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Background

• A variety of risk measures;

• Axiomatic characterizations of risk measures;

• Additivity axioms:

π[X + Y ] = π[X] + π[Y ], when X and Y are comonotonic;

π[X + Y ] = π[X] + π[Y ], when X and Y are independent;

π[X + Y ] ≤ π[X] + π[Y ].
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Outline

1. Exponential premium and Esscher premium;

2. The four axioms;

3. A comonotonic image;

4. The representation theorem;

5. Properties;

6. Connections with financial no arbitrage pricing principles.
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Exponential principle

ϕX(t) =

{
1
t logE[etX], t 6= 0;
E[X], t = 0.

3



Roger Laeven

Esscher principle

For the cdf FX(·) we define by

dF
(t)
X (x) =

etxdFX(x)

E[etX]
, t ∈ R,

its Esscher transform. Note that etX

E[etX]
> 0 and E

[
etX

E[etX]

]
= 1.

ψX(t) =
∫
(−∞,+∞)

xdF
(t)
X (x) =

E[XetX]

E[etX]
.

Since d
dt

(
tϕX(t)

)
= d

dt logE[etX] = ψX(t) when t 6= 0, it follows

that

ϕX(t) =
1

t

∫ t
0
ψX(s)ds, t 6= 0.
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Properties of the principles [1]

Both the Esscher premium and the exponential premium in-

crease with their parameters:

d

dt
ψX(t) =

E[X2etX]

E[etX]
−
(

E[XetX]

E[etX]

)2

.

d

dt
ϕX(t) =

1

t

(
E[XetX]

E[etX]
−

1

t
logE[etX]

)

=
1

t

(
E[XetX]

E[etX]
−

1

t

∫ t
0

E[XesX]

E[esX]
ds

)
.
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Properties of the principles [2]

If

min[X] = inf (x | P[x ≤ X ≤ x+ ε] > 0, ∀ε > 0) ,

max[X] = sup (x | P[x− ε ≤ X ≤ x] > 0, ∀ε > 0) .

Then

lim
t→−∞

ϕX(t) = min[X] = lim
t→−∞

ψX(t),

lim
t→+∞

ϕX(t) = max[X] = lim
t→+∞

ψX(t).
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The axioms

We introduce the set S of axioms that a risk measure π[·] must

satisfy:

A1. If E[etX] ≤ E[etY ] for all t ≥ 0, and E[etX] ≥ E[etY ] for all

t ≤ 0, then π[X] ≤ π[Y ];

A2. π[c] = c, for all real c;

A3. π[X + Y ] = π[X] + π[Y ] when X and Y are independent;

A4. If Xn converges weakly to X, with min[Xn] → min[X] and

max[Xn] → max[X], then limn→+∞ π[Xn] = π[X].

7



Roger Laeven

Previous work by Gerber & Goovaerts (1981)

B1. If E[XetX]
E[etX]

≤ E[Y etY ]
E[etY ]

for all t, then π[X] ≤ π[Y ];

B2. π[c] = c, for all real c;

B3. π[X + Y ] = π[X] + π[Y ] when X and Y are independent;

B4. Continuity imposed tacitly.
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A random parameter

T0: defective and continuous with a strictly increasing cdf

FT0
(·), supported on [−∞,+∞] and having positive jumps at

both −∞ and +∞.

ϕX(T0): the exponential premium with random parameter T0.
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Comonotonicity

A random vector (X1, . . . , Xn) is comonotonic if there exists a

r.v. T and non-decreasing functions fi, i = 1, . . . , n, such that

(X1, . . . , Xn) = (f1(T ), . . . , fn(T )), in distribution.
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A functional related to π[·]

Let

ΦT0
= {ϕX(T0)|X a bounded r.v.}.

Then ρT0
: ΦT0

→ R is defined by

ρT0
[ϕX(T0)] = π[X].
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The axioms restated

If (and only if) π[·] satisfies the set S of axioms, the functional

ρT0
[·] satisfies the following set S’ of axioms:

A1’. If ϕX(T0) ≤ ϕY (T0) a.s., then ρT0
[ϕX(T0)] ≤ ρT0

[ϕY (T0)];

A2’. ρT0
[ϕc(T0)] = c, for all real c;

A3’. ρT0
[ϕX(T0) + ϕY (T0)] = ρT0

[ϕX(T0)] + ρT0
[ϕY (T0)];

A4’. If ϕXn(T0) converges a.s. to ϕX(T0), then limn→+∞ ρT0
[ϕXn(T0)] =

ρT0
[ϕX(T0)].
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Verification of A4’

For a given sequence {Xn} of bounded r.v.’s and a bounded

(limit) r.v. X, it holds that Xn converges weakly to X, with

min[Xn] → min[X] and max[Xn] → max[X], if and only if

ϕXn(T0) converges a.s. to ϕX(T0).

