tests, if they are treated in the same manner as factors. Theorem 1 and 2 show that
such treatment is improper, since the beta estimator under mimicking portfolios does not have

the same limiting distribution as under factors.

6There are two reasons that may help explain the conservative performance. First, the beta estimator of
mimicking portfolios may have a non-standard distribution (as in Theorem 1), so first-order asymptotics do not
approximate its variance well, which further jeopardizes the rank test. Second, as N7 and N> increase, larger
sample sizes are generally needed to estimate the covariance matrix of asset returns, a component that appears
when beta’s are computed using mimicking portfolios.

13



Table 1: Rejection Frequencies of the Rank Test by Monte Carlo

Panel A: Strong Factor

Beta Specification Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5% 10% 5% 10% 5% 10% 5% 10% 5%  10% 5% 10%

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: Useless Factor
Beta Specification Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

1 0.051 0.107 0.060 0.112 1.000 1.000 0.050 0.106 0.059 0.112 1.000 1.000
2 0.063 0.105 0.014 0.031 0.936  0.949 0.051 0.102 0.013 0.030 0.935 0.949
3 0.050 0.104 0.005 0.012 0.898 0.916 0.048 0.101 0.005 0.012 0.895 0.914
4 0.052 0.102 0.003 0.011 0.879 0.899 0.050 0.097 0.002 0.009 0.878 0.897
5 0.050 0.090 0.001  0.002 0.841 0.864 0.046 0.085 0.000 0.002 0.837 0.860

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

Hy : rank(B;) = k — 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The
d.g.p. is described in the main text, with 7'= 1000 and & = 1. Column 1 lists five choices of Ny = Na: 1, 2, 3,
4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B for a useless factor
in the single factor model. For “Fac": the observed factor is used for beta estimation. For “MP": the
mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the beta
estimator is derived by first-order asymptotics (see Appendix D). For “MP as Fac": the mimicking portfolio of

the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed factor.
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Overall, Table 1 suggests that the rank test can serve as a diagnostic tool for the quality
of the factors, if implemented properly so correcting for the estimation error that results from
using mimicking portfolios. When factors are strong (weak), the null is rejected (accepted with
the probability close to the nominal size), if these factors are used for beta estimation. When
mimicking portfolios are used for beta estimation, Table 1 suggests that the rank test outcome
needs to be taken with caution. In particular, if mimicking portfolios are improperly treated

as alternative to factors, then the rank test may spuriously favor useless factors.

2.4.1 Sensitivity to the strength of the factor structure

Instead of calibrating €2 to the estimated Q as described above, we also consider two alternatives
in our simulation experiments: ) = 0.04Q and Q = 250Q. The strength of the factor structure
alters when the magnitude of €2 changes with () = 0.048) having a very strong factor structure
and Q = 250 a weak factor structure. The other settings remain unchanged in the simulation.
Our purpose is to re-examine the result reported in Table 1, as the strength of the factor
structure changes.

Table 2 and Table 3 present the updated results, for 2 = 0.04Q and Q = 25@, respectively.
It is found that the strength of the factor structure does not alter the two main findings conveyed
in Table 1: (i) for rank testing, factors seem to perform better than mimicking portfolios; (ii)
improperly treating mimicking portfolios as factors may yield to spurious rank test outcomes

that favor poor factors.

3 Robust inference

The previous section shows that the beta estimator under mimicking portfolios is problematic
when their underlying factors are weak. This jeopardizes risk premia estimation in the com-
monly used Fama-MacBeth (1973) methodology. To resolve this issue, we propose a robust

inference procedure on risk premia of mimicking portfolios.
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Table 2: Rejection Frequencies of the Rank Test by Monte Carlo (2 = 0.04@)

Panel A: Strong Factor

Beta Specification

Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Panel B: Useless Factor
Beta Specification Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

1 0.063 0.110 0.066 0.116 1.000 1.000 0.062 0.110 0.064 0.116 1.000 1.000
2 0.053 0.103 0.016 0.035 0.956 0.960 0.051 0.102 0.016 0.034 0.955 0.960
3 0.055 0.111 0.005 0.014 0.915 0.931 0.051 0.103 0.005 0.015 0.914 0.931
4 0.052 0.100 0.006 0.009 0.911 0.921 0.047 0.095 0.005 0.009 0.908 0.920
5 0.045 0.091 0.001 0.004 0.884 0.902 0.042 0.086 0.001 0.004 0.881 0.900

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

Hy : rank(B,) = k — 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The

d.g.p. is described in the main text, with T'= 1000 and k =1, Q = 0.04Q). Column 1 lists five choices of

N; = No: 1, 2, 3, 4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B

for a useless factor in the single factor model. For “Fac": the observed factor is used for beta estimation. For

“MP": the mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the

beta estimator is derived by first-order asymptotics (see Appendix D). For “MP as Fac": the mimicking

portfolio of the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed

factor.

16



Table 3: Rejection Frequencies of the Rank Test by Monte Carlo (2 = 25?2)

Panel A: Strong Factor

Beta Specification

Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

1 1.000 1.000 0.465 0.583 0.429 0.556 1.000 1.000 0.319 0.486 0.426 0.554
2 1.000 1.000 0.663 0.760 0.636 0.742 1.000 1.000 0.489 0.648 0.629 0.742
3 1.000 1.000 0.688 0.782 0.666 0.761 1.000 1.000 0.495 0.650 0.656 0.758
4 1.000 1.000 0.878 0.930 0.856 0.914 1.000 1.000 0.642 0.793 0.848 0.911
5 1.000 1.000 0.922 0.953 0.902 0.936 1.000 1.000 0.635 0.805 0.896 0.935

Panel B: Useless Factor
Beta Specification Covariance Specification

Fac MP MP as Fac Fac MP MP as Fac

5%  10% 5%  10% 5%  10% 5%  10% 5%  10% 5%  10%

1 0.055 0.105 0.003 0.014 0.429 0.556 0.054 0.105 0.004 0.015 0.426 0.554
2 0.055 0.100 0.001 0.004 0.335 0.443 0.051 0.099 0.000 0.003 0.330 0.439
3 0.057 0.107 0.000 0.000 0.252 0.344 0.055 0.103 0.000 0.000 0.247 0.337
4 0.055 0.098 0.001 0.001 0.275 0.367 0.050 0.092 0.001 0.001 0.266 0.358
5 0.046 0.094 0.000 0.000 0.237 0.328 0.044 0.086 0.000 0.000 0.224 0.320

