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Abstract

The reliability of tests on the risk premia in linear factor models is threatened by

limited sample sizes and weak identification of risk premia frequently encountered in

applied work. We propose novel tests on the risk premia that are robust to both limited

sample sizes and the identification strength of the risk premia as reflected by the quality

of the risk factors. These tests are appealing for empirically relevant settings, and lead

to confidence sets of risk premia that can substantially differ from conventional ones.

To show the latter, we revisit two high-profile empirical applications.
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1 Introduction

Over the past decades, it has become common practice to assess risk premia using the classic

Fama-MacBeth (FM) two-pass approach, see e.g. Fama and MacBeth (1973) and Shanken

(1992). It is based on the, so-called, linear beta representation of expected asset returns

(Cochrane (2001)) and is one of the default approaches to evaluate asset pricing models in

the financial economics literature, see e.g. Fama and French (1992). The large variety of risk

factors that this literature has proposed (see e.g. Lettau and Ludvigson (2001), Kroencke

(2017)) has, however, led to a growing concern that the reliability of the two-pass approach

is at risk for many of them. This concern results from two common issues that threaten

the two-pass approach: (i) the absence of large correlations between risk factors and asset

returns needed to identify the risk premia; and (ii) the rather small number of time-series

observations relative to the number of assets.

A strand of the literature shows a failure in identifying risk premia when the quality of

risk factors specified for the two-pass approach is unsatisfactory. Kan and Zhang (1999),

for instance, show that if risk factors are useless (so betas are zero), their risk premia are

unidentified and the commonly used FM t-statistic on risk premia tends to be spuriously

significant. Many observed risk factors are, however, not completely useless but just minorly

correlated with asset returns. For these factors, Kleibergen (2009) similarly warns that their

risk premia are only weakly identified, which also makes the FM t-statistic unreliable. These

findings lead to the emergence of the so-called identification robust tests on risk premia,

which, unlike the FM t-test, remain trustworthy regardless of the quality of risk factors. In

the ideal scenario where risk factors of good quality are used for the FM two-pass approach,

identification robust tests and the FM t-test both provide valid and comparable inference on

risk premia. In contrast, in empirical studies where the quality of risk factors is questionable,

identification robust tests are more trustworthy than the FM t-test. See, e.g., Kleibergen

(2009), Beaulieu, Dufour and Khalaf (2013), Khalaf and Schaller (2016), Kleibergen and

Zhan (2018).

Another strand of literature is concerned with the challenges that result from the limited
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sample sizes in empirical studies. Macroeconomic risk factors, in particular, are commonly

measured at quarterly or annual frequencies, so their number of time-series observations

T is usually not much larger than the number of test assets N . Take Kroencke (2017),

for example, the yearly consumption growth series from 1960–2014 has fifty-five time-series

observations, T = 55, while thirty portfolios, sorted by size, value and investment alongside

the market portfolio, are used as test assets, so N = 31. This limited T vs. large N setting

jeopardizes asymptotic tests on the risk premia, whose validity typically relies on a much

larger value of T compared to N (Newey and Windmeijer (2009)). To conduct valid inference

for limited sample sizes, researchers have therefore developed various finite-sample robust

methods. Gibbons, Ross and Shanken (GRS) (1989), for example, propose the GRS test for

portfolio efficiency, which circumvents the limit sample size problem by making distributional

assumptions. Similar assumptions are made in Kan and Zhou (2004) for deriving the exact

distribution of the Hansen-Jagannathan statistic. More recently, Kleibergen and Zhan (2019)

extend the GRS test to develop a finite-sample robust test on the risk premia.

Both strands of literature above are empirically relevant, since sample sizes in empirical

studies are often not sufficiently large to validate asymptotic tests, such as the FM t-test,

while it has been well documented that a large number of risk factors are of questionable

quality (Kleibergen and Zhan (2015)). Despite the fact that the above two strands of litera-

ture are well established, tests on risk premia that account for both the limited sample size

and the questionable quality of risk factors are lacking.

In light of the above, we propose novel tests on the risk premia, which are designed to

be robust to both the sample size and the quality of risk factors. We do so by providing the

exact finite-sample distributions of several identification robust test statistics, including those

in, e.g., Kleibergen (2009) and Beaulieu, Dufour and Khalaf (2013). Put differently, while

identification robust tests are asymptotically valid regardless of the quality of risk factors,

we extend these tests to finite-sample settings by constructing finite-sample distributions

of their test statistics. In line with Gibbons, Ross and Shanken (1989), Kleibergen and

Zhan (2019) and many others, these finite-sample distributions result from the (normality)
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assumptions of the error term in a linear factor model for asset returns.

We show that our proposed tests on risk premia work favorably in a simulation exper-

iment calibrated to real data. As expected, these tests are found particularly appealing in

simulation settings where the time-series dimension T is close to the cross-section dimension

N . In such settings, the proposed tests lead to correct sizes for testing hypotheses on risk

premia, while their asymptotic counterparts, i.e., the asymptotically valid tests, can suffer

from size distortion. On the other hand, when T is much larger than N, the proposed tests

become identical to the asymptotically valid identification robust tests, all of which are trust-

worthy regardless of the quality of risk factors. These numerical findings for the proposed

tests are all in line with our theoretical results.

To illustrate the practical relevance of our proposed tests, we revisit the empirical studies

on the consumption Capital Asset Pricing Model (CAPM) and the conditional consumption

CAPM in Kroencke (2017) and Lettau and Ludvigson (2001), respectively.1 Kroencke (2017)

focuses on the classic consumption CAPM, where consumption growth is the single risk

factor. The involved data set has T = 55 while N = 31 as aforementioned. Instead of

the single factor model, Lettau and Ludvigson (2001) propose a multi-factor conditional

consumption CAPM. We use their quarterly data from 1963Q3-1998Q3 with T = 141 and

N = 25 Fama-French portfolios sorted by size and book-to-market as test assets. In both

applications, we find that inverting the proposed tests leads to 95% confidence sets of risk

premia that are substantially different from those based on existing asymptotic tests. This

should not be surprising, since both in Lettau and Ludvigson (2001) and Kroencke (2017),

the limited T relative to N is unlikely to validate asymptotic tests. Moreover, the 95%

confidence sets resulting from the proposed tests are found to be unbounded, reflecting that

little information on risk premia is contained in the studied data sets. These empirical

results thus cast doubt on the pricing performance of the proposed risk factors in Lettau

and Ludvigson (2001) and Kroencke (2017).

Overall, our findings indicate that robustness to the quality of risk factors and robustness

1We thank these authors for providing their data.
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to the sample size should both be accounted for in asset pricing studies. Traditional asset

pricing tests that are not robust to the strength of identification reflected by the quality

of risk factors can lead to erroneous conclusions. Similarly, asymptotically valid tests that

do not account for limited sample sizes can also induce spurious empirical findings. We

simultaneously address these two empirically relevant issues.

The rest of the paper is organized as follows. Section 2 discusses the two issues that

threaten reliable inference on risk premia: lack of identification due to poor quality risk

factors and the limited sample size. It also introduces the two data sets from Kroencke

(2017) and Lettau and Ludvigson (2001) that we use to emphasize the empirical relevance of

our results. Section 3 presents the proposed test statistics and constructs their finite-sample

distributions. Section 4 contains a simulation study as well as applications using the data

from Lettau and Ludvigson (2001) and Kroencke (2017). Section 5 concludes. Technical

details are relegated to the Appendix.

2 Preliminaries

2.1 Linear beta representation and the two-pass approach

Premia on risk factors are identified by the linear beta representation of expected asset

returns (Cochrane (2001)):

E(Rt) = ιNλ0 + βλF = (ιN , β)

λ0

λF

 , (1)

with Rt an N × 1 vector of asset returns, ιN the N × 1 vector of ones, β an N ×K matrix

of factor loadings, λ0 the zero-beta return, and λF the K × 1 vector of risk premia.

The β matrix of factor loadings in (1) is related to a linear factor model for asset returns:

Rt = c+ βFt + ut, t = 1, ..., T, (2)
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with Ft a K × 1 vector of risk factors, c an N × 1 vector of constant terms, and ut an N × 1

vector of errors.

A large portion of the asset pricing literature is centered around inference on the risk

premia λF based on (1)-(2). The conventional two-pass procedure estimates β in the first

pass using the time-series regression in (2), so

β̂ =

(
T∑
t=1

R̄tF̄
′
t

)(
T∑
t=1

F̄tF̄
′
t

)−1

, (3)

with R̄t = Rt − R̄, R̄ = 1
T

∑T
t=1Rt, F̄t = Ft − F̄ , F̄ = 1

T

∑T
t=1 Ft; in the second pass, the risk

premia are estimated using a cross-sectional regression of the average asset returns R̄ on ιN

and β̂ estimated in the first pass:

 λ̂0

λ̂F

 =

[(
ιN , β̂

)′ (
ιN , β̂

)]−1 (
ιN , β̂

)′
R̄. (4)

2.2 Lack of identification and identification robust tests

The (ιN , β) matrix plays a crucial role for inference on risk premia (Kleibergen and Zhan

(2019)). If (ιN , β) has a full rank value, then λF is well defined by (1), and its estimator λ̂F

is consistent and asymptotically normally distributed under standard regularity conditions

(Shanken (1992)). It validates the common usage of the t-test on the risk premia. The full

rank condition of (ιN , β) is, however, plausibly violated in many empirical settings.

The pioneering study of Kan and Zhang (1999), for example, focuses on the useless factor

setting with β = 0. If β = 0, then λF is unidentified in (1), and Kan and Zhang (1999)

show that the FM t-test on risk premia becomes unreliable, i.e., its test statistic tends to

be significant, which thus spuriously supports useless risk factors. Kleibergen (2009) further

considers a so-called weak factor setting with β ≈ 0, since many risk factors proposed in

the literature exhibit just minor correlation with asset returns. Similar to the useless factor

setting, Kleibergen (2009) finds that risk premia on weak factors are not well identified,
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which further induces a malfunction of the FM t-test. In addition, Kleibergen and Zhan

(2019) show that β’s are often close to be constant over the different assets so there is little

cross-sectional variation in them. Kleibergen and Zhan (2019) warn that identification of

the risk premia is then similarly jeopardized, so the FM t-test also breaks down. All these

studies boil down to the full rank condition of (ιN , β), which is jeopardized if β = 0, β ≈ 0

or β ∝ ιN .

