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ABSTRACT

This dissertation focuses on innovative techniques for the statistical analysis of

concurrent random phenomena. In particular, new methods are presented for esti-

mating measures of the relationships among multiple random variables or processes

based on data generated from a common population. Of special interest are multi-

ple random processes, in which the relationships among data sources are in constant

transition among several states or different levels of the same state. Such a scenario

is considered in the analysis of EEG data recorded from the brain of a rat, in which

a technique is developed to measure instants of coupling between pairs of signals

generated from different brain regions, and model the evolution of brain activity in

terms of several instantaneous coupling states. A similar idea is employed to measure

the evolution of synchrony in physiological measures among couples while performing

assigned tasks. An innovative method is designed for measurement of the linear asso-

ciation between two variables in the presence of heteroscedastic measurement error,

and in the process a clever test for the misapplication of linear models is presented.

The benefits of the improved model are illustrated using public health data. This

idea is also extended to the aforementioned study of synchrony in physiological mea-

sures. These methodologies provide new tools for scientists engaged in research well

beyond the applications to neuroscience, public health and psychology highlighted in

this dissertation. Finally, a study involving a specified mode of signal transmission
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in networks is presented.

The first chapter consists of the study of the EEG data. An important goal in

neuroscience is to identify instances when components of EEG signals are coupled. A

method is developed to measure the coupling strength between gamma signals on a

short time scale as the maximum cross-correlation over a range of time lags within a

sliding variable-width window. Instances of coupling states among several signals are

also identified, using a mixed multivariate beta distribution to model the coupling

strength across multiple gamma signals with reference to a common base signal. The

EM algorithm is implemented to determine the number of states and their respective

model parameters. The variable-window method is first applied to simulated signals

and its performance is compared to a fixed-window approach. The method is then

applied to gamma signals recorded in two regions of the rat hippocampus. The

results indicate that this may be a useful method for mapping coupling patterns

among signals in EEG datasets.

In the second chapter, the line-segment parametrization of the structural measure-

ment error model is extended to situations in which the error variance on both vari-

ables may not be constant over all observations. Under these conditions, a method-

of-moments estimate of the slope is developed, and its asymptotic variance is derived.

An accurate estimator of the variability of the slope estimate based on sample data

is then derived in a rather general setting. Simulations are performed which validate

these results and demonstrate the superiority of these estimates when the measure-
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ment error variance is not small. Lastly, this estimation approach is illustrated using

real data involving heteroscedastic measurement error, and its robustness against in-

fluential points is demonstrated. However, while the estimated trend based on the

line-segment approach agrees well with intuitive expectations, the estimates based on

conventional models which incorporate elements of the simple linear model do not.

A simulation is employed to illustrate the danger of estimating a linear trend using

the structure of the simple linear model without justification.

The third chapter presents two new approaches for identifying synchrony between

the physiological signals of individuals in dyads. The approaches are adaptations of

two recently-developed techniques, depending on the nature of the physiological time

series. For respiration and thoracic impedance, which are measured continuously, the

Empirical Mode Decomposition is employed to extract low-frequency components of

their noisy nonstationary signals. Then the maximum cross-correlation between the

two denoised signals is computed within consecutive overlapping time windows of

fixed width throughout each of the experimental tasks, and the relative frequency of

large values of this measure during each task is calculated. For the heart rate, which

is output discretely, the structural linear regression model that takes into account

heteroscedastic measurement error on both the variables is used. The results indi-

cate that these methods are effective in detecting synchrony between physiological

measures and can be used to examine emotional coherence in dyadic interactions.

In the fourth chapter, a mode of signal transmission within a network is specified,
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and it is shown that this mode results in one of two possible permanent states based on

the configuration of the network. Both geometric and algebraic criteria are developed

to allow one to determine which state a network will reach. Then, given a random

network in which the edges have specified probabilities of occurring and a budget

which limits the sum of these probabilities, the simulated annealing algorithm is

employed to find optimal allocations of probabilities among the edges which conform

to the budget and maximize the probability that a network which possesses desired

properties under this mode of signal transmission will be realized.

vii



Contents

1 Coupling among electroencephalogram (EEG) gamma signals on a

short time scale 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Computation of instantaneous coupling between two EEG signals 4

1.2.2 Identification of instantaneous coupling states among multiple

EEG gamma signals . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Experimental data: EEG gamma signals from the rat hip-

pocampus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Derivation of the Multivariate Beta density . . . . . . . . . . . . . . . 30

2 Slope estimation in structural line-segment heteroscedastic measure-

viii



ment error models 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Point estimation of the slope . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Variance of the slope estimate . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Estimating the variance of the slope estimate . . . . . . . . . . . . . . 43

2.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Illustration: Slope underestimation with the SLM . . . . . . . . . . . 56