Note: This table reports the rejection frequencies of the Kleibergen and Paap (2006) rank test of the null

Hy : rank(B,) = k — 1 at the nominal 5% and 10% respectively, based on the average of 2000 replications. The
d.g.p. is described in the main text, with T'= 1000 and k =1, Q = 25¢). Column 1 lists five choices of
Ni = Ny: 1, 2, 3, 4, or 5. We consider two types of observed factors: Panel A for a strong factor and Panel B

for a useless factor in the single factor model. For “Fac": the observed factor is used for beta estimation. For

“MP": the mimicking portfolio of the observed factor is used for the beta estimation, and the variance of the

beta estimator is derived by first-order asymptotics (see Appendix D). For “MP as Fac": the mimicking

portfolio of the observed factor is used for the beta estimation, as if the mimicking portfolio is an observed

factor.
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3.1 Scaled risk premia under mimicking portfolios

Specifically, we suggest to test the risk premium Mg ., on mimicking portfolios using the mo-
ment condition:

E(Ryt) = tn, Ao + VRlRQVﬁ;RQ Ve VaaAG.eo (8)

where Vg, g, Vg, IRQ VR, is the covariance of the test assets Ry; with the (infeasible) mimicking
portfolios Vgg, Va, 1R2R2t, SO Ag,cov 18 the scaled risk premium in the covariance specification
(scaled by VG_é).7 If the base assets in Ry, span the test assets in Ry, then Vg, g,V IRQVRQG
reduces to Vg,¢ and Ag .» €quals Ag in (4). For instance, in the special case that Ry = Ray, so
test and base assets coincide, A\g o, reduces to Ag. If so, inference on A¢ ., reduces to inference
on Ag, which has been resolved by Kleibergen (2009). Since it is common that Ry does not
fully span Ri;, Ag.cov is consequently not necessarily equal to Ag. We thus proceed to consider
inference on Ag o, defined in (8).

As a starting point, we remove )\ since our interest lies in Ag .. This is done by removing
the return on the N;-th test asset and taking all other test asset returns in deviation from the

return on the N;-th asset. Equation (8) is then re-written as

E(R1) = Vrir, Vi, 1, VRaG Vg AG cov

= Pﬂza)\G,cov (9)

-1 : / / !
Where F = VRle RoRs’ th = th,l:(lel) — LNl—lth,N17 Wlth th = (th,lz(N171)7R1t,N1) y and

Vr,c 501 = (3,0 as in (4).

If Vg is normalized to I, then Ag oy is the risk premium of the mimicking portfolios in the covariance
specification. Furthermore, Ag co» could also be viewed as the scaled risk premium of mimicking portfolios in the
beta specification: since E(R1:) = tn, Ao + VR R, ngle Vr.a(Vanr, VR;le Vr,a) Y (Var, V}{;Rz VR2g)V561;)\G7COU,
(Ver, Vi, le VRzg)Vgé)\QwU is the risk premium in the beta specification. If the projection error during the

construction of mimicking portfolios is negligible, i.e., Var, VR; 1R2 Vr,c = Vaa, then Ag cov approximately equals
the risk premium of mimicking portfolios in the beta specification.
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3.2 Mimicking portfolio Anderson-Rubin test

To conduct inference on Ag 0y, We state the joint behavior of R4, Bz and T in Theorem 3, with

s 1 T 5O = &S S
Rl =7 thl th, BQ = VRZGVGG and F = VR1R2VR2R2‘

Theorem 3 When Assumptions 1-8 hold:

R1 = TB20AG cov (e
VT vec(By — B,0) t vec(iy) | ~ N(0, W) (10)

vee(I' = T) vec(1hs)
and

VRiR: 0 0

W = 0 Vg ®Ze C’

0 C Virs © VRiry — Vrima ViJr, Visry)

with

C = Ku-1n (VR pVipd @ Vip, Yos) + (Vi g, 20 @ T1a)—

(VR_2132 ® F)(]NQZ + KN2N2)<625 & E22)7

K is the commutation matriz and X153 = cov(eyy, ea) with ey = Ry — Ve, rVipd(Gy + Aa).

Proof. see Appendix E. m

Theorem 3 implies that the limiting distribution of v/T (R1 — fBgAGwv) is normal.

Corollary 2 When Assumptions 1-3 hold and T has a full rank value:
\/T(Rl - fBQ)\G,COU) i) ¢1 - F¢2AG,COU - 77Z}3526)\G700v ~ N(O7V>a (11)

with

V = VRlRl + ( IG,COUVG_Gl’AGﬁOU ® FE?QF,)+
((B202¢.con) Vigy iy (B20AG eo0) © (VRymy = VR o Vigg 2, VRaR: ) —
{[(625)\G,cov)/ & [lel]c()\G,cov & F/)} - {[(ﬁQé)\G,cov)/ & [lel]c()\G,cov & F,)}/ .
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Proof. see Appendix F. m

Since the unobserved factor F; affects both R; and Ry, I has a full rank value. We do
not make a full rank assumption on ¢ so we allow for weak correlation between observed and
unobserved factors. Using Corollary 2, it is straightforward to obtain an asymptotic result to

test HO . >\G,cov = )\G,cov,()-

Corollary 3 (MPAR) Under Hy : AG.cov = AG.cov,05

MPAR()\G,CO'U,O) = T(ﬁl — f\BZ)\G,cov,Oy@'il(ﬁl - IA‘éQ)\G,cov,O) i X?Vlfl (12)
with
i\] - ‘7731731 + ( /G,cov,O{/\YG_é/\GvCOMO ® f‘ibzfv)—i_

((Bz)\c,cov,o)"?ﬁ;]gz(ézAG,cou,o) ® (‘7R1R1 - VR1R2 ‘71{2132‘732&))—
[(B2)\G,cov,0)/ ® INl—l]CY()\G,cov,O ® f‘/) - ( /G,cov,O ® f‘)é/[(BQ)\G,cov,O) X INl—l]
C = K(N1—1)N2(B1 & ‘73_2132222) + (‘7}2_21}2232 ® 212) — (‘71{2132 & f)(]Ng + KNQNQ)(BQ & 222)

and 212 = % 25:1 éltélzt; 2A322 = r_lp Zthl é2té,2t; €y = Roy — Rz - Bz(Gt - ﬂG); élt =Ry — 7?1 -
Bi(Gy — fig), Br = V6Vl