To provide empirical evidence that the full rank condition is plausibly violated, we use

data from Kroencke (2017) and Lettau and Ludvigson (2001). The resulting estimates of β

are presented in Table 1 and Table 2, respectively.

Re-produced from Kleibergen and Zhan (2019), Table 1 presents the estimated β’s using

the thirty-one test assets from Kroencke (2017) and five different consumption growth mea-

sures (“Reported”, “P-J”, “Q4-Q4”, “Garbage”, “Unfiltered”, see the notes to Table 1) from

the asset pricing literature. Kroencke (2017) proposes “Unfiltered” consumption growth as

a risk factor, which appears to outperform the other four consumption growth measures for

consumption-based asset pricing.

Table 1, however, suggests that the β’s for all five consumption growth measures are prob-

lematic. For example, the estimated β-vector for “Reported” consumption growth is not sta-

tistically different from zero. On the other hand, although the β’s for the “Garbage”and “Un-

filtered” consumption growth measures all appear sizeable, they exhibit little cross-sectional

variation so they are almost constant and proportional to a vector of ones. Kleibergen and

Zhan (2019) further conduct a rank test on (ιN , β) and find evidence that its full rank con-

dition is likely violated under each of the five consumption growth measures. The reported

estimates of the β’s in Table 1 thus cast doubt on the empirical findings in Kroencke (2017).

Similar to Table 1, Table 2 reports the estimated β’s using the twenty-five Fama-French

portfolios sorted by size and book-to-market for three risk factors (the quarterly consumption

growth 4c, the lagged consumption-wealth ratio cay and their interaction 4c × cay) taken

from Lettau and Ludvigson (2001). It is rather obvious in Table 2 that the last column of

the β-matrix, which corresponds to the 4c × cay risk factor, is not statistically significant
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Table 1: β with thirty-one portfolio returns

Reported P-J Q4-Q4 Garbage Unfiltered

β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat
(1) -1.30 -0.41 1.19 0.93 4.18 1.51 4.54 3.33 5.40 3.81

(2) -0.23 -0.09 1.14 1.06 4.42 1.93 4.06 3.52 4.70 3.98

(3) 0.14 0.06 0.99 1.06 4.15 2.09 3.74 3.86 3.80 3.64

(4) -0.52 -0.25 0.73 0.86 3.46 1.92 3.66 4.30 3.33 3.50

(5) -0.23 -0.11 0.73 0.85 3.74 2.06 3.62 4.30 3.33 3.44

(6) -0.84 -0.43 0.58 0.72 3.01 1.75 3.42 4.39 3.10 3.43

(7) -0.85 -0.44 0.49 0.63 2.73 1.63 3.51 4.90 2.95 3.32

(8) -0.59 -0.33 0.39 0.53 2.69 1.69 3.06 4.55 2.85 3.41

(9) -0.12 -0.07 0.30 0.43 2.75 1.87 2.61 3.98 2.48 3.16

(10) 0.34 0.20 0.64 0.92 2.97 2.01 3.14 4.53 2.60 3.29

(11) -0.95 -0.46 0.21 0.25 2.25 1.22 3.58 4.29 2.85 2.91

(12) -0.44 -0.25 0.60 0.81 2.77 1.77 3.15 4.22 2.59 3.09

(13) -0.63 -0.38 0.52 0.78 2.49 1.73 2.95 4.38 2.22 2.84

(14) -0.56 -0.31 0.07 0.10 2.26 1.39 2.51 3.10 2.04 2.28

(15) 0.88 0.53 0.46 0.67 3.14 2.19 2.75 3.89 2.25 2.85

(16) 0.73 0.45 0.58 0.88 3.04 2.19 2.86 4.49 2.62 3.56

(17) 0.96 0.56 0.71 1.03 3.50 2.40 2.93 4.53 2.81 3.61

(18) 1.21 0.65 1.05 1.40 4.27 2.72 3.17 4.35 3.33 4.02

(19) 1.23 0.67 1.09 1.47 3.97 2.56 2.86 3.65 2.96 3.53

(20) 1.77 0.84 1.32 1.56 5.22 2.98 2.93 3.26 4.21 4.67

(21) -0.50 -0.22 0.58 0.61 3.57 1.78 3.85 4.30 3.88 3.73

(22) -0.09 -0.05 0.66 0.88 3.14 1.98 3.00 4.10 3.15 3.82

(23) 0.37 0.23 0.54 0.81 2.84 2.02 2.94 4.49 2.27 2.96

(24) 0.44 0.31 0.54 0.92 2.96 2.40 2.84 5.30 2.25 3.38

(25) -0.50 -0.32 0.31 0.49 2.11 1.57 2.69 5.05 2.22 3.10

(26) 1.04 0.62 0.79 1.16 3.70 2.60 3.09 4.44 2.54 3.25

(27) 1.10 0.66 0.98 1.46 3.71 2.63 2.90 4.13 2.74 3.60

(28) 0.03 0.01 0.71 0.98 3.18 2.07 3.15 4.32 3.07 3.83

(29) -0.89 -0.41 0.17 0.19 2.44 1.26 3.54 3.82 2.70 2.59

(30) -1.40 -0.58 0.03 0.03 2.10 0.97 3.92 3.95 2.92 2.52

(31) 0.23 0.13 0.72 1.00 3.32 2.21 3.21 4.74 2.95 3.72

Notes: The thirty-one test assets are taken from Kroencke (2017), i.e., the thirty portfolios sorted

by size, value and investment, plus the market portfolio in 1960-2014 (yearly data). “Reported”,

“P-J”, “Q4-Q4”, “Garbage”and “Unfiltered” correspond to five consumption measures: (i) the con-

sumption expenditure on nondurable goods and services reported by National Income and Product

Accounts (NIPA) (“Reported”); (ii) the three-year consumption measure from Parker and Julliard

(2005) (“P-J”); (iii) the fourth-quarter to fourth-quarter consumption measure from Jagannathan

and Wang (2007) (“Q4-Q4”); (iv) the garbage measure in Savov (2011) (“Garbage”); (v) the unfil-

tered NIPA consumption measure in Kroencke (2017) (“Unfiltered”). Each of the five consumption

growth rates is used as the single risk factor for asset returns to estimate β.
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Table 2: β with twenty-five portfolio returns

4c cay 4c × cay

β̂1 t-stat β̂2 t-stat β̂3 t-stat
(1) 6.35 2.32 4.25 2.96 -4.56 -0.22

(2) 6.30 2.61 3.66 2.90 2.25 0.12

(3) 5.11 2.28 3.22 2.75 3.22 0.19

(4) 5.50 2.58 2.96 2.65 5.12 0.32

(5) 5.79 2.53 2.65 2.21 11.36 0.65

(6) 4.38 1.76 4.55 3.49 -15.82 -0.84

(7) 3.63 1.65 3.25 2.83 0.02 0.00

(8) 3.92 1.97 3.07 2.95 -1.08 -0.07

(9) 3.52 1.91 2.66 2.76 6.93 0.50

(10) 4.83 2.41 2.16 2.06 8.48 0.56

(11) 2.70 1.21 4.53 3.88 -22.20 -1.31

(12) 2.76 1.47 3.64 3.69 -3.35 -0.23

(13) 2.92 1.69 2.63 2.91 4.40 0.34

(14) 2.58 1.57 2.73 3.18 0.02 0.00

(15) 3.71 1.98 2.15 2.19 4.78 0.34

(16) 1.97 1.02 4.22 4.20 -20.28 -1.39

(17) 2.62 1.49 3.28 3.58 -10.24 -0.77

(18) 1.94 1.21 2.57 3.06 -4.98 -0.41

(19) 2.50 1.56 2.32 2.76 0.60 0.05

(20) 3.78 2.05 2.26 2.34 3.28 0.23

(21) 1.61 1.01 2.77 3.33 -21.22 -1.76

(22) 1.16 0.80 2.53 3.33 -4.20 -0.38

(23) 2.32 1.88 2.46 3.80 -8.27 -0.88

(24) 1.24 0.94 2.24 3.25 -10.49 -1.05

(25) 3.07 2.13 1.59 2.11 -1.25 -0.11

Notes: The twenty-five Fama-French portfolios sorted by size and book-to-market in 1963Q3-

1998Q3 (quarterly data) are used as test assets. The three risk factors taken from Lettau and

Ludvigson (2001) are the quarterly consumption growth 4c, the (lagged) consumption-wealth

ratio cay and their interaction 4c × cay. The 25× 3 dimensional β matrix is thus β = (β1, β2, β3),

where βi, i = 1, 2, 3, corresponds to the i-th factor.
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at the 5% level. We therefore can not rule out that a column of the β-matrix for this multi-

factor model equals zero, so the (ιN , β) matrix does not have a full rank value. This is also

consistent with the rank test results reported in Kleibergen and Zhan (2019). Consequently,

Table 2 raises doubts on the credibility of the empirical findings based on the FM t-test in

Lettau and Ludvigson (2001).

The β’s of questionable quality, such as those reported in Tables 1-2, have motivated Kan

and Zhang (1999), Kleibergen (2009) and thereafter Kleibergen and Zhan (2015, 2018, 2019),

to analyze their impact on the risk premia. It is now well acknowledged that inference on the

risk premia is sensitive to the strength of identification, as reflected by the full rank condition

of (ιN , β) or put differently, the quality of the risk factors that yield the factor loadings in

β. This has led to the so-called identification robust tests on the risk premia, whose validity

does not depend on the rank of (ιN , β), i.e., these tests remain trustworthy regardless of the

quality of the risk factors. An example of such a test is the factor Anderson-Rubin (FAR)

test proposed by Kleibergen (2009), which is an extension of the robust Anderson and Rubin

(1949) test in the instrumental variables regression literature, see also the Hotelling type test

in Beaulieu, Dufour and Khalaf (2013). Other examples of identification robust tests include

the Lagrange multiplier (LM) and likelihood ratio (LR) tests.

