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Abstract

We propose the double robust Lagrange multiplier (DRLM) statistic for testing hypotheses

specified on the pseudo-true value of the structural parameters in the generalized method of mo-

ments. The pseudo-true value is defined as the minimizer of the population continuous updating

objective function of Hansen et al. (1996) and equals the true value of the structural parameter

in the absence of misspecification. The (bounding) χ2 limiting distribution of the DRLM test

is robust to both misspecification and weak identification of the structural parameters, hence

its name. Weak identification robust tests are size distorted in case of misspecification while

misspecification tests are virtually powerless under weak identification, see Gospodinov et al.

(2017), so the DRLM test removes an important obstacle for conducting reliable inference in

these empirically relevant settings. To emphasize its importance for applied work, we use the

DRLM test to analyze data from Card (1995), Adrian et al. (2014), and He et al. (2017).

Keywords: weak identification, misspecification, robust inference, Lagrange multiplier.

1 Introduction

Little more than twenty years ago, inference procedures for analyzing possibly weakly identified

structural parameters using the generalized method of moments (GMM) of Hansen (1982) were

mostly lacking. Since then huge progress has been made to develop such procedures, see e.g. Staiger

and Stock (1997), Stock and Wright (2000), Kleibergen (2002, 2005, 2009), Moreira (2003), Andrews

and Cheng (2012), and Andrews and Mikusheva (2016a,b). At present, we therefore have a variety of

so-called weak identification robust inference methods. Given the prevalence of weak identification

in applied work, a lot of emphasis has also been put in raising awareness amongst practitioners,

see e.g. Kleibergen and Mavroeidis (2009), Mavroeidis et al. (2014), Andrews et al. (2019) and

Kleibergen and Zhan (2020).

∗Frank Kleibergen (corresponding author, f.r.kleibergen@uva.nl) is at the University of Amsterdam. Zhaoguo Zhan
(zzhan@kennesaw.edu) is at Kennesaw State University.
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The weak identification robust inference procedures lead to inference that is centered around

the continuous updating estimator (CUE) of Hansen et al. (1996). GMM requests the moment

condition to hold at a (unknown) true value of the parameter which is then also the minimizer of the

population continuous updating objective function. The inference resulting from weak identifica-

tion robust inference procedures concerning hypotheses specified on the true value of the structural

parameters remains reliable under varying degrees of identification. When there is no value of the

structural parameters where the GMM moment conditions exactly hold, the structural model is

rendered misspecified and we refer to the minimizer of the (population continuous updating) GMM

objective function as the pseudo-true value. The pseudo-true value depends on the (population)

objective function at hand and different objective functions lead to distinct pseudo-true values. We

use the minimizer of the population continuous updating objective function as the pseudo-true value

because of its invariance properties and since weak identification robust tests lead to inference that

is centered around it. In case of misspecification, these inference procedures for testing hypotheses

specified on the pseudo-true value become size distorted for just small amounts of misspecification.

This would not sound as much of a problem if it was possible to efficiently detect such misspeci-

fication. This is, however, not so since misspecification tests, like the Sargan-Hansen test (Sargan

(1958) and Hansen (1982)), are virtually powerless in settings of joint misspecification and weak

identification; see Gospodinov et al. (2017). Weak identification robust inference procedures thus

came about to overcome the general critique of non-robustness of traditional inference procedures

to varying identification strengths, see Staiger and Stock (1997), but are similarly non-robust to

misspecification.

Arguably, the first to emphasize the importance of misspecification in the presence of weak (or no)

identification were Kan and Zhang (1999). With the surge in applied work on structural estimation,

awareness of misspecification has grown further, see Hall and Inoue (2003). In asset pricing models,

for example, it is now generally accepted that misspecification, alongside weak identification, is

an important empirical issue, see e.g. Kan et al. (2013) and Kleibergen and Zhan (2020). Kan

et al. (2013) therefore developed misspecification robust t-statistics for the Fama-MacBeth (FM)

(1973) two-pass estimator, i.e. the typical estimator employed to estimate risk premia in linear

asset pricing models. These misspecification robust t-statistics are, however, not robust to weak

identification so identical to the weak identification robust inference procedures, they cannot deal

with the empirically relevant settings of both misspecification and weak identification. We therefore

extend the weak identification robust score or Lagrange multiplier (KLM) test from Kleibergen
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(2002, 2005, 2009) to a double robust Lagrange multiplier (DRLM) test. This DRLM test is size

correct and robust to both misspecification and weak identification, hence its name. The DRLM

test is a quadratic form of the score function which equals zero at all stationary points of the CUE

sample objective function. This is also so for the KLM test and explains its power problems, see e.g.

Andrews et al. (2006). To overcome the power problems of the KLM test, it can be combined in a

conditional or unconditional manner with the Anderson-Rubin (AR) (1949) test, see e.g. Andrews

(2016). Andrews et al. (2006) show that the conditional likelihood ratio test of Moreira (2003)

provides the optimal manner of combining these statistics for the homoskedastic linear instrumental

variables regression model with one included endogenous variable. We use the maximal invariant to

show that in case of misspecification, it is not obvious how to improve the power of the DRLM test by

such combination arguments since the tests with which the DRLM test is to be combined have non-

central limiting distributions under misspecification. We therefore improve the power of the DRLM

test by exploiting the specification of its derivative with respect to the structural parameters.

The rest of the paper is organized as follows. In the second section, we discuss continuous

updating GMM with misspecification, and show how a structural interpretation can be obtained

from the pseudo-true value. In the third section, we introduce the DRLM test and prove that it is size

correct. We illustrate the latter in a simulation experiment and also propose data-dependent critical

values to reduce the conservativeness of the DRLM test for settings of both weak misspecification

and weak identification. The fourth section conducts a power study of the DRLM test and other

weak identification robust tests. It shows that weak identification robust tests on the pseudo-true

value of the structural parameters are size distorted for just small amounts of misspecification while

the DRLM test is not. It also proposes the power improvement rule and shows that the resulting test

procedure has generally good power. The fifth section shows how to deal with multiple structural

parameters. The sixth section conducts a simulation experiment using nonlinear GMM with an

asset pricing Euler moment equation that results from a constant relative rate of risk aversion

utility function. The seventh section applies the DRLM test to risk premia using asset pricing data

from Adrian et al. (2014) and He et al. (2017), and to analyze the return on education using data

from Card (1995) for which local average treatment effects that differ over the instruments can lead

to misspecification, see Imbens and Angrist (1994). Especially for the risk premium parameters,

we show that usage of other inference procedures understates the uncertainty of the risk measures

because of the misspecification and weak identification present. The eighth section concludes.1

1Technical details and additional material are relegated to the Online Appendix.
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2 GMM with potential misspecification

We analyze the m × 1 parameter vector θ = (θ1 . . . θm)′ whose parameter region is the Rm. The

kf × 1 dimensional function f(., .) is a continuously differentiable function of the parameter vector θ

and a Borel measurable function of a data vector Xt which is observed for time/individual t. Since

we focus on misspecification, the model is over identified and there are more moment equations than

structural parameters so kf > m. The population moment function of f(θ,Xt) equals µf (θ) :

EX(f(θ,Xt)) = µf (θ), (1)

with µf (θ) a kf -dimensional continuously differentiable function. Unlike regular GMM, see Hansen

(1982), we do not request that there is a specific value of θ, say θ0, at which µf (θ0) = 0. We analyze

θ using the continuous updating setting of Hansen et al. (1996). We use it because of its invariance

properties and since it leads to inference using identification robust statistics in standard GMM,

see e.g. Stock and Wright (2000) and Kleibergen (2005). The accompanying population continuous

updating objective function is:

Qp(θ) = µf (θ)′Vff (θ)−1µf (θ), (2)

with Vff (θ) the covariance matrix of the sample moment fT (θ,X) = 1
T

∑T
t=1 ft(θ), ft(θ) = f(θ,Xt) :

Vff (θ) = E
[
limT→∞ T (fT (θ,X)− µf (θ)) (fT (θ,X)− µf (θ))

′]
, (3)

so fT (θ,X) is the sample analog of µf (θ) for a data set of T observations: Xt, t = 1, . . . , T.

We define the pseudo-true value of θ, θ∗, as the minimizer of the population objective function:

θ∗ = arg min
θ∈Rm

Qp(θ). (4)

The minimizer of the population objective function satisfies the first order condition (FOC) stated

in Theorem 1.

Theorem 1: The FOC (divided by two) for a stationary point θs of the population objective

function reads:

1

2

∂

∂θ′
Qp(θ

s) = 0 ⇔ µf (θs)′Vff (θs)−1D(θs) = 0, (5)
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with

D(θ) = J(θ)−
[
Vθ1f (θ)Vff (θ)−1µf (θ) . . . Vθmf (θ)Vff (θ)−1µf (θ)

]
(6)

and J(θ) = ∂
∂θ′µf (θ),

Vθif (θ) = E
[
limT→∞ T ( ∂

∂θi
(fT (θ,X)− µf (θ))) (fT (θ,X)− µf (θ))

′
]
, i = 1, . . . ,m. (7)

Proof. See the Online Appendix and Kleibergen (2005).

Theorem 1 shows that if there is a unique value of θ, θ0, for which µf (θ0) = 0, then also θ∗ = θ0

and D(θ0) = J(θ0). The misspecification thus implies that the recentered Jacobian D(θ∗) differs

from the population value J(θ∗) in other instances.

Running example 1: Linear asset pricing model The linear asset pricing model shows the

extent to which the mean of an (N + 1)-dimensional vector of asset returns Rt is spanned by the

betas of m risk factors contained in the m-dimensional vector Ft. It is reflected by the moment

function:

µf (λ0, λF ) = E(Rt)− ιN+1λ0 − BλF , (8)

with ιN+1 an (N + 1)-dimensional vector of ones, B an (N + 1)×m dimensional matrix:

B =cov(Rt, Ft)var(Ft)
−1, (9)

and λ0 is the zero-beta return, λF is the m-dimensional vector of risk premia.

The asset pricing moment equation in (8) can be more compactly written by removing the zero-

beta return which we accomplish by taking the asset returns in deviation of the (N + 1)-th asset

return:2

Rt =


R1t

...

RNt

− ιNR(N+1)t, β =


B1

...

BN

− ιNBN+1, (10)

for Rt = (R1t . . .R(N+1)t)
′, B = (B′1 . . .B′N+1)′. The removal of the zero-beta return leads to the

moment function:

µf (λF ) = µR − βλF , (11)

2This is without loss of generality since our results are invariant with respect to the asset return which is subtracted,
see Kleibergen and Zhan (2020).
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with µR = E(Rt) and β = cov(Rt, Ft)var(Ft)
−1.

The mean asset returns are not necessarily fully spanned by the β’s and we therefore analyze

the pseudo-true value of the risk premia λ∗F which is the minimizer of the population continuous

updating objective function:

Qp(λF ) = (µR − βλF )′
[
Var

(√
T
(
R̄− β̂λF

))]−1

(µR − βλF ), (12)

since fT (λF , X) = R̄ − β̂λF , with R̄ = 1
T

∑T
t=1Rt and β̂ = 1

T

∑T
t=1RtF̄

′
t

(
1
T

∑T
j=1 F̄jF̄

′
j

)−1

, F̄t =

Ft − F̄ , F̄ = 1
T

∑T
t=1 Ft. The population continuous updating objective function results from a

generalized reduced rank problem, see also Kleibergen (2007):

Qp(λF ) = minD∈RN×m Qp(λF , D) (13)

with D(λF ) = arg minD∈RN×m Qp(λF , D) and

Qp(λF , D) =

[
vec

((
µR

... β

)
+D

(
λF

... Im

))]′ [
Var

(
√
T

(
R̄′

... vec(β̂)′
)′)]−1

[
vec

((
µR

... β

)
+D

(
λF

... Im

))]
.

(14)

The minimal value over (λF , D) of the objective function (14) is invariant with respect to the

reduced rank specification implied by D(λF
... Im). When using another reduced rank specification,

say, E(Im
... φ), with E an N ×m matrix and φ an m-dimensional vector, it leads to the same value

of the optimized objective function over (φ, E). Hence, restrictions imposed on this specification,

like, for example, φ1 = 0, with φ1 the top element of φ, which imposes a reduced rank value on

just β, lead to a larger (or equal) value of the minimized objective function. This setting is such

that the objective function reflects the identification strength of λF as reflected by the distance of β

from a reduced rank value. For the pseudo-true value λ∗F to reflect risk premia and thus to have a

structural interpretation, the identification strength has therefore to be larger than or equal to the

misspecification. In standard GMM without misspecification, the minimal value of the continuous

updating objective function equals zero so reduced rank values of β cannot lower the minimal value

of the objective function and its minimizer always has a structural interpretation. We next further

illustrate this for a simplified setting of the asset pricing model.

When µF = E(Ft) = 0 and β̂ results from a regression of R̄t on F̄t in which the error term is

assumed to be i.i.d. with N×N dimensional covariance matrix Ω, Lemma 1 in the Online Appendix
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shows that R̄ and β̂ are independently normally distributed in large samples, see also Shanken (1992)

and Kleibergen (2009). The population continuous updating objective function (12) then simplifies

to:

Qp(λF ) = 1
1+λ′FQ

−1

F̄ F̄
λF

(µR − βλF )′Ω−1(µR − βλF ), (15)

with QF̄ F̄ =var(Ft), so its minimal value equals the smallest root of the characteristic polynomial:

∣∣∣∣∣∣∣τ
 1 0

0 Q−1
F̄ F̄

− (µR ... β

)′
Ω−1

(
µR

... β

)∣∣∣∣∣∣∣ = 0. (16)

Proposition 1. Using a value of λF , λ
s
F , that satisfies the FOC in Theorem 1, the smallest root

of the characteristic polynomial in (16) equals either

1
1+λs′FQ

−1

F̄ F̄
λsF

(µR − βλsF )
′
Ω−1 (µR − βλsF ) (17)

or the smallest root of the characteristic polynomial:

∣∣τ(QF̄ F̄ + λsFλ
s′
F )−1 −D(λsF )′Ω−1D (λsF )

∣∣ = 0, (18)

with D(λF ) = −β − (µR − βλF )λ′FQ
−1
F̄ F̄

(1 + λ′FQ
−1
F̄ F̄
λF )−1 = −(βQF̄ F̄ + µRλ

′
F )(QF̄ F̄ + λFλ

′
F )−1.

Proof. The rewriting of (16) to obtain the above is conducted in the Online Appendix.

Without misspecification, there is a value of λsF for which (17) is equal to zero so it is the

smallest root of the characteristic polynomial. Proposition 1 therefore shows that in models with

misspecification, the minimizer of the population objective function is not necessarily associated

with misspecification. For example, when m = 1, β = 0 and µR 6= 0, the roots of the characteristic

polynomial in (16) equal zero, attained for λF = ±∞, and µ′RΩ−1µR, attained at λF = 0, so the

smallest root is then associated with the identification strength reflected by β and the largest one

with misspecification. The pseudo-true value does thus only represent the risk premia and has a

structural interpretation when the identification strength is at least as large as the misspecification.

This setting is used in Kan and Zhang (1999) to point at the misbehavior of traditional inference

methods; see also Gospodinov et al. (2017).

Running example 2: Linear instrumental variables regression model For the linear in-

strumental variables (IV) regression model:
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y = Xβ + ε

X = ZΠ + V,
(19)

with β and Π m × 1 and k × m matrices containing unknown parameters, y = (y1 . . . yT )′ and

X = (X1 . . . XT )′ T × 1 and T × m dimensional matrices containing the endogenous variables,

Z = (Z1 . . . ZT )′ a T × k matrix containing the instrumental variables, ε = (ε1 . . . εT )′ and V =

(V1 . . . VT )′ are T × 1 and T ×m matrices of errors. The moment function is:

µf (β) = σZy − ΣZXβ, (20)

with σZy = E((Zt−µZ)(yt−µy)), ΣZX = E((Zt−µZ)(Xt−µX)′) = QZ̄Z̄Π, QZ̄Z̄ = E((Zt−µZ)(Zt−

µZ)′), µy = E(yt), µX = E(Xt), µZ = E(Zt). When ut = εt +V ′t β and Vt are i.i.d. distributed with

mean zero and covariance matrix Ω =
(
ωuu
ωV u

ωuV
ΩV V

)
, the population continuous updating objective

function of the linear IV regression model is:

Qp(β) = 1
ωuu−2ωuV β+β′ΩV V β

(σZy − ΣZXβ)′Q−1
Z̄Z̄

(σZy − ΣZXβ). (21)

Along the same lines as for the linear asset pricing model, the minimal value of this population

continuous updating objective function equals the smallest root of a characteristic polynomial:

∣∣∣∣∣τΩ−
(
σZy

... ΣZX

)′
Q−1
Z̄Z̄

(
σZy

... ΣZX

)∣∣∣∣∣ = 0. (22)

If there is no value of β for which µf (β) = 0, identical to the characteristic polynomial of the

linear asset pricing model, the smallest root of the characteristic polynomial is only associated with

misspecification when the misspecification is less than the identification strength.

Misspecified linear IV regression models are of interest in several settings, for example, when

analyzing treatment effects. In case of multiple discrete instruments and heterogeneous treatment

effects, the local average treatment effects of Imbens and Angrist (1994) differ over the instruments

so the linear IV regression model using all these instruments is misspecified. The pseudo-true value is

then a function of these local average treatment effects. We lateron provide an empirical illustration

of this using data from Card (1995) in Section 7. Kolesár et al. (2015) provide another example of

how a misspecified linear IV regression model can render a structural interpretation. Similarly, Kan

et al. (2013) give a structural interpretation to the misspecified linear factor model as minimizing
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the pricing errors. In the Online Appendix, we provide further discussions on how a structural

interpretation can be given to these models in case of misspecification. It is also important to realize

that the identification of the structural parameters is often rather weak in applied settings in which

case misspecification tests have very little power, see Gospodinov et al. (2017). The identification

robust tests needed because of weak identification then become size distorted for testing the pseudo-

true value in the presence of misspecification, so it is important to have tests which remain size

correct for these empirically relevant settings.