Proof. Results from Corollary 2, with V a consistent estimator for V. m

We refer to this statistic as the Mimicking Portfolio Anderson-Rubin (MPAR) statistic,
since it is in line with the Anderson and Rubin (1949) statistic for robust inference and it is
proposed using mimicking portfolios. Similar tests in the factor rather than mimicking portfolio
setting include the Factor Anderson Rubin (FAR) test proposed in Kleibergen (2009) and the
Hotelling-type statistic proposed in Beaulieu et al. (2013).8

Because of Corollary 3, a test of Hy : Ag.cov = Ac.covo that rejects Hy, if MPAR(AG covo)

exceeds the 1—a quantile of the x? distribution with N; —1 degrees of freedom has an asymptotic

8Kleibergen (2009) also proposes several other tests (e.g., a score test). Our paper focuses on extending the
FAR statistic to the MPAR statistic, because extending other tests appears, because of the structure of the
covariance matrix in Theorem 3, difficult.
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size that equals « irrespective of the value of §. Values of A\g 0,0 that are not rejected by this

test thus constitute a 100(1 — )% confidence set of Ag cop-

3.3 Size of the MPAR statistic in simulations

To examine the size of the proposed MPAR test, we conduct a simple simulation experiment.

The d.g.p. is similar to the one used in Section 2. Specifically, asset returns are generated
from Equation (1), with 7" = 1000 and k = 1. In addition, F; and v, are generated as indepen-
dent NID (0,Vpr) and NID (0,9) random variables, with Vpp calibrated from the market
portfolio in Fama-French (1993) and €2 calibrated from the regression of N; industry and N,
size and book-to-market sorted portfolios on the market portfolio. We consider N; = N, for
convenience and set them equal to 5, 10, 15, 20 and 25, as reported in the first column of Table
4. The values of \g, Ar and 8 used in d.g.p. result from the Fama-MacBeth (1973) two-pass
procedure using the portfolios described above.

The observed G; is simulated as follows: G; = 6 - F} + ﬂ -NID(0,Vgr), so ¢ coincides
with the specification in (3) and reflects the quality of G, for approximating F;. When ¢ is close
to zero, GG, is a weak factor which becomes stronger for an increasing value of §. We consider a
sequence of values for ¢: § € {0.01,0.25,0.50,0.75,0.99}, which covers a wide range of settings
of G; as the observed proxy for Fj.

With the simulated asset returns and G, we conduct the MPAR test on the risk premia of
the mimicking portfolios as described in Corollary 3. The resulting sizes of the test are reported
in Table 4.

Table 4 shows that the MPAR test does not severely over reject in any of the settings. Its
rejection frequency approximately equals the size of the test in many instances. Table 4 shows
that the MPAR test is conservative when the factors are weak. It indicates that the covariance
matrix estimator V is on average too large in this simulation setting. Using the properties of
the partitioned inference and that I’ does not depend on the strength of the factors, the too

large value of V can be attributed to the realized values of B; and B being away from their
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Table 4: Actual Sizes of the MPAR Test by Monte Carlo, T"= 1000

0 =10.01 0=0.25 0 =0.50 0=0.75 0 =10.99

5%  10% 5%  10% 5%  10% 5%  10% 5%  10%
Ny, N> =5 0.050 0.105 0.059 0.105 0.058 0.103 0.057 0.104 0.057 0.104
N1, N, =10 0.020 0.051 0.052 0.108 0.051 0.108 0.050 0.108 0.061 0.108
N1, N =15 0.018 0.047 0.064 0.115 0.063 0.116 0.063 0.116 0.063 0.116
Ny, N =20 0.002 0.008 0.063 0.127 0.064 0.128 0.063 0.126 0.062 0.126
N1, N =25 0.001 0.002 0.064 0.124 0.064 0.127 0.063 0.127 0.063 0.126

Note: The reported sizes are rejection frequencies of the MPAR test for Ho : Ag,cov = AG,cov,0 at the nominal
5% and 10% respectively, based on the average of 2000 replications. The d.g.p. is described in the main text,
with 7" = 1000.

expected values (zero). This explains also why the under rejection increases when N; and N,
get larger. When we increase the sample size, the estimates of B, and B, become more precise
and the under rejection of the MPAR test disappears. This is shown in Table 5 where we use a

sample size of 1000, 000. Table 5 shows that the MPAR test is now size correct in all instances.

Table 5: Actual Sizes of the MPAR Test by Monte Carlo, 7' = 1000, 000

6 =0.01 0=0.25 0 = 0.50 0=0.75 0 =0.99

5%  10% 5%  10% 5%  10% 5%  10% 5%  10%
Ny, No=5 0.0563 0.102 0.059 0.098 0.058 0.097 0.058 0.097 0.058 0.097
Ny, No =10 0.060 0.112 0.057 0.111 0.058 0.110 0.0568 0.111 0.059 0.110
Ny, No =15 0.055 0.115 0.056 0.110 0.057 0.111 0.058 0.110 0.058 0.109
Ny, No =20 0.057 0.104 0.054 0.098 0.055 0.099 0.054 0.098 0.054 0.098
Ny, No =25 0.056 0.104 0.053 0.107 0.053 0.107 0.0564 0.107 0.054 0.107

Note: The reported sizes are rejection frequencies of the MPAR test for Hy : Ag,cov = AG,cov,0 at the nominal
5% and 10% respectively, based on the average of 2000 replications. The d.g.p. is described in the main text,
with 7" = 1000, 000.

Tables 4 and 5 show that the behavior of the MPAR test accords with Corollary 3 since
the under rejection reported in Table 4 results from the estimation of the covariance matrix V.
The size of a test is defined as the maximal rejection frequency under the null hypothesis so

under rejection does not indicate size distortion.
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3.4 Power of the MPAR test

To illustrate the power of the MPAR test, we consider a sequence of A\g .o, (between —5 and 5)
in the d.g.p. described above with 7' = 1000 and N; = Ny = 5.2 We then test H : AG,cow =0
at the 5% level using the generated data. The resulting rejection frequencies of the MPAR test
are in Figure 1.

We use a range of values of § to reflect the different qualities of the observed factors. Figure
1 has five power plots of the MPAR test, corresponding to 6 = 0.01 (plus), § = 0.25 (dotted),

d = 0.50 (dash-dot), 6 = 0.75 (dashed) and § = 0.99 (solid line), respectively.