One potential drawback of these identification robust tests is, however, that many of

them are established using asymptotic arguments, so the validity of these tests often relies

on a large sample size, see, e.g., the FAR test in Kleibergen (2009). It is thus questionable

whether these tests perform well in finite-sample applications, which we discuss next.

2.3 Limited T vs. large N and finite-sample robust tests

Other than lack of identification due to the quality of risk factors, limited sample sizes also

impose challenges for inference on risk premia. The latter should come out naturally, since

validity of asymptotic tests, such as the FM t-test and the FAR test, requires a large number

of time-series observations T relative to the number of assets N . If T is small while N is

large, it becomes doubtful whether we can still approximate the distributions of the FM
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t-statistic and the FAR statistic by normal and chi-squared distributions, respectively. The

large number of assets N or in other words, many moment conditions, resembles the many

instruments issue in instrumental variables regression (Bekker and Kleibergen (2003), Bekker

(1994), Newey and Windmeijer (2009)).

The limited T vs. large N scenario is commonly encountered in empirical asset pricing

studies. For instance, Savov (2011) uses the annual garbage growth series from 1960–2006,

while the twenty-five Fama-French portfolios augmented by the ten industry portfolios, as

suggested by Lewellen, Nagel and Shanken (2010), are used as test assets. The resulting

limited T = 47 and relatively large N = 35 thus cast doubt on the FM t-test used in Savov

(2011). Similarly, the Kroencke (2017) data used for Table 1 uses the yearly unfiltered

consumption growth series for the time period 1960–2014, so T = 55, and thirty portfolios

sorted by size, value and investment alongside the market portfolio are used as test assets,

so N = 31. The simulation experiment in Kleibergen and Zhan (2019), however, shows

that neither the FM t-test nor the FAR test is size-correct under the limited T vs. large

N setting calibrated to Kroencke (2017). Given that many risk factors, like the garbage

growth in Savov (2011) and consumption growth in Kroencke (2017), are only available at

low frequencies and/or within short time periods, the limited T vs. large N problem similarly

affects many other empirical studies.

In view of the above, we aim to develop tests on risk premia that are immune to the limited

T vs. large N problem, and we label these tests as finite-sample robust tests. Meanwhile,

we also want these tests to remain trustworthy when the quality of risk factors is potentially

unsatisfactory. We therefore have a two-fold goal, i.e., providing tests that are reliable when

using risk factors of questionable quality as well as for limited sample sizes.

Kleibergen and Zhan (2019) develop two tests to meet this two-fold goal. First, they

construct a finite-sample version of the rank test from Kleibergen and Paap (2006) so it can

be used to test for a reduced rank value of (ιN , β) , implicating that the risk premia are not

identified, when N is large compared to T. Second, they extend the GRS test statistic from

Gibbons, Ross and Shanken (1989) so that it can be used for testing hypotheses on the risk
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premia. They refer to it as the GRS-FAR statistic, to reflect that it also results from the

FAR statistic in Kleibergen (2009) with an adjustment for the finite-sample setting. As in

Gibbons, Ross and Shanken (1989), Kleibergen and Zhan (2019) also assume that the error

term in the linear factor model (2) is normally distributed, in order to derive the finite-

sample F -distribution of the GRS-FAR statistic. Since this F -distribution does not depend

on the quality of the risk factors, the finite-sample robust GRS-FAR test is also robust to

the strength of identification.

In the next section, we propose several other tests, which, like the GRS-FAR test, are

robust to both the sample size and the strength of identification reflected by the quality of

the risk factors. Later on, we also show that these tests have comparable or even better

power than the GRS-FAR test. To facilitate comparison and understanding, we also discuss

the GRS-FAR test.

3 Analytical results

3.1 Null hypothesis and assumptions

Our interest lies in testing the hypothesis on the risk premia: H0 : λF = λF,0, with λF,0 the

hypothesized value of λF . We therefore delete λ0 in (1) by removing the N -th asset and

taking all other asset returns in deviation from the return on the N -th asset. The moment

condition (1) and the linear factor model (2) now become:

E(Rt) = BλF (5)

Rt = C + BFt + Ut (6)

where Rt = JNRt, C = JNc, B = JNβ, Ut = JNut with JN = (IN−1, −ιN−1), IN−1 is the

(N − 1)× (N − 1) identity matrix, and ιN−1 is the (N − 1)-dimensional vector of ones.

Remark 1. Our proposed test statistics are invariant to which asset return is to be

subtracted. Put differently, the choice of the N -th asset does not affect the resulting values
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of our statistics. See the Internet Appendix of Kleibergen and Zhan (2019).

Remark 2. In tests with excess returns, λ0 = 0 is sometimes imposed. See, e.g., Savov

(2011). With this zero-restriction, we do not have to remove the N -th asset, and (5)-

(6) are almost identical to (1)-(2) except for notation. Our tests can thus be extended

straightforwardly to incorporate the λ0 = 0 restriction.

Remark 3. The full rank condition of (ιN , β), which we discussed previously for identifying

risk premia, is equivalent to the full rank condition of B. Since we allow for risk factors of

questionable quality, we do not need to assume that B has a full rank value.

We make the following two assumptions for the linear factor model, both of which have

been used in the previous literature. Further explanations are provided under each assump-

tion.

Assumption 1. Ut is i.i.d. normally distributed with covariance Σ.

The normality assumption gives rise to the finite-sample distributions of the test statis-

tics proposed later on. This assumption is commonly adopted in the existing literature to

facilitate finite-sample analysis, see, e.g., Gibbons, Ross and Shanken (1989), Kan and Zhou

(2004). In addition, there also exists empirical evidence that distributions of some asset re-

turns could be approximated by the normal distribution (e.g., Kleibergen and Zhan (2019)).

We can as well replace normality with other distributional assumptions, and if we do so, the

finite-sample distributions of our proposed statistics can be derived in a similar fashion or

using simulation.

Assumption 2. Let F be the T×K matrix whose t-th row is F̄ ′t , and we assume that (ιT , F )

is a deterministic matrix of full rank.

The full rank condition of (ιT , F ), where ιT is the T -dimensional vector of ones, rules out

multi-collinearity of risk factors, so β and thus B are estimable using time-series regression.

Here we assume that risk factors are fixed, instead of imposing restrictions on their limiting

behaviors, in order to facilitate the finite-sample analysis of test statistics. The assumption

of fixed factors can be similarly found in, e.g., Gibbons, Ross and Shanken (1989). We could

13



allow for randomness of risk factors by regarding the proposed test statistics as conditional

random variables given the risk factors.

3.2 Test statistics and their finite-sample distributions

Under the null hypothesis H0 : λF = λF,0 and the moment condition (5), we have E(Rt) =

BλF,0, so the average returns R̄ = 1
T

∑T
t=1Rt should be centered around BλF,0. In order

to test H0 : λF = λF,0, we can examine whether R̄ − BλF,0 is centered around zero. This

motivates the test statistics we present next.

Put differently, our proposed test statistics do not rely on an estimator of λF . Instead, we

just examine whether the factor pricing condition (5) holds at the hypothesized risk premia

λF,0. A rejection of H0 : λF = λF,0 could result if (5) holds at a value other than λF,0, or if (5)

does not hold at any value of the risk premia, i.e., there exists model mis-specification.2 Since

our test statistics do not involve risk premia estimation, they remain trustworthy regardless

of the strength of risk premia identification, as reflected by the quality of risk factors or B.

For later use, we distinguish the following two estimators for B: a restricted least squares

estimator under the null,

B̃ =

(
T∑
t=1

Rt

(
F̄t + λF,0

)′)( T∑
t=1

(
F̄t + λF,0

) (
F̄t + λF,0

)′)−1

,

and an unrestricted least squares estimator,

B̂ =

(
T∑
t=1

R̄tF̄
′
t

)(
T∑
t=1

F̄tF̄
′
t

)−1

,

where R̄t = Rt − R̄ , F̄t is the demeaned factor similarly defined under (3).

Since R̄−B̃λF,0 and R̄−B̂λF,0 are natural choices to help examine whether E(Rt) = BλF,0

holds, we use them to construct test statistics. Under H0 : λF = λF,0 imposed on factor

2If H0 : λF = λF,0 is rejected for every hypothesized λF,0, then it signals that the adopted risk factors
are mis-specified for the factor pricing condition (5). In this case, mis-specification robust inference methods
can be adopted (see, e.g., Kan, Robotti and Shanken (2013)).

14



pricing and Assumptions 1-2, R̄−B̃λF,0 and R̄−B̂λF,0 are both normally distributed (N−1)-

dimensional vectors, and the distribution of one of these two vectors is just a scaled version

of the distribution of the other:3

√
T
(
R̄ − B̃λF,0

)
∼ N

(
0,
(

1− λ′F,0Q̂FF (λF,0)−1λF,0

)
⊗ Σ

)
, (7)

√
T
(
R̄ − B̂λF,0

)
∼ N

(
0,
(

1 + λ′F,0Q̂−1λF,0

)
⊗ Σ

)
, (8)

where Q̂FF (λF,0) = 1
T

∑T
t=1(F̄t + λF,0)(F̄t + λF,0)′, Q̂ = 1

T

∑T
t=1 F̄tF̄

′
t , and Σ is the covariance

of the error Ut in (6).

3.2.1 FAR and Hotelling (H) statistics

The FAR statistic in Kleibergen (2009) is based on the normal approximation of the R̄−B̃λF,0

vector. Similarly, the Hotelling (H) type test statistic (see Beaulieu, Dufour and Khalaf

(2013)) is based on the normal approximation of R̄−B̂λF,0. Both statistics can then be viewed

as the standardized lengths of these vectors, which explains their χ2 limiting distributions:

FAR(λF,0) =
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−1

(
R̄ − B̃λF,0

)
(9)

H(λF,0) =
T

1 + λ′F,0Q̂−1λF,0

(
R̄ − B̂λF,0

)′
Σ̂−1

(
R̄ − B̂λF,0

)
(10)

with Σ̂ a consistent estimator for the covariance matrix Σ. Unless specified otherwise, we

use

Σ̂ =
1

T −K − 1

T∑
t=1

(
R̄t − B̂F̄t

)(
R̄t − B̂F̄t

)′
as the covariance matrix estimator of Σ for the proposed test statistics.