Only if: by dominated convergence theorem.

If: by Continuity Theorem of Moment Generating Functions.
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A class extension

Recall that ρT0
: ΦT0

→ R. Any ϕX(T0) ∈ ΦT0
has a strictly

increasing cdf with same support as X.

Let U(T0) be uniformly distributed on (0,1).

Let

ΘT0
= {F−1

V (U(T0))|V a bounded r.v.}.

Note that ΦT0
⊂ ΘT0

.
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The axioms restated

We impose that ρT0
[·] : ΘT0

→ R satisfies the set S” of axioms,

which is the analog of S’, given by

A1”. (Monotonicity) If F−1
V (U(T0)) ≤ F−1

W (U(T0)) a.s., then

ρT0
[F−1
V (U(T0))] ≤ ρT0

[F−1
W (U(T0))];

A2”. (Certainty Equivalence) ρT0
[c] = c, for all real c;

A3”. (Comonotonic Additivity) ρT0
[F−1
V (U(T0))+F−1

W (U(T0))] =

ρT0
[F−1
V (U(T0))] + ρT0

[F−1
W (U(T0))];

A4”. (Continuity) If F−1
Vn

(U(T0)) converges a.s. to F−1
V (U(T0)),

then limn→+∞ ρT0
[F−1
Vn

(U(T0))] = ρT0
[F−1
V (U(T0))].
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The representation theorem

Theorem 1 The functional ρT0
[·] satisfies the set S” of axioms

if and only if there exists some non-decreasing function G :

[−∞,+∞] → [0,1] such that

ρT0
[F−1
V (U(T0))] =

∫
[−∞,+∞]

F−1
V (FT0

(t))dG(t).

On the subclass ΦT0
, the functional ρT0

[·] (and consequently

the risk measure π[·]) can be represented by a mixture of ex-

ponential premiums, i.e.,

π[X] =
∫
[−∞,+∞]

ϕX(t)dG(t).
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A sketch of the proof

Under the set S” of axioms, the functional ρT0
[·] can be rep-

resented by

ρT0
[F−1
V (U(T0))] =

∫
(−∞,+∞)

vd

(
1− w(1− F

F−1
V (U(T0))

(v))
)
,

in which the function w(·) : [0,1] → [0,1] is non-decreasing,

right continuous and satisfies w(0) = 0 and w(1) = 1.
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A note on the representation theorem

The set of axioms A1” to A4” is more restrictive than the set

of axioms A1’ to A4’ (and hence also more restrictive than

the original set of axioms A1 to A4).

Consider ∆T0
= ΘT0

\ΦT0
.

The class ∆T0
includes all non-trivial discrete random variables

F−1
V (U(T0)) with V a bounded random variable.

Do there exist axioms other than A1” to A4” that impose the

same conditions on the class ΦT0
but different conditions on

the class ∆T0
, characterizing a different functional?
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An equivalent representation

The mixture of exponential premiums can also be expressed

as a unimodal mixture of Esscher premiums, i.e., there exists

some non-decreasing function H : [−∞,+∞] → [0,1], concave

on (0,+∞) and convex on (−∞,0) such that

π[X] =
∫
[−∞,+∞]

ψX(t)dH(t).
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The mixed Esscher transform

Notice that π[·] can be expressed as π[X] = E∗[X], where the

expectation is calculated using the differential

dF
(H(·))
X (x) =

(∫
t∈[−∞,+∞]

etxdH(t)

E[etX]

)
dFX(x).
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Connections with financial no arbitrage pricing [1]

General equilibrium models with negative exponential utility

functions:

• Bühlmann (1980), one-period;

• Iwaki, Kijima & Morimoto (2001), multi-period.
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Connections with financial no arbitrage pricing [2]

Pure no arbitrage models:

• Gerber & Shiu (1996): Lévy processes;

• Delbaen & Haezendonck (1989): compound Poisson processes;

• Bühlmann, Delbaen, Embrechts & Shiryaev (1996): con-

ditional Esscher transforms for semi-martingales.
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