Figure 1: Power Plots of the MPAR Test

Note: This figure presents the power plot of the MPAR test for Hy : Ag,con = 0 at the 5% level, with § = 0.01
(plus), 6 = 0.25 (dotted), 6 = 0.50 (dash-dot), § = 0.75 (dashed), § = 0.99 (solid line). The d.g.p. is described
in the main text, with 7" = 1000 and Ny = Ny = 5.

"Note that 81 Ar = Vi, r, Vi, 5, VRsGVaaAG.covs 50 Ar = (B181) 7 81 VR ko Vi) r, VR2G VGGG cov s used for
d.g.p., and we use 20,000 Monte Carlo replications for the power plots.

23



Figure 1 shows that the MPAR test has good power, as d gets large. This is as expected, since
a larger value of § implies more informative factors and thus mimicking portfolios. Consequently,
when confidence sets of risk premia are to be constructed by inverting the MPAR  test, wider
confidence sets indicate that the corresponding factors are less informative, while narrower sets
signal that the factors are stronger for asset pricing. Note that when § = 0.01 so the factor is
close to being useless, Figure 1 shows that the corresponding power plot is close to the nominal
5%.

We further compare the MPAR test with the FAR test in Kleibergen (2009). As stated
above, in the special case that test assets and base assets coincide so Ry; = Ry, the mimicking
portfolio risk premia Ag ., coincides with the factor risk premia A\g. In this scenario, both
MPAR and FAR tests are applicable, and we plot their power curves in Figure 2. As shown by

Figure 2, the power of the MPAR test is almost identical to that of the FAR test.

3.5 Application

We illustrate practical usage of the MPAR test by employing it to the leverage factor model
proposed by Adrian et al. (2014). Specifically, Adrian et al. (2014) consider a leverage factor
“LevFac" in a single factor model, so kK = 1. Their empirical study uses data for the leverage
factor from 1968Q1-2009Q4, so T' = 168. For illustrative purposes, we adopt the same data
set.!? For base assets, we follow Adrian et al. (2014) who consider seven assets, so N, = 7: the
excess returns of the six Fama-French portfolios on size and book-to-market (“BL”, “BM”,
“BH”, “SL”, “SM”, “SH"), plus the momentum factor “Mom”. These seven assets are widely
acknowledged for their ability to span the asset space.!! To construct mimicking portfolios, we
project the leverage factor on these seven base assets.

We obtained estimates for the coefficients (denoted by \A/GR2 ‘7}2_2 ', in Section 2) when pro-

jecting the leverage factor “LevFac” on the base assets (“BL”, “BM”, “BH”, “SL”, “SM”,

10We thank the authors for making the data publicly available.
'Monthly data for these assets is available at French’s online data library, which is then compounded to
construct the quarterly data. FExcess returns result from the difference of raw returns and risk-free returns.
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Figure 2: Power Plots of the MPAR Test and the FAR Test
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(a) § =0.01

(b) § = 0.25 (c) 6 =0.50

(d) §=0.75 (e) 6 = 0.99

Note: This figure presents the power plots of the MPAR test (solid) and the FAR test (dashed) for
Hy : Ag,coo = 0 at the 5% level, with 6 = 0.01 in (a), 6 = 0.25 in (b), § = 0.50 in (¢), § = 0.75 in (d) and
0 =0.99in (e). The d.g.p. is described in the main text, with 7' = 1000 and Ny = N, = 5.
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“SH”, “Mom”) equal to: (—0.22,—0.10,0.56, —0.57,1.24, —0.43,0.43). These coefficients (af-
ter normalizing their sum to one) are almost identical to those in Adrian et al. (2014) for the
reported weights of the mimicking portfolio.

Adrian et al. (2014) show the mimicking portfolio of the leverage factor performs well in
various asset pricing tests, e.g., it is associated with large R-squareds and low intercepts in
cross-sectional regressions. Adrian et al. (2014) do not study the risk premium associated with
the mimicking portfolio in cross-sectional regressions, while we focus on it. Specifically, we are
interested in the risk premium of the mimicking portfolio “LevM P” that results from projecting
“LevFac” on the seven base assets. We use as test assets the commonly used twenty-five Fama-
French portfolios on size and book-to-market (25 FF). Since both test assets and base assets
are on size and book-to-market, they are likely driven by the same underlying factors, as in the
model setup in (1). In addition, since T" = 168 is relatively small, while our simulation study
suggests that the size of the MPAR test is more reliable under small N; and N for small T, we
divide the twenty-five FF portfolios into five equal sized groups (denoted by I - V in the first
column of Table 6), and use each group as test assets with N; = 5.1

To gauge the statistical quality of the leverage factor, we conduct the Kleibergen and Paap
(2006) rank test, which is commonly used as a diagnostic tool in the asset pricing literature.
The null of the rank test is that the leverage factor beta has reduced rank, and the resulting p
values are found to be 0.09, 0.01, 0.26, 0.27, 0.08 for I - V, respectively.'® Since most p values
exceed 5%, the leverage factor appears to be weakly correlated with asset returns and its beta
is small. Consequently, the conventional t-test on the risk premium of the leverage factor is
under doubt.

Table 6 starts out with the FM two-pass methodology. When the leverage factor LevFac is

tested using the FM procedure, Table 6 reports that the estimated risk premium is positive and

12Groups I - V are built in the order of 25 FF, i.e., the first 5 portfolios of 25 FF make Group I, ..., the last
5 portfolios of 25 FF make Group V.

13In accordance with the FAR and MPAR tests, we similarly remove the last asset and take all other asset
returns in deviation from the return on the last asset when implementing the rank test. This is one way of

conducting a rank test on (¢ B) which is the regressor matrix in the second pass of the FM procedure.
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the conventional FM t-statistics are significant in I and IT at the 95% significance level. Similarly,
when the mimicking portfolio Lev M P is tested in the FM procedure, Table 6 shows positive risk
premium, associated with slightly larger FM t-statistics compared to the factor counterparts.
These results thus appear to support the leverage factor for asset pricing. If the Shanken (1992)
correction is adopted, however, none of the t-statistics remain significant. Furthermore, since
the construction error in mimicking portfolios also contributes to the variance of the risk premia
estimator, t-statistics under “LevM P” are expected to further decrease, if this error is taken

into account. See Jiang et al. (2015).