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Detecting physiological synchrony during dyadic interactions 68

3.1 Synchronization measures . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.1 Synchronization of emotion in dyadic interactions . . . . . . . 70

3.1.2 Synchrony between continuous measures: Signal extraction us-

ing Empirical Mode Decomposition . . . . . . . . . . . . . . . 71

3.1.3 Synchrony between discrete measures: Slope estimation using

a Structural Heteroscedastic Measurement-Error Model . . . . 73

3.2 Empirical illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.2 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2.3 Application of EMD to respiration and impedance . . . . . . . 79

3.2.4 Application of SHME to heart rate . . . . . . . . . . . . . . . 87

ix



3.2.5 Cross-equivalence analysis . . . . . . . . . . . . . . . . . . . . 90

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3.2 Methodological considerations and future directions . . . . . . 93

4 Optimal and robust design for efficient system-wide synchronization

in networks of randomly-wired neuron-nodes 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Deterministic networks and signal transmission . . . . . . . . . . . . 99

4.3 Criteria for System-Wide Synchronization in deterministic networks . 106

4.4 Subgroup Alternation in deterministic networks . . . . . . . . . . . . 108

4.5 Optimization of a random network under a budget constraint . . . . . 112

4.6 Robust networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.8 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 127

x



List of Tables

1.1 Parameter estimates corresponding to each of these four IC states,

resulting from 108 iterations of the EM algorithm. . . . . . . . . . . . 24

1.2 Mean vector of the subsets of IC estimates assigned to each of the four

states, along with their corresponding standard deviations. . . . . . . 25

2.1 Simulation results for several choices of a and b, based on 500 iterations,

with (ηX , ηY ) known and β = 2/3. (S.V. = sample variance) . . . . . 47

2.2 Simulation results for several choices of a and b, based on 500 iterations,

with (ηX , ηY ) unknown and β = −2/3. (S.V. = sample variance) . . . 48

2.3 Simulation variance estimates for several choices of a and b, based on

500 iterations, using the MM-P model and the MM-LS model, with

β = 2/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Simulation variance estimates for several choices of a and b, based on

500 iterations, using the MM-P model and the line segment model,

with β = −2/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



2.5 Estimates of the slope and standard errors of the estimates for the

WHO MONICA data on males and females, based on seven models. . 53

2.6 Estimates of the slope and standard errors of the estimates for the

WHO MONICA data on males and females, based on two models,

when no points are deleted, and when individual influential points are

deleted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Significant increase in relative frequency of strong Instantaneous Cou-

pling across tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Slope estimates for association between heart rates using the SHME

model across tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Measures of synchrony between heart rates, respiration and thoracic

impedance for mismatched couples across tasks . . . . . . . . . . . . 91

xii



List of Figures

1.1 Simulated EEG gamma signals X(t) (top) and Y (t) (first two seconds). 15

1.2 Scaled difference in average frequency between X and Y throughout

the epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Estimated IC when w = 3 (green), w = 6 (red), and w = 18 (blue),

with the scaled difference in average frequency between X and Y

throughout the epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Estimated IC with fixed windows of 18 (green), 90 (red), and 210 (blue)

time points, with the scaled difference in average frequency between X

and Y throughout the epoch. . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Raw EEG signals and filtered gamma signals from MEC (1,6,7,11) and

CA1 (16,19,22,25,26) of rat during first 2/3 second of a rest epoch. . . 21

1.6 First 100 Instantaneous Coupling estimates between gamma signals

at Tetrodes 1 (base signal) and 6 (left), and Tetrodes 1 (base signal)

and 26 (right), at the beginning of an epoch. . . . . . . . . . . . . . . 21

xiii



1.7 Distributions of estimated instantaneous coupling between gamma sig-

nals at Tetrode 1 and each of the other eight tetrodes during a rest

epoch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Progression of BIC as p increases, for EEG application. . . . . . . . . 24

1.9 Means of the subsets of IC estimates corresponding to each of the four

IC states, with the base signal at Tetrode 1, based on optimized mixed

MVB model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.10 Gamma signals during a 2/3-second block of a recording epoch, with