Theorem 1. If the same covariance estimator Σ̂ is used for the FAR and Hotelling statistics,

then FAR(λF,0) = H(λF,0). Under H0 : λF = λF,0 and Assumptions 1-2, the FAR and H

3See Lemmas 1 and 2 in the Appendix. For ease of exposition, all proofs are provided in the Appendix,
so we can focus on our prime results in the main text.
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statistics converge to a χ2
N−1 distributed random variable, as T →∞ while N is fixed.

Proof: See the Appendix.4

Kleibergen and Zhan (2019) provide another interpretation of the FAR statistic by re-

lating it to the well-known GRS statistic. They show that R̄ − B̃λF,0 can be viewed as an

estimator of the constant terms (alphas) in a set of appropriately specified regressions of

asset returns on risk factors. While alphas are zero under the null, the FAR statistic, like

the GRS statistic, just tests whether alphas are zero. Therefore, we could also label the FAR

statistic as the GRS-FAR statistic, as in Kleibergen and Zhan (2019). Furthermore, the

FAR and Hotelling statistics are also proportional to the square of the Hansen-Jagannathan

distance evaluated at λF,0 with a properly chosen covariance estimator.

The asymptotic result in Theorem 1, however, is at risk in the finite-sample setting,

where the time-series dimension T may not be much larger than the cross-section dimension

N . We therefore adjust the FAR statistic (or equivalently, the H statistic) and derive its

finite-sample distribution, which is provided in Theorem 2.

Theorem 2. Under H0 : λF = λF,0 and Assumptions 1-2,

T −K −N + 1

(T −K − 1)(N − 1)
× FAR(λF,0) ∼ FN−1,T−K−N+1 (11)

where FN−1,T−K−N+1 is the F -distribution with N − 1, T −K −N + 1 degrees of freedom.

Proof. See the Appendix.

The finite-sample F -distribution in Theorem 2 indicates the importance of the time-series

dimension T relative to the cross-section dimension N . If T is much larger than N , then

it is straightforward to verify that the finite-sample result in Theorem 2 is equivalent to

the asymptotic result in Theorem 1. On the other hand, if T is close to N , which is not

uncommon in practice, then inference on risk premia based on Theorem 2 is expected to be

substantially different from that based on Theorem 1. The related simulation evidence can

4Theorem 1, as well as other asymptotic results presented later on, also holds under weaker conditions,
see Kleibergen (2009).
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be found in Kleibergen and Zhan (2019).

3.2.2 GLS-LM and JGLS statistics

As stated in Theorem 1, asymptotically the FAR statistic has a χ2 distribution with N − 1

degrees of freedom. Therefore, when we use a large number of test assets, so the degrees

of freedom increases, the FAR test becomes less powerful. This issue has been similarly

discussed for the Anderson and Rubin (1949) statistic in the instrumental variables regression

literature (Kleibergen (2002)).

To reduce the degrees of freedom and thus improve the power of tests on the risk premia,

Kleibergen (2009) decomposes the FAR statistic into two parts, the GLS-LM statistic and

the JGLS statistic, both can be used for testing H0 : λF = λF,0:

FAR(λF,0) = GLS-LM(λF,0) + JGLS(λF,0).

The GLS-LM statistic results from projecting Σ̂−
1
2

(
R̄ − B̃λF,0

)
on the column space

spanned by Σ̂−
1
2 B̃, so

GLS-LM(λF,0)

=
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−

1
2

′
P

Σ̂−
1
2 B̃

Σ̂−
1
2

(
R̄ − B̃λF,0

)
=

T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−1B̃

(
B̃′Σ̂−1B̃

)−1

B̃′Σ̂−1
(
R̄ − B̃λF,0

)
(12)

where P
Σ̂−

1
2 B̃

= Σ̂−
1
2 B̃
(
B̃′Σ̂−1B̃

)−1

B̃′Σ̂− 1
2

′
, Σ̂−1 = Σ̂−

1
2

′
Σ̂−

1
2 . Moreover, the GLS-LM statis-

tic can also be viewed as a quadratic form of the derivative of the FAR statistic (Kleibergen

(2009)).

Similarly, the JGLS statistic results from projecting Σ̂−
1
2

(
R̄ − B̃λF,0

)
on the space or-

thogonal to the one spanned by Σ̂−
1
2 B̃, so it equals FAR(λF,0)−GLS-LM(λF,0):
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JGLS(λF,0)

=
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−

1
2

′
(IN−1 − PΣ̂−

1
2 B̃

)Σ̂−
1
2

(
R̄ − B̃λF,0

)
(13)

By decomposing the FAR statistic as described above, the distributions of the resulting

GLS-LM and JGLS statistics have fewer degrees of freedom, as shown in Theorem 3.

Theorem 3. Under H0 : λF = λF,0 and Assumptions 1-2, the GLS-LM and JGLS statistics

converge to independent χ2
K and χ2

N−K−1 distributed random variables, respectively, as T →

∞ while N is fixed.

Proof: See the Appendix.

To make GLS-LM and JGLS tests applicable for the limited T vs. large N setting,

we similarly derive the finite-sample distributions of their (re-scaled) statistics. These are

provided in Theorem 4.

Theorem 4. Under H0 : λF = λF,0 and Assumptions 1-2,

GLS-LM(λF,0) ∼ ψ′W−1ψ − ψ′C (C ′WC)
−1
C ′ψ (14)

T −N + 1

(T −K − 1)(N −K − 1)
× JGLS(λF,0) ∼ FN−K−1,T−N+1 (15)

where ψ ∼ N (0, IN−1), W ∼ WN−1(T−K−1,IN−1)

T−K−1
(scaled Wishart distribution) independent of

ψ, and C is an arbitrary (N − 1)× (N −K − 1) matrix of full rank.

Proof: See the Appendix.

The finite-sample distribution of the GLS-LM statistic is non-standard, but, since it is

invariant to the specificaton of C, it does not depend on any further nuisance parameters

so its critical values can easily be obtained by simulation.5 The F -distribution of the JGLS

5To get the finite-sample critical values for GLS-LM, we can independently simulate ψ, W from normal
and Wishart distributions, respectively, and use an (N − 1) × (N − K − 1) full rank matrix for C. The
quantiles resulting from the simulated values of the GLS-LM statistic provide the critical values.
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statistic has degrees of freedom different from those for the finite-sample FAR statistic,

although both statistics take the limited T vs. large N problem into account.

3.2.3 FM-LM and JFM statistics

Next, we decompose the FAR statistic in an alternative manner, which is similar to the above

decomposition resulting in the GLS-LM and JGLS statistics. This decomposition leads to

yet two other test statistics, denoted by FM-LM and JFM respectively in Kleibergen (2009).

As shown later, it yields a test whose finite-sample distribution does not depend on N .

In particular, we project Σ̂−
1
2

(
R̄ − B̃λF,0

)
on the column space spanned by Σ̂

1
2 B̃ and

the associated orthogonal space, to construct the FM-LM and JFM statistics, respectively.

These two statistics can thus be written as:

FM -LM(λF,0)

=
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−

1
2

′
P

Σ̂
1
2 B̃

Σ̂−
1
2

(
R̄ − B̃λF,0

)
=

T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
B̃
(
B̃′Σ̂B̃

)−1

B̃′
(
R̄ − B̃λF,0

)
(16)

JFM(λF,0)

=FAR(λF,0)− FM -LM(λF,0)

=
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−

1
2

′
(IN−1 − PΣ̂

1
2 B̃

)Σ̂−
1
2

(
R̄ − B̃λF,0

)
(17)

with P
Σ̂

1
2 B̃

= Σ̂
1
2

′
B̃
(
B̃′Σ̂B̃

)−1

B̃′Σ̂ 1
2 , Σ̂ = Σ̂

1
2 Σ̂

1
2

′
.

Theorems 5 and 6 provide the asymptotic and finite-sample distributions for these statis-

tics, respectively.

Theorem 5. Under H0 : λF = λF,0 and Assumptions 1-2, the FM-LM and JFM statistics

converge to independent χ2
K and χ2

N−K−1 distributed random variables, respectively, as T →

∞ while N is fixed.

Proof: See the Appendix.
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Theorem 6. Under H0 : λF = λF,0 and Assumptions 1-2,

T − 2K

(T −K − 1)K
× FM-LM(λF,0) ∼ FK,T−2K (18)

JFM(λF,0) ∼ ψ′W−1ψ − ψ′C (C′WC)
−1

C′ψ (19)

where ψ, W are as in Theorem 4, while C is an arbitrary (N − 1)×K matrix of full rank.

Proof: See the Appendix.

It is worth noting that the finite-sample F -distribution of the FM-LM statistic in Theorem

6 has a nice feature: its degrees of freedom do not depend on the number of assets N . This

statistic can thus be used to overcome the deficiency due to the presence of many assets, for

which we provide simulation evidence later on.

3.2.4 Split-sample CLR (sCLR) statistic

The conditional likelihood ratio (CLR) test for H0 : λF = λF,0 resembles the CLR test in

Moreira (2003) for linear instrumental variables regression. In the single factor case, the

CLR statistic has a closed form expression:

CLR(λF,0)

=
1

2

{
FAR(λF,0)− r(λF,0) +

√
(FAR(λF,0) + r(λF,0))2 − 4r(λF,0)JGLS(λF,0)

}
(20)

where r(λF,0) = Q̂FF (λF,0)B̃′Σ̂−1B̃ corresponds to a rank test statistic for testing rank(B) = 0

provided λF = λF,0, and it measures the strength of the risk premia identification. When

r(λF,0) equals zero, so there is no identification, the CLR statistic is identical to the FAR

statistic. On the other hand, for large values of r(λF,0), the CLR statistic is close to the

GLS-LM statistic. Therefore, the CLR statistic can also be regarded as a data-dependent

weighted average of the FAR and GLS-LM statistics.