Table 6: Risk Premium of the Leverage Factor (LevFac) and its Mimicking Portfolio (LevM P)

LevFac LevM P
t-test FAR test t-test MPAR test

Coef. FMt Shanken ¢ 95% C.IL Coef. FM ¢t Shanken t 95% C.L
I 2235 211 1.30 (-00, —126.02] U [13.96, 00) 411 341 0.81 (-00, —104.78] U [16.82, 00)
I 1178 2.10 0.80 [~1.23,98.81] 273 2.56 0.54 (-00, —25.57] U [~2.43, 00)
ML 1659  1.64 0.98 (-00, —43.11] U [1.67, 00) 232 2.32 0.46 (-00, —191.49] U [3.08, 00)
IV. 8.32 1.12 0.54 (-00, 00) 1.01 1.32 0.20 (-00, 00)
V. 4.85 0.88 0.33 (-00, 00) 0.80 0.93 0.16 (-00, 00)

Note: LevFac stands for the leverage factor suggested in Adrian et al. (2014), while LevM P stands for the
constructed mimicking portfolio of the leverage factor. Test assets are from twenty-five Fama-French portfolios
on size and book-to-market (25 FF) in the sample period of 1968Q1-2009Q4, and we divide them into 5
groups of test assets, I-V, so each group contains 5 portfolios. Three tests on risk premia are employed,
namely, the conventional FM-¢ test for the Fama and MacBeth (1973) methodology, the Factor
Anderson-Rubin (FAR) test of Kleibergen (2009), and the proposed Mimicking Portfolio Anderson-Rubin
(MPAR) test in this paper. The Shanken (1992) correction is also considered for the ¢-test.

It is now known that the FM methodology and its associated t-test are doubtful when the
factor is associated with a small beta. As an alternative to the t-test for the factor risk premia,
the Factor Anderson Rubin (FAR) test is proposed by Kleibergen (2009). Unlike the FM t-test,
the FAR test is size-correct since its limiting distribution does not depend on the quality of
the observed factors. Table 6 presents the 95% confidence sets of the risk premium that results
from inverting the FAR test. These sets are found to be substantially different from those

obtained by inverting the FM t-test. Such differences put the quality of the leverage factor
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under doubt, see also Kleibergen (2009) for a further comparison of the FM-¢ test and the FAR
test. Furthermore, in Appendix G, we present the p-value plots of the FAR test which show
how we obtained the 95% FAR confidence sets reported in Table 6.

The last column of Table 6 shows the 95% confidence sets that result from the MPAR test.
In line with the conventional FM t-test, it shows rejection of the null hypothesis of a zero risk
premium for LevM P for I and IIT; however, unlike the FM t-test, it does not reject a zero risk
premium in II. In IV and V, identical to the FAR test but unlike the FM t-test, we find that
no information about the risk premium is contained in the leverage factor or its mimicking
portfolio. In Appendix G, we also present the p-value plots of the MPAR test, which helps to
explain the 95% MPAR confidence sets reported in Table 6.

Overall, Table 6 indicates that inference on the risk premium of the leverage factor may
substantially change, when robust tests (FAR or MPAR) are employed.!* This is consistent
with the fact that the leverage factor is only weakly correlated with asset returns and thus

likely to be a weak proxy for the underlying factor(s).

4 Conclusions

We document the threats involved in using mimicking portfolios of macroeconomic factors in the
Fama and MacBeth (1973) two-pass procedure. When these factors have small betas, we show
that their mimicking portfolios have betas that are spurious. These spurious betas induce non-
standard behavior of the risk premia estimator so conventional ¢-tests on risk premia become
unreliable.

A rank test on beta is used in the literature to serve as a diagnostic tool for the quality of the
factors. We, however, find that the outcome of the rank test needs to be taken with caution when

using mimicking portfolios. This results from the estimation error in the mimicking portfolio

14Note that the factor risk premia defined in (2)(4) and the mimicking portfolio risk premia defined in (8)
are not identical in this application. Thus we do not expect the FAR confidence set for factor risk premia to
coincide with the MPAR confidence set for the mimicking portfolio risk premia.

28



which we have to account for in the rank test. It implies a more challenging expression for
the covariance matrix estimator employed in the rank test. When we do not account for this
estimation error, the rank test performs poorly. When we account for it, the rank test still has
some issues when the covariance matrix becomes of large dimension but generally works well.

Instead of gauging the quality of factors or mimicking portfolios, inference methods are
available for analyzing risk premia that are reliable irrespective of the quality of the factors.
These methods are robust in the sense that their limiting distributions do not not depend on
the quality of factors as reflected by the magnitude of the betas. To the best of our knowledge,
the method we propose here is the first one which deals with mimicking portfolios. Robust
methods do exist for tests on risk premia in the standard factor pricing setting, see Kleibergen
(2009) and Beaulieu et al. (2013). This clearly indicates the need for our developed methods
for which the empirical relevance is further emphasized by our application to the risk premium

on the leverage factor from Adrian et al. (2014).
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Appendix

A. Proof of Theorem 1
Proof. Let’s start with ‘A/Rl Ros ‘A/R2 r, and ‘A/RQG. Assumptions 1 and 2 imply that:

T p
VRlRQ - ﬁlVFFﬁé
2

VRQRQ 52VFF5/2 + Qg

where we used that ‘A/RR 2, BVepf +Q and Q5 = 0.

The convergence of ‘7R2G is a bit more tricky. Note that:
Ry = tnXo + BI(6G: + w) + Ap] + vp = tnXo + BAF + BOG, + Buy + v

When § is fixed and the number of elements of G equals the number of elements of F), so ¢
is a square invertible matrix:
Vi = B20Vac

SO

B1 E B1VErB5(BaVirBy 4+ Qa2) 1 850Vaa[Vaad By (B VirSy + Qa2) 1 B20Vae] !
= BVrrd VV5g,

and when G, = F}, § = I, 51 2 B,
When § = d/V/T :
VTVie = Bao(dVac + Yua) + e

where = 571 (Gr @ w) Svec(tyq), o= Yy (Gr ® var) Svec(d,,), 50

T_%E1 & B VirBy(BaVier Sy + Qo) (Bo(dVae + ug) + Vua)
[(62(dVGG +Yue) + ¢v2a)/ (BoVErBy + Qa2) ™' (Bo(dVag + tug) + %20)]

-1
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B. Proof of Corollary 1
Proof.
j\ 2 2 -1 A (LSV M: 1y >_1L/N M: :&R
< 30 > = |:(LN1:ﬁ1)I(LN1:51>:| (LNl:/Bl)/lLLR]_ = ( 3,1 o 2 1 71i,1 BlA '
Ac (51MLN151) 51MLN1#R1
+im 0,(1/+/T), while the limiting behavior of 51 is

where from Assumption 1: fip = pp, 7

provided by Theorem 1.
The strong factor case: Bl 2 51VFF5_1’VG_C§, flg, 2, LNy Ao + B1 AR, SO