IC state designation indicated for each window when the base signal

is at Tetrode 1 and four IC states are modeled. Vertical dotted lines

correspond to computed cycles of the base signal. . . . . . . . . . . . 28

2.1 Diagram of equation error and line-segment models with heteroscedas-

tic measurement error. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Scatterplot of change in event rate versus change in risk score, with

standard errors, from WHO MONICA project, and lines having esti-

mated slopes under three models, for males and females. . . . . . . . 54

2.3 Scatterplot of change in event rate versus change in risk score, from

WHO MONICA project, and best-fit lines based on the OLS method,

for males and females. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4 Rotating data cloud, with the underlying linear trend and the esti-

mated trend under OLS regression. . . . . . . . . . . . . . . . . . . . 59

xiv



2.5 Progression of the slope of the trendline for the rotating centered data

cloud, and the corresponding estimated slope using OLS regression

when the data are not generated from the SLM, as the plane rotates

about the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Progression of the value of the slope estimate using OLS regression as

the plane rotates about the origin when the centered data are generated

from the SLM with a small error variance. . . . . . . . . . . . . . . . 61

2.7 Progression of the value of the slope estimate using OLS regression

on the centered WHO MONICA data for males as the plane rotates

about the origin, along with 50% (dashed) and 90% (dotted) pointwise

confidence bands for a specified SLM based on 10,000 generated data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8 Progression of the value of the slope estimate using OLS regression

on the centered WHO MONICA data for females as the plane rotates

about the origin, along with 50% (dashed) and 90% (dotted) pointwise

confidence bands for a specified SLM based on 10,000 generated data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



2.9 Progression of the value of the slope estimate using orthogonal least-

squares regression on the centered WHO MONICA data for males (left)

and for females (right) as the plane rotates about the origin, along

with 50% (dashed) and 90% (dotted) pointwise confidence bands for a

specified perpendicular-deviation model based on 1000 generated data

sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 Male’s impedance signal during gazing task, for Couple 3. . . . . . . . 80

3.2 IMFs produced by EMD of male’s impedance signal during gazing task. 81

3.3 Denoised form of male’s impedance signal during gazing task. . . . . 82

3.4 Denoised impedance for the male (dark) and the female (light) during

the baseline task for each couple. . . . . . . . . . . . . . . . . . . . . 83

3.5 IC strength for Couple 3 during baseline task, with respect to respira-

tion (solid line) and impedance (dashed line). . . . . . . . . . . . . . 85

3.6 Heart rate for the male (dark) and the female (light) during the baseline

task for each couple. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 Networks NA and NB . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Network NC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Four realizations of an optimized random five-node network . . . . . . 117

4.4 Four realizations of an optimized random fifteen-node network . . . . 118

4.5 Four realizations of a robust optimized random ten-node network . . 120

4.6 Four realizations of a robust optimized random fifteen-node network . 121

xvi



1

Chapter 1

Coupling among

electroencephalogram (EEG)

gamma signals on a short time

scale

1.1 Introduction

Current neuroscience research is focused not only on identification of brain regions as-

sociated with particular cognitive tasks but also on how those regions interact during

the execution of the these tasks on a short time scale [4, 49, 37]. This chapter consists

of an investigation of methods for identifying brief instances in time when groups of
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gamma-band signals (40–100 Hz) extracted from electroencephalogram (EEG) record-

ings become synchronized. Methods are developed to address the specific problem of

analyzing EEG recordings from the rat hippocampal formation. Recent studies [49]

have demonstrated dynamic coordination at these frequencies between the dentate

gyrus, CA1 and CA3 during tasks with high cognitive demand and during REM sleep.

Typically in situations where a signal is suspected to be changing with time, meth-

ods from signal analysis, such as the short-time Fourier transform, can be applied

quite successfully. For pairs of signals, coherency, a measure of signal coherence in

the frequency domain, can be computed with confidence bounds, using for example

a multi-taper [59]. In both of these cases software has been developed to compute

these quantities. For example, the spectrogram function in Matlab [45] computes

the short-time Fourier transform along segments of an individual signal, and the

coherence function in the Chronux package [48] computes the windowed coherence

between pairs of signals. However, for signals with synchrony lasting just a few cycles

at a time, frequency-domain methods can be less sensitive and may yield unrealisti-

cally large confidence bounds. Alternative methods for detecting synchronization of

neuroelectric signals are based on transient phase-locking [62, 41]. For the case of

many EEG signals, other approaches include Granger causality [25], autoregressive

modeling [22], and Bayesian networks [57]. However, these may be limited in their

ability to detect only brief instances of synchrony.

One of the challenges in analysis of biological rhythms is that the signal frequency

can be quite variable. A method is developed here that computes synchrony among
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multiple signals on the time scale of milliseconds and which yields, not just pairwise

computations, but a joint result for all signals. This is accomplished by making

use of a small time-varying sliding window to compute pairwise cross-correlations,

and then by using the Expectation-Maximization (EM) algorithm [13] applied to a

mixed multivariate beta model to identify groups of gamma signals that are highly

synchronized at any instant.

This technique consists of two steps. First, one of the available gamma signals is

selected as the basis for providing the sliding measurement window and the temporal

axis for computation of the instantaneous coupling between that dimension and each

of the other dimensions. Second, the EM algorithm is implemented to classify the

collection of instantaneous coupling measurement vectors into a fixed number of states

representing different occasions of gamma-band binding among brain regions.