3 Double robust score test

The sample analog of the population continuous updating objective function is the sample objective

function for the continuous updating estimator (CUE) of Hansen et al. (1996):

Q̂s(θ) = fT (θ,X)′V̂ff (θ)−1fT (θ,X), (23)

with V̂ff (θ) a consistent estimator of Vff (θ), V̂ff (θ)→
p
Vff (θ), so the CUE, θ̂, is:

θ̂ = arg min
θ∈Rm

Q̂s(θ). (24)

To construct the large sample behavior of test statistics centered around the CUE, we make As-

sumption 1 as in Kleibergen (2005) except that it concerns the large sample behavior of the sample

moments and their derivative at the pseudo-true value θ∗ instead of the true value.

Assumption 1. For a value of θ equal to the minimizer of the continuous updating population

objective function, θ∗, the kf × 1 dimensional derivative of ft(θ) with respect to θi,

qit(θ) = ∂ft(θ)
∂θi

: kf × 1, i = 1, . . . ,m, (25)

is such that the joint limiting behavior of the sums of the series f̄t(θ) = ft(θ) − E(ft(θ)) and

q̄t(θ) = (q̄1t(θ)
′ . . . q̄mt(θ)

′)′, with q̄it(θ) = qit(θ)− E(qit(θ)), accords with the central limit theorem:

1√
T

T∑
t=1

 f̄t(θ)

q̄t(θ)

 →
d

 ψf (θ)

ψθ(θ)

 ∼ N(0, V (θ)), (26)
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where ψf : kf ×1, ψθ : kθ×1, kθ = mkf , and V (θ) is a positive semi-definite symmetric (kf +kθ)×

(kf + kθ) matrix,

V (θ) =

 Vff (θ) Vfθ(θ)

Vθf (θ) Vθθ(θ)

 , (27)

with Vθf (θ) = Vfθ(θ)
′ = (Vθ1f (θ)′ . . . Vθmf (θ)′)′, Vθθ(θ) = (Vθiθj (θ)) : i, j = 1, . . . ,m; and Vff (θ),

Vθif (θ), Vθiθj (θ) are kf × kf dimensional matrices for i, j = 1, . . . ,m, and

V (θ) = var

limT→∞
√
T

 fT (θ,X)

vec(qT (θ,X))


 , (28)

with qT (θ,X) = ∂fT (θ,X)
∂θ′ |θ = 1

T

∑T
t=1(q1t(θ) . . . qmt(θ)).

Assumption 1 requests a joint central limit theorem to hold for the sample moments and their

derivative with respect to θ. It is satisfied under mild conditions which are listed in Kleibergen

(2005), like, for example, finite r-th moments for r > 2, mixing conditions for the sample moments

in case of time-series data. Allowing for a positive semi-definite covariance matrix V (θ) is important

for applications, like, for example, linear dynamic panel data models. We next also use Assumption

2 from Kleibergen (2005) which concerns the convergence of the covariance matrix estimator V̂ (θ).

Assumption 2. The convergence behavior of the covariance matrix estimator V̂ (θ) towards V (θ)

is such that

V̂ (θ)→
p
V (θ) and

∂vec(V̂ff (θ))
∂θ′ →

p

∂vec(Vff (θ))
∂θ′ . (29)

The CUE satisfies the FOC for a minimum of the CUE sample objective function.

Theorem 2: The FOC (divided by two) for a stationary point θ̂s of the CUE sample objective

function reads:

1

2

∂

∂θ′
Q̂s(θ̂

s) = 0 ⇔ fT (θ̂s, X)′V̂ff (θ̂s)−1D̂(θ̂s) = 0, (30)

with

D̂(θ) = qT (θ,X)−
[
V̂θ1f (θ)V̂ff (θ)−1fT (θ,X) . . . V̂θmf (θ)V̂ff (θ)−1fT (θ,X)

]
(31)

and

V̂ (θ) =

 V̂ff (θ) V̂fθ(θ)

V̂θf (θ) V̂θθ(θ)

 , (32)
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with V̂θf (θ) = V̂fθ(θ)
′ = (V̂θ1f (θ)′ . . . V̂θmf (θ)′)′, V̂θθ(θ) = (V̂θiθj (θ)) : i, j = 1, . . . ,m; and V̂ff (θ),

V̂θif (θ), V̂θiθj (θ) are kf × kf dimensional matrices for i, j = 1, . . . ,m.

Proof. It follows along the lines of the proof of Theorem 1; see also Kleibergen (2005).

Theorem 2 shows that the FOC of the sample CUE objective function can in an identical manner

be factorized as the FOC of the population continuous updating objective function. Theorem 3

shows that the two components in which the FOC of the sample objective function factorizes are

independently distributed in large samples.

Theorem 3: When Assumptions 1 and 2 hold and for θ∗ the pseudo-true value minimizing the

population continuous updating objective function:

√
T (fT (θ∗, X)− µf (θ∗)) →

d
ψf (θ∗),

√
Tvec

(
D̂(θ∗)−D(θ∗)

)
→
d
ψθ.f (θ∗),

(33)

where ψθ.f (θ∗) = ψθ(θ
∗)− Vθf (θ∗)Vff (θ∗)−1ψf (θ∗) and

ψf (θ∗) ∼ N(0, Vff (θ∗)),

ψθ.f (θ∗) ∼ N(0, Vθθ.f (θ∗)),
(34)

with Vθθ.f (θ) = Vθθ(θ)− Vθf (θ)Vff (θ)−1Vfθ(θ), and ψθ.f (θ∗) is independent of ψf (θ∗).

Proof. See the Online Appendix and Lemma 1 in Kleibergen (2005).

In standard GMM using the CUE objective function, the sample moment fT (θ,X) is centered

at zero at the true value so we can use different identification robust statistics, like the score, GMM-

Anderson-Rubin and extensions of the conditional likelihood ratio statistic of Moreira (2003), see

Stock and Wright (2000), Kleibergen (2005), Andrews (2016) and Andrews and Mikusheva (2016a,

b). In our misspecified GMM setting, the sample moment is not centered at zero so we can not use

any of these statistics. We therefore propose a misspecification robust score statistic which uses that

the expected value of the limit of the derivative of the sample objective function:

s(θ) = 1
2
∂
∂θ′ Q̂s(θ) = fT (θ,X)′V̂ff (θ)−1D̂(θ), (35)

is equal to zero at the pseudo-true value θ∗.
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Theorem 4: When Assumptions 1 and 2 hold, θ∗ is the minimizer of the population continuous

updating objective function and

µ̄f (θ∗) = E
[
limT→∞

√
TfT (θ∗, X)

]
D̄(θ∗) = E

[
limT→∞

√
T (qT (θ∗, X)−[

Vθ1f (θ∗)Vff (θ∗)−1fT (θ∗, X) . . . Vθmf (θ∗)Vff (θ∗)−1fT (θ∗, X)
])]

,

(36)

with µ̄f (θ∗) and D̄(θ∗) finite valued kf and kf ×m dimensional continuously differentiable functions

of θ∗, so µ̄f (θ∗)′Vff (θ∗)−1D̄(θ∗) ≡ 0, the limit behavior of (half) the derivative of the CUE sample

objective function at θ∗ is characterized by:

Ts(θ∗)→
d

µ̄f (θ∗)′Vff (θ∗)−1Ψθ.f (θ∗) + ψf (θ∗)′Vff (θ∗)−1
[
D̄(θ∗) + Ψθ.f (θ∗)

]
= (µ̄f (θ∗) + ψf (θ∗))

′
Vff (θ∗)−1Ψθ.f (θ∗) + ψf (θ∗)′Vff (θ∗)−1D̄(θ∗),

(37)

with vec(Ψθ.f (θ∗)) = ψθ.f (θ∗), so the expected value of the limit of the derivative of the sample

CUE objective function is equal to zero at the pseudo-true value θ∗ :

E [limT→∞ T × s(θ∗)] = 0. (38)

Proof. See the Online Appendix.

Theorem 4 states in (37) two equivalent expressions of the limit behavior of the score of the

CUE sample objective function. Each of these two expressions consists of two components which are

products of independently distributed random variables. Since (at least) one of the random variables

in these products has mean zero, the mean of the limit behavior of the score is equal to zero as well.

Theorem 4 uses local to zero sequences for µf (θ) and D(θ) which are orthogonal at the pseudo-true

value θ∗. This is without loss of generality (wlog). We just use it to save on notation since it avoids

that certain bounded random variables get multiplied by diverging objects which would imply that

the expectation becomes ill defined.

We use the two limit expressions of the score in (37) to construct a weighting matrix which

results in a size correct test based on a quadratic form of the score. To start out, we note that the

second component of the first limit expression in (37) is the limit of the score used in the KLM test

from Kleibergen (2005). We can therefore use, as in Kleibergen (2005), the conditional expectation

of its outer product given D̄(θ∗) + Ψθ.f (θ∗) :

12



TD̂(θ∗)′V̂ff (θ∗)−1D̂(θ∗) →
d

Eψf (θ∗)|D̄(θ∗)+Ψθ.f (θ∗)(
[
D̄(θ∗) + Ψθ.f (θ∗)

]′
Vff (θ∗)−1ψf (θ∗)ψf (θ∗)′

Vff (θ∗)−1
[
D̄(θ∗) + Ψθ.f (θ∗)

]
|D̄(θ∗) + Ψθ.f (θ∗) =

√
TD̂(θ∗)). (39)

since V̂ff (θ∗) →
p
Vff (θ∗),

√
TD̂(θ∗) →

d
D̄(θ∗) + Ψθ.f (θ∗) so it provides an estimator of D̄(θ∗) +

Ψθ.f (θ∗), for this component in the weighting matrix.

Since
√
T µ̂f (θ∗) =

√
TfT (θ∗, X)→

d
µ̄f (θ∗)+ψf (θ∗),

√
T µ̂f (θ∗) provides an estimator of µ̄f (θ∗)+

ψf (θ∗), we can in a similar manner construct the conditional expectation of the first component of

the second limit expression of the score in (37):

T
(
Im ⊗ V̂ff (θ∗)−1µ̂f (θ∗)

)′
V̂θθ.f (θ∗)

(
Im ⊗ V̂ff (θ∗)−1µ̂f (θ∗)

)
→
d

Eψθ.f (θ∗)|µ̄f (θ∗)+ψf (θ∗)

(
(µ̄f (θ∗) + ψf (θ∗))

′
Vff (θ∗)−1Ψθ.f (θ∗)Ψθ.f (θ∗)′

Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗)) |µ̄f (θ∗) + ψf (θ∗) =
√
T µ̂f (θ∗)

))
=

Eψθ.f (θ∗)|µ̄f (θ∗)+ψf (θ∗)

((
Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))

)′
ψθ.f (θ∗)ψθ.f (θ∗)′(

Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))
)
|µ̄f (θ∗) + ψf (θ∗) =

√
T µ̂f (θ∗)

)
.

(40)

Theorem 5 shows that we can use the sum of the components in (39) and (40) as a weighting matrix

for a double robust score or Lagrange multiplier test.

Definition 1. The double robust score or Lagrange multiplier (DRLM) statistic for testing H0 :

θ = θ∗, with θ∗ the pseudo-true value, is:

DRLM(θ∗) =

T 2 × fT (θ∗, X)′V̂ff (θ∗)−1D̂(θ∗)[
T ×

(
Im ⊗ V̂ff (θ∗)−1fT (θ∗, X)

)′
V̂θθ.f (θ∗)

(
Im ⊗ V̂ff (θ∗)−1fT (θ∗, X)

)
+

T × D̂(θ∗)′V̂ff (θ∗)−1D̂(θ∗)
]−1

D̂(θ∗)′V̂ff (θ∗)−1fT (θ∗, X).

(41)

Theorem 5: When Assumptions 1 and 2 hold and given the specifications in (36), the limit

behavior of DRLM(θ∗) under H0 : θ = θ∗, with θ∗ the minimizer of the population continuous

updating objective function, is bounded according to:

limT→∞DRLM(θ∗) � χ2(m). (42)
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Proof. See the Online Appendix, which also provides an extension to Assumptions 1 and 2 by

stating the parameter space of the distributions which render the DRLM test size correct; see also

Andrews and Guggenberger (2017).

We next use the DRLM statistic to test the risk premia in the linear asset pricing model with

i.i.d. errors.

Running example 1: Linear asset pricing model For a DRLM test of the risk premia, we

need the specification of its different components for the linear asset pricing model with i.i.d. errors:

fT (λF , X) = R̄− β̂λF

D̂(λF ) = −β̂ − (R̄− β̂λF )(1 + λ′F Q̂
−1
F̄ F̄
λF )−1λ′F Q̂

−1
F̄ F̄

= − 1
T

∑T
t=1Rt(F̄t + λF )′

[
1
T

∑T
t=1(F̄t + λF )(F̄t + λF )′

]−1

V̂ff (λF ) = (1 + λ′FQ
−1
F̄ F̄
λF )Ω̂

V̂θθ.f (λF ) = (Q̂F̄ F̄ + λFλ
′
F )−1 ⊗ Ω̂,

(43)

so the specification of the DRLM test reads:

DRLM(λ∗F ) = T (1 + λ∗′F Q̂
−1
F̄ F̄
λ∗F )−1(R̄− β̂λ∗F )′Ω̂−1D̂(λ∗F )[

(1 + λ∗′F Q̂
−1
F̄ F̄
λ∗F )−1(R̄− β̂λ∗F )′Ω̂−1(R̄− β̂λ∗F )(QF̄ F̄ + λ∗Fλ

∗′
F )−1+

D̂(λ∗F )′Ω̂−1D̂(λ∗F )
]−1

D̂(λ∗F )′Ω̂−1(R̄− β̂λ∗F )

= µ̂(λF )∗′D̂(λ∗F )∗
[
µ̂(λF )∗′µ̂(λF )∗Im + D̂(λ∗F )∗′D̂(λ∗F )∗

]−1

D̂(λ∗F )∗′µ̂(λF )∗,

(44)

with µ̂(λF )∗ =
√
T Ω̂−

1
2 (R̄ − β̂λF )(1 + λ′F Q̂

−1
F̄ F̄
λF )−

1
2 =

√
T V̂ff (λF )−

1
2 fT (λF , X), and D̂(λF )∗ =

√
T Ω̂−

1
2 D̂(λF )(Q̂F̄ F̄ + λFλ

′
F )

1
2 .

Corollary 1. When Assumptions 1 and 2 hold and under i.i.d. errors, the limit behavior of the

DRLM statistic under H0 : λF = λ∗F is characterized by:

DRLM(λ∗F )→
d

[
ψ′f (D̄ + Ψθ.f ) + µ̄′Ψθ.f

]
[(µ̄+ ψf )′(µ̄+ ψf )Im+(

D̄ + Ψθ.f

)′ (
D̄ + Ψθ.f

)]−1 [
(D̄ + Ψθ.f )′ψf + Ψ′θ.f µ̄

]
� χ2(m),

(45)

with µ̄ = Ω−
1
2 µ̄(λ∗F )(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−

1
2 , D̄ = Ω−

1
2 D̄(λ∗F )(QF̄ F̄ + λ∗Fλ

∗′
F )

1
2 , µ̄′D̄ ≡ 0 and ψf and

Ψθ.f N × 1 and N ×m dimensional random matrices that consist of independent standard normal

random variables.
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The limit behavior of the DRLM statistic in Corollary 1 shows that it under H0 only depends

on two parameters, the lengths of µ̄ and D̄ and is dominated by a χ2(m) distribution. Figure 1

shows the rejection frequencies of 5% significance DRLM tests with a 95% χ2(1) critical value as a

function of the lengths of µ̄ and D̄ for a one factor setting, so m = 1, and N = 25. The latter number

corresponds with the twenty-five Fama-French size and book-to-market sorted portfolios which are

the default in the asset pricing literature, see Fama and French (1993).

Figure 1: Rejection frequency of 5% significance DRLM tests of H0 : λF = λ∗F using

a 95% χ2(1) critical value as a function of the lengths of µ̄ and D̄, m = 1, N = 25.
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Figure 2: Rejection frequency of 5% significance KLM tests of H0 : λF = λ∗F using

a 95% χ2(1) critical value as a function of the lengths of µ̄ and D̄, m = 1, N = 25.
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Figure 1 shows that the DRLM test is size correct since its rejection frequency does not exceed

5% for any length of µ̄ and D̄. For comparison, Figure 2 presents the rejection frequencies of the
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KLM test, see Kleibergen (2005), as a function of the lengths of µ̄ and D̄. It shows that the KLM

test is only size correct when there is no misspecification so µ̄ = 0 and can be severely size distorted

for small values of the length of µ̄, especially when paired with small values of the length of D̄.

Figure 1 also shows that the DRLM test is conservative when the lengths of both µ̄ and D̄ are

small. To reduce the conservativeness of the DRLM test at these low values, we calibrate a feasible

conditional critical value function based on the maximum of µ̂(λF )∗′µ̂(λF )∗ and D̂(λF )∗′D̂(λF )∗.

When the maximum of these is less than two-hundred and fifty, we calibrated a 95% conditional

critical value function based on max(µ̂(λF )∗′µ̂(λF )∗, D̂(λF )∗′D̂(λF )∗).3 The contour lines in Figure

3 show that the conservativeness of a 5% significance DRLM test has been reduced substantially

from an area where the maximal length of µ̄ and D̄ is less than twenty to an area where their sum

is less than ten.

Figure 3: Rejection frequency of 5% significance DRLM tests of H0 : λF = λ∗F using

a conditional 95% critical value as a function of the lengths of µ̄ and D̄, m = 1, N = 25.
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4 Power

The score is equal to zero at all stationary points of the CUE sample objective function so the same

holds for tests based on a quadratic form of it, like, for example, the DRLM and KLM tests, as

well. This leads to the somewhat oddly behaved power of the KLM test in regular GMM. Tests with

better power properties therefore exist in GMM that, implicitly or explicitly, combine the KLM

test with an asymptotically independent J-test in either a conditional or unconditional manner,

see Moreira (2003), Kleibergen (2005), Andrews et al. (2006), Andrews (2016) and Andrews and

3The conditional critical value function we calibrated for Figure 3 is f(r) = 2.4+ (brc0.35)× (3.84− 2.4)/(2500.35)
for r ≤ 250 and f(r) = 3.84 for r > 250, with r the conditioning variable and b.c the entier function.
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Mikusheva (2016a, b). In our misspecified GMM setting, this is, however, not possible since the

limiting distribution of the J-test is a non-central χ2 distribution with an unknown non-centrality

parameter. Hence, we can not combine this limiting distribution with that of the DRLM test to

obtain the (conditional) critical values for a combination test.