~

5\G :</6,1MLN151)_1B,1MLN1[)/R1
S ((B1Verrd Va) My (B1Verd "Vie)) ™ (81 Verd Vi) My, (tx Ao + B1Ar)

=((B1Verd ™ Vad) My (B1Verd™"Ved)) H (B1Verd ™ Vad) May B14r
=Vecd' VipAr
The weak factor case with § = d/ VT for convenience, we write T3 31 KR Vs, where Wg

is the non-standard distribution in Theorem 1, so

;\G :(Bllel Bl>_1BIIMLN1 /lR:l
77Z}R1)

1 _
2ﬁ(\plﬁljw”"llpﬁl) ad 1MLN1 <’uR1 * VT

which implies

TS\G - ﬁ(\PQB’lMLNl \ij)’l)_lqjg}lMLNl \Ijﬁl)_l\ll,zgleNll/}Rl

d
/’LRl —>(\:[12:)’1 MLNl

C. Proof of Theorem 2

Proof. To derive the limiting behavior of B 1, we first study ‘731 Ry VRyR, and VR2G:

B1VrrpBs

Vi Ry —
o 62VFF6/2 + Qg

VRsRo

Consider
Vior, = B2ABS + B2,¢Bﬁl2¢ + BQCﬂIQ,J_ + 52,¢Dﬁ/2
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with A = Vir + (8285) 7 050220,(8582) ", B = (85,1 82,1) "85 1 Q225 1 (B2,182,1) " C =
(6,262)716/292262,1_(6,2,L62,J_)71> D = (5’2452;)715/2,LQ2252(5'252)’1 so the inverse of Vig,r,
can be specified as

VR_21R2 = B,AB, + BZ,LBBQ,L + 52@5,2,¢ + B2,LD6/2

1. When § is fixed and the number of elements of G equals the number of elements of F so

0 is a square invertible matrix:
> p
Vi,a = B20Vea

SO
B1 L BVirBy(ByVerSh + Qa2) " By0Vae.

Since we only need the inverse in the direction of 35, we can now use that when the

number of elements of (3, increases:

VirBy(82Vir By + 922)7152 ~ 1

since A ~ (8,3,) " Vrr(B8y5,)~" when the number of elements of 3, is large, so
By 5 BVac

2. When 6 = d/V/T :
\/T‘/}RQG i) 62(dVGG + ¢uG> + 77bsz

SO
T2, 5 B,VerBy(BoVirSy + Qo) (Bo(dVae + Vug) + Vuya)

When the number of elements of 3, increases, Vrp [y (B3, Vrry + Qag) ™1y & I, s0:

T3B, & B,dVag + By (bue + VirrBy(BaVirBy + Q) by.)
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D. Asymptotic Variance of Beta Estimators for Rank Testing
DO. Joint Behavior of ‘A/RQC;, ‘7R1 r, and ‘A/R2 Ry

Here we present the joint behavior of 1732@, 1731 R, and ‘A/Rz R,, since they make the beta estimator
of mimicking portfolios.

We use the following notation:

G ® ey vee(Y,, )
Gy @ ey vee(Y,,q)
J5 i | en ® ey — vee(Sa) S| vee(e,) |
et ® ey — vec(Baz) vee(Yeye, )
G, ® Gy — vec(Vge) vec(Ygq)

Vr,c, Vrir, and Vg, g, can be rewritten as follows.

Vio = 3 RuG}
= 7201 (520G: +ex)C
= BadVag + Bod (2 X1 GiGl — Vo) + 2 S, ea
‘73132 - % Zthl Ry, Ry,
- % 23:1(515(;15 + €11) (820G, + €2)
— B10Voad By + 510 (5 1L CiGl — Vag ) '8y + 516 (5 51, Giely )
+ <% Zthl eltG’Q) o' B4 + % Zthl e1t€h; — 212 + 112
Visry = 7 2y Rot Ry
= % 23:1(525@: + €2)(Bo0Gy + ea;)’
= By0Vaad By + Byd (% S GGl - VGG) 53, + Byb (% 7 (;te/%)
+ (:lr > i 627&@2) &' + 7 S i1 €21€h — Sap + Doy

The convergence of XA/Rzg, \A/R2 R, and YA/Rz R, is thus characterized by:

VT (Viye — B:0Vae) % B0 + Ve, denoted by Up,a

VT (Vs — 510Vaad By — 12 ) 5 510060 By + B100. ¢ + e, By + oo,  denoted by Up, g,

VT (Viyry — B20Vead By — T2 ) 5 Bodtbgad’ By + Bo0 i+ ey By + 1eye, denoted by Ug,p,

and in our simulation setup, their variances read:
Uec(URzg) ~ N(O, Vae ® (VR232 + 625‘/@@5,5;) = Wl,l)
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vec(Up,ry) ~ N(0, Vayry @ (Vayry + Vg, Vigr, Visk) = Wap)

UeC<UR2R2) ~ N(07 2VR2R2 & VR2R2 = W3,3)

In addition, their covariances read:

cov(vec(Uryr,), vec(Upyi)) = 2620Vae ® 10Vaad By + Knyny (810Vae ® La2) 4+ B20Vae @ Tia
= W271 = W1/72

cov(vec(Upyr,), vec(Urya)) = 2620Vaa @ B20Vacd' By + (Inz + Knyn, ) (B20Voe © Laa)
= W3,1 = W1/73

cov(vec(Ur,r,),vec(Uryr,)) = 2VRryry @ VR, Ry

_ /
= W273 - W372
To summarize:
Vr,a — Vroa Ur,c Wipn Wis Wigs
= d
V Tvec VR1R2 — VR1R2 = vec UR1R2 — N(O, WU), WU = W2,1 W272 W2’3
VRQRQ - VRlRQ UR2R2 W?),]. W372 W3,3

This result will be useful, when we derive asymptotic variance of the beta estimator with
mimicking portfolios. Note that Wy can be consistently estimated by data, so there exists
W\U 2 Wy Specifically:
Wii= Vee ® (VRQRQ + B2‘7@GB§)
W2,2 = VR2R2 ® (VRIRI + VR1R2 VR_QleszRl)
W3,3 = 2VR2R2 ® VRsz
Wy =W, = 2By Ve ® Bl‘A/GGBé + KNlNQ(Bl‘A/GG ® i22) + ByVee ® S
Way =W, 3 =2B:Vee ® BaVaa By + (Ing + Ky, ) (B2Vioe ® Sa2)

— =, ~ ~
W2’3 = W372 = 2VR2R2 ® VR1R2
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D1. Beta Specification with Factors

Let G; be the observed factors, Rq; be test assets. Consider the estimand
ViaVie
and the estimator
‘7R1G‘7G_é
Then:
VTvee(ViaVid — ViiaVad) 5 N(0,Vid © Var, — VieVadVan,))

This result allows us to conduct the rank test. That is, the estimator \A/RIGXA/GTé and its estimated

variance ‘A/G’é ® (\731 R — VRIGVG@VG&) are used for the rank test.