The effectiveness and reliability of these methods are tested on simulated data.

The technique is then applied to a nine-channel EEG data set recorded from tetrodes

implanted in the Medial Entorhinal Cortex (MEC) and the CA1 cell layer of the

hippocampus in a rat’s brain.

1.2 Methods

Assume that subsets of gamma signals extracted from EEG recordings using a band-

pass filter are subject to instants of synchrony on the order of a few cycles, after which

they become unsynchronized. This phenomenon is termed instantaneous coupling

(IC), and a method for quantifying it is developed.
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1.2.1 Computation of instantaneous coupling between two EEG signals

Since synchrony is sought on very short time scales and since biological signals are

prone to variability, the focus here is on finding an appropriate time scale for com-

puting coupling between pairs of signals that adjusts over time based on the changing

frequency of the signals.

The first goal is to compute a sequence of IC estimates between two bandpassed

oscillating time signals in the gamma range (40–100 Hz), say X = {xt}Tt=1 and Y =

{yt}Tt=1, throughout a given epoch consisting of T time points. The approach here

is similar to the procedure given in [38], but using a time-varying window. The

amplitude, frequency, and phase of each signal vary from one instant to the next, not

necessarily independently. Choose one of the signals, say X, as the base signal. Then

partition the entire epoch based on the N zero crossings of X, which are denoted by

Z1, Z2, . . . , ZN , with N << T . Regard each interval [Zi, Zi+2], i = 1, 2, . . . , N − 2, as

a full cycle, and thus [Zi, Zi+1] is a half-cycle, i = 1, 2, . . . , N − 1. The duration of a

cycle may thus vary significantly throughout the epoch.

Let the integer w indicate the window size, i.e., the number of half-cycles of the

base signal to be used in determining the duration of an “instant” when estimating

the instantaneous coupling between X and Y . Choosing a small value for w not

only enables one to discuss the dynamics of signal coupling among brain regions on

a very short time scale, but also provides approximate stationarity in the signals.

However, if w is chosen too small, the IC may be overestimated due to the sparsity

of information. If w is chosen too large, the IC may be underestimated. This issue is
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explored in the simulation study.

Next, define the estimated instantaneous coupling between X and Y , with respect

to the base signal X, during the interval [Zi, Zi+w], where i = 1, 2, . . . , N −w, as the

maximum of the cross-correlation between X and Y over this interval across a range

of lags h, i.e.,

ICX,Y ([Zi, Zi+w]) = max
h

∑Zi+w

t=Zi
(xt − xi)(yt+h − yi)√∑Zi+w

t=Zi
(xt − xi)2

∑Zi+w

t=Zi
(yt+h − yi)2

,

where

xi =

∑Zi+w

t=Zi
xt

Zi+w − Zi
and yi =

∑Zi+w

t=Zi
yt+h

Zi+w − Zi
,

for i = 1, 2, . . . , N−w. In the data analysis here, the ccf() function in the R package

[56] is used to compute each cross-correlation over the function’s default lag range.

In general, this range should run a little more than one half-cycle of the base signal in

each direction, i.e., ≈ ±(Zi+w−Zi)/w, for each window [Zi, Zi+w]. This will translate

a strong negative correlation into a strong positive one, and also ensures that the

maximum cross-correlation between the signals will be positive, or very close to zero

if negative.

Besides choosing a value for w, one must also decide how much overlap between

consecutive intervals to allow. Different choices for the overlap parameter will affect

the degree of smoothness for the computed IC along the temporal axis, but not

its value. One could choose no overlap, so that ICX,Y ([Zi, Zi+w]) is computed on

consecutive adjacent windows [Z1, Z1+w], [Z1+w, Z1+2w], . . .. On the other hand, one

may choose overlapping windows by selecting some positive integer m, with 1 ≤

m < w, so that ICX,Y ([Zi, Zi+w]) is computed on overlapping intervals [Z1, Z1+w],
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[Z1+m, Z1+m+w], [Z1+2m, Z1+2m+w], . . .. In the real data analysis here, a window size

of w = 6 and an increment size m = 2 are selected, so that each consecutive window

pair overlaps by two cycles. This choice is made empirically based on consideration

of the apparent duration of synchrony among the plotted signals.

This method also requires the selection of a base signal. When two gamma signals

are synchronized, their time scales are roughly the same, so that they are at about the

same frequency. Hence the IC between X and Y should be approximately symmetric,

so that one will obtain roughly the same IC estimate within each time window,

irrespective of which signal is chosen as the base. Any difference will only be due to

slightly different measurement windows. The rationale for choosing the base signal

depends on whether or not one wishes to analyze the coupling between one specific

brain location and several additional locations. If a neuroscientist is only interested

in the evolution of synchrony from the perspective of one brain location, then the

choice for the base is clear. But knowing the IC between base signal X and signal

Y and the IC between X and a third signal Y ′ does not provide any information

about the IC between Y and Y ′. To determine the latter using this approach, one

must choose either Y or Y ′ as the base signal and proceed accordingly. To obtain

a complete analysis of the evolution of coupling among all pairs in a set of gamma

signals, one would have to repeat the computations with each gamma signal taking

its turn as the base. This level of analysis is not explored in the present study.