To improve the power of a 100×α% significance DRLM test, we can reject hypothesized values of

θ for which a 100×α% significance DRLM test is not significant but which are close to a stationary

point of the CUE sample objective function other than the CUE. This would be similar to the,

conditional or unconditional, identification robust combination tests in regular GMM which use

that while the KLM test is non-significant at such values of θ, J and/or GMM Anderson-Rubin

(AR) tests, see Anderson and Rubin (1949) and Stock and Wright (2000), can be significant. For

hypothesized values of θ close to the CUE, these combination tests put most weight on the KLM test

but shift the weight towards the J and GMM-AR tests when θ is close to other stationary points,

see Andrews (2016) and Kleibergen (2007). Since the limiting distributions of the J and GMM-AR

tests depend on unknown nuisance parameters in our misspecified GMM setting, it is not clear how

we can use these tests to improve power. To improve the power of a 100 × α% significance DRLM

test, we can reject values of θ for which the DRLM test is not significant at the 100× α% level but

which are on a line from the hypothesized value to the CUE where in between the hypothesized

value and the CUE there are significant values of the DRLM test. We next lay out the different

steps needed to turn this into a size correct test for stylized linear GMM settings.

Theorem 6: a. For a given data set of realized values and a linear moment equation, the sum of

fT (θ,X)′V̂ff (θ)−1fT (θ,X) and vec(D̂(θ))′V̂θθ.f (θ)−1vec(D̂(θ)) does not vary over θ.

b. When m = 1 and fT (θ,X) is linear in θ, the derivative of DRLM(θ) with respect to θ reads:

1
2
∂
∂θDRLM(θ) = T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)]

)
×{

D̂(θ)′V̂ff (θ)−1D̂(θ)− 2fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X) + 2fT (θ,X)′V̂ff (θ)−1D̂(θ)×
fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1D̂(θ)

fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)

}
.

(46)

c. When the data is i.i.d., m = 1, and fT (θ,X) is linear in θ : V̂ (θ) has a Kronecker product

structure so we can specify V̂ff (θ) = v̂ff (θ)V̂ , V̂θf (θ) = v̂θf (θ)V̂ and V̂θθ.f (θ) = v̂θθ.f (θ)V̂ , with

v̂ff (θ), v̂θf (θ), v̂θθ.f (θ) scalar functions of θ and V̂ a kf×kf dimensional covariance matrix estimator,

and the derivative of DRLM(θ) is:
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1
2
∂
∂θDRLM(θ) =

( (
V̂ff (θ)−

1
2 fT (θ,X)

)′(
V̂θθ.f (θ)−

1
2 D̂(θ)

)
fT (θ,X)′V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂θθ.f (θ)−1D̂(θ)

)
×(

T × D̂(θ)′V̂θθ.f (θ)−1D̂(θ)− T × fT (θ,X)′V̂ff (θ)−1fT (θ,X)
)(

v̂θθ.f (θ)
v̂ff (θ)

) 1
2

.

Proof. See the Online Appendix.

Running example 1: Linear asset pricing model Theorem 6c shows that for the one factor

linear asset pricing model with i.i.d. errors, the derivative of the DRLM statistic is proportional to

the difference between the GMM-AR statistic, T×fT (θ,X)′V̂ff (θ)−1fT (θ,X), and an independently

distributed statistic reflecting the strength of identification, T × D̂(θ)′V̂θθ.f (θ)−1D̂(θ). Theorem 6a

further shows that, for a given data set of realized values, the sum of these two statistics does not

depend on θ. Given a realized data set, the DRLM statistic considered as a function of θ thus attains

its maximum when both statistics are identical so they equal half their sum.

Corollary 2. For the one factor linear asset pricing model with i.i.d. errors, the maximal value of

the DRLM statistic as a function of λF is attained at the value of λF where the GMM-AR statistic,

T ×fT (λF , X)′V̂ff (λF )−1fT (λF , X), equals half the sum of T ×fT (λF , X)′V̂ff (λF )−1fT (λF , X) and

T × D̂(λF )′V̂θθ.f (λF )−1D̂(λF ).

Using Corollary 2 and the sample equivalent of the characteristic polynomial in (16), we can

solve for the value of λF that maximizes the DRLM statistic for a given data set of realized

values. We do so by not equating the characteristic polynomial to zero but to half the sum of

T × fT (λF , X)′V̂ff (λF )−1fT (λF , X) and T × D̂(λF )′V̂θθ.f (λF )−1D̂(λF ), which, as stated in Theo-

rem 6a, is constant over λF . We can then straightforwardly solve for the value of λF that maximizes

the DRLM statistic in a data set of realized values. We can next use this maximizer to improve the

power of 100× α% significance DRLM tests.

The power of a 100× α% significance DRLM test of H0 : λF = λ1
F can be improved by rejecting

H0 alongside for significant values of DRLM(λ1
F ) also when both:

1. The maximal value of the DRLM statistic for the analyzed data set is significant at the 100×α%

level.

2. The DRLM statistic evaluated at λ1
F is insignificant at the 100× α% level but λ1

F lies within

the closed interval indicated by the maximizers of the DRLM statistic that does not contain

the CUE.
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The above algorithm rejects H0 alongside for significant values of DRLM(λ1
F ) also when there

is a significant value of the DRLM statistic on the line between λ1
F and the CUE. To show that

the above algorithm leads to a size correct test, we compute its rejection frequency when testing

H0 : λF = 0 using the setup from Figures 1-3. While the generic specification of the DRLM statistic

tests for a stationary point of the population continuous updating objective function, the above

algorithm explicitly tests the minimizer. When computing the size of the test at the hypothesized

value, of, say, zero, we therefore have to ascertain that it is the minimizer of the population objective

function. For the setup in Figures 1-3, which uses the limit expression of the DRLM test in (45),

the population minimizer is at zero if the misspecification is less than the strength of identification

so the length of µ̄ is less than that of D̄. When the length of µ̄ exceeds that of D̄, the minimizer

of the population objective function is at ±∞. In standard GMM, there is no misspecification so

the minimal value of the population objective function is equal to zero. The misspecification is

then always less than or equal to the identification strength so the hypothesized value automatically

corresponds with the minimizer of the population objective function.

Figure 4: Rejection frequency of 5% significance tests of H0 : λF = 0 using power improved DRLM

and a conditional 95% critical value as a function of the lengths of µ̄ and D̄, m = 1, N = 25.
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Figure 4 shows the rejection frequency of the power improved DRLM test when the minimizer of

the population continuous updating objective function equals the hypothesized value which is zero.

Figure 4 does therefore not show the rejection frequency for values where the length of µ̄ exceeds that

of D̄ since the hypothesized value does then not correspond with the minimizer of the population

objective function which is at ±∞. The rejection frequencies in Figure 4 are computed using the

conditional critical values explained previously. Figure 4 shows that the power improvement does not
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affect the size of the DRLM test when the hypothesized value equals the minimizer of the continuous

updating population objective function.

Power analysis We use the one factor linear asset pricing model to compare the power and size of

different identification robust test procedures with that of the DRLM test. For the power analysis,

the minimizer of the population continuous updating objective function is the pseudo-true value

λ∗F while we test for a zero value under the null hypothesis. We then map out the power curve

by changing the pseudo-true value and keeping the hypothesized value, zero, fixed. Theorem 7

states the limiting distributions of the different components of the DRLM statistic for testing the

hypothesis of interest used for the power analysis.

Theorem 7: For testing H0 : λF = λ1
F = 0, the limit behavior of the components of the DRLM

statistic in the one factor linear asset pricing model with i.i.d. errors, m = 1 and QF̄ F̄ = 1, while

the pseudo-true value equals λ∗F , are characterized by:

√
T Ω̂−

1
2 R̄ →

d
µ̄(1 + (λ∗F )2)−

1
2 − D̄(1 + (λ∗F )2)−

1
2λ∗F + ψ∗f (λ1

F = 0)

√
T Ω̂−

1
2 D̂(λ1

F = 0) →
d

D̄(1 + (λ∗F )2)−
1
2 + µ̄(1 + (λ∗F )2)−

1
2λ∗F + ψ∗θ.f (λ1

F = 0),
(47)

with ψ∗f (λ1
F = 0), ψ∗θ.f (λ1

F = 0) independent standard normal N dimensional random vectors, µ∗ =

limT→∞
√
Tµf (λ∗F ), µf (λ∗F ) = µR−βλ∗F , D∗ = limT→∞

√
TD(λ∗F ), D(λ∗F ) = −β−µf (λ∗F )λ∗′F (QF̄ F̄+

λ∗Fλ
∗′
F )−1, µ̄ = Ω−

1
2µ∗(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−

1
2 , D̄ = Ω−

1
2D∗(QF̄ F̄ + λ∗Fλ

∗′
F )

1
2 , so µ̄′D̄ ≡ 0.

Proof. See the Online Appendix.

The specification in Theorem 7 is such that, since µ̄′D̄ ≡ 0, λ∗F is the minimizer of the popu-

lation continuous updating objective function when the length of D̄, which reflects the strength of

identification, is larger than or equal to the length of µ̄, which reflects misspecification. The product

of the limit behavior of both components in (47):

TR̄′Ω̂−1D̂(λ1
F = 0)→

d
(1 + (λ∗F )2)−1λ∗F

(
µ̄′µ̄− D̄′D̄

)
+

(1 + (λ∗F )2)−
1
2

[
ψ∗f (λ1

F = 0)′
(
D̄ + µ̄λ∗F

)
+ ψ∗θ.f (λ1

F = 0)′
(
µ̄− D̄λ∗F

)]
,

(48)

further shows that identification is problematic when the lengths of µ̄ and D̄ are equal so the

misspecification and identification strengths are identical.

We next analyze the power of identification robust test statistics and the DRLM test for a number

of settings of misspecification: no misspecification; weak misspecification; and mild misspecification.
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No misspecification We first compare the power of the DRLM test with existing identification

robust tests when no misspecification is present so all of these tests are size correct. The figures in

Panels 5-6 and Figure 7 show the different power curves. Panel 5 shows the power curves of the

KLM test of Kleibergen (2002, 2005, 2009) and the DRLM test for various identification strengths

and no misspecification. The power of the KLM test is known to be non-monotonic which is in line

with Figure 5.1. Figure 5.2 shows that power curves of the DRLM test are non-monotonic as well.

Panel 5: Power of 5% significance KLM and DRLM tests of

H0 : λF = 0 with no misspecification, N = 25, QF̄ F̄ = 1
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Figure 5.1: KLM Figure 5.2: DRLM

Panel 6: Power of 5% significance LR and size and power improved

DRLM tests of H0 : λF = 0 with no misspecification, N = 25, QF̄ F̄ = 1
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Figure 6.1: LR Figure 6.2: DRLM with size and

power improvements

Figure 6.2 in Panel 6 shows that the size and power improved DRLM test, which uses the size and
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power improvement procedures discussed previously, has a nearly monotonic power curve. Figure 6.1

in Panel 6 shows power curves of the conditional likelihood ratio (LR) test of Moreira (2003) which

is known to be optimal for this setting, see Andrews et al. (2006). Figure 7 shows power curves of

the factor Anderson-Rubin (AR) test, see Anderson and Rubin (1949) and Kleibergen (2009).

Figure 7: Power of 5% signifance factor AR test

of H0 : λF = 0 with no misspecification, N = 25, QF̄ F̄ = 1
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Weak misspecification We next compare the power of the different test procedures in a setting

of weak misspecification where µ̄′µ̄ = 4.4. Figures 8.1 and 8.2 in Panel 8 therefore show power curves

of the KLM and DRLM tests for various identification strengths while Figures 9.1 and 9.2 in Panel

9 show power curves of the LR and size and power corrected DRLM test. Figure 10 shows power

curves of the AR test. The power curves of the different test procedures are comparable to the ones

in the previous figures except that we observe size distortion of the identification robust AR, KLM

and LR tests. Except for the AR test, these size distortions become less when the identification

strength increases. For the conditional LR test the rejection frequency at zero decreases from 15%

to 9% when the identification strength increases. It equals 13% when the misspecification and

identification strengths are identical. For the KLM test, it decreases from 7% to 5%. For the AR

test, the rejection frequency at zero equals 15% for all settings of the identification strength since

no estimator of the identification strength is involved in the AR test. For the DRLM and size and

power improved DRLM tests, we observe no size distortion.

What is striking is that, for small values of the identification strength, the power of the identifi-

cation robust AR and LR tests decreases when λ∗F moves away from zero. This results since when

the misspecification strength exceeds the identification strength, the population continuous updating

objective function is maximized at zero instead of minimized. The population continuous updating

objective function is then minimized when λF equals ±∞. When the strength of identification equals

22



zero, so the length of D̄ = 0, the moment equation (11) is, however, still not satisfied at these values

of λF so the LR, KLM and AR tests remain size distorted even at these values. Moving away from

zero at these settings of the identification strength, however, in general reduces the sample con-

tinuous updating objective function which then leads to a lower rejection frequency of these tests.

For values of the identification strength exceeding the misspecification, the population continuous

updating objective function is minimized at zero so we then no longer observe a reduction of the

rejection frequency when λ∗F moves away from zero.

Panel 8: Power of 5% significance KLM and DRLM tests of

H0 : λF = 0 with misspecification, µ̄′µ̄ = 4.4, N = 25, QF̄ F̄ = 1
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Figure 8.1: KLM Figure 8.2: DRLM

Panel 9: Power of 5% significance LR and size and power improved

DRLM tests of H0 : λF = 0 with misspecification, µ̄′µ̄ = 4.4, N = 25, QF̄ F̄ = 1
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Figure 9.1: LR Figure 9.2: DRLM with size and

power improvements
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Figure 10: Power of 5% significance AR tests of H0 : λF = 0

with misspecification, µ̄′µ̄ = 4.4, N = 25, QF̄ F̄ = 1
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To show the difficulty of detecting the weak misspecification used in Panels 8-9 and Figure 10,

Figure 11 shows the simulated distribution function of the misspecification J-test, which equals the

minimal value of the AR test for the simulated data, when the null hypothesis holds, so for values of

λ∗F equal to zero. Figure 11 shows the distribution function of the misspecification J-test for three

different values of the identification strength D̄′D̄ : 0, 4.4 and 100. In Guggenberger et al. (2012), it

is shown that the distribution function of the J-test is a non-increasing function of the identification

strength. Recognizing that the 95% critical value of the χ2(24) distribution, since N−1 = 24, equals

36.42, Figure 11 shows that we never reject no misspecification at the 5% significance level when

D̄′D̄ equals 0 or 4.4 and we only do so in 15% of the cases when D̄′D̄ equals 100. This illustrates

the difficulty of detecting weak misspecification.

Figure 11: Distribution function of J-test for misspecification when H0 : λF = 0 holds,

solid line: D̄′D̄ = 0, dash-dot: D̄′D̄ = 4.4 = strength of misspecification, dashed: D̄′D̄ = 100.
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Mild misspecification We next increase the amount of misspecification to µ̄′µ̄ = 10, which is

still quite small since there are twenty-five moment equations. Panels 12-13 and Figure 14 show

that the increased misspecification exacerbates the size distortion of the AR, KLM and LR tests

compared to the previous setting of weak misspecification. For the conditional LR test, the rejection

frequency at zero decreases from 30% to 8% when the identification strength increases. When

the misspecification and identification strengths coincide, the rejection frequency of the LR test is

27% when λ∗F = 0. For the KLM test, the rejection frequency decreases from 10% to 5%. For the

DRLM and size and power improved DRLM test, we observe either no size distortion and a rejection

frequency of 8% which decreases to 5% when the identification strength increases. The minor size

distortion of the size and power improved DRLM test only occurs when the misspecification exceeds

the strength of identification, so the hypothesized value is not the minimizer of the population

objective function, and is not present when the identification strength is larger than or equal to

the misspecification. The rejection frequency of the AR test is equal to 36% for all identification

strengths. When the misspecification strength exceeds the identification strength, the maximum of

the population continuous updating objective function is situated at λ∗F = 0, which explains why

the rejection frequency of the AR and LR tests decreases away from λ∗F = 0 for low values of the

identification strength. For values of the identification strength which exceed the misspecification

strength, we see no decrease of the rejection frequency when λ∗F moves away from zero.

Panel 12: Power of 5% significance KLM and DRLM tests of

H0 : λF = 0 with misspecification, µ̄′µ̄ = 10, N = 25, QF̄ F̄ = 1
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Figure 12.1: KLM Figure 12.2: DRLM
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Panel 13: Power of 5% significance LR and size and power improved

DRLM tests of H0 : λF = 0 with misspecification, µ̄′µ̄ = 10, N = 25, QF̄ F̄ = 1
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Figure 13.1: LR Figure 13.2: DRLM with size and

power improvements

Panel 14: Power of 5% significance AR tests of H0 : λF = 0

with misspecification, µ̄′µ̄ = 10, N = 25, QF̄ F̄ = 1
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Figure 15 shows the distribution function of the misspecification J-test, which equals the minimal

value of the AR test, when the null hypothesis holds, so for values of λ∗F equal to zero. It shows

the distribution function for three different values of the identification strength D̄′D̄ : 0, 10 and

100. Recognizing that the 95% critical value of the χ2(24) distribution, since N − 1 = 24, equals

36.42, Figure 15 shows that we never reject no misspecification at the 5% significance level when

D̄′D̄ equals 0, 7% of the times when D̄′D̄ = 10 and 33% when D̄′D̄ equals 100. This indicates the

difficulty of detecting the mild misspecification present in the simulated data. To show that the
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power issues discussed previously for both the identification robust tests and the misspecification J-

test do not result from the somewhat large number of moment equations, 25, we discuss a somewhat

smaller simulation experiment with fewer moment conditions in the Online Appendix.