D2. Beta Specification with Mimicking Portfolios

Let G be the observed factors, Ry; be test assets. Define
Br = Vinrs Vi r, Vs (Var, Vi, Viaa) ™

and the estimator

51 = VRlevRigle VR2G(VGR2VR;1RZ VR2G>71
Using that Vg g, = VR g, + \/LTURle, Viors = VRyRry + ﬁURgRga Vrea = Vroa + ﬁURgci

N~ -1
ViV g, Vine = [VRle + %URle} [VR2R2 + \/LTURQRQ] [VRQG + \/LTURQG]
~ VRiiRr, VR_;R2 Ve,a+

1 -1 —1 —1 —1
77 [Unire Vg, VRoG + Vi Vg, UroG — VRiBa Vi, URa o Vi, Ve

and similarly,

~ ~ ~ / —1
Var, Vi, p, Vine = [VRQG + %URQG] [VRQRQ + ﬁURQRQ} [VRQG + \/LTURQG]
R Var,Viyr, Visa+

1 ! -1 l -1 / -1 —1
\/_T [URQGVRQRQ VRQG _'_ VRQGVRZRQ UR2G - VRQGVRQRQ UR2R2 VRQRQ VR2Gi|
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Use the expansion of the inverse, 3, is rewritten as:

By~ ~1
1 1 ~1 1 1
+ 75 [Unir Vi, VoG + Vi Vi, UroG = Vi ke Vi, U i Vi Ve (Ve Vi, p, Vi)
17 1 1 1 1
- T/B [URQGVRQRQ VRQG + VRQGVRQRQ URQG - V]{?,QGVRQRQ UR2R2 VR2R2 VR2G] (VGRQ VRQRQ VR2G>
So
VTvec(B, — B,) =
[(Var, Vi, 7, Vrea) ™t @ (Vi Vi, — B1Vor:Vigr,) — Var, Vi g, Vraa) ™ Var,Vir, © B - Knyxlvec(Ur,a)

+ [(Var, RQRQVRQG) Wanr, R2RQ®IN1]USC(UR1R2)

+ [(VGRz R2R2 VRzG) VGRz R2R2 (ﬁlVGRz VR2R2 VR, R VF;;RQ)]UeC(UR2R2)

where K,k is a commutation matrix such that vec(Ug, ;) = Kn,xvec(Ug,q).
Consequently, in order to further derive variance of 6 1, we use the joint behavior of Ug,q,

Ur,r, and Ug,gr, (which has been derived earlier, see the detail of Wy and /V[7U in the DO

sub-section):

Ur,c Win Wia Wig
vec | Upg, g, i> N(07 WU); Wy = W2,1 W2,2 W2,3
URyR, Ws1 Wio Wis

Combining all these pieces, the asymptotic variance of \/Tvec(Bl — Bl) reads:

’UW’IL
Uﬂl

where va is defined as
1

~ - !
(VairVigr, — BiVarVign,) — (Vars Vi r, Vi) " WVar, Vi r, © B1 - Kok

/
[(VGR2VR_21R2VRQC;)_1VGR2VR_21R2 ® INl]

[(VGR2 Visr, V@) 7 Var, Vir, © (BiVar, Vg, — ViiraVis,)

(Var,Vign, Visa) ' ®

!/

with v: equals
81

~ ~ ~ ~ ~ 2~ ~ ~ ~ ~ ~ —~ 2 /

(VGR2VR_21RQVR2G)71 ® (VR1R2V}€21R2 - BIVGszg;RQ) — (VGRQVI%B%QVR2g)71VGR2V1{2%2 ® B Knyx
~ ~ 15 PN ~ ’

[(VGR2V3232VR2G) 1VGR2VR2R2 ® INl]

A !/
~ s = T 2~ o~ o~ ~ 1
[(VGRz VRZRQVRQG) Var, VR232 ® (BlvGRQVRQRZ - VR1R2VR2RZ)
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This result allows us to conduct the rank test. That is, the estimator 3 , and its estimated
variance v 5 /WU 'i/ﬁ are used for the rank test.
1 1

D3. Covariance Specification with Factors

Let G; be the observed factors, Ry; be test assets. Consider the estimand

Vra

and the estimator

Vra

Then:
\/TUBC(‘A/Rlc — Vria) < N(0,Vee ® (Viyr, + VriaVaeaVar,))

This result allows us to conduct the rank test. That is, the estimator ‘7R1G and its estimated
variance ‘A/GG ® (‘A/Rl R+ YA/RIG{A/G_Cl;‘A/G r,) are used for the rank test.
D4. Covariance Specification with Mimicking Portfolios
Consider the estimator

61 = VR1R2 VR_Q]RQVRQG
Using that Vi, r, = VRir, + 5UR Res ViR = Ve + J2Uneies Ve = Ve + 72Ursc, We
can specify the above estimator as

B 1= VR1R2 VR_glRQVRzG .
= [VRle + \/LTURle] [VRsz + \/LTURsz} [Vch; + \/LTURzG}
= VRig, VRileQ Vr,a+

\/LT |:UR1 R> VR;1}22 VR2G + VR1 Ro VRgle UR2G - VR1 Ro VRigle UR2R2 VR;1/Y%2 VRQG] + 0p (T_ 1/2) :

Here we used an expansion of the inverse. Hence

; —1 Ny 1 —1 —1 -1
VT(By = Vg Vi, Viac) & Vi Vi, Ure + Ury i Vi, Vaa — Vi i Vi, Ura e Vit i, Vit G

Consequently, in order to further derive variance of B 1, we use the joint behavior of Ug,q,
Ur,r, and Ug,gr, (which has been derived earlier, see the detail of Wy and /WU in the DO
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sub-section):

Ur,a Win Wia Wigs

d
vec | Upp, | = NOWy), Wy = | Way Wiy Was
UR,R, Ws1 Wsa Wigs

Combining all these pieces, the asymptotic variance of /7' vec(B 1~ VriR, Vg, 1R2 Vr,c) reads:
v 31WU'0’51
where vy s defined as
( Ln® Ve Vik,  VerVih © I —Vam Vi, ® VigVik, )
with "A)Bl equals
( Ln @ VaimVak  VarVak @Iy —Var Vi, © Vair Vs, )

This result allows us to conduct the rank test. That is, the estimator B , and its estimated
/

5, are used for the rank test.

variance v 3, Wyv

E. Proof of Theorem 3
Proof. For R4, by the central limit theorem, we have:

VT(Ry = TBy0AG.eon) > by ~ N(0, Vr,r,)
Bg results from linear regression of Ry on Gy, so:

VTvee(By — 858) 5 vee(y) ~ N(0, Vi @ Ta)

where Y95 is the covariance matrix of residuals.