Approximate confidence bounds for the true value of the IC corresponding to each

estimated IC measurement may be computed as follows. Let ρ∗ denote this true value,



7

and let r∗ denote its estimate. For simplicity, assume that both values occur at the

same lag h. If one applies Fisher’s Z-transformation

ζ =
1

2
log

[
1 + ρ∗

1− ρ∗

]
, z =

1

2
log

[
1 + r∗

1− r∗

]
,

and uses the established result that, when the observations are independent, the

distribution of
√
n− 1(z − ζ) approaches that of the standard Gaussian for large

values of n, one may then compute approximate confidence bounds for ζ, and hence

for ρ∗, although the independence condition is violated here. That is, an approximate

(1− α)100% confidence interval for the true value of the IC is(
e2L − 1

e2L + 1
,

e2U − 1

e2U + 1

)
,

where

L =
1

2
log

[
1 + r∗

1− r∗

]
−

zα/2√
n− 1

and U =
1

2
log

[
1 + r∗

1− r∗

]
+

zα/2√
n− 1

,

and zα/2 is the 1− α/2 quantile of the standard normal distribution.

Potential problems with this method for obtaining confidence bounds, and an

alternative method using extreme value theory that addresses these problems, are

discussed in [37]. Further work must be done in this area, but the following develop-

ments do not involve confidence bounds.

1.2.2 Identification of instantaneous coupling states among multiple EEG

gamma signals

Now consider the setting in which one has obtained J+1 EEG gamma signals recorded

from tetrodes implanted in different brain regions. After obtaining individual esti-
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mates of the IC between the selected base signal X and each of J signals Y1, . . . , YJ

throughout an epoch, an algorithm is employed to identify neurological states in

which particular subsets of these signals are more synchronous with the base signal

at any given instant. Essentially, this approach assumes that during each instant of

time different subsets of gamma signals are more synchronized with the base signal

than are the remaining signals, based on the interaction among the brain regions in

which the electrodes are implanted. The algorithm is used to estimate which subsets

of gamma signals are most synchronous with the base signal in each instant, and also

to estimate parameters that describe the distribution of the IC estimates among the

signals pertaining to each subset. It is emphasized that this will provide a model

of the synchrony among signals from the perspective of the selected base signal only.

One may choose additional base signals to obtain models from multiple perspectives,

and then combine the results. The multiple-perspective angle is not explored in this

study.

Since the coupling measure considered here is the maximum cross-correlation be-

tween a pair of signals over a range of lags, and hence falls within a bounded interval,

one may model the distribution of these maxima with a univariate beta distribution.

It is natural to implement a multivariate generalization of the beta distribution to

model the joint distribution of the IC among any collection of J gamma signals with

respect to any base gamma signal. Specifically, the multivariate beta (MVB) distribu-

tion is chosen, with parameter vector θ = (θ1, . . . , θJ , θJ+1), θj > 0 for j = 1, . . . , J+1.

The derivation of this distribution is given in Section 1.5 at the end of this chapter.
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Given the ith observation Ui = (Ui1, . . . , UiJ), with 0 < Uij < 1 for j = 1, . . . , J , the

joint density of Ui under the MVB distribution is

fUi
(ui1, . . . , uiJ) =

Γ
(∑J+1

j=1 θj

)
∏J+1

j=1 Γ(θj)

(
J∏
j=1

u
θj−1
ij

(1− uij)θj+1

)(
1 +

J∑
j=1

uij
1− uij

)−∑J+1
j=1 θj

,

(1.2.1)

where Γ(x) =
∫∞

0
tx−1e−t dt, x > 0, is the gamma function.

To implement this model with the IC estimates for J gamma signals with respect

to a common base signal, first replace any non-positive values of the estimated IC

with a very small positive value, e.g., 0.00001, so that Uj > 0 for each j. Likewise, if

any estimated IC value equals one, replace it with 0.99999 so that Uj < 1 for each j.

In the analysis of real data presented here, very few non-positive values are computed

among the IC estimates, and those that are negative are all very close to zero. To

avoid computational errors in the evaluation of (1.2.1), due either to large arguments

to the gamma function or to computation of the product of very small values, one

may compute instead the logarithm of the density in (1.2.1), then exponentiate the

result.