Asymptotically, r(λF,0) is independent of FAR(λF,0) and JGLS(λF,0), so the conditional

limiting distribution of the CLR statistic given the realized value of r(λF,0) results from
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combining the independent limiting distributions of the GLS-LM and JGLS statistics whose

sum makes up the FAR statistic. The conditional critical values of the CLR statistic can

then straightforwardly be simulated for any given value of r(λF,0) in the manner of Mor-

eira (2003), see also Kleibergen (2009). In the finite-sample setting, however, FAR(λF,0)

and JGLS(λF,0) are no longer independently distributed of r(λF,0), which complicates the

derivation of conditional finite-sample critical values for the CLR statistic. To address this

issue, we propose to conduct a CLR test by usage of the split-sample CLR (sCLR) statistic.

Specifically, the full sample with t = 1, · · · , T , is divided into two parts: t = 1, · · · , T1

for the first sub-sample, while t = T1 + 1, · · · , T for the second. We use the first sub-sample

to estimate Σ, which is only used for calculating r(λF,0). All the other parts of the CLR

statistic are computed using the second sub-sample. The resulting CLR statistic is labeled:

the sCLR statistic. The r(λF,0) statistic used for the sCLR statistic is then independent of

the FAR(λF,0) and JGLS(λF,0) statistics. We can thus provide the finite-sample distribution

of the sCLR statistic, as in the next theorem.

Theorem 7. Under H0 : λF = λF,0 and Assumptions 1-2 with K = 1, the sCLR(λF,0)

statistic conditional on the rank statistic r has the distribution:

1

2

(
ψ′W−1ψ − r +

√
(ψ′W−1ψ + r)2 − 4rψ′C (C ′WC)−1C ′ψ

)

where ψ, W, C are as in Theorem 4, except that T − T1 replaces T for the (second) sample

size, and r is the rank statistic whose Σ̂ results from the first sample with t = 1, · · · , T1.

Proof: See the Appendix.

The split-sample CLR test is, however, not always feasible. If T is too close to N, the

two split-sample sizes, T1 and T − T1, may not exceed N . Yet we require the time-series

dimension to at least exceed the cross-section dimension for our proposed tests. For example,

the degrees of freedom in Theorem 2 implicitly implies that we need T − K − N + 1 > 0.

In the single factor model with K = 1, T − K − N + 1 > 0 reduces to T > N . For the

split-sample CLR statistic, both T1 and T − T1 thus have to exceed N so T has to exceed
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2N. For this reason, we focus on the FAR test and its components, the GLS-LM, JGLS,

FM-LM and JFM tests, rather than the CLR test.

3.3 Subset FAR (sFAR) statistic

So far we have focused on testing a joint hypothesis specified on all risk premia: H0 : λF =

λF,0. To construct a confidence set of each individual risk premium in multi-factor models,

we can just project out the joint confidence set which can be computed using tests of the

joint hypothesis specified on all risk premia. Alternatively, Kleibergen (2009) and Kleibergen

and Zhan (2019) use a subset FAR (sFAR) statistic. We provide the asymptotic and finite-

sample behaviors of the sFAR statistic in Theorems 8 and 9, respectively. We refrain from

constructing the asymptotic and finite-sample behaviors of the other statistics since these,

unlike for the sFAR statistic, need the risk premia left unrestricted by the hypothesis of

interest to be well identified.

For the K × 1 dimensional vector of risk premia λF = (λF,1, λF,2, ..., λF,K)′, consider its

partition such that λF = (λF,1, λ
′
2)′ with λ2 = (λF,2, ..., λF,K)′. Our objective is to test the

null hypothesis H0 : λF,1 = λ0
F,1. The corresponding sFAR statistic, denoted by sFAR(λ0

F,1),

results from minimizing the FAR statistic under the hypothesized λ0
F,1:

sFAR(λ0
F,1) = min

λ2
FAR

(
(λ0

F,1, λ
′

2)′
)
,

which equals the minimum eigenvalue of a characteristic polynomial.6

Theorem 8. Under H0 : λF,1 = λ0
F,1 and Assumptions 1-2, as T →∞ while N is fixed, the

limiting distribution of the sFAR(λ0
F,1) statistic is bounded by the χ2

N−K distribution, i.e.,

sFAR(λ0
F,1) � χ2

N−K . (21)

6Consider

∣∣∣∣∣µ
(

1 + λ
′

F,1Q̂
−1
FF,11λF,1 −λ′

F,1Q̂
−1
FF,12

−Q̂−1FF,21λF,1 Q̂−1FF,22

)
−
(
R̄ − B̂1λF,1, B̂2

)′
Σ̂−1

(
R̄ − B̂1λF,1, B̂2

)∣∣∣∣∣ = 0 with

Q̂−1FF =

(
Q̂−1FF,11 Q̂−1FF,12

Q̂−1FF,21 Q̂−1FF,22

)
, B̂ =

(
B̂1, B̂2

)
. The sFAR(λ0F,1) statistic equals T times the smallest root.
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Proof: See the Appendix.

Theorem 9. Under H0 : λF,1 = λ0
F,1 and Assumptions 1-2, the scaled sFAR(λ0

F,1) statistic,

T−N
(T−K−1)(N−K)

sFAR(λ0
F,1), is in finite samples bounded by the FN−K,T−N distribution, i.e.,

T −N
(T −K − 1)(N −K)

× sFAR(λ0
F,1) � FN−K,T−N . (22)

Proof: See the Appendix.

4 Numerical and empirical results

4.1 Simulation evidence

To illustrate the performance of our proposed tests, we conduct a simple simulation study.

For the data generating process (DGP), we consider a single factor model:

Rt = c+ βFt + ut, with Ft ∼ NID(0, Vf ), ut ∼ NID(0,Ω),

where c, β, Vf and Ω are calibrated to data from Kroencke (2017). We set c = ιNλ0 + βλF ,

so the moment condition (1) holds.

4.1.1 Size

Using the simulated data of Ft and Rt from the DGP, we test H0 : λF = 2 at the 5%

significance level for generating the sizes presented in Figure 1. In particular, we fix the

time-series sample size at T = 55 to mimic the Kroencke (2017) study, while we consider a

sequence of values for the number of test assets N , up to N = 31. The FAR, GLS-LM, JGLS,

FM-LM and JFM tests described in the last section are implemented, using both their finite-

sample and asymptotic critical values. The simulated sizes result from 1000 Monte Carlo

replications.

Figure 1 shows that all finite-sample robust tests (dashed curves) have actual sizes close
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Figure 1: Simulated sizes as a function of the number of test assets N with T = 55. Dashed
curves for finite-sample robust tests: FAR, dashed black; GLS-LM, dashed blue; JGLS,
dashed magenta; FM-LM, dashed red; JFM, dashed green. Solid curves for asymptotically
valid tests: FAR, solid black; GLS-LM, solid blue; JGLS, solid magenta; FM-LM, solid red;
JFM, solid green. The null hypothesis is H0 : λF = 2 in a single factor CAPM calibrated to
Kroencke (2017). The significance level is 5%.
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Figure 2: This figure is generated in the same manner as Figure 1 above, except that we fix
T at T = 500.
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to the nominal 5%, regardless of the value of N . This is in sharp contrast with the asymp-

totically valid tests (solid curves), whose sizes tend to exceed the nominal 5% as N increases.

When N is small, so it is far below T , we observe in Figure 1 that asymptotic tests are close

to be size-correct. On the other hand, when N is large, so the limited T vs. large N problem

becomes severe, asymptotic tests (except FM-LM) exhibit size distortion while finite-sample

robust tests remain trustworthy. All these findings are in line with our earlier analysis.

It is worth emphasizing that the FM-LM test performs well using either finite-sample

(dashed red) or asymptotic (solid red) critical values. This is explained by Theorem 6,

where N does not appear in the degrees of freedom of the finite-sample distribution of the

FM-LM statistic. Put differently, while the limited T vs. large N problem affects many

asymptotically valid tests, it is less so for the FM-LM test. This feature makes the FM-LM

test more appealing than the FAR, GLS-LM, JGLS and JFM tests for limited T vs. large

N.

Figure 1 is to be compared with Figure 2, for which we increase T from 55 to 500.

Under the large T = 500, Figure 2 shows that both the asymptotically valid tests (solid)

and finite-sample robust tests (dashed) have actual sizes near the nominal 5%. This further

demonstrates the importance of the T vs. N issue. If researchers adopt a large number of

test assets, such as N = 31 assets in Kroencke (2017), or N = 35 as in Savov (2011), then a

much larger T is generally needed to validate asymptotic tests. This argument also applies

to the identification robust FAR, GLS-LM, JGLS and JFM tests when using asymptotic

critical values. Kleibergen and Zhan (2019) provide similar simulation evidence for the FM

t-test, whose size not only suffers from the limited T vs. large N problem, but also relies on

risk factors of satisfactory quality.

4.1.2 Power

Next, we briefly analyze the power performance of our proposed tests. To do so, we vary λF

imposed in the DGP described above and keep testing H0 : λF = 2, which is close to the

point estimate of the consumption risk premium reported in Kroencke (2017). To facilitate
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comparison, we consider two scenarios: (i) N = 31 and T = 55, as in Kroencke (2017); (ii)

N = 31 and T = 500. The simulated power curves for these two scenarios are presented in

Figures 3 and 4, respectively.

The left hand side panel of Figure 3 shows that finite-sample robust tests are all size-

correct in our simulation study calibrated to Kroencke (2017), and these tests have good

power. The power curves of the GLS-LM and FM-LM tests show a sudden decline in power

which results since they are (functions of) quadratic forms of the derivative of the FAR

statistic with respect to the risk premium. The power decline therefore occurs from this

derivative not only being zero at the minimizer of the FAR statistic. Andrews, Moreira and

Stock (2006) show that the CLR statistic is optimal for testing in the homoskedastic linear

instrumental variables regression model with one structural parameter, since it optimally

combines the GLS-LM and JGLS statistic using the conditioning statistic. Since the condi-

tioning statistic is not independently distributed from the GLS-LM and JGLS statistics, we

can not use it here.