Similarly for [" that results from linear regression of Ry, on Ry
ﬁvec(f‘ - A vec(ps) ~ N(0, VR_;R2 ® (Vryr, — VRlevﬁ;RQVRle))

Note that 1, and 1, are independent (see Kleibergen 2009). By the same logic, 1, and 1

are also independent. So what remains to derive is cov(vec(1)y), vec(1)y)).
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For 1ﬂ3, using that VRle = VRle + \/LTURIR27 VR2R2 = VR2R2 + \/LTURQR27

I'= VromVih, 1
- (VR1R2 + \/LTUR1R2> <VR2R2 + \/LTUR2R2)
= VrimVigr, + 77 [UrimVigr, = VRir Vi, Urais Vi s + 00( )

so, with I' = Vg, g, VRjRg’
A d _ o N
VTvec(I —T) 5 (VR21R2 ® In,—1)vec(Ur,r,) — (VR21R2 ® VRlRQVR;R?)VeC(URQR2) = veels).
where, as in Appendix D,

UR1R2 - /815¢GG5,B,2 + ﬁléwlegG + ¢61G6//8/2 + ¢61€2
Ursry = B20%6c0" By + Ba0,a + ey By + Yoy,

cov(vec(Ur, gy ), vec(y)) = Kny—1)n, (810 ® aa) + 20 @ Xyo
cov(vec(Up,ry ), vec(¥s)) = (Inz + Knyn, ) (820 ® Ya2)

which implies that cov(vec(15), vec()y)) equals

K (ny-1)5 (B10© Vi, 1, %22) + Vi, 820 @ Z 10— (Vi 1, @ Vs R, Vi 1y ) (Inz + Ky, ) (820 @%5) = C

2

F. Proof of Corollary 2

Proof. Rewrite R — f‘Bg/\G,COU as follows.

Ri— féQ)\G,cou
= Ri—TBy0AG.con — (T By — T90) Accon
= Ri—TBy0A¢.co0 — (I' = T)B20AG,co0 — [(Bz — B30)Accov
= Ri—TBy00c,co0 — (' = T)B20AG o0 — D(Ba — B20)Ag,con — (I — T)(Baz — B20) A cov

5Notation: here 3,8 and e; are the beta and error that correspond to R; under Gy, while 3,8 and e; are
the beta and error that correspond to R;. Similarly, 315 = cov(ey, e2), while 315 = cov(eq, e2).
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Applying Theorem 3, we get vT(Ry — fEQAG7COU) A Py — TYoAGeow — V3890 AG con. Since T
has a full rank value, the last element of the above expression converges to zero for every value
of § since vT(I' = T) < .

For the analytical expression of the resulting variance, we use the elements in W from
Theorem 3. Specifically, for the three terms in ¢, —=I'5AG cov — 13590 AG cov, their variances read:
VRiR: S IG,COUVG_GI)\G,COU @'Y I" and (525)\61,00@),‘/]-‘.?2132 (B0 cov) @ (VrRiR: — VR Ro VR_2132 ViryRy)-

In addition, since 1), and 15 are not independent, we also consider the resulting covariance:

cov(vec(1hsB50MG con), V(T AGcon)) = [(B0AG.cov) © Iny—1]C(AGcon @ TV)

So the asymptotic variance of VT (7_21 — f‘Bz)\G7COU) results from combining the variance and

covariance terms above:

Vrir, + XG,COUV&})\G,COU R I'Egol" + (525)\G,cov)IVR_2132(525)\(;,@@) ®@ (Vrir: — VRiRs VR_QlRQ VroR,)
- {[(526)‘6',000)/ & [lel]C()\G,cov & FI)} - {[(525)\6',001))/ & [lel]c()\G,cov & F/)}/

G. p-value of FAR and MPAR tests for Table 6, Figures 3-7
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Figure 3: p-value of FAR and MPAR tests for Table 6 - I
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MPAR: p value
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Note: This figure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk
premium equals the corresponding value on the x-axis, using test assets in I. The 5% line is also plotted for
benchmark (dotted).
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Figure 4: p-value of FAR and MPAR tests for Table 6 - 11

MPAR: p value
T

FAR: p value
T

1
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05F
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Note: This figure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk
premium equals the corresponding value on the x-axis, using test assets in II. The 5% line is also plotted for
benchmark (dotted).
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Figure 5: p-value of FAR and MPAR tests for Table 6 - III

FAR: p value MPAR: p value
1 T T 1 T T
0.9 q 0.9
08 4 08
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—200 -180 -160 -140 -120 -100 -80 -60 -—-40 -20 o —-200 -180 -160 -140 -120 -100 -80 -60 -—-40 -20 o

Note: This figure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk
premium equals the corresponding value on the x-axis, using test assets in III. The 5% line is also plotted for
benchmark (dotted).

Figure 6: p-value of FAR and MPAR tests for Table 6 - IV

FAR: p value MPAR: p value
1 T 1 T
0.9 q 0.9+
08 B 08
07 B 07
06 B 06
05f B o5t
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03r
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—200 -150 -100 -50 o 50 100 150 200 —200 -150 -100 -50 o 50 100 150 200

Note: This figure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk
premium equals the corresponding value on the x-axis, using test assets in IV. The 5% line is also plotted for
benchmark (dotted).
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Figure 7: p-value of FAR and MPAR tests for Table 6 - V
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Note: This figure presents the p-values (solid) of the FAR (left) and MPAR (right) tests for testing risk

premium equals the corresponding value on the x-axis, using test assets in V. The 5% line is also plotted for

benchmark (dotted).
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