Figure 15: Distribution function of J-test for misspecification when H0 : λF = 0 holds,

solid line: D̄′D̄ = 0, dash-dot: D̄′D̄ = 10 = strength of misspecification, dashed: D̄′D̄ = 100.
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More power improvements? We further analyze the power of invariant tests for which we use

that they are a function of the maximal invariant. We therefore construct the maximal invariant

for a stylized setting of the linear asset pricing model with independent normal errors and a fixed

number of observations. In order to do so, we first conduct a singular value decomposition of

Ω−
1
2

(
µ̈R β̈

) 1 0

0 Q
1
2

F̄ F̄

 , with µ̈R =
√
TµR, β̈ =

√
Tβ, which is invariant to transformations

and whose sample estimator has an identity covariance matrix.

Theorem 8: A singular value decomposition of Ω−
1
2

(
µ̈R β̈

) 1 0

0 Q
1
2

F̄ F̄

 results in:

Ω−
1
2

(
µ̈R β̈

) 1 0

0 Q
1
2

F̄ F̄

 = USV ′ =

−Ω−
1
2D(λ∗F )

(
λ∗F Im

) 1 0

0 Q
1
2

F̄ F̄

+ Ω
1
2D(λ∗F )⊥δ

(
λ∗F Im

)
⊥

 1 0

0 Q
− 1

2

F̄ F̄

 ,

(49)

which makes D(λ∗F ) proportional to the expression provided below (18) when the latter is evaluated

at λ∗F , U an N×N dimensional orthonormal matrix, V an (m+1)×(m+1) dimensional orthonormal

matrix, and S an N × (m + 1) dimensional diagonal matrix with the singular values in decreasing

order on the main diagonal:
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U =

 U11 U12

U21 U22

 , S =

 S1 0

0 S2

 and V =

 V11 V12

V21 V22

 , (50)

where U11, S1, V21 are m×m dimensional matrices; S2 is an (N−m)×1 dimensional matrix, V ′11, V22

are m×1 dimensional vectors, U12, U21, and U22 are m×(N−m), (N−m)×m and (N−m)×(N−m)

dimensional matrices and V12 is a scalar. The N×(N−m) dimensional matrix D(λ∗F )⊥ is the orthog-

onal complement of D(λ∗F ), D(λ∗F )′⊥D(λ∗F ) ≡ 0, D(λ∗F )′⊥ΩD(λ∗F )⊥ ≡ IN−m;

(
λ∗F Im

)
⊥

the 1×

(m+1) dimensional orthogonal complement of

(
λ∗F Im

)
,

(
λ∗F Im

)(
λ∗F Im

)′
⊥
≡ 0 and

(
λ∗F Im

)
⊥

 1 0

0 Q−1
F̄ F̄

( λ∗F Im

)′
⊥
≡ 1,

(
λ∗F Im

)
⊥

=

(
1 −λ∗′F

)(
1 + λ∗′FQ

−1
F̄ F̄
λ∗F
)− 1

2 :

D(λ∗F ) = −Ω
1
2U1S1V ′21Q

− 1
2

F̄ F̄
, λ∗F = Q

1
2

F̄ F̄
V ′−1

21 V ′11, δ = (U22U ′22)−
1
2U22S2V ′12(V12V ′12)−

1
2 . (51)

Proof. See the Online Appendix and also Kleibergen and Paap (2006).

The squared singular values are the roots of the characteristic polynomial in (16) so λ∗F in

Theorem 8 is the pseudo-true value of the risk premia. The population moment µf (λF ) results

from post-multiplying Ω−
1
2

(
µR β

) 1 0

0 Q
1
2

F̄ F̄

 by

 1

−Q−
1
2

F̄ F̄
λF

 , which is spanned by

 1 0

0 Q
− 1

2

F̄ F̄

( λ∗F Im

)′
⊥
, and pre-multiplying by Ω

1
2 . The derivative of the population objec-

tive function at λF then results as:

√
Tµf (λF )′Ω−1D (λF ) = −

 1

−λF


′(

λ∗F Im

)′
D(λ∗F )′Ω−1D(λF )+

 1

−λF


′ 1 0

0 Q−1
F̄ F̄

( λ∗F Im

)′
⊥
δ′D(λ∗F )′⊥D(λF ),

(52)

which equals zero when λF is the pseudo-true value but also at the other stationary points. When

there is no misspecification, δ = 0 and D(λ∗F ) = −β̈ so

√
Tµf (λF )′Ω−1D (λF ) =

 1

−λF


′(

λ∗F Im

)′
β̈′Ω−1D(λF ) = (λ∗F − λF )

′
β̈′Ω−1D(λF ), (53)
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and β̈ is the only nuisance parameter.

Andrews et al. (2006) construct the two sided power envelope for testing the single structural

parameter in a linear instrumental variables regression model with independent normal errors and

a known value of the covariance matrix. This power envelope directly extends to the linear one

factor asset pricing model with independent normal errors and no misspecification. It is then of

interest to analyze if such a power envelope can be constructed in case of misspecification. Andrews

et al. (2006) construct the power envelope using the maximal invariant which is stated in Theorem

9 alongside its distribution for the one factor linear asset pricing model with independent normal

errors and known covariance matrices of the errors and factors.

Theorem 9: The maximal invariant, S =

 S⊥⊥ S′
λ1
F⊥

Sλ1
F⊥ Sλ1

Fλ
1
F

 , for testing H0 : λF = λ1
F in

the one factor linear asset pricing model with independent normal errors and known values of the

covariance matrices of the errors, Ω, and factors, QF̄ F̄ , is the quadratic form of:

√
TΩ−

1
2

(
R̄ β̂

)

 1

−λ1
F

 (1 + λ1′
FQ
−1
F̄ F̄
λ1
F )−

1
2

...

 1 0

0 QF̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2

 .
(54)

When m = 1, it has a non-central Wishart distribution with T degrees of freedom, identity scale

matrix and non-centrality parameter:

Correct specification:

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)
 β̈′Ω−1β̈

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)

′

(55)

Misspecification:

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)
D(λ∗F )′Ω−1D(λ∗F )

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)

′

+

 (1 + (λ1
F )2Q−1

F̄ F̄
)−

1
2

(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)
−(QF̄ F̄ + (λ1

F )2)−
1
2

(
λ∗F − λ1

F

)
 (1 + (λ∗F )2Q−1

F̄ F̄
)−1δ′δ

 (1 + (λ1
F )2Q−1

F̄ F̄
)−

1
2

(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)
−(QF̄ F̄ + (λ1

F )2)−
1
2

(
λ∗F − λ1

F

)

′

,

(56)

where the specifications of D(λ∗F ) and δ are stated in Theorem 8.
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Proof. See the Online Appendix.

The elements of the maximal invariant in Theorem 9 are such that:

Sλ1
Fλ

1
F

= TD̂(λ1
F )′V̂θθ.f (λ1

F )−1D̂(λ1
F )

S⊥⊥ = TfT (λ1
F , X)′V̂ff (λ1

F )−1fT (λF , X)

Sλ1
F⊥ = T

(
V̂ff (λ1

F )−
1
2 fT (λF , X)

)′ (
V̂θθ.f (λ1

F )−
1
2 D̂(λ1

F )
)
.

(57)

Since 1 + (λ1
F )2Q−1

F̄ F̄
is known, the distribution of the maximal invariant in Theorem 9 is a function

of three unknown parameters: D(λ∗F )′Ω−1D(λ∗F ), δ′δ and
(
λ∗F − λ1

F

)
. Under H0 : λF = λ1

F = λ∗F ,

λ∗F − λ1
F = 0 so one of these three parameters is pinned down.

Corollary 3. Under H0 : λF = λ∗F , the non-centrality parameter of the non-central Wishart

distribution of the maximal invariant equals:

Correct specification:

 0

1

 (QF̄ F̄ + (λ∗F )2)β̈′Ω−1β̈

 0

1


′

Misspecification:

 0

1

 (QF̄ F̄ + (λ∗F )2)D(λ∗F )′Ω−1D(λ∗F )

 0

1


′

+

 1

0

 δ′δ

 1

0


′

.

(58)

Corollary 3 shows that under H0 and correct specification, the three different elements of the

maximal invariant depend on only one unknown parameter, (QF̄ F̄ +(λ∗F )2)β̈′Ω−1β̈. Since the Sλ1
Fλ

1
F

-

element of the maximal invariant is a sufficient statistic for it and independently distributed of the

other elements of the maximal invariant, we can condition on Sλ1
Fλ

1
F

to construct the power envelope

and for optimally combining the two other elements of the maximal invariant, Sλ1
F⊥ and S⊥⊥, to

improve the power of testing H0, see Andrews et al. (2006).

Under misspecification, the three elements of the maximal invariant depend on two parameters,

(QF̄ F̄ + (λ∗F )2)D(λ∗F )′Ω−1D(λ∗F ) and δ′δ. These are estimated using Sλ1
Fλ

1
F

and S⊥⊥ so we can no

longer use S⊥⊥ to improve the power of tests of H0 like in case of correct specification. The Sλ1
F⊥-

element of the maximal invariant, which represents the score, is then the only element which can be

used to test H0 under misspecification. It is thus not obvious how to improve the power of tests of

H0 : λF = λ∗F compared to the score test in case of misspecification.

The non-centrality parameter of the score element of the distribution of the maximal invariant,
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Sλ1
F⊥ :

(
λ∗F − λ1

F

)
(QF̄ F̄ + (λ1

F )2)−
1
2 (1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2[(

QF̄ F̄ + λ∗Fλ
1′
F

)
D(λ∗F )′Ω−1D(λ∗F )− (1 + (λ∗F )2Q−1

F̄ F̄
)−1δ′δ

(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)] (59)

shows, similar to Theorem 7, that the power of the DRLM test positively depends on the strength

of identification, D(λ∗F )′Ω−1D(λ∗F ), and negatively on the misspecification, δ′δ. It further shows

that under the null H0 : λF = λ1
F = λ∗F , the non-centrality parameter equals zero when δ′δ =(

QF̄ F̄ + λ∗2F
)
D(λ∗F )′Ω−1D(λ∗F ) so λF is not identified when the identification strength equals the

misspecification, see also (48).

5 Testing multiple and subsets of the structural parameter

vector

The expressions of the DRLM test apply as well to settings where the structural parameter vector

has multiple elements. The power enhancement procedure directly extends as well. Hence, we can

improve the power of testing a hypothesis on the structural parameter vector at the α × 100%

significance level by also rejecting it when there are significant values of the statistic on every line

going from the hypothesized parameter value to the CUE.

Many times, we are interested in constructing confidence sets on the individual elements of the

structural parameter vector. Subset DRLM tests of hypotheses specified on a selection of the ele-

ments of the structural parameter vector which result from substituting the CUE for the parameters

left unspecified under the hypothesis of interest, are not necessarily size correct, see also Guggen-

berger et al. (2012). Confidence sets with the correct coverage therefore result by projecting the

joint confidence set that applies to all structural parameters on the different axes.

6 Nonlinear GMM

The DRLM test applies to general non-linear GMM settings with unrestricted covariance matrices.

We therefore conduct a small simulation study using the non-linear moment equation resulting from

a constant relative rate of risk aversion (CRRA) utility function, see e.g. Hansen and Singleton

(1982), to illustrate the size and power properties of the DRLM test in a non-linear GMM setting.
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Running example 3: Constant relative risk aversion (CRRA) The moment function re-

sulting from the CRRA utility function is, see e.g. Hansen and Singleton (1982):

E

[
δ
(
Ct+1

Ct

)−γ
(ιN +Rt+1)− ιN

]
= µf (δ, γ), (60)

with δ the discount factor, which is kept fixed at the value used in the simulation experiment,

δ0 = 0.95, γ the relative rate of risk aversion, Ct consumption at time t and Rt+1 an N -dimensional

vector of asset returns. The sample moment function and its derivative therefore only depend on γ :

fT (γ,X) = 1
T

∑T
t=1 ft(γ), ft(γ) = δ0

(
Ct+1

Ct

)−γ
(ιN +Rt+1)− ιN ,

qT (γ,X) = 1
T

∑T
t=1 qt(γ), qt(γ) = −δ0 ln

(
Ct+1

Ct

)(
Ct+1

Ct

)−γ
(ιN +Rt+1).

(61)

The covariance matrix estimators are the Eicker-White ones, see White (1980):

V̂ff (γ) = 1
T

∑T
t=1(ft(γ)− fT (γ,X))(ft(γ)− fT (γ,X))′,

V̂θf (γ) = 1
T

∑T
t=1(qt(γ)− qT (γ,X))(ft(γ)− fT (γ,X))′,

V̂θθ(γ) = 1
T

∑T
t=1(qt(γ)− qT (γ,X))(qt(γ)− qT (γ,X))′,

V̂θθ.f (γ) = V̂θθ(γ)− V̂θf (γ)V̂ff (γ)−1V̂θf (γ)′.

(62)

We use a log-normal data generating process to jointly simulate consumption growth and asset

returns in accordance with the moment equation. Since the discount factor is fixed at its true value,

γ is the single structural parameter of interest; see, for example, Savov (2011) and Kroencke (2017).

The population moment function then reads:4

µf (γ) =


exp

(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(
ln(δ0) + µ2,N,0 + 1

2

(
Vrr,NN,0 + γ2Vcc,0 − 2γVrc,N,0

))
− ιN , (63)

with µ2,0 = (µ2,1,0 . . . µ2,N,0)′ the mean of rt+1 = ln(1+Rt+1), Vcc,0 the (scalar) variance of 4ct+1 =

ln
(
Ct+1

Ct

)
, Vrc,0 = V ′cr,0 = (Vrc,1,0 . . . Vrc,N,0)′ the N × 1 dimensional covariance between rt+1 and

4ct+1 and Vrr,0 = (Vrr,ij,0) : i, j = 1, . . . , N, the N × N dimensional covariance matrix of rt+1.

The Online Appendix states the expression of the population covariance matrix Vff (γ) needed to

compute the pseudo-true value γ∗:

4See the Online Appendix for its construction and for further details on the simulation setup.
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γ∗ = argminγ µf (γ)′Vff (γ)−1µf (γ). (64)

Unlike for the linear factor asset pricing model, we need to compute the pseudo-true value numerically

since no closed form expression is available when there is misspecification. This also explains why we

use the log-normal setting so we have an analytical expression of the population moment function

and only use one structural parameter since numerical optimizing in higher dimensions is both

computationally demanding and can be imprecise. We analyze GMM-AR and DRLM tests for

correctly specified and misspecified settings.

Correct Specification and N = 5 Standard GMM operates under correct specification so (63)

equals zero, which implies that:

µ2,0 = −ιN ln(δ0)− 1
2




Vrr,11,0

...

Vrr,NN,0

+ ιNγ
2Vcc,0 − 2γVrc,0

 . (65)

We revisit the simulation study in Kleibergen and Zhan (2020), who examine the GMM-AR test on γ.

We augment their simulation study by the DRLM test. Figure 16 shows the resulting power curves

of the GMM-AR and DRLM tests. It indicates that GMM-AR and DRLM are both size-correct

with good power in the correctly specified setting.

Figure 16: Simulated power curves of GMM-AR (solid blue) and DRLM (dashed red) tests with

5% significance under correct specification. The CRRA moment condition is imposed

in the DGP with δ = 0.95 and N = 5. The null hypothesis is H0 : γ = 15.
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In addition, since we consider N = 5 in the DGP, there is over-identification, which helps explain

the difference in power between the GMM-AR and DRLM tests.

Misspecification and N = 5 For misspecification, we no longer impose (65) in the DGP. Instead,

we just test for the pseudo-true value of γ, denoted by γ∗. Specifically, we start with an auxiliary

µ̃2 that satisfies (65), and then subtract a vector of constants to introduce misspecification in the

DGP:

µ̃2 = −ιN ln(δ0)− 1
2




Vrr,11,0

...

Vrr,NN,0

+ ιNγ
2Vcc,0 − 2γVrc,0


µ2,0 = µ̃2 − cιN .

(66)

Figure 17.1 in Panel 17 illustrates our simulation design. When c = 0, γ∗ = 15, and min µ′fV
−1
ff µf

= 0, as in the previous correct specification case. When c deviates from zero, the pseudo-true value

γ∗ starts to differ from 15, and the objective function µ′fV
−1
ff µf in Figure 17.2 is no longer equal to

zero at the pseudo-true value γ∗.

Panel 17: Pseudo-true value and population objective function as

functions of the misspecification
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Figure 17.1: Pseudo-true value function Figure 17.2: Population objective function at γ∗

Figure 18 shows the rejection frequencies of GMM-AR and DRLM tests of H0 : γ∗ = 24 which

corresponds, according to Figure 17.1, with a degree of misspecification of 0.1. We consider a range
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of values of c from 0 to 0.2 in the DGP while we test for H0 : γ∗ = 24, or put differently, H0 : c = 0.1.

Figure 18 shows that the GMM-AR test rejects the null more often than the nominal significance

level of 5% to reflect that the moment condition is misspecified. In contrast, since the DRLM test

allows for misspecification, it has the correct rejection frequency at the hypothesized value.