In contrast, the right hand side panel of Figure 3 shows that among the examined asymp-

totically valid tests, only the FM-LM test appears to be size-correct for the N = 31 and

T = 55 setting. This is consistent with Figure 1 as well as Theorem 6.

Figure 3 is to be compared with Figure 4, for which we consider T = 500. The two panels

of Figure 4 now appear similar to each other, since both the finite-sample robust tests and

the asymptotic tests are expected to be valid when T is sufficiently large. Similar to the

left hand side panel of Figure 3, Figure 4 also suggests that the power performances of the

examined tests are comparable to each other.

Kleibergen (2009) discusses how the power decline of GLS-LM and FM-LM tests, as

shown in Figure 3, can be avoided by sequentially testing the risk premia using either the

independent GLS-LM and JGLS tests or the FM-LM and JFM tests. For illustration, here

we consider a combination such that a 96% critical value is applied to GLS-LM and a 99%

critical value to JGLS, so the overall size equals 5%. Similarly, we also consider the combined

test using FM-LM (96%) and JFM (99%).
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Figure 3: Simulated power curves with N = 31 and T = 55. Dashed curves for finite-sample
robust tests in the left panel: FAR, dashed black; GLS-LM, dashed blue; JGLS, dashed
magenta; FM-LM, dashed red; JFM, dashed green. Solid curves for asymptotically valid
tests in the right panel: FAR, solid black; GLS-LM, solid blue; JGLS, solid magenta; FM-
LM, solid red; JFM, solid green. The null hypothesis is H0 : λF = 2 in a single factor CAPM
calibrated to Kroencke (2017). The significance level is 5%.
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Figure 4: This figure is generated in the same manner as Figure 3 above, except that we fix
T at T = 500.
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Figure 5: Simulated power curves with N = 31 and T = 55. Dashed curves for finite-sample
robust tests in the left panel: FAR, dashed black; a combined test of GLS-LM (96%) and
JGLS (99%), dashed blue; a combined test of FM-LM (96%) and JFM (99%), dashed red.
Solid curves for asymptotically valid tests in the right panel: FAR, solid black; a combination
of JGLS and GLS-LM, solid blue; a combination of JFM and FM-LM, solid red. In both
panels, the dotted brown power curve is for the FM t-test with the Shanken (1992) correction,
using critical values from the normal distribution. The null hypothesis is H0 : λF = 2 in a
single factor CAPM calibrated to Kroencke (2017). The significance level is 5%.
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Figure 6: This figure is generated in the same manner as Figure 5 above, except that we fix
T at T = 500.
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Figure 5 presents the power curves of the GLS-LM and JGLS combined test and the

FM-LM and JFM combined test in the N = 31 and T = 55 setting. For comparison, we

also present the power curves of the FAR test and the FM t-test with the Shanken (1992)

correction.

The left hand side panel of Figure 5 shows that the power decline in Figure 3 is no longer

in place, once we combine tests in the manner suggested by Kleibergen (2009). Moreover, the

GLS-LM and JGLS combined test (dashed blue) appears more powerful than the FM-LM

and JFM combined test (dashed red) and the FAR test (dashed black). On the other hand,

the FM t-test (dotted brown) exhibits size distortion, since it over-rejects H0 : λF = 2. The

right hand side panel of Figure 5 again shows that the asymptotic counterparts of these tests

do not function well in the N = 31 and T = 55 setting.

Figure 5 is to be compared with Figure 6, where T is increased to 500. Under this large

value of T , the two panels in Figure 6 are, as expected, almost indistinguishable. Figure 6

also shows that the FM t-test starts to perform well under the large T = 500. However, its

power curve lies below those of robust tests, i.e., it appears to be less powerful.

4.2 Risk premia in the consumption CAPM

We use our proposed tests to analyze risk premia in the consumption CAPM and conditional

consumption CAPM. The data sets from Kroencke (2017) and Lettau and Ludvigson (2001)

are adopted to facilitate comparison. The yearly data taken from Kroencke (2017) has

T = 55 and N = 31, while the quarterly data taken from Lettau and Ludvigson (2001) has

T = 141 and N = 25. The detailed description of the involved test assets and risk factors is

provided for Tables 1-2, where the estimated β’s are reported.

For ease of exposition, we present the p-value plots resulting from testing risk premia

using our proposed tests. A p-value larger than, say, 5%, implies that we could not reject

the null at the 5% significance level. Thus if we find that the p-value curves are all above

the 5% line, then we can not reject any hypothesized value of the risk premium, i.e., the

95% confidence sets of the risk premium is unbounded. In contrast, if the p-value curves
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cross the 5% line, then we can reject those hypothesized values of the risk premium whose

corresponding p-values are below 5%. Finally, if the p-value curves lie fully below the 5%

line, then we reject every hypothesized value of the risk premium.

Figure 7 provides the p-value curves resulting from testing the consumption risk premium

using the data from Kroencke (2017). We use five of our proposed tests: FAR, GLS-LM,

JGLS, FM-LM and JFM.7 Overall, the p-value curves based on the finite-sample robust tests

(dashed black) imply unbounded 95% confidence sets of the consumption risk premium. In

particular, the p-values from the finite-sample FAR, GLS-LM, JGLS and JFM tests are all

above 5%, so the resulting confidence sets are unbounded. Only the FM-LM test has some

of its p-values below 5%, for some hypothesized risk premia near zero. Therefore, only these

hypothesized values can be rejected at the 5% level, and the 95% confidence set resulting from

the FM-LM test is thus unbounded but disjoint. The unboundedness of the 95% confidence

sets reflects both the questionable quality of the consumption growth data and the limited

sample size, and casts doubt on the findings in Kroencke (2017) based on the FM t-test,

which we re-produce in Panel A of Table 3. Dufour (1997) and Kleibergen and Zhan (2019)

provide further detailed explanations for why confidence sets resulting from robust tests can

be unbounded. In particular, Kleibergen and Zhan (2019) show that unbounded confidence

sets commonly occur, if risk premia are unidentified due to poor quality risk factors, and/or

the involved time series is short, so little information on risk premia can be extracted from

the data.

Figure 7 also shows the large discrepancy between finite-sample robust tests (dashed

black) and asymptotically valid tests (solid red). Most striking is that the asymptotic

FAR, JGLS and JFM tests reject every hypothesized risk premium, while their finite-sample

counterparts do not. The FM-LM test distinguishes itself from the other tests, since its

finite-sample and asymptotic versions lead to almost identical p-values. This should not be

surprising, since Theorem 6 shows that the FM-LM test does not suffer from the limited T

vs. large N problem. As long as T exceeds 2K by a large enough margin, the finite-sample

7Since T = 55 while N = 31, we do not employ the sCLR test which needs T > 2N.
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Figure 7: p-values of the FAR, GLS-LM, JGLS, FM-LM and JFM tests for testing the
values of the consumption risk premium on the horizontal axis. Dashed black curves result
from the finite-sample critical values of these test statistics, while solid red curves of p-
values result from the asymptotic critical values. The test assets (thirty portfolios sorted by
size, value and investment, plus the market portfolio) and the single risk factor (unfiltered
consumption growth) in 1960–2014 are taken from Kroencke (2017). The 5% benchmark
line is also plotted.
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Table 3: Conventional 95% confidence intervals of risk premia

A. Kroencke (2017) B. Lettau and Ludvigson (2001)

4c 4c cay 4c×cay
Estimate of λF 2.04 0.02 -0.13 0.06

FM t 2.18 0.20 -0.43 3.12
95% C.I. by FM t (0.20, 3.88) (-0.20, 0.25) (-0.70, 0.45) (0.02, 0.09)

Shanken t 1.75 0.15 -0.31 2.25
95% C.I. by Shanken t (-0.24, 4.32) (-0.29, 0.34) (-0.93, 0.68) (0.01, 0.11)

Notes: The estimate of λF and the FM t-statistic result from the Fama-MacBeth (1973) two-

pass procedure. The t-statistic with the Shanken (1992) correction is also presented. 95% C.I.s

are constructed by inverting the t-tests. For the consumption CAPM, we replicate the Kroencke

(2017) study: the yearly unfiltered consumption growth in 1960-2014 is used for 4c, while thirty

portfolios sorted by size, value and investment, plus the market portfolio, are used as test assets.

For the conditional consumption CAPM, we replicate the Lettau and Ludvigson (2001) study: the

quarterly consumption growth 4c, the (lagged) consumption-wealth ratio cay and their interaction

in 1963Q3-1998Q3 are used as three risk factors, while twenty-five Fama-French portfolios sorted

by size and book-to-market are used as test assets.

adjusted FM-LM test is almost equivalent to its asymptotic counterpart.