To estimate the J + 1 components of the parameter vector θ, given the N ′ =

N − w computed IC vectors Ui = (Ui1, . . . , UiJ), i = 1, . . . , N ′, using the method of
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maximum likelihood, it is necessary maximize the log-likelihood function

`(θ | U1, . . . ,UN ′) = N ′

[
log Γ

(
J+1∑
j=1

θj

)
−

J+1∑
j=1

log Γ(θj)

]

+
N ′∑
i=1

J∑
j=1

[(θj − 1) logUij − (θj + 1) log(1− Uij)]

−

(
J+1∑
j=1

θj

)
N ′∑
i=1

log

(
1 +

J∑
j=1

Uij
1− Uij

)
over all θ ∈ (0,∞)J+1. This computation is carried out using the Expectation Maxi-

mization (EM) algorithm [13].

Next, it is postulated that the N ′ IC estimates may be grouped into distinct IC

states. The concept of IC states refers to occasions in which specific subsets of the J

gamma signals have an IC with the base signal which is relatively high, perhaps above

some threshold. If one thinks of each signal as being either coupled or not coupled

with the base signal during any instant, based on some threshold, there would be

2J possible IC states. However, it is expected that tetrodes located near each other

should tend to exhibit relatively equivalent IC levels with respect to any base, so that

far fewer distinct states actually occur.

If there are p ≥ 1 such IC states among the IC estimates U1, . . . ,UN ′ , then a

clustering procedure may be to estimate parameters that describe the distinct states

and to classify the individual Ui among them. One possible clustering procedure is the

k-means algorithm, in which the vectors U1, . . . ,UN ′ are randomly assigned among

p clusters, and the mean vector for each cluster is computed. The algorithm then

reassigns each vector, if necessary, to the cluster whose mean is nearest, in terms of

some distance measure. Since the clusters are usually altered by the reassignments,
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the algorithm recomputes the mean vector of each cluster, and then conducts any

necessary reassignments of vectors to nearer cluster means. This process continues

iteratively until no reassignments are necessary (or a maximum number of iterations is

reached). The R version of the k-means algorithm implements by default the method

described in [28]. This method ensures that p clusters are returned. Because the

algorithm is sensitive to the initial allocation, it should be run multiple times, and

the best result should be chosen in terms of minimum error sum of squares. However,

a more sophisticated approach that takes into account the apparent MVB distribution

of the IC estimates is implemented in this study.

Since it is assumed that the representative IC vectors U1, . . . ,UN ′ follow a MVB

distribution, a mixture model is implemented which assumes that each Un arises

independently from one of p IC states, each of which follows its own MVB distribution

with its own parameter vector θk = (θk,1; θk,2; . . . ; θk,J+1) for k = 1, . . . , p. This model

uses the MVB density to assign each Ui to that IC state for which the probability

that it belongs to that state is largest. These probabilities are latent parameters

which must be estimated along with the parameter vectors θ1, . . . ,θp corresponding

to the respective IC states. The EM algorithm [13] is suited to this purpose. The

independence assumption is approximate here, but when the sample size N ′ is quite

large this estimation procedure should be robust to departures from the assumption.

This robustness must be checked in further work.

To implement the EM algorithm, let Pθk
(ui) denote the value of the MVB density

corresponding to the kth state evaluated at IC estimate ui = (ui1, . . . , uiJ), where
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i = 1, . . . , N ′, and let πk denote the probability that a randomly selected IC estimate

belongs to IC state k. In the E-step of the EM algorithm, the responsibility of the

kth state for Ui at the qth iteration, q = 1, 2, . . ., is determined by computing

r
(q)
k,i =

π
(q−1)
k P

θ
(q−1)
k

(ui)∑p
l=1 π

(q−1)
l P

θ
(q−1)
l

(ui)
, (1.2.2)

for i = 1, . . . , N ′ and k = 1, . . . , p. Then in the M-step, the mixing parameters and

the distribution parameters at the qth iteration are estimated by computing

π
(q)
k =

1

N ′

N ′∑
i=1

r
(q)
k,i

and

θ
(q)
k = argmax

θ∈Θ

N ′∑
i=1

r
(q)
k,i logPθ(ui)

for k = 1, . . . , p. Then continue to iterate between the E-step and the M-step until

the parameter estimates converge within a pre-specified tolerance. In the real data

analysis, the constrOptim() procedure in R is used with appropriate settings in order

to find the optimal value of θ in the M-step.

The success of the EM algorithm is sensitive to the selection of the initial estimates

π
(0)
k and θ

(0)
k . In the data analysis here, the k-means algorithm is used to first obtain

p clusters of the IC estimates, then maximum likelihood estimates (MLEs) of the

univariate beta parameters are computed for each individual dimension of the J-

dimensional IC vector for each of the p clusters. These univariate estimates are

combined into one parameter estimate θk for each cluster, and the constrOptim()

procedure is used to determine the MLE of θk for each cluster. Then π
(0)
k is the

proportion of IC estimates assigned to the kth cluster, and θ
(0)
k is the computed MLE,
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for k = 1, . . . , p. In general, this approach consistently provides initial estimates that

lead to eventual convergence to an optimal solution.