Figure 18: Simulated power curves of GMM-AR (solid blue) and DRLM (dashed red) tests at the

5% significance level under misspecification. The null hypothesis H0 : γ = γ∗ = 24 corresponds

with misspecification equal to c = 0.1 where c reflects the deviation for misspecification.
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Size of AR and DRLM tests with N = 5 Furthermore, Figure 19 shows the trade-off between

the identification strength and the misspecification for the rejection frequencies of GMM-AR and

DRLM tests. The DGP is such that the correlation coefficient between the log-consumption growth

and the log asset returns, ρi =
Vrc,i,0√

Vcc,0Vrr,ii,0
, is scaled by a constant c̃ to vary identification. Figure

19 shows the rejection frequencies of tests of H0 : γ = γ∗ as a function of the misspecification c and

strength of identification which is (partly) reflected by c̃. We note that the pseudo-true value γ∗ is

a function of (c, c̃) so the reported rejection frequencies in Figure 19 are for different hypothesized

values of γ∗. Figure 19 shows that the GMM-AR test gets size distorted when the misspecification

increases. This is unlike the DRLM test which remains size correct for all values of the identification

and misspecification strengths.
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Figure 19: Rejection frequencies of GMM-AR and DRLM tests of H0 : γ = γ∗ at the 5%

significance level with N = 5 as a function of the strengths of identification, c̃, and misspecification c.
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7 Applications

We apply the DRLM test and the identification robust AR, KLM and LR tests to data for two

different models discussed previously: the linear asset pricing model and the linear instrumental

variables regression model.

Running example 1: Linear asset pricing model We briefly revisit the linear factor models

considered in Adrian et al. (2014) and He et al. (2017) using our DRLM test and the identification

robust AR, KLM and LR tests, see Kleibergen (2009) and Kleibergen and Zhan (2020).

Adrian et al. (2014) propose a leverage risk factor (“LevFac”), where the leverage level is the

ratio of total assets over the difference between total assets and total liabilities. The resulting log

change of the leverage level is their leverage factor. The empirical study of Adrian et al. (2014)
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uses quarterly data between 1968Q1 and 2009Q4. Following Lettau et al. (2019), we extend the

time period to 1963Q3 - 2013Q4 and use N = 25 size and book-to-market portfolios as test assets.

Adrian et al. (2014) show that the leverage factor prices the cross-section of many test portfolios, as

reflected by the significant Fama-MacBeth (FM) (1973) and Kan-Robotti-Shanken (KRS) t-statistics

on the risk premium reported in Table 1. The KRS t-statistic is robust to misspecification but not

to weak identification, see Kan et al. (2013).

He et al. (2017) propose the banking equity-capital ratio factor (“EqFac”) for asset pricing.

We consider one of their specifications with “EqFac” and the market return “Rm” as two factors.

As presented in Table 1, the significant FM and KRS t-statistics for the risk premium on “EqFac”

appear to favor this factor for asset pricing.

DRLM: Adrian, Etula, and Muir (2014) Using the same data as for Table 1, Figure 20 shows

the p-values for testing the risk premium on the leverage factor (horizontal line) using the DRLM,

AR, KLM, and LR tests. Most of the p-values in Figure 20 are above the 5% level, which implies

that none of the DRLM, AR, KLM, and LR tests leads to tight 95% confidence intervals for the risk

premium on the leverage factor as shown in Table 1. Given the smallish p-value of the J-test, 0.20,

and the weak identification of the risk premium on the leverage factor reflected by the unbounded

95% confidence sets, it is likely that there is misspecification so it would be appropriate to use the

DRLM test.

The p-values of the DRLM test in Figure 20 are equal to one at two different points. The p-values

of the AR test show that one of these two points relates to the minimal value of the AR test and

the other one to the maximal value of the AR test. Using the power enhancement rule for the

DRLM test, we can reject non-significant values that lie within the closed interval indicated by the

maximizers of the DRLM statistic that does not contain the CUE so the non-significant p-values of

the DRLM test which occur around the maximizer of the AR test can all be categorized as significant

ones according to the power enhancement rule. The resulting 95% confidence set for the DRLM test

rejects a zero value of the risk premium of the leverage factor and is reported in Table 1 alongside

the one which results from just applying the DRLM test. The FM and KRS t-statistics reported in

Table 1 also reject a zero value of the risk premium but these tests are not reliable because of the

weak identification of the risk premium of the leverage factor and the likely misspecification reflected

by the smallish p-value of the J-test.
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Figure 20: Adrian, Etula and Muir (2014). p-value from the DRLM (dashed red), AR (dashed blue),

KLM (solid black), LR (dash-dotted green) and the 5% level (dotted black). J-statistic

(=minimum AR) equals 28.42, with p-value of 0.20 resulting from χ2(N − 2).
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DRLM: He, Kelly, and Manela (2017) Panel 21 shows the joint 95% confidence sets (shaded

areas) of the risk premia on the banking equity-capital ratio factor “EqFac” and the market return

“Rm”, from using the DRLM, AR, KLM, and LR tests. The p-value of the J-test shows that

misspecification is present so it is appropriate to use the DRLM test for the confidence set of the

minimizer of the population continuous updating objective function. The 95% confidence sets of

the DRLM and KLM tests have two rather disjoint areas. The power enhancement rule for the

DRLM test shows that the smaller disjoint area can be discarded for the joint 95% confidence set

that results from the DRLM test. The resulting 95% confidence set from the DRLM test includes a

zero value for the risk premium on “EqFac” which indicates that the pricing ability of “EqFac” is

under doubt.

To compare with Panel 21, we replace the “EqFac” risk factor with the “SMB” (small minus

big) factor from Fama and French (1993) and similarly construct Panel 22. The AR test now signals

model misspecification, since it rejects every hypothesized risk premia as shown in Figure 22.2 so

the 95% confidence set that results from the AR test is empty. Our DRLM test, which allows for

misspecification, yields a tight confidence set in Figure 22.1. This tight confidence set, in contrast

with the wide one in Figure 21.1, indicates that the pricing ability of “EqFac” differs substantially

from “SMB”. Because of the misspecification, the 95% confidence sets resulting from the KLM and

LR tests are not representative for the minimizer of the population objective function.
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Panel 21: He, Kelly and Manela (2017). 95% confidence sets from DRLM, AR, KLM and LR.

J-statistic (minimum of AR) equals 35.32, with p-value of 0.036 resulting from χ2(N − 3).
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Figure 21.3: KLM Figure: 21.4: LR

Panel 22: Rm and SMB. 95% confidence sets from DRLM, AR, KLM and LR.

J-statistic (minimum of AR) equals 59.34, with p-value of 0.00 resulting from χ2(N − 3).
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Running example 2: Linear instrumental variables regression for the return on edu-

cation using Card (1995) data To further show the ease of implementing the DRLM test for

applied work, we use the return on education data from Card (1995). Card (1995) uses proximity to

college as the instrument in an IV regression of (the log) wage on (length of) education. For more

details on the data, we refer to Card (1995). The instruments used in our specification are three

binary indicator variables which show the proximity to a two-year college, a four-year college and

a four-year public college, respectively. The included exogenous variables are a constant term, age,

age2, and racial, metropolitan, family and regional indicator variables. All three binary instruments

have their own local average treatment effects, which in case of heterogeneous treatment effects leads

to misspecification of the IV regression model since it considers them to be identical, see Imbens

and Angrist (1994).

Figure 23: Tests of the return on education using Card (1995) data with the DRLM

(solid black), KLM (dashed black), LR (solid red) and AR (solid blue) tests and their

95% (conditional) critical value lines (dotted in the color of the test they refer to).
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Figure 23 shows the values of the AR, LR, KLM and DRLM tests around the CUE. It also shows

their 5% critical value functions. The other area of small values of the DRLM test is left out since

it would be discarded by the power enhancement rule. The J-test, which equals the minimal value

of the AR statistic, is 2.99 with a p-value of 0.22. Since the return on education is not strongly

identified, the J-test does not have much power. Its quite low p-value can indicate misspecification

which then results from distinct local average treatment effects of the different instruments. Lee

(2018) constructs misspecification-robust standard errors for the two stage least squares estimator
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when the local average treatment effects differ but the resulting t-test is not valid here because of

the weak identification of the return on education. This makes the DRLM test more appealing since

it is robust to both misspecification and weak identification. Kitagawa (2015) further shows that

the validity of the instruments for the Card data depends on the specification of the model. Figure

23 then shows that allowing for misspecification further enlarges the identification-robust confidence

set for the return on education.

8 Conclusions

We show that it is generally feasible to conduct reliable inference on the pseudo-true value of the

structural parameters resulting from the population continuous updating GMM objective function

using the DRLM test. While settings of weak identification paired with misspecification are em-

pirically relevant, it was so far not possible to conduct reliable inference in these settings. This

holds since weak identification robust tests are size distorted when the model is misspecified while

the misspecification tests which are typically used to detect misspecification, are virtually powerless

under weak identification. Hence, it is not possible to test for the settings where weak identification

robust tests falter, in a powerful manner. We propose some straightforward power improvements

for the DRLM test which make it work well. We hope to conduct further power improvements in

future work. We also used the DRLM test to analyze data from three studies which are plagued

by both weak identification and misspecification issues: Card (1995), Adrian et al. (2014), and He

et al. (2017). It shows that other inference procedures can seriously underestimate the uncertainty

concerning the structural parameters when both misspecification and weak identification matter.
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I Structural interpretation for misspecified settings

In case of misspecification, the structural specification resulting from the pseudo-true value depends

on the involved population objective function. For the linear asset pricing and instrumental variables

regression models, it is thus instructive to see how the population continuous updating objective

function comes to a structural specification at the pseudo-true value. We therefore first lay out the

unrestricted specification of the population moments used by the population continuous updating

objective function to obtain its structural specification at the pseudo-true value for the linear factor

and instrumental variables regression models with i.i.d. errors:

Factor model:

structural model misspecification

(
µR β

)
=

︷ ︸︸ ︷
−D∗

(
λ∗F Im

)
+

︷ ︸︸ ︷
ΩD∗⊥δ

∗
(
λ∗F Im

)
⊥

 1 0

0 Q−1
F̄ F̄


= −D∗

(
λ∗F Im

)
+

(
γ1 Γ2

)

Linear instrumental variables regression model:

structural model misspecification(
σZy ΣZX

)
=

︷ ︸︸ ︷
−D∗

(
β∗ Im

)
+

︷ ︸︸ ︷
QZ̄Z̄D

∗
⊥δ
∗
(
β∗ Im

)
⊥

Ω

= −D∗
(
β∗ Im

)
+

(
γ1 Γ2

)

where D∗ is an N ×m dimensional matrix for the factor model and a k ×m dimensional matrix

for the linear instrumental variables regression model, D∗⊥ is the orthogonal complement of D∗, so

an N × (N −m) dimensional matrix for the factor model: D∗′D∗⊥ ≡ 0, D∗′⊥ΩD∗⊥ ≡ IN−m; and a

k × (k −m) dimensional matrix for the linear instrumental variables regression model: D∗′D∗⊥ ≡ 0,

D∗′⊥QZ̄Z̄D
∗
⊥ ≡ Ik−m; in an identical manner:

(
λ∗F Im

)
⊥

= (1 −λ∗′F )(1 + λ∗′FQ
−1
F̄ F̄
λ∗F )−

1
2 and(

β∗ Im

)
⊥

= (1 −β∗′)
((

1
−β∗
)′

Ω
(

1
−β∗
))− 1

2

and δ∗ is an (N − m) dimensional vector for the

factor model and a (k−m) dimensional vector for the linear instrumental variables regression model

reflecting the misspecification so in case of correct specification, δ∗ = 0. The matrix

(
γ1 Γ2

)
is

N×(m+1) dimensional for the linear factor model and k×(m+1) dimensional for the instrumental

variables regression model. The above specification results from a singular value decomposition of

the normalized population moments, see e.g. Theorem 8 and Kleibergen and Paap (2006).
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The unrestricted specifications show that the population continuous updating objective function

at the pseudo-true value equals:

Qp(λ
∗
F ) = 1

1+λ′FQ
−1

F̄ F̄
λF

(µR − βλ∗F )′Ω−1(µR − βλF ) = δ∗′δ∗

Qp(β
∗) = 1

ωuu−2ωuV β∗+β∗′ΩV V β∗
(σZy − ΣZXβ

∗)′Q−1
Z̄Z̄

(σZy − ΣZXβ)∗ = δ∗′δ∗,

which further illustrates that δ∗′δ∗ equals the squared smallest singular value of either Ω−
1
2

(
µR β

)
 1 0

0 Q
1
2

F̄ F̄

 , factor model, or Q
− 1

2

Z̄Z̄

(
σZy ΣZX

)
Ω−

1
2 , linear instrumental variables regression

model.

For the unrestricted specification to have a structural interpretation, we need that:

Factor model:

γ′1Ω−1D∗ = 0, Γ′2Ω−1D∗ = 0,

(
γ1 Γ2

) 1 0

0 Q−1
F̄ F̄

( λ∗F Im

)′
= 0.

Linear instrumental variables regression model:

γ′1Q
−1
Z̄Z̄
D∗ = 0, Γ′2Q

−1
Z̄Z̄
D∗ = 0,

(
γ1 Γ2

)
Ω

(
β∗ Im

)′
= 0.

The restrictions for the linear instrumental variables regression model are identical to those in

Kolesár et al. (2015), except that they also assume that Γ2 = 0,1 who show that they allow for

a causal interpretation. Kolesár et al. (2015) motivate them by means of a random coefficients

assumption with potentially many instruments where direct, channeled through γ1, and indirect

effects, channeled through D∗, are independently distributed. In asset pricing, the factors are often

considered as proxies for true underlying risk factors. The measurement error between the observed

proxy risk factors and the true underlying risk factors can then similarly be represented by a random

coefficient specification where the measurement error reflected by

(
γ1 Γ2

)
is uncorrelated with

the true risk factor D∗ after correcting for the covariance matrix of the errors.

The unrestricted specifications crucially hinge on that the largest singular values, identifying the

structural specification, and the smallest one, which represents the misspecification, differ consider-

ably. The largest singular values reflect the identification strength of the structural parameters so

when these are close to the singular value reflecting the misspecification, the pseudo-true value is

weakly identified. Furthermore, when the singular value representing the misspecification exceeds

1We note that Assumption 2 in Kolesár et al. (2015) is imposed on Q̄−1
ZZ(σZy ΣZX) so γ′1QZ̄Z̄D

∗ = 0 in their
specification.
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(some of) the singular values reflecting the identification strength, we can no longer attribute a

structural interpretation to the pseudo-true value.

II Power of J-test and identification-robust tests with fewer

moment conditions

To show that the low power of the J-test for misspecification is not just resulting from the large

number of moment equations, we repeat the simulation exercise with fewer moment equations,

N = 5, and weak misspecification: µ̄′µ̄ = 2.5. Figures A1.1 and A1.2 show the power curves for the

conditional LR and size and power improved DRLM tests. Figure A1.1 shows that the conditional LR

test is size distorted and its rejection frequency equals 17% when the misspecification and strength

of identification are identical. The size and power improved DRLM test shows no size distortion.

Figure A2 shows the simulated distribution function of the J-test. Since N = 5, the limiting

distribution of the J-test is a χ2(4) distribution whose 95% critical value equals 9.48. The simulated

distribution function shows that we never reject no misspecification when D̄′D̄ = 0, 2.5% of the

times when D̄′D̄ = 2.5 which equals the strength of misspecification, and 20% of the times when

D̄′D̄ = 100. This reiterates the difficulty of detecting misspecification, which leads to size distorted

identification-robust tests, using the J-test when the identification is weak; see also Gospodinov et

al. (2017).

Panel A1: Power of 5% significance LR and DRLM tests of

H0 : λF = 0 with misspecification, µ̄′µ̄ = 2.5, N = 5, QF̄ F̄ = 1
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Figure A2: Distribution function of J-test for misspecification when H0 : λF = 0 holds,

solid line: D̄′D̄ = 0, dash-dot: D̄′D̄ = 2.5 = strength of misspecification, dashed: D̄′D̄ = 100.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
je

c
ti
o
n
 f
re

q
u
e
n
c
y
 J

−
te

s
t

III Lemma and Proof

A. Lemma

Lemma 1. The estimators R̄ and β̂ in the linear regression model:

Rt = c+ βFt + ut,

with c an N -dimensional vector of constants, Ft = Gt − Ḡ, with Gt an m-dimensional vector of

factors and Ḡ = 1
T

∑T
t=1Gt, so F̄ = 0, and ut an N -dimensional vector which contains the errors

which are i.i.d. distributed with mean zero and covariance matrix Ω, are independently distributed

in large samples.

Proof: Since R̄ = ĉ+ β̂F̄ = ĉ, and the joint limit behavior of ĉ and β̂ accords with

√
T


 ĉ

vec(β̂)

−
 c

vec(β)


→

d

 ψc

ψβ

 ,

with  ψc

ψβ

 ∼ N (0, (Q−1 ⊗ IN )Σ(Q−1 ⊗ IN )
)
,
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since 1
T

∑T
t=1

 1

Ft


 1

Ft


′

→
p
Q =

 1 µ′F

µF QFF

 =

 1 0

0 QFF

 , µF = 0, QFF =

E(FtF
′
t ) = QF̄ F̄ + µFµ

′
F , and 1

T

∑T
t=1


 1

Ft


 1

Ft


′

⊗ utu′t

 →
p

Σ. When ut is i.i.d., Σ =

(Q⊗ Ω), with Ω = var(ut), so

 ψc

ψβ

 ∼ N
0,

 1 0

0 Q−1
FF

⊗ Ω

 ,

so the limit behaviors of R̄ = ĉ and β̂ are independent.

Lemma 2. a. When V̂ff (θ)−1 = V̂ff (θ)−
1
2 ′V̂ff (θ)−

1
2 , θ : 1× 1, it holds that

∂
∂θ V̂ff (θ)−

1
2 = −V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1.

b.

∂
∂θ V̂ff (θ)−

1
2 fT (θ,X) = V̂ff (θ)−

1
2 D̂(θ).

c.

∂
∂θ V̂ff (θ)−

1
2DT (θ,X) = −2V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1DT (θ,X)− V̂ff (θ)−

1
2 V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X).

d.

∂
∂θfT (θ,X)′V̂ff (θ)−1D̂(θ) = D̂(θ)′V̂ff (θ)−1D̂(θ)− 2fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X).

e.

∂
∂θ

(
DT (θ,X)′V̂ff (θ)−1DT (θ,X)

)
= −4DT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)−

2DT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X).

f.

∂
∂θVθθ.f (θ) = −V̂θθ.f (θ)V̂ff (θ)−1V̂θf (θ)′ − V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ).
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g.