Identical to Figure 7, Figure 8 provides p-value plots based on the sFAR test for each

of the three risk premia in the conditional consumption CAPM in Lettau and Ludvigson

(2001). They are used to construct the 95% confidence sets of each of the risk premia, to

contrast with the conventional ones presented in Panel B of Table 3.8

Figure 8 shows that the finite-sample adjusted sFAR test (dashed black) leads to un-

bounded 95% confidence sets of the risk premium on each of the three risk factors in the

model (4c: consumption growth; cay: the lagged consumption-wealth ratio; 4c× cay: their

interaction). In contrast, 95% confidence sets based on the asymptotic sFAR test (solid red)

are unbounded and disjoint for 4c and cay, since only a bounded set of hypothesized risk

premia are associated with p-values below 5%. Furthermore, for the interaction term 4c×

cay, both the finite-sample and the asymptotic p-value curves lie above 5%, so they suggest

an unbounded 95% confidence set. Lettau and Ludvigson (2001), on the other hand, report

8For our other proposed tests, the 95% confidence sets for the individual risk premium result from
projecting the 95% joint confidence sets of all three risk premia on the separate axes reflecting each risk
premium. We therefore refrain from using them to construct the 95% confidence sets for the individual risk
premium.
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Figure 8: p-values of the sFAR test for testing the values of risk premia on the horizontal
axis. Dashed black curves result from the sFAR test using the finite-sample F -critical values,
while solid red curves of p-values result from the asymptotic χ2-critical values. The test assets
(twenty-five Fama-French portfolios sorted by size and book-to-market ratio) and three risk
factors (∆c, cay, ∆c× cay) in 1963Q3-1998Q3 are taken from Lettau and Ludvigson (2001).
The 5% benchmark line is also plotted.
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a significant FM t-statistic on the interaction term to help establish their conditional con-

sumption CAPM, which we re-produce in Panel B of Table 3. In contrast with Lettau and

Ludvigson (2001), the unbounded confidence sets implied by Figure 8 thus put the significant

risk premium by the FM t-test under doubt, see also Kleibergen (2009) and Kleibergen and

Zhan (2019).

Finally, it is worth emphasizing that the unbounded confidence sets of risk premia in

Figures 7-8 are in line with the corresponding β estimates in Tables 1-2. As indicated by

Tables 1-2, we can not rule out that the full rank condition of (ιN , β) is violated in a statistical

sense. If the full rank condition does not hold, then the risk premia λF in (1) are unidentified.

Any real value can thus become possible for the unidentified λF , which consequently leads

to the unbounded confidence sets in Figures 7-8.

5 Conclusions

We provide finite-sample distributions for the identification robust statistics testing risk

premia in the beta representation of expected asset returns. By doing so, we make these

tests suitable for empirical settings where sample sizes are often limited and the quality of risk

factors is questionable. The size and power performances in Monte Carlo simulations show

that these tests work favorably, and their empirical usage is illustrated using two well-known

applications.
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Appendix

In this Appendix, we provide the proofs for the analytical results stated in the main text.

These proofs build on Lemmas 1 and 2 below.

Lemma 1. For any given λF,0,

B̃ = B̂ −
(
R̄ − B̂λF,0

)
 1

−λF,0


′1 0

0 Q̂


 0

IK


 1

−λF,0


′1 0

0 Q̂


 1

−λF,0


, (23)

R̄ − B̃λF,0 =
1

1 + λ′F,0Q̂−1λF,0

(
R̄ − B̂λF,0

)
, (24)

where Q̂ =
(∑

t F̄tF̄
′
t

)
/T .

Proof of Lemma 1:

Q̂ =

(∑
t

F̄tF̄
′
t

)
/T (25)

Q̂FF (λF,0) =

(∑
t

(F̄t + λF,0)(F̄t + λF,0)′

)
/T = Q̂+ λF,0λ

′
F,0 (26)

where the last equality results from the fact that F̄t are demeaned factors. Using (A+ aa′)−1 =

A−1 − 1
1+a′−1a

A−1aa′−1, we have

Q̂FF (λF,0)−1 =
(
Q̂+ λF,0λ

′
F,0

)−1

= Q̂−1 − 1

1 + λ′F,0Q̂−1λF,0
Q̂−1λF,0λ

′
F,0Q̂−1 (27)

which implies

1− λ′F,0Q̂FF (λF,0)−1λF,0 =
1

1 + λ′F,0Q̂−1λF,0
(28)
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Plugging Equation (27) into B̃, which can be rewritten as B̃ = 1
T
R′
(
ιTλ

′
F,0 + F

)
Q̂FF (λF,0)−1

with F = (F̄1, ..., F̄T )′ and R = (R1, ...,RT )′, we get:

B̃ =
1

T
R′
(
ιTλ

′
F,0 + F

)
Q̂FF (λF,0)−1

=
1

T
R′F

(
Q̂−1 − 1

1 + λ′F,0Q̂−1λF,0
Q̂−1λF,0λ

′
F,0Q̂−1

)
+ R̄λ′F,0Q̂FF (λF,0)−1

=B̂ − 1

1 + λ′F,0Q̂−1λF,0
B̂λF,0λ′F,0Q̂−1 + R̄λ′F,0Q̂FF (λF,0)−1

=B̂ − 1

1 + λ′F,0Q̂−1λF,0
B̂λF,0λ′F,0Q̂−1 + R̄λ′F,0

(
Q̂−1 − 1

1 + λ′F,0Q̂−1λF,0
Q̂−1λF,0λ

′
F,0Q̂−1

)

=B̂ − 1

1 + λ′F,0Q̂−1λF,0
B̂λF,0λ′F,0Q̂−1 +

1

1 + λ′F,0Q̂−1λF,0
R̄λ′F,0Q̂−1

=B̂ −
(
R̄ − B̂λF,0

) −λ′F,0Q̂−1

1 + λ′F,0Q̂−1λF,0
(29)

which then implies the following Equations (30) and (31):

B̃ = B̂ −
(
R̄ − B̂λF,0

)
 1

−λF,0


′1 0

0 Q̂−1


 0

IK


 1

−λF,0


′1 0

0 Q̂−1


 1

−λF,0


(30)

B̃λF,0 = B̂λF,0 −
(
R̄ − B̂λF,0

) −λ′F,0Q̂−1λF,0

1 + λ′F,0Q̂−1λF,0
(31)

From Equation (31), it results that

R̄ − B̃λF,0 =
1

1 + λ′F,0Q̂−1λF,0

(
R̄ − B̂λF,0

)
(32)

Q.E.D.
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Remarks. Lemma 1 also implies

B̃ −
(
R̄ − B̃λF,0

)
λ′F,0Q̂−1 = B̂. (33)

If the model is correctly specified, the term
(
R̄ − B̃λF,0

)
is asymptotically zero, so the two

estimators B̃ and B̂ are asymptotically equivalent.

Lemma 2. Under H0 : λF = λF,0 and Assumption1 1-2,

√
T
(
R̄ − B̂λF,0

)
∼ N

(
0,
(

1 + λ′F,0Q̂−1λF,0

)
⊗ Σ

)
, (34)

√
T
(
R̄ − B̃λF,0

)
∼ N

(
0,
(

1− λ′F,0Q̂FF (λF,0)−1λF,0

)
⊗ Σ

)
, (35)(

R̄ − B̂λF,0
)
⊥ B̃, (36)(

R̄ − B̃λF,0
)
⊥ B̃, (37)(

R̄ − B̂λF,0
)
⊥ Σ̂, (38)(

R̄ − B̃λF,0
)
⊥ Σ̂, (39)

Σ̂ =
1

T −K − 1

∑
t

(
R̄t − B̂F̄t

)(
R̄t − B̂F̄t

)′
∼ WN−1(T −K − 1,Σ)

(T −K − 1)
, (40)

R̄ ⊥ B̂, R̄ ⊥ Σ̂, B̂ ⊥ Σ̂, B̃ ⊥ Σ̂. (41)

Proof of Lemma 2: We only need to show (34) (37) (38)(40). The proof of these results,

together with Lemma 1, implies the rest of Lemma 2.

(1) Show
√
T
(
R̄ − B̂λF,0

)
∼ N

(
0,
(

1 + λ′F,0Q̂−1λF,0

)
⊗ Σ

)
:

√
T
(
R̄ − B̂λF,0

)
=
√
T
(
R̄ − BλF,0 −

(
B̂ − B

)
λF,0

)
=
√
T
(
Ū −

(
B̂ − B

)
λF,0

)
=
√
T
(
U ′ιT (ι′T ιT )

−1 − U ′F (F ′F )
−1
λF,0

)
=
√
TU ′X (X ′X)

−1

(
1 −λ′F,0

)′
(42)
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where U = (U1, ...,UT )′, F = (F̄1, ..., F̄T )′ and X = (ιT , F ). It then follows that

√
T
(
R̄ − B̂λF,0

)
=
√
TU ′X (X ′X)

−1

(
1 −λ′F,0

)′
=

((
1 −λ′F,0

)
(X ′X/T )

−1 ⊗ IN−1

)(
1√
T

∑
t

Xt ⊗ Ut

)
(43)

and we thus get (34) by using

1√
T

∑
t

Xt ⊗ Ut ∼ N (0, (X ′X) /T ⊗ Σ) (44)

(2) Show
(
R̄ − B̃λF,0

)
⊥ B̃, where ⊥ stands for independence:

We prove the claim by showing

 R̄ − B̃λF,0
vec
(
B̃ − B

)
 ∼ 1√

T

ψR
ψB

 (45)

where ψR ⊥ ψB, and they are (N − 1) × 1 and (N − 1)K × 1 normally distributed ran-

dom vectors with mean zero and covariance matrices
(

1− λ′F,0Q̂−1
FF (λF,0)λF,0

)
⊗ Σ and

Q̂FF (λF,0)−1 ⊗ Σ, respectively. To show it, we start with

 R̄ − B̃λF,0
vec
(
B̃ − B

)
 ∼

R̄ − BλF,0 − (λ′F,0 ⊗ IN−1

)
vec
(
B̃ − B

)
vec
(
B̃ − B

)
 (46)

where

R̄ − BλF,0 = Ū = U ′ιT (ι′T ιT )
−1

= ((ι′T ιT )
−1
ι′T ⊗ IN−1)vec (U ′) (47)

vec
(
B̃ − B

)
=

1

T
(Q̂−1

FF (λF,0) (F ′ + λF,0ι
′
T )⊗ IN−1)vec (U ′) (48)
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We therefore have R̄ − B̃λF,0
vec
(
B̃ − B

)
 ∼

IN−1 −
(
λ′F,0 ⊗ IN−1

)
0 IK(N−1)


 (ι′T ιT )−1 ι′T ⊗ IN−1

1
T
Q̂−1
FF (λF,0)

(
F + ιTλ

′
F,0

)′ ⊗ IN−1

 vec (U ′)

∼


(

(ι′T ιT )−1 ι′T − 1
T
λ′F,0Q̂−1

FF (λF,0)
(
F + ιTλ

′
F,0

)′)⊗ IN−1

1
T
Q̂−1
FF (λF,0)

(
F + ιTλ

′
F,0

)′ ⊗ IN−1

 vec (U ′)

∼ 1

T


(
ι′T − λ′F,0Q̂−1

FF (λF,0)
(
F + ιTλ

′
F,0

)′)⊗ IN−1

Q̂−1
FF (λF,0)

(
F + ιTλ

′
F,0

)′ ⊗ IN−1

 vec (U ′) (49)

Note that
(
ι′T − λ′F,0Q̂−1

FF (λF,0)
(
F + ιTλ

′
F,0

)′)×(Q̂−1
FF (λF,0)

(
F + ιTλ

′
F,0

)′)′
= 0, which im-

plies R̄ − B̃λF,0 ⊥ B̃.