In order to implement the above procedure, it is necessary to determine the number

p of IC states that occur among the gamma signals. The Bayes Information Criterion

(BIC) is one common tool used to estimate the true number of clusters p that are

represented in the data, if in fact the data are clustered. To use this tool, perform the

EM algorithm for p = 2, 3, . . ., and for each value of p obtain the optimal parameter

estimates π∗k and θ∗k for k = 1, . . . , p. Then compute the mixture log-likelihood (see

[19]) at these optimal parameter estimates as follows

`mix = `
(
θ∗1, . . . ,θ

∗
p, π

∗
1, . . . , π

∗
p | u1, . . . ,uN ′

)
=

N ′∑
i=1

log

[
p∑

k=1

π∗kPθ∗k
(ui)

]
. (1.2.3)

The BIC for the model is then computed from:

BICp = −2`mix + [p(J + 2)− 1] log(N ′) , (1.2.4)

where J is the number of gamma signals. (Note that for each of the p states one must

estimate a (J + 1)-dimensional parameter vector θk and a mixing probability πk, for

a total of p(J + 2) estimated parameters. However, once π1, . . . , πp−1 are estimated,

the value of πp is then fixed, since the mixing probabilities sum to one, resulting in

p(J + 2)−1 independent estimated parameters.) Finally, choose that mixture model,

over a suitable range of values for p, for which the value of the BIC is minimized.

That is, conclude that the IC with the base signal among the other J signals varies

among p∗ distinct states, where

p∗ = argmin
p

BICp . (1.2.5)
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Then one may form an IC state sequence corresponding to the zero crossings of the

base signal which estimates which sets of EEG gamma signals are synchronized with

the base signal within each measurement window as time unfolds.

To summarize, the procedure is as follows:

1. Choose one signal as the base among J + 1 gamma signals recorded at tetrodes

implanted in different brain regions.

2. Compute the estimated IC between the base signal and the other J signals within

a sliding variable-length window throughout an epoch of activity. This results

in a time-ordered sequence of J-dimensional IC estimates.

3. For any block of the sequence, use the EM algorithm to maximize the log-

likelihood based on a mixed multivariate beta model involving p distinct clusters,

where p ranges over a reasonable set of values.

4. For each value of p, use the optimized log-likelihood to assign each IC estimate

to one of p IC states and to obtain estimates for the model parameter vector

corresponding to each IC state.

5. Select the model for which the BIC is minimized. This model yields an IC state

sequence which represents the evolution in the coupling of the different brain

regions among the p IC states from moment to moment from the perspective of

the selected base signal.

6. Since the sequence of IC estimates, and the subsequent IC state sequence, cor-

respond to the zero crossings of the base signal, the IC states may be mapped
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back to the time scale of the EEG gamma signals.

1.3 Results

1.3.1 Simulation studies

To demonstrate the effect of computing estimates of the instantaeous coupling be-

tween two EEG gamma signals using a variable window, generate two signals

X(t) = sin{2π[70 + 10 sin(0.5πt)]t} and X(t) = sin{2π[50 + 10 sin(0.5π(t− 2))]t} ,

where t varies from 0 to 20 seconds at a resolution of 1500 points per second. This

resolution mimics that of the real EEG data. A plot of the first two seconds of this

signal pair is shown in Figure 1.1.

0.0 0.5 1.0 1.5 2.0

Time (sec)

Figure 1.1: Simulated EEG gamma signals X(t) (top) and Y (t) (first two seconds).

Signal X has an instantaneous frequency of 70 + 10 sin(0.5πt) that oscillates be-

tween 60Hz and 80Hz, while the instantaneous frequency 50 + 10 sin(0.5π(t − 2))
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of signal Y oscillates between 40Hz and 60Hz. Both signals achieve the instanta-

neous frequency of 60Hz simultaneously. However, the effective frequency of each

signal — that is, the number of cycles the signal actually experiences per time unit

— within any interval is much different from its instantaneous frequency when this

instantaneous frequency is not constant, as here. To approximate the effective fre-

quency of either signal at time t, count the number of zero crossings in the interval

[t − 0.05, t + 0.05]. Since every two zero crossings represents one cycle, divide this

count by two. Dividing by 0.1 gives the average frequency of the signal at time t. For

the purposes in mind here, this value is not needed for the first or last 0.05 seconds of

the 20-second epoch. Next, subtract the average frequency of Y from that of X, and

divide by the largest difference in order to place the difference in average frequency

on a scale of −1 to 1. A plot of this normalized frequency difference is displayed in

Figure 1.2. The IC between X and Y should equal one at points where this plot

crosses the horizontal axis, as it is at these points that the two simulated gamma

signals become synchronized. The IC should fall to zero elsewhere.