∂
∂θ

(
fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

)
= 2D̂(θ)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)−

4fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

h.
∂
∂θ

(
DT (θ,X)′V̂ff (θ)−1DT (θ,X) + fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

)
= −4

[
DT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)+

fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)
]
.

Proof: a. Because V̂ff (θ)−1 = V̂ff (θ)−
1
2 ′V̂ff (θ)−

1
2 , V̂ff (θ)−

1
2 V̂ff (θ)V̂ff (θ)−

1
2 ′ = Ikf and

(∂V̂ff (θ)−
1
2

∂θ

)
V̂ff (θ)V̂ff (θ)−

1
2 ′ + V̂ff (θ)−

1
2

(∂V̂ff (θ)
∂θ

)
V̂ff (θ)−

1
2 ′ + V̂ff (θ)−

1
2 V̂ff (θ)

(∂V̂ff (θ)−
1
2

∂θ

)′
= 0,

such that ∂
∂θ V̂ff (θ)−

1
2 = −V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1 since

∂V̂ff (θ)
∂θ = V̂θf (θ) + V̂θf (θ)′ which results

from the definition of qT (θ,X) = ∂
∂θfT (θ,X).

b. Using the product rule of differentation:

∂
∂θ V̂ff (θ)−

1
2 fT (θ,X) =

(
∂
∂θ V̂ff (θ)−

1
2

)
fT (θ,X) + V̂ff (θ)−

1
2

(
∂
∂θfT (θ,X)

)
= −V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1fT (θ,X) + V̂ff (θ)−

1
2 qT (θ,X)

= V̂ff (θ)−
1
2 D̂(θ).

c. The specification of V̂ff (θ)−
1
2 D̂(θ) is V̂ff (θ)−

1
2 D̂(θ) = V̂ff (θ)−

1
2

[
qT (θ,X)− V̂θf (θ)V̂ff (θ)−1fT (θ,X)

]
,

so:

∂
∂θ

(
V̂ff (θ)−

1
2DT (θ,X)

)
=

(
∂
∂θ V̂ff (θ)−

1
2

)
DT (θ,X) + V̂ff (θ)−

1
2

(
∂
∂θ

[
qT (θ,X)− V̂θf (θ)V̂ff (θ)−1fT (θ,X)

])
= −V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1DT (θ,X) + V̂ff (θ)−

1
2

[
∂
∂θ qT (θ,X)−

(
∂
∂θ V̂θf (θ)

)
V̂ff (θ)−1fT (θ,X)−

V̂θf (θ)
(
∂
∂θ V̂ff (θ)−1

)
fT (θ,X)− V̂θf (θ)V̂ff (θ)−1

(
∂
∂θfT (θ,X))

]
= −V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1DT (θ,X)− V̂ff (θ)−

1
2 V̂θθ(θ)V̂ff (θ)−1fT (θ,X)+

V̂ff (θ)−
1
2 V̂θf (θ)V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1fT (θ,X)+

V̂ff (θ)−
1
2 V̂θf (θ)V̂ff (θ)−1V̂θf (θ)′V̂ff (θ)−1fT (θ,X)− V̂ff (θ)−

1
2 V̂θf (θ)V̂ff (θ)−1qT (θ,X)

= −2V̂ff (θ)−
1
2 V̂θf (θ)V̂ff (θ)−1DT (θ,X)− V̂ff (θ)−

1
2 V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)
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d.

∂
∂θfT (θ,X)′V̂ff (θ)−1D̂(θ)

=
(
∂
∂θ V̂ff (θ)−

1
2 fT (θ,X)

)′
V̂ff (θ)−

1
2 D̂(θ) + fT (θ,X)′V̂ff (θ)−

1
2

(
∂
∂θ V̂ff (θ)−

1
2 D̂(θ,X)

)
= D̂(θ)′V̂ff (θ)−1D̂(θ)− 2fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X).

e.
∂
∂θ

(
D̂(θ)′V̂ff (θ)−1D̂(θ)

)
= 2

(
D̂(θ)′V̂ff (θ)−

1
2

)(
∂
∂θ V̂ff (θ)−

1
2 D̂(θ)

)
= −4D̂(θ)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1D̂(θ)−

2D̂(θ)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X).

f. The specification of Vθθ.f (θ) = Vθθ(θ)− Vθf (θ)Vff (θ)−1Vθf (θ)′ is such that:

∂
∂θVθθ.f (θ)

=
(
∂
∂θVθθ(θ)

)
−
(
∂
∂θ V̂θf (θ)

)
V̂ff (θ)−1V̂θf (θ)′ − V̂θf (θ)

(
∂
∂θ V̂ff (θ)−1

)
V̂θf (θ)′−

V̂θf (θ)V̂ff (θ)−1
(
∂
∂θ V̂θf (θ)

)′
= −V̂θθ(θ)V̂ff (θ)−1V̂θf (θ)′ + V̂θf (θ)V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θf (θ)′+

V̂θf (θ)V̂ff (θ)−1V̂θf (θ)′V̂ff (θ)−1V̂θf (θ)′ − V̂θf (θ)V̂ff (θ)−1V̂θθ(θ)

= −V̂θθ.f (θ)V̂ff (θ)−1V̂θf (θ)′ − V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)

g. The specification of fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X) is such that:

∂
∂θ

(
fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

)
= 2

(
∂
∂θ V̂ff (θ)−

1
2 fT (θ,X)

)′
V̂ff (θ)−

1
2 V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+

2fT (θ,X)′V̂ff (θ)−
1
2

(
∂
∂θ V̂ff (θ)−

1
2

)
V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+

fT (θ,X)′V̂ff (θ)−1
(
∂
∂θ V̂θθ.f (θ)

)
V̂ff (θ)−1fT (θ,X)

= 2D̂(θ)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)−

2fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1V̂θf (θ)′V̂ff (θ)−1fT (θ,X)−

fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

= 2D̂(θ)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)−

4fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

h. It follows from e and g above.
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B. Proof of Theorem 1

The derivative of Qp(θ) with respect to θ consists of two parts. The derivative of µf (θ) with respect

to θ : J(θ) = ∂
∂θ′µf (θ), and the derivative of Vff (θ)−1 with respect to θ. To obtain the derivative of

Vff (θ)−1 with respect to θ, we start out with the derivative of Vff (θ) with respect to θ :

vec(Vff (θ)) = vec( limT→∞ var
(√

TfT (θ,X)
)

)

= vec
(
E
(

limT→∞
1
T

∑T
t=1

∑T
j=1 (ft(θ)− µf (θ)) (fj(θ)− µf (θ))

′
))

= E
(

limT→∞
1
T

∑T
t=1

∑T
j=1 [(fj(θ)− µf (θ))⊗ (ft(θ)− µf (θ))]

)

∂
∂θ′ vec(Vff (θ)) = ∂

∂θ′E
(

limT→∞
1
T

∑T
t=1

∑T
j=1 [(fj(θ)− µf (θ))⊗ (ft(θ)− µf (θ))]

)
= E

(
limT→∞

1
T

∑T
t=1

∑T
j=1

[(
∂
∂θ′ fj(θ)−

∂
∂θ′µf (θ)

)
⊗ (ft(θ)− µf (θ))

])
+

E
(

limT→∞
1
T

∑T
t=1

∑T
j=1

[
(fj(θ)− µf (θ))⊗

(
∂
∂θ′ ft(θ)−

∂
∂θ′µf (θ)

)])
= E

(
limT→∞

1
T

∑T
t=1

∑T
j=1 [(qj(θ)− J(θ))⊗ (ft(θ)− µf (θ))]

)
+

E
(

limT→∞
1
T

∑T
t=1

∑T
j=1 [(fj(θ)− µf (θ))⊗ (qt(θ)− J(θ))]

)
= (vec (Vθ1f (θ)) . . . vec (Vθmf (θ))) + (vec (Vθ1f (θ)′) . . . vec (Vθmf (θ)′))

with qj(θ) = ∂
∂θ′ fj(θ) = (q1,j(θ) . . . qm,j(θ)) and

Vθif (θ) = E
(

limT→∞ T ( ∂
∂θi

(fT (θ,X)− µf (θ))) (fT (θ,X)− µf (θ))
′
)
, i = 1, . . . ,m.

We can now specify the derivative of the objective function with respect to θ:

1
2
∂
∂θ′Qp(θ) = µf (θ)′Vff (θ)−1 ∂µf (θ)

∂θ′ −
1
2 ((µf (θ)⊗ µf (θ))′(Vff (θ)−1 ⊗ Vff (θ)−1) ∂

∂θ′ vec(Vff (θ))

= µf (θ)′Vff (θ)−1J(θ)− 1
2 ((µf (θ)⊗ µf (θ))′(Vff (θ)−1 ⊗ Vff (θ)−1)

(vec (Vθ1f (θ)) . . . vec (Vθmf (θ))) + (vec (Vθ1f (θ)′) . . . vec (Vθmf (θ)′))

= µf (θ)′Vff (θ)−1J(θ)−
1
2

[(
µf (θ)′Vff (θ)−1Vθ1f (θ)Vff (θ)−1µf (θ) . . . µf (θ)′Vff (θ)−1Vθmf (θ)Vff (θ)−1µf (θ)

)
+(

µf (θ)′Vff (θ)−1Vθ1f (θ)′Vff (θ)−1µf (θ) . . . µf (θ)′Vff (θ)−1Vθmf (θ)′Vff (θ)−1µf (θ)
)]

= µf (θ)′Vff (θ)−1
[
J(θ)−

(
Vθ1f (θ)Vff (θ)−1µf (θ) . . . Vθmf (θ)Vff (θ)−1µf (θ)

)]
= µf (θ)′Vff (θ)−1D(θ)

with D(θ) = J(θ)−
[
Vθ1f (θ)Vff (θ)−1µf (θ) . . . Vθmf (θ)Vff (θ)−1µf (θ)

]
.
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C. Proof of Proposition 1

We pre and post-multiply the matrices in the characteristic polynomial:

∣∣∣∣∣∣∣τ
 1 0

0 Q−1
F̄ F̄

− (µR ... β

)′
Ω−1

(
µR

... β

)∣∣∣∣∣∣∣ = 0,

by  1 0

−λF Ik

 ,

which since the determinant of this matrix equals one does not alter the roots:

∣∣∣∣∣∣∣τ
 1 + λ′FQ

−1
F̄ F̄
λF −λ′FQ

−1
F̄ F̄

−Q−1
F̄ F̄
λF Q−1

F̄ F̄

− (µR − βλF ... β

)′
Ω−1

(
µR − βλF

... β

)∣∣∣∣∣∣∣ = 0.

We next do so again using:

 1 λ′FQ
−1
F̄ F̄

(1 + λ′FQ
−1
F̄ F̄
λF )−1

0 Ik

 ,

to obtain: ∣∣∣∣∣∣∣τ
 1 + λ′FQ

−1
F̄ F̄
λF 0

0 Q−1
F̄ F̄
−Q−1

F̄ F̄
λF (1 + λ′FQ

−1
F̄ F̄
λF )−1λ′FQ

−1
F̄ F̄

−
(
µR − βλF

... −D(λF )

)′
Ω−1

(
µR − βλF

... −D(λF )

)∣∣∣∣∣ = 0.

with D(λF ) = −β − (µR − βλF )λ′FQ
−1
F̄ F̄

(1 + λ′FQ
−1
F̄ F̄
λF )−1. For a value of λF , λ

s
F , which satisfies

the FOC, so (µR − βλsF )
′
Ω−1D(λsF ) = 0, the characteristic polynomial then becomes:

∣∣∣∣∣∣∣
 τ(1 + λs′FQ

−1
F̄ F̄
λsF )− (µR − βλsF )

′
Ω−1 (µR − βλsF )

0

0

τ(Q−1
F̄ F̄
−Q−1

F̄ F̄
λsF (1 + λs′FQ

−1
F̄ F̄
λsF )−1λs′FQ

−1
F̄ F̄

)−D(λsF )′Ω−1D (λsF )


∣∣∣∣∣∣∣ = 0.

We can further use that Q−1
F̄ F̄
−Q−1

F̄ F̄
λsF (1 + λs′FQ

−1
F̄ F̄
λsF )−1λs′FQ

−1
F̄ F̄

= (QF̄ F̄ + λsFλ
s′
F )−1.
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D. Proof of Theorem 3

The joint limit behavior of fT (θ,X) and qT (θ,X) at the pseudo-true value θ∗ reads:

√
T

 fT (θ∗, X)− µf (θ∗)

vec(qT (θ∗, X)− J(θ∗))

→
d

 ψf (θ)

ψθ(θ)

 .

We pre-multiply it by

R̂(θ∗) =

 Ikf 0

−V̂θf (θ∗)V̂ff (θ∗)−1 Ikfm

→
p

 Ikf 0

−Vθf (θ∗)Vff (θ∗)−1 Ikfm

 = R(θ∗),

to obtain

√
T

R̂(θ∗)

 fT (θ∗, X)

vec(qT (θ∗, X))

−R(θ∗)

 µf (θ∗)

vec(J(θ∗))


→

d
R(θ∗)

 ψf (θ∗)

ψθ(θ
∗)

 ⇔

√
T

 fT (θ∗, X)− µf (θ∗)

vec(D̂(θ∗)−D(θ∗))

→
d

 ψf (θ∗)

ψθ.f (θ∗)

 ,

with ψθ.f (θ∗) = ψθ(θ
∗)− Vθf (θ∗)Vff (θ∗)−1ψf (θ∗) which is independent of ψf (θ∗) since

R(θ∗)V (θ∗)R(θ∗)′ =

 Vff (θ∗) 0

0 Vθθ.f (θ∗)

 ,

where Vθθ.f (θ∗) = Vθθ(θ
∗)− Vθf (θ∗)Vff (θ∗)−1Vθf (θ∗)′, so ψf (θ∗) and ψθ.f (θ∗) are uncorrelated and

independent since they are normal distributed random variables.

E. Proof of Theorem 4

The joint limit behaviors of fT (θ∗, X), D̂(θ∗) and V̂ff (θ∗) are such that:

Ts(θ∗) =
(√

TfT (θ∗, X)
)′
V̂ff (θ∗)−1

(√
TD̂(θ∗)

)
→
d

[µ̄f (θ∗) + ψf (θ∗)]
′
Vff (θ∗)−1

[
D̄(θ∗) + Ψθ.f (θ∗)

]
= µ̄f (θ∗)′Vff (θ∗)−1Ψθ.f (θ∗) + ψf (θ∗)′Vff (θ∗)−1

[
D̄(θ∗) + Ψθ.f (θ∗)

]
= (µ̄f (θ∗) + ψf (θ∗))

′
Vff (θ∗)−1Ψθ.f (θ∗) + ψf (θ∗)′Vff (θ∗)−1D̄(θ∗),
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where vec(Ψθ.f (θ∗)) = ψθ.f , since µ̄f (θ∗)′Vff (θ∗)−1D̄(θ∗) = 0. Since ψf (θ∗) and ψθ.f (θ∗) are in-

dependently distributed, this shows that the expected value of the limit of the score of the CUE

sample objective function equals zero at the pseudo-true value θ∗.

F. Proof of Theorem 5

We can specify the limit behavior of Ts(θ∗) as:

Ts(θ∗)→
d

a′ + b′ + c′,

with a′ = µ̄f (θ∗)′Vff (θ∗)−1Ψθ.f (θ∗), b′ = ψf (θ∗)′Vff (θ∗)−1D̄(θ∗) and c′ = ψf (θ∗)′Vff (θ∗)−1Ψθ.f (θ∗).

To obtain the bounding distribution of the DRLM statistic, we next further characterize the limit

behavior of the above components.

1. The limit behavior of a′+c′ : (µ̄f (θ∗)+ψf (θ∗))′Vff (θ∗)−1Ψθ.f (θ∗) = ψθ.f (θ∗)′
(
Im ⊗ Vff (θ∗)−1

(µ̄f (θ∗) + ψf (θ∗))) is such that

[(
Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))

)′
Vθθ.f (θ∗)

(
Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))

)]− 1
2

(
Im ⊗ (µ̄f (θ∗) + ψf (θ∗))

′
Vff (θ∗)−1

)
ψθ.f (θ∗) = ψa+c ⇔

A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))−
1
2 (a+ c) = ψa+c ,

with ψa+c ∼ N(0, Im), since µ̄f (θ∗) + ψf (θ∗) is independent of ψθ.f (θ∗) and

A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗)) =(
Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))

)′
Vθθ.f (θ∗)

(
Im ⊗ Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗))

)
.

Also
√
T V̂ff (θ∗)−1µ̂f (θ∗)→

d
Vff (θ∗)−1 (µ̄f (θ∗) + ψf (θ∗)) .

2. The limit behavior of b′ + c′ : ψf (θ∗)′Vff (θ∗)−1(D̄(θ∗) + Ψθ.f (θ∗)) is such that:

[
(D̄(θ∗) + Ψθ.f (θ∗)′Vff (θ∗)−1(D̄(θ∗) + Ψθ.f (θ∗)

]− 1
2

(D̄(θ∗) + Ψθ.f (θ∗)′Vff (θ∗)−1ψf (θ∗) = ψb+c ⇔

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))−
1
2 (b+ c) = ψb+c ,
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with ψb+c ∼ N(0, Im),
√
TD̂(θ∗)→

d
D̄(θ∗) + Ψθ.f (θ∗) and

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

= (D̄(θ∗) + Ψθ.f (θ∗))′Vff (θ∗)−1(D̄(θ∗) + Ψθ.f (θ∗)).

We next specify the limit behavior of Ts(θ∗) as

Ts(θ∗)′ →
d

(a+ c) + (b+ c)− c,

=

(
Im Im

) a+ c

(b+ c)− c


=

(
Im Im

) A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c − c

 .