(3) Show
(
R̄ − B̂λF,0

)
⊥ Σ̂:

Note that Σ̂ = U ′MXU/(T − K − 1) with MX = IT − X(X ′−1X ′, while
(
R̄ − B̂λF,0

)
=

U ′X (X ′X)−1

(
1 −λ′F,0

)′
as shown in (42), the independence thus results from U ′X ⊥

U ′MX , since

E
(
vec (U ′X)

′
vec (U ′MX)

)
= E

(
(X ′ ⊗ IN−1) vec (U ′)′ (MX ⊗ IN−1) vec (U ′MX)

)
= 0 (50)

(4) Show Σ̂ ∼ WN−1(T−K−1,Σ)

(T−K−1)
:

Σ̂ = U ′MXU/(T −K − 1), where MX = IT −X(X ′−1X ′ is the projection matrix with rank

T − K − 1, U = (U1, ...,UT )′ with Ut ∼ N(0N−1,Σ). Using Theorem 2 of Matthew and

Nordstrom (1997), it follows that

Σ̂ = U ′MXU/(T −K − 1) ∼ WN−1(T −K − 1,Σ)/(T −K − 1). (51)

Q.E.D.
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Proof of Theorem 1: Equivalence of FAR and H statistics results from (24) (28):

R̄ − B̃λF,0 =
1

1 + λ′F,0Q̂−1λF,0

(
R̄ − B̂λF,0

)
(52)

1− λ′F,0Q̂FF (λF,0)−1λF,0 =
1

1 + λ′F,0Q̂−1λF,0
(53)

Assumptions 1 and 2 imply that Assumption 1 in Kleibergen (2009) holds. Theorem 1 thus

results from Theorem 5 in Kleibergen (2009).

Q.E.D.

Proof of Theorem 2: From Lemma 2, we know:

√
T

1− λ′F,0Q̂FF (λF,0)−1λF,0

(
R̄ − B̃λF,0

)
∼ N (0,Σ) (54)

(
R̄ − B̂λF,0

)
⊥ Σ̂ (55)

Σ̂ =
1

T −K − 1

∑
t

(
R̄t − B̂F̄t

)(
R̄t − B̂F̄t

)′
∼ WN−1(T −K − 1,Σ)

(T −K − 1)
(56)

With these results, the FN−1,T−K−N+1 distribution for the finite-sample FAR statistic results

from Theorem 3.2.13 from Muirhead (2009).

Q.E.D.

Proof of Theorem 3: Similar to the proof of Theorem 1, Theorem 3 results from Theorem

6 in Kleibergen (2009).

Q.E.D.

Proof of Theorem 4: Let B̃⊥ be an arbitrary (N − 1) × (N −K − 1) matrix such that

(B̃, B̃⊥) is of full rank and B̃′⊥B̃ = 0. The projection matrix M
Σ̂−

1
2 B̃

= IN−1 − PΣ̂−
1
2 B̃

can be

written as Σ̂
1
2

′
B̃⊥
(
B̃′⊥Σ̂B̃⊥

)−1

B̃′⊥Σ̂
1
2 .
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The JGLS(λF,0) statistic can thus be written as:

JGLS(λF,0)

=
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
Σ̂−

1
2

′
(IN−1 − PΣ̂−

1
2 B̃

)Σ̂−
1
2

(
R̄ − B̃λF,0

)
=

T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

(
R̄ − B̃λF,0

)′
B̃⊥
(
B̃′⊥Σ̂B̃⊥

)−1

B̃′⊥
(
R̄ − B̃λF,0

)
(57)

Conditional on B̃, Lemma 2 implies:

√
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

B̃′⊥
(
R̄ − B̃λF,0

)
∼ N

(
0, B̃′⊥ΣB̃⊥

)
(58)

B̃′⊥Σ̂B̃⊥ ∼
WN−K−1

(
T −K − 1, (B̃⊥)′Σ(B̃⊥)

)
T −K − 1

(59)

B̃′⊥Σ̂B̃⊥ ⊥ B̃′⊥
(
R̄ − B̃λF,0

)
(60)

since B̃⊥ only depends on B̃ by construction. These results imply that T−N+1
(T−K−1)(N−K−1)

×

JGLS(λF,0) ∼ FN−K−1,T−N+1.

Note thatGLS−LM(λF,0) = FAR(λF,0)−JGLS(λF,0), where FAR(λF,0) and JGLS(λF,0),

once properly scaled, follow F -distributions with different degrees of freedom. The finite dis-

tribution of GLS−LM(λF,0) is thus the difference of finite-sample distributions of FAR(λF,0)

and JGLS(λF,0) statistics. From the proof of Lemma 2, we know

√
T

 R̄ − B̃λF,0
vec
(
B̃ − B

)
 ∼

ψR
ψB


∼N

0,


(

1− λ′F,0Q̂−1
FF (λF,0)λF,0

)
⊗ Σ 0

0 Q̂FF (λF,0)−1 ⊗ Σ


 (61)

and Σ̂ ∼ WN−1(T−K−1,Σ)

(T−K−1)
, R̄ − B̃λF,0 ⊥ Σ̂. Therefore, we have FAR(λF,0) ∼ ψ′W−1ψ, where

ψ ∼ N (0, IN−1),W ∼ WN−1(T−K−1,IN−1)

T−K−1
. As R̄−B̃λF,0, Σ̂ are independent from B̃⊥, we have
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JGLS(λF,0) ∼ ψ′C (C ′WC)−1C ′ψ independent on C from (57).

Q.E.D.

Proof of Theorem 5: Similar to the proof of Theorem 1, Theorem 5 results from Theorem

7 in Kleibergen (2009).

Q.E.D.

Proof of Theorem 6: Conditional on B̃, Lemma 2 implies:

√
T

1− λ′F,0Q̂
−1
FF (λF,0)λF,0

B̃′
(
R̄ − B̃λF,0

)
∼ N

(
0, B̃′ΣB̃

)
(62)

B̃′Σ̂B̃ ∼
WK

(
T −K − 1, B̃′ΣB̃

)
T −K − 1

(63)

B̃′Σ̂B̃ ⊥ B̃′
(
R̄ − B̃λF,0

)
(64)

These results imply that T−2K
(T−K−1)K

× FM−LM(λF,0) ∼ FK,T−2K , and this distribution does

not depend on B̃.

Given JFM(λF,0) = FAR(λF,0)−FM−LM(λF,0), the finite distribution of JFM(λF,0) is

thus the difference of finite-sample distributions of FAR(λF,0) and FM−LM(λF,0) statistics:

JFM(λF,0) ∼ ψ′W−1ψ − ψ′C (C′WC)−1 C′ψ. The proof is similar to that for GLS-LM in

Theorem 4, except for that C is an arbitrary (N − 1)×K matrix of full rank.

Q.E.D.

Proof of Theorem 7: The i.i.d. condition in Assumption 1 implies that r in the sCLR

statistic is independent from the other parts. Theorem 7 thus results from Lemma 2 and

Theorem 4.

Q.E.D.

Proof of Theorem 8: Similar to the proof of Theorem 1, Theorem 8 results from Theorem

9 in Kleibergen (2009). See also Guggenberger et al. (2012), Gospodinov et al. (2017).
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Q.E.D.

Proof of Theorem 9: The sFAR statistic equals T times the smallest root of the following

characteristic polynomial:

∣∣∣∣∣∣∣µ
1 + λ

′
F,1Q̂−1

FF,11λF,1 −λ
′
F,1Q̂−1

FF,12

−Q̂−1
FF,21λF,1 Q̂−1

FF,22

− (R̄ − B̂1λF,1, B̂2

)′
Σ̂−1

(
R̄ − B̂1λF,1, B̂2

)∣∣∣∣∣∣∣ = 0

with Q̂−1
FF =

Q̂−1
FF,11 Q̂

−1
FF,12

Q̂−1
FF,21 Q̂

−1
FF,22

, B̂ =
(
B̂1, B̂2

)
, λF,1 results from its hypothesized value, and

λF = (λF,1, λ
′
2)′.

Let R̄1 denote R̄ − B̂1λF,1, so the polynomial above can be expressed as

∣∣∣∣∣∣∣µ
1 + λ

′
F,1Q̂−1

FF,11λF,1 −λ
′
F,1Q̂−1

FF,12

−Q̂−1
FF,21λF,1 Q̂−1

FF,22

− (R̄1, B̂2

)′
Σ̂−1

(
R̄1, B̂2

)∣∣∣∣∣∣∣ = 0,

which shows that the sFAR statistic is also the minimum of the FAR statistic for testing λ2,

given λF,1.

Recall that the FAR statistic can be decomposed to JGLS and GLS-LM statistics; in

addition, the GLS-LM statistic equals the quadratic form of the derivative of the FAR

statistic. This implies that the minimum of FAR coincides with the minimum of JGLS.

Therefore, the sFAR statistic is upper bounded by the distribution of JGLS for testing λ2

provided λF,1. With the proper scaling, the exact finite-sample distribution of such a JGLS

statistic by Theorem 4 is as FN−K,T−N (note: K − 1 now plays the role of K in Theorem 4,

since the dimension of λ2 is (K−1)×1). Consequently, the scaled sFAR statistic is bounded

by this F -distribution.

Q.E.D.
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