While ψa+c and ψb+c are not uncorrelated, A(µ̄f (θ∗)+ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c andB(D̄(θ∗)+

Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c − c are since:

A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c

(
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c

)′
= (a+ c)b′

and a, c and b are all uncorrelated. Also

(
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c

)(
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c

)′
= B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+cψ

′
b+cB(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2 ′−

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+cc

′ − cψb+cB(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2 ′+

cc′

= B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+cψ

′
b+cB(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2 ′ − cc′−

bc′ − cb′.

since B(D̄(θ∗)+Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c = b+c. Because b and c are uncorrelated, ψb+c ∼ N(0, Im)

and the expected value of cc′ is a positive-semi definite matrix, the difference between B(D̄(θ∗) +

Ψθ.f (θ∗), Vff (θ∗)) and the expectation of the outer product of
(
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c

)
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is a positive-semi definite matrix. We then obtain the following bounding distribution:

(
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c

)′
B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))−1(

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c − c

)
� χ2(m).

Since no estimate for c is available, this bounding distribution is infeasible. Using that A(µ̄f (θ∗) +

ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c and B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c are uncorrelated, this,

however, also implies that:

[
A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))

1
2ψa+c+(

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c − c

)]′
[A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))+

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
]−1[

A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c+(

B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c − c

)]
� χ2(m),

which equals the limit expression of the DRLM statistic so:

limT→∞DRLM(θ∗) � χ2(m).

The above proof is based on the (uncorrelated) limit behaviors of A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗),

Vθθ.f (θ∗))
1
2ψa+c and B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))

1
2ψb+c − c. The same result is obtained when

considering the (uncorrelated) limit behaviors of A(µ̄f (θ∗) + ψf (θ∗), Vff (θ∗), Vθθ.f (θ∗))
1
2ψa+c − c

and B(D̄(θ∗) + Ψθ.f (θ∗), Vff (θ∗))
1
2ψb+c.

Definition of the parameter space In Andrews and Guggenberger (2017), the asymptotic size

of the KLM test is proven to equal the nominal size and the accompanying parameter space on the

distributions of the observations is stated for both i.i.d. and dependent data settings.

To start out with the i.i.d. setting, define for some κ, τ > 0 and M <∞, the parameter space:

F = {F : {Xt : t ≥ 1} are i.i.d. under F, E(ft(θ
∗)) = µf (θ∗), for

θ∗ = arg minθ∈Rm µf (θ)′Vff (θ)−1µf (θ), Vff (θ) = E
(
(ft(θ)− µf (θ)) (ft(θ)− µf (θ))

′)
E

(∥∥∥∥∥
(
ft(θ

∗)′
...
(
vec
(
∂
∂θ′ ft(θ

∗)
))′)2+κ

∥∥∥∥∥
)
≤M and λmin(Vff (θ∗)) ≥ τ

}
,
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where λmin(A) is the smallest characteristic root of the matrix A. The parameter space above is

identical to the one in Andrews and Guggenberger (2017) Equation (3.3) except that it is defined for

the pseudo-true value θ∗ defined as the minimizer of the population continuous updating objective

function for which µf (θ∗) is not necessarily equal to zero.

Since we are after proving the size correctness of the DRLM test which tests hypotheses specified

on the pseudo-true value θ∗, we define the recentered Jacobian:

D(θ) = J(θ)−
[
Vθ1f (θ)Vff (θ)−1µf (θ) . . . Vθmf (θ)Vff (θ)−1µf (θ)

]
, J(θ) = ∂

∂θ′µf (θ),

Vθif (θ) = E
[
( ∂
∂θi

(ft(θ)− µf (θ))) (ft(θ)− µf (θ))
′
]
, i = 1, . . . ,m,

Vff (θ) = E
(
(ft(θ)− µf (θ)) (ft(θ)− µf (θ))

′)
.

The pseudo-true value is then such that

µf (θ∗)′Vff (θ∗)−1D(θ∗) = 0.

To guarantee with probability one, a non-singular value of the limit value of the sample analog

of Vff (θ∗)−1D(θ∗), V̂ff (θ∗)−1D̂(θ∗), Andrews and Guggenberger (2017) provide a number of addi-

tional conditions on the parameter space F . Since we allow for misspecification, these conditions

have to hold when using the recentered Jacobian D(θ) instead of the Jacobian J(θ) as in An-

drews and Guggenberger (2017). Taken together these conditions imply that the singular values of

Vff (θ∗)−1D(θ∗) should be bounded away from zero and the same applies for the quadratic form

of the orthonormal vectors resulting from the singular value decomposition of Vff (θ∗)−1D(θ∗) with

respect to the covariance matrix of vec(D̂(θ∗)). We refer to Andrews and Guggenberger (2017) for

the definition of this reduced parameter space.

The parameter spaces in Andrews and Guggenberger (2017) imply Lemma 10.2 in their Sup-

plementary Appendix which coincides with our Theorem 3 except that Theorem 3 allows for a

population mean function µf (θ∗) different from zero. Jointly with some weak laws of large numbers,

the limiting distributions resulting from Lemma 10.2 in the Supplementary Appendix of Andrews

and Guggenberger (2017) provide the building blocks for their Theorem 11.1 which states that the

asymptotic size of the KLM test equals the nominal size. Since the parameter spaces also imply our

Theorem 3 whose resulting limiting distributions alongside some weak laws of large numbers imply

Theorems 4 and 5, which states that the limiting distribution of the DRLM statistics is bounded by

a χ2(m) distribution, the parameter spaces thus also imply that the asymptotic size of the DRLM
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test equals the nominal size.

For the dependent times-series setting, κ, τ > 0, d > (2 + κ)/κ and M < ∞, the space of

distributions is defined by:

Fts= {F : {Xt : t = 0, 1, . . .} are stationary and strong mixing under F with strong

mixing numbers {αF (p) : p ≥ 1} that satisfy αF (p) ≤ Cp−d, E(ft(θ
∗)) = µf (θ∗),

θ∗ = arg minθ∈Rm µf (θ)′Vff (θ)−1µf (θ),

Vff (θ) = E
[
limT→∞

1
T

∑T
t=1

∑T
j=1 (ft(θ)− µf (θ)) (fj(θ)− µf (θ))

′
]
,

E

(∥∥∥∥∥
(
ft(θ)

′ ...
(
vec
(
∂
∂θ′ ft(θ)

))′)2+κ
∥∥∥∥∥
)
≤M and λmin(Vff (θ∗)) ≥ τ

}

which again, except for the usage of the pseudo-true value θ∗ and a possibly non-zero mean of ft(θ
∗),

is identical to Equation (7.2) in Andrews and Guggenberger (2017). Identical to the i.i.d. setting,

Andrews and Guggenberger (2017) provide a number of additional conditions on the parameter space

Fts, to guarantee with probability one, a non-singular value of the limit value of the sample analog

of Vff (θ∗)−1D(θ∗), V̂ff (θ∗)−1D̂(θ∗). Replacing the value of the Jacobian, J(θ), by the recentered

Jacobian, D(θ), in the conditions from Andrews and Guggenberger (2017) then implies that also for

our setting the limit value of the V̂ff (θ∗)−1D̂(θ∗) is non-singular with probability one. The resulting

parameter space then again implies our Theorem 3 from which Theorem 5 follows so the asymptotic

size of the DRLM test coincides with the nominal size.

G. Proof of Theorem 6

a. Starting out from a linear moment equation, like, for example, the one for the linear asset pricing

model, fT (λF , X) = R̄− β̂λF , which is wlog:

d =

 R̄

vec(β̂)


′

v̂ar

√T
 R̄

vec(β̂)



−1 R̄

vec(β̂)


=

 R̄− β̂λF

vec(β̂)


′v̂ar

√T
 R̄− β̂λF

vec(β̂)




−1 R̄− β̂λF

vec(β̂)


=

(
R̄− β̂λF

)′ (
v̂ar
(√

T
(
R̄− β̂λF

)))−1 (
R̄− β̂λF

)
+(

vec(D̂(λF ))
)′
V̂θθ.f (λF )−1

(
vec(D̂(λF ))

)
,
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which shows that, given a realized data set and since d does not depend on λF , the sum of

fT (λF , X)′V̂ff (λF )−1fT (λF , X) and
(

vec(D̂(λF ))
)′
V̂θθ.f (λF )−1

(
vec(D̂(λF ))

)
does not depend on

λF .

b. Given the specifications of the derivatives in Lemma 2, the derivative of DRLM(θ) when m = 1

and fT (θ,X) is linear in θ reads:

1
2
∂
∂θDRLM(θ)

= 1
2T

∂
∂θ

{
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[
fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+

D̂(θ)′V̂ff (θ)−1D̂(θ)
]−1

D̂(θ)′V̂ff (θ)−1fT (θ,X)

}
= T

[
fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X) + D̂(θ)′V̂ff (θ)−1D̂(θ)

]−1

fT (θ,X)′V̂ff (θ)−1D̂(θ)(
∂
∂θ D̂(θ)′V̂ff (θ)−1fT (θ,X)

)
− 1

2T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)]

)2

(
∂
∂θ

[
fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X) + D̂(θ)′V̂ff (θ)−1D̂(θ)

])
= T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)]

){
D̂(θ)′V̂ff (θ)−1D̂(θ)−

2fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1DT (θ,X)− fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+

2
[fT (θ,X)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1V̂θf (θ)V̂ff (θ)−1D̂(θ)]

[fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)]
fT (θ,X)′V̂ff (θ)−1D̂(θ)

}
.

c. In case of i.i.d. data, m = 1, and fT (θ,X) linear in θ, V̂ (θ) has a Kronecker product structure so

V̂ff (θ) = v̂ff (θ)V̂ , V̂θf (θ) = v̂θf (θ)V̂ and V̂θθ.f (θ) = v̂θθ.f (θ)V̂ , with v̂ff (θ), v̂θf (θ), v̂θθ.f (θ) scalar

and V̂ a kf × kf matrix, the ratio in the last line of the above expression simplifies to
v̂θf (θ)
v̂ff (θ) so:

1
2
∂
∂θDRLM(θ)

= T

(
fT (θ,X)′V̂ff (θ)−1D̂(θ)

[fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂ff (θ)−1D̂(θ)]

)
(
D̂(θ)′V̂ff (θ)−1D̂(θ)− fT (θ,X)′V̂ff (θ)−1V̂θθ.f (θ)V̂ff (θ)−1fT (θ,X)

)
=

( (
V̂ff (θ)−

1
2 fT (θ,X)

)′(
V̂θθ.f (θ)−

1
2 D̂(θ)

)
[fT (θ,X)′V̂ff (θ)−1fT (θ,X)+D̂(θ)′V̂θθ.f (θ)−1D̂(θ)]

)
(
TD̂(θ)′V̂θθ.f (θ)−1D̂(θ)− TfT (θ,X)′V̂ff (θ)−1fT (θ,X)

)(
v̂θθ.f (θ)
v̂ff (θ)

) 1
2

.

H. Proof of Theorem 7

We first construct the limit behavior of D̂(λ1
F ) and µ̂f (λ1

F ) when the (pseudo-) true value of λF

equals λ∗F so we use that

Rt = µR − βλ∗F + β(F̄t + λ∗F ) + ut,

with 1
T

∑T
t=1 F̄t = 0 :
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−D̂(λ1
F ) = 1

T

∑T
t=1Rt(F̄t + λ1

F )′
[

1
T

∑T
t=1(F̄t + λ1

F )(F̄t + λ1
F )′
]−1

= 1
T

∑T
t=1

(
µR − βλ∗F + β(F̄t + λ∗F ) + ut

)
(F̄t + λ1

F )′[
1
T

∑T
t=1(F̄t + λ1

F )(F̄t + λ1
F )′
]−1

= 1
T

∑T
t=1

(
µR − βλ∗F + β(F̄t + λ1

F + λ∗F − λ1
F ) + ut

)
(F̄t + λ1

F )′[
1
T

∑T
t=1(F̄t + λ1

F )(F̄t + λ1
F )′
]−1

= β + 1
T

∑T
t=1

(
µR − βλ∗F + β(λ∗F − λ1

F ) + ut
)

(F̄t + λ1
F )′[

1
T

∑T
t=1(F̄t + λ1

F )(F̄t + λ1
F )′
]−1

= β + 1
T

∑T
t=1

(
µR − βλ1

F + ut
)

(F̄t + λ1
F )′
[

1
T

∑T
t=1(F̄t + λ1

F )(F̄t + λ1
F )′
]−1

so √
T
(
D̂(λ1

F )−D(λ1
F )
)
→
d

ψθ.f (λ1
F ) ⇔

√
T
(
D̂(λ1

F )−D(λ∗F )− (µR − βλ∗F )λ∗′F (QF̄ F̄ + λ∗Fλ
∗′
F )−1+(

µR − βλ1
F

)
λ1′
F (QF̄ F̄ + λ1

Fλ
1′
F )−1

)
→
d

ψθ.f (λ1
F )

with −D(λF ) = β + (µR − βλF )λ′F (QF̄ F̄ + λFλ
′
F )−1, ψθ.f (λ1

F ) ∼ N(0, (QF̄ F̄ + λ1
Fλ

1′
F )−1 ⊗Ω), and

R̄− β̂λ1
F = µR + 1

T

∑T
t=1 ut − βλ1

F − 1
T

∑T
t=1 utF̄

′
t

[
1
T

∑T
t=1 F̄tF̄

′
t

]−1

λ1
F

= µR − βλ∗F + β(λ∗F − λ1
F ) + 1

T

∑T
t=1 ut −

1
T

∑T
t=1 utF̄

′
t

[
1
T

∑T
t=1 F̄tF̄

′
t

]−1

λ1
F

= µR − βλ∗F −D(λ∗F )(λ∗F − λ1
F )− (µR − βλ∗F )λ∗′F (QF̄ F̄ + λ∗Fλ

∗′
F )−1(λ∗F − λ1

F )+

1
T

∑T
t=1 ut −

1
T

∑T
t=1 utF̄

′
t

[
1
T

∑T
t=1 F̄tF̄

′
t

]−1

λ1
F

= (µR − βλ∗F )
[(

1− λ∗′F (QF̄ F̄ + λ∗Fλ
∗′
F )−1λ∗F

)
+ λ∗′F (QF̄ F̄ + λ∗Fλ

∗′
F )−1λ1

F

]
−

D(λ∗F )(λ∗F − λ1
F ) + 1

T

∑T
t=1 ut −

1
T

∑T
t=1 utF̄

′
t

[
1
T

∑T
t=1 F̄tF̄

′
t

]−1

λ1
F

= (µR − βλ∗F )
[
(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−1 + λ∗′F (QF̄ F̄ + λ∗Fλ

∗′
F )−1λ1

F

]
−D(λ∗F )(λ∗F − λ1

F )+

1
T

∑T
t=1 ut −

1
T

∑T
t=1 utF̄

′
t

[
1
T

∑T
t=1 F̄tF̄

′
t

]−1

λ1
F ,

√
T
(

(R̄− β̂λ1
F )−

[
µf (λ∗F )(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−1 −D(λ∗F )(λ∗F − λ1

F )+

µf (λ∗F )λ∗′F (QF̄ F̄ + λ∗Fλ
∗′
F )−1λ1

F

])
→
d

ψf (λ1
F )

with µf (λ∗F ) = µR − βλ∗F and ψf (λ1
F ) ∼ N(0, (1 + λ1′

FQ
−1
F̄ F̄
λ1
F )Ω) and independent of ψθ.f (λ1

F ).

For testing H0 : λF = 0, so λ1
F = 0, the above expressions simplify to:

√
T
(
D̂(λ1

F = 0)−
[
D(λ∗F ) + µf (λ∗F )λ∗′F (QF̄ F̄ + λ∗Fλ

∗′
F )−1

])
→
d

ψθ.f (λ1
F = 0)

√
T
(
R̄−

[
µf (λ∗F )(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−1 −D(λ∗F )λ∗F

])
→
d

ψf (λ1
F = 0)
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with ψθ.f (λ1
F = 0) ∼ N(0, Q−1

F̄ F̄
⊗ Ω) and ψf (λ1

F = 0) ∼ N(0,Ω). We next use that µ∗ =

limT→∞
√
Tµf (λ∗F ), D∗ = limT→∞

√
TD(λ∗F ), µ̄ = Ω−

1
2µ∗(1 +λ∗′FQ

−1
F̄ F̄
λ∗F )−

1
2 , D̄ = Ω−

1
2D∗(QF̄ F̄ +

λ∗Fλ
∗′
F )

1
2 so for m = 1, QF̄ F̄ = 1 :

√
T Ω̂−

1
2 R̄ →

d
µ̄(1 + (λ∗F )2)−

1
2 − D̄(1 + (λ∗F )2)−

1
2λ∗F + ψ∗f (λ1

F = 0)

√
T Ω̂−

1
2 D̂(λ1

F = 0) →
d

D̄(1 + (λ∗F )2)−
1
2 + µ̄(1 + (λ∗F )2)−

1
2λ∗F + ψ∗θ.f (λ1

F = 0),

with ψ∗f (λ1
F = 0) and ψ∗θ.f (λ1

F = 0) independent standard normal N dimensional random vectors.

I. Proof of Theorem 8

We first specify: U1S1V ′1 = −Ω−
1
2D(λ∗F )

(
λ∗F Im

) 1 0

0 Q
1
2

F̄ F̄

 , soD(λ∗F ) = −Ω
1
2U1S1V ′21Q

− 1
2

F̄ F̄
,

λ∗F = Q
1
2

F̄ F̄
V ′−1

21 V ′11. We next specify: U2S2V ′2 = Ω
1
2D(λ∗F )⊥δ

(
λ∗F Im

)
⊥

 1 0

0 Q
− 1

2

F̄ F̄

 , so for

D(λ∗F ) = Ω
1
2 (D(λ∗F )′1 D(λ∗F )′2)′, withD(λ∗F )′1 = −Q−

1
2 ′

F̄ F̄
V21S1U ′11 : m×m, D(λ∗F )′2 = −Q−

1
2 ′

F̄ F̄
V21S1U ′21 :

m× (N −m) :

D(λ∗F )⊥ = Ω−
1
2

 −U ′−1
11 S

−1
1 V

−1
21 Q

1
2 ′
F̄ F̄
Q
− 1

2 ′
F̄ F̄
V21S1U ′21

IN−m


(IN−m + U21S−1

1 V
′

21V−1′
21 S

−1
1 U

−1
11 U

′−1
11 S

−1
1 V

−1
21 V21S1U ′21)−

1
2

= Ω−
1
2

 −U ′−1
11 U ′21

IN−m

 (IN−m + U21U−1
11 U

′−1
11 U ′21)−

1
2

= Ω−
1
2

 U12U−1
22

IN−m

 (IN−m + U−1′
22 U ′12U12U−1

22 )−
1
2

= Ω−
1
2

 U12

U22

U−1
22 (U−1′

22 (U ′12U12 + U ′22U22)U−1
22 )−

1
2

= Ω−
1
2

 U12

U22

U−1
22 (U−1′

22 U
−1
22 )−

1
2

= Ω−
1
2

 U12

U22

U−1
22 (U22U ′22)

1
2

= Ω−
1
2U2U−1

22 (U22U ′22)
1
2
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since U ′11U12 + U ′21U22 = 0 (because of the orthogonality of U), U12U−1
22 = −U ′−1

11 U ′21, and U ′12U12 +

U ′22U22 = IN−m, and

(
λ∗F Im

)
⊥

= (1 + V11V−1
21 V

′−1
21 V ′11)−

1
2

(
1 −V11V−1

21

) 1 0

0 Q
1
2

F̄ F̄


= (1 + V−1′

12 V ′22V22V−1
12 )−

1
2

(
1 V−1′

12 V ′22

) 1 0

0 Q
1
2

F̄ F̄


= (V−1′

12 (V ′12V12 + V ′22V22)V−1
12 )−

1
2V−1′

12

(
V ′12 V ′22

) 1 0

0 Q
1
2

F̄ F̄


= (V−1′

12 V
−1
12 )−

1
2V−1′

12

(
V ′12 V ′22

) 1 0

0 Q
1
2

F̄ F̄


= (V12V ′12)

1
2V−1′

12 V ′2

 1 0

0 Q
1
2

F̄ F̄


since V ′11V12 + V ′21V22 = 0, so −V ′−1

21 V ′11 = V22V−1
12 , and V ′12V12 + V ′22V22 = 1, from which it then

results that

δ = (U22U ′22)−
1
2U22S2V ′12(V12V ′12)−

1
2 .

J. Proof of Theorem 9

The proof that the quadratic form of

Ω−
1
2

(
R̄ β̂

)
 1

−λ1
F

 (1 + λ1′
FQ
−1
FFλ

1
F )−

1
2

 1 0

0 QF̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2

 ,

is a maximal invariant follows along the lines of Andrews et al. (2006). It uses that

√
TΩ−

1
2

(
R̄ β̂

) 1 0

0 Q
1
2

F̄ F̄

 = Ω−
1
2

(
µ̈R β̈

) 1 0

0 Q
1
2

F̄ F̄

+ ψRβ ,

with vec(ψRβ) ∼ N(0, IN(m+1)), is post-multiplied by the orthonormal matrices

 1 0

0 Q
− 1

2

F̄ F̄


 1

−λ1
F

 (1+

λ1′
FQ
−1
FFλ

1
F )−

1
2 and

 1 0

0 Q
1
2

F̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1
F )−

1
2 . We next construct the distribu-
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tions of the two elements in the above expression for the cases of correct specification and misspec-

ification. For the latter we use the specification from Theorem 8.

Correct specification. Without misspecification, µ̈R = β̈λ∗F so Ω−
1
2

(
µ̈R β̈

)
= Ω−

1
2 β̈

(
λ∗F Im

)
and

Ω−
1
2 µ̂(λF )∗ = Ω−

1
2

(
R̄ β̂

) 1 0

0 Q
1
2

F̄ F̄


 1 0

0 Q
− 1

2

F̄ F̄


 1

−λ1
F

 (1 + λ1′
FQ
−1
FFλ

1
F )−

1
2

= Ω−
1
2

(
R̄− β̂λ1

F

)
(1 + λ1′

FQ
−1
FFλ

1
F )−

1
2

= Ω−
1
2 β̈(λ∗F − λ1

F )(1 + λ′FQ
−1
FFλF )−

1
2 + ψ⊥,

with ψ⊥ = ψRβ

 1 0

0 Q
− 1

2

F̄ F̄


 1

−λ1
F

 (1 + λ1′
FQ
−1
FFλ

1
F )−

1
2 ∼ N(0, IN ), and

Ω−
1
2 D̂(λ1

F )∗ = Ω−
1
2

(
R̄ β̂

) 1 0

0 QF̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2

= Ω−
1
2 β̈

(
λ∗F Im

) 1 0

0 QF̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 + ψλ1

F
,

with ψλ1
F

= ψRβ

 1 0

0 Q
1
2

F̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1
F )−

1
2 , vec(ψλ1

F
) ∼ N(0, INm), and inde-

pendent of ψ⊥. The maximal invariant is the quadratic form of the above two components so it

consists of the three elements:

Sλ1
Fλ

1
F

= (QF̄ F̄ + λ1
Fλ

1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
β̈′Ω−1β̈

(
QF̄ F̄ + λ∗Fλ

1′
F

)
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 +

(QF̄ F̄ + λ1
Fλ

1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
β̈′Ω−

1
2 ′ψλ1

F
+

ψ′
λ1
F

Ω−
1
2 β̈
(
QF̄ F̄ + λ∗Fλ

1′
F

)
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 + ψ′

λ1
F
ψλ1

F

S⊥⊥ = (1 + λ′FQ
−1
FFλF )−1(λ∗F − λ1

F )′β̈′Ω−1β̈(λ∗F − λ1
F )+

2ψ′⊥Ω−
1
2 β̈(λ∗F − λ1

F )(1 + λ1′
FQ
−1
FFλ

1
F )−

1
2 + ψ′⊥ψ⊥

Sλ1
F⊥ = (QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
β̈′Ω−1β̈(λ∗F − λ1

F )(1 + λ′FQ
−1
FFλF )−

1
2 +

(QF̄ F̄ + λ1
Fλ

1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
β̈′Ω−

1
2 ′ψ⊥+

ψ′
λ1
F

Ω−
1
2 β̈(λ∗F − λ1

F )(1 + λ1′
FQ
−1
FFλ

1
F )−

1
2 + ψ′

λ1
F
ψ⊥.

Misspecification. To specify the maximal invariant under misspecification, we use the singular
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value decomposition from Theorem 8:

Ω−
1
2 D̂(λ1

F )∗ = Ω−
1
2

(
R̄ β̂

) 1 0

0 Q
1
2

F̄ F̄


 1 0

0 Q
1
2

F̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2

= Ω−
1
2D(λ∗F )

(
λ∗F Im

) 1 0

0 QF̄ F̄

( λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 +

Ω
1
2D(λ∗F )⊥δ

(
λ∗F Im

)
⊥

(
λ1
F Im

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 + ψλ1

F

= Ω−
1
2D(λ∗F )(QF̄ F̄ + λ∗Fλ

1′
F )(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2−

Ω
1
2D(λ∗F )⊥δ

(
λ∗F − λ1

F

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 (1 + λ∗′FQ

−1
FFλ

∗
F )−

1
2 + ψλ1

F
,

with vec(ψλ1
F

) ∼ N(0, INm), and

Ω−
1
2 µ̂(λF )∗ = Ω−

1
2

(
R̄− β̂λ1

F

)
(1 + λ1′

FQ
−1
FFλ

1
F )−

1
2

= Ω−
1
2

(
R̄ β̂

) 1 0

0 Q
1
2

F̄ F̄


 1 0

0 Q
− 1

2

F̄ F̄


 1

−λ1
F

 (1 + λ1′
F Q̂
−1
FFλ

1
F )−

1
2

= Ω−
1
2D(λ∗F )

(
λ∗F − λ1

F

)
(1 + λ1′

FQ
−1
FFλ

1
F )−

1
2 +

Ω
1
2D(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + λ1′

FQ
−1
FFλ

1
F )−

1
2 (1 + λ∗′FQ

−1
FFλ

∗
F )−

1
2 + ψ⊥,

with ψ⊥ ∼ N(0, IN ) and independent of ψλ1
F
. The maximal invariant is the quadratic form of the

above two components so it consists of the three elements:

Sλ1
Fλ

1
F

= (QF̄ F̄ + λ1
Fλ

1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
D(λ∗F )′Ω−1D(λ∗F )

(
QF̄ F̄ + λ∗Fλ

1′
F

)
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 +

(1 + λ∗′FQ
−1
FFλ

∗
F )−1(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
λ1
F − λ∗F

)
δ′D(λ∗F )′⊥ΩD(λ∗F )⊥

δ
(
λ1
F − λ∗F

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 + ψ′

λ1
F

[
Ω−

1
2D(λ∗F )(QF̄ F̄ + λ∗Fλ

1′
F )(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 +

Ω
1
2D(λ∗F )⊥δ

(
λ1
F − λ∗F

)′
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 (1 + λ∗′FQ

−1
FFλ

∗
F )−

1
2

]
+[

(QF̄ F̄ + λ1
Fλ

1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
D(λ∗F )′Ω−

1
2 +

(1 + λ∗′FQ
−1
F̄ F̄
λ∗F )−

1
2 (QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
λ1
F − λ∗F

)
δ′D(λ∗F )′⊥Ω

1
2

]
ψλ1

F
+ ψ′

λ1
F
ψλ1

F

S⊥⊥ = (1 + λ1′
FQ
−1
F̄ F̄
λ1
F )−1

(
λ∗F − λ1

F

)′
D(λ∗F )′Ω−1D(λ∗F )

(
λ∗F − λ1

F

)
+

δ′D(λ∗F )′⊥ΩD(λ∗F )⊥δ
(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)2
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−1(1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−1+

2ψ′⊥

[
Ω−

1
2D(λ∗F )

(
λ∗F − λ1

F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2 +

Ω
1
2D(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2 (1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−

1
2

]
+ ψ′⊥ψ⊥
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Sλ1
F⊥ = (QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
D(λ∗F )′Ω−1D(λ∗F )

(
λ∗F − λ1

F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2−

(1 + λ∗′FQ
−1
FFλ

∗
F )−1(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
λ∗F − λ1

F

)
δ′D(λ∗F )′⊥ΩD(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2 +

[
(QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
D(λ∗F )′Ω−

1
2 +

(1 + λ∗′FQ
−1
FFλ

∗
F )−

1
2 (QF̄ F̄ + λ1

Fλ
1′
F )−

1
2 ′
(
λ1
F − λ∗F

)
δ′D(λ∗F )′⊥Ω

1
2

]
ψ⊥+

ψ′
λ1
F

[
Ω−

1
2D(λ∗F )

(
λ∗F − λ1

F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2 +

Ω
1
2D(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + λ1′

FQ
−1
F̄ F̄
λ1
F )−

1
2 (1 + λ∗′FQ

−1
F̄ F̄
λ∗F )−

1
2

]
+ ψ′

λ1
F
ψ⊥.

Using further that D(λ∗F )′⊥ΩD(λ∗F )⊥ = IN−m, m = 1 so (1 + λ1′
FQ
−1
F̄ F̄
λ1
F ) = (1 + (λ1

F )2Q−1
F̄ F̄

) =

Q−1
F̄ F̄

(QF̄ F̄ + λ1λ
′
1), the above can be specified as:

Sλ1
Fλ

1
F

= (QF̄ F̄ + (λ1
F )2)−1′ (QF̄ F̄ + λ∗Fλ

1
F

)2
D(λ∗F )′Ω−1D(λ∗F )+

(1 + λ∗′FQ
−1
FFλ

∗
F )−1(QF̄ F̄ + (λ1

F )2)−1
(
λ1
F − λ∗F

)2
δ′δ+

2(QF̄ F̄ + (λ1
F )2)−

1
2ψ′

λ1
F

[
Ω−

1
2D(λ∗F )(QF̄ F̄ + λ∗Fλ

1′
F )+

Ω
1
2D(λ∗F )⊥δ

(
λ1
F − λ∗F

)
(1 + (λ∗F )2Q−1

FF )−
1
2

]
+ ψ′

λ1
F
ψλ1

F

S⊥⊥ = (1 + (λ1
F )2Q−1

F̄ F̄
)−1

(
λ∗F − λ1

F

)′
D(λ∗F )′Ω−1D(λ∗F )

(
λ∗F − λ1

F

)
+

δ′δ
(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)2
(1 + (λ1

F )2Q−1
F̄ F̄

)−1(1 + (λ∗F )2Q−1
F̄ F̄

)−1+

2ψ′⊥

[
Ω−

1
2D(λ∗F )

(
λ∗F − λ1

F

)
(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2 +

Ω
1
2D(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2 (1 + (λ∗F )2Q−1

F̄ F̄
)−

1
2

]
+ ψ′⊥ψ⊥

Sλ1
F⊥ =

(
λ∗F − λ1

F

)
(QF̄ F̄ + (λ1

F )2)−
1
2 (1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

[(
QF̄ F̄ + λ∗Fλ

1′
F

)
D(λ∗F )′Ω−1D(λ∗F )−

(1 + (λ∗F )2Q−1
FF )−1δ′δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)]
+[

(QF̄ F̄ + (λ1
F )2)−

1
2 ′
(
QF̄ F̄ + λ∗Fλ

1′
F

)′
D(λ∗F )′Ω−

1
2 +

(1 + (λ∗F )2Q−1
FF )−

1
2 (QF̄ F̄ + (λ1

F )2)−
1
2 ′
(
λ1
F − λ∗F

)
δ′D(λ∗F )′⊥Ω

1
2

]
ψ⊥+

ψ′
λ1
F

[
Ω−

1
2D(λ∗F )

(
λ∗F − λ1

F

)
(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2 +

Ω
1
2D(λ∗F )⊥δ

(
1 + λ∗′FQ

−1
F̄ F̄
λ1
F

)
(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2 (1 + (λ∗F )2Q−1

F̄ F̄
)−

1
2

]
+ ψ′

λ1
F
ψ⊥.

Since Ω−
1
2 D̂(λ1

F )∗ and Ω−
1
2 µ̂(λF )∗ are independently normal distributed with identity covariance

matrices, the quadratic form of (Ω−
1
2 D̂(λ1

F )∗
... Ω−

1
2 µ̂(λF )∗) with T degrees of freedom, identity scale

matrices and a non-centrality parameter which is the quadratic form of the mean of the distribution

of (Ω−
1
2 D̂(λ1

F )∗
... Ω−

1
2 µ̂(λF )∗), which read:

Correct specification:

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)
 β̈′Ω−1β̈

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)

′
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Misspecification: (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)
D(λ∗F )′Ω−1D(λ∗F )

 (λ∗F − λ1
F )(1 + (λ1

F )2Q−1
F̄ F̄

)−
1
2

(QF̄ F̄ + (λ1
F )2)−

1
2

(
QF̄ F̄ + λ∗Fλ

1′
F

)

′

+

 (1 + (λ1
F )2Q−1

F̄ F̄
)−

1
2

(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)
−(QF̄ F̄ + (λ1

F )2)−
1
2

(
λ∗F − λ1

F

)
 (1 + (λ∗F )2Q−1

F̄ F̄
)−1δ′δ

 (1 + (λ1
F )2Q−1

F̄ F̄
)−

1
2

(
1 + λ∗FQ

−1
F̄ F̄
λ1
F

)
−(QF̄ F̄ + (λ1

F )2)−
1
2

(
λ∗F − λ1

F

)

′

.

IV Simulation setup for the CRRA moment function

We use a log-normal data generating process to simulate consumption growth and asset returns in

accordance with the CRRA moment condition. Let 4ct+1 = ln
(
Ct+1

Ct

)
and rt+1 = ln(ιN + Rt+1),

which are i.i.d. normally distributed:2

 4ct+1

rt+1

 ∼ NID(µ, V ) ≡ NID


 0

µ2,0

 ,
 Vcc,0 Vcr,0

Vrc,0 Vrr,0


 ,

with µ2,0 = (µ2,1,0 . . . µ2,N,0)′ the mean of rt+1, Vcc,0 the (scalar) variance of 4ct+1, Vrc,0 = V ′cr,0 =

(Vrc,1,0 . . . Vrc,N,0)′ the N ×1 dimensional covariance between rt+1 and 4ct+1 and Vrr,0 = (Vrr,ij,0) :

i, j = 1, . . . , N, the N × N dimensional covariance matrix of rt+1. Given pre-set values of δ0, µ2,0,

Vcc,0, Vrc,0 and Vrr,0, the CRRA moment equation is such that:

µf (γ) = E

[
δ0

(
Ct+1

Ct

)−γ
(ιN +Rt+1)− ιN

]

= E




exp (ln(δ0)− γ4ct+1 + rt+1,1)

...

exp (ln(δ0)− γ4ct+1 + rt+1,N )

− ιN


=


exp

(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(
ln(δ0) + µ2,N,0 + 1

2

(
Vrr,NN,0 + γ2Vcc,0 − 2γVrc,N,0

))
− ιN .

2This DGP is also used in Kleibergen and Zhan (2020). The covariance matrix V = [Vcc,0, Vcr,0;Vrc,0, Vrr,0] is
calibrated to data. We change the value of µ2,0 to vary the magnitude of the misspecification. We also alter the
correlation coefficient of 4ct+1 and rt+1 to vary identification.
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We also need the explicit expression of Vff (γ):

Vff (γ) = E [(ft(γ)− µf (γ))(ft(γ)− µf (γ))′]

= V ar
(
eln(δ)−γ4ct+1+rt+1

)

=




exp
(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(
ln(δ0) + µ2,N,0 + 1

2

(
Vrr,NN,0 + γ2Vcc,0 − 2γVrc,N,0

))



exp

(
ln(δ0) + µ2,1,0 + 1

2

(
Vrr,11,0 + γ2Vcc,0 − 2γVrc,1,0

))
...

exp
(
ln(δ0) + µ2,N,0 + 1

2

(
Vrr,NN,0 + γ2Vcc,0 − 2γVrc,N,0

))

′�

exp

(−γιN ... IN

) Vcc,0 Vcr,0

Vrc,0 Vrr,0

(−γιN ... IN

)′− ιN ι′N
 ,

where � stands for element-by-element multiplication.
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