Now apply the variable window technique described in Section 1.2.1 to estimate the

IC between signals X and Y , with X chosen as the base signal, using three different

values for w, where w is the number of half-cycles of the base signal to determine

each measurement window. In each case, choose m = w/3 as the increment size. The

results are mapped back to the time scale of the signals, and displayed in Figure 1.3

along with the normalized frequency difference from Figure 1.2. With w = 3, the

estimated IC is close to one whenever the frequency difference is near zero, as desired,
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Figure 1.2: Scaled difference in average frequency between X and Y throughout the epoch.

but it oscillates around 0.5 in several intervals where it should be near zero (Figure 1.3,

green curve). When w = 18, the estimated IC is near zero when the signals are

asynchronous, but is not close to one when they are synchronized (Figure 1.3, blue

curve). When w = 6, the result is most promising, since the estimated IC is close to

zero whenever the frequency difference is large, and close to one when the two signals

are synchronized (Figure 1.3, red curve).

For comparison, the IC between X and Y is estimated in the same manner, but

using windows of fixed width (Figure 1.4). When the window size is 18 time points,

the estimated IC is close to one when the signals are synchronized, but is not anywhere

near zero in the first few intervals in which the signals are asynchronous (Figure 1.4,

green curve). Also, when it does approach zero, it does not drop sharply, but falls

off gradually. When the window size is 210 time points, the estimated IC is near
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Figure 1.3: Estimated IC when w = 3 (green), w = 6 (red), and w = 18 (blue), with the scaled

difference in average frequency between X and Y throughout the epoch.

zero when it should be, but it is generally much too small when it should be close

to one (Figure 1.4, blue curve). When the window size is 90 time points, the best

IC estimate is obtained (Figure 1.4, red curve). But at several time points where it

should be close to one it is closer to 0.5.

This simulation demonstrates that whether a variable window or a fixed window is

used, estimation of the IC between two signals is highly sensitive to the choice of the

parameter that affects the window width. But the variable window approach has the

advantage of adaptability to the local frequency, so that once a good choice is made

for the tuning parameter, the IC estimate will be consistently reliable as the signal

frequency varies throughout an epoch. A choice for the fixed window width may work

well for a specific frequency range, but will not perform well outside of that range.

In the simulated signals, the range for the average effective frequency of the base

signal X grows as the time increases from 0 to 20 seconds. Hence the performance of
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Figure 1.4: Estimated IC with fixed windows of 18 (green), 90 (red), and 210 (blue) time points,

with the scaled difference in average frequency between X and Y throughout the epoch.

the IC estimate when w = 18 improves as time passes (Figure 1.4, green), while the

performance of the IC estimates when w = 90 and w = 210 diminishes (Figure 1.4,

red and blue, respectively). With the variable-window approach (Figure 1.3), it is

seen that the performance of each IC estimate remains consistent throughout the

epoch even though the range of the average frequency changes. Hence, once a good

choice for w is identified, it can be employed in the study of any oscillating signal.

Based on this analysis, it seems that w = 6 is a good choice.

1.3.2 Experimental data: EEG gamma signals from the rat hippocampus

The method developed above is demonstrated using an analysis of EEG data recorded

from nine tetrodes located in the hippocampal formation of rats before, during and af-

ter they perform an exercise on a track. Tetrodes were placed in the medial entorhinal

cortex (MEC; four electrodes) and CA1 region (five electrodes). This analysis focuses
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on the EEG during a “rest” epoch, when the rat is in its cage (but not necessarily

inactive) after one exercise epoch and before the next.

A typical data set consists of approximately 15 to 20 minutes of EEG data recorded

at 1.5 kHz. This investigation focuses on the identification of instants when the

gamma rhythms in both regions become synchronized on a short time scale. As an

initial preprocessing step, the raw EEG signals were filtered in the 40–100 Hz range

using the filtfilt.m routine in Matlab. This process was used to extract the gamma

signal from the raw EEG signal. Figure 1.5 shows nine raw and nine filtered signals,

respectively, from the first 2/3 second of a recording epoch. Note that the cycles for

the filtered signals do not always cross the horizontal axis. Hence, for any gamma

signal that might be selected for a base signal, its cycles are not necessarily identifiable

by zero crossings. However, the Hilbert transform is applied to each filtered signal to

obtain the Hilbert phase at each time point, so that one may identify the cycles by

locating the points where the phase is approximately ±π/2.

In this analysis, the gamma signal extracted from Tetrode 1, located in the MEC,

is selected as the base signal. Figure 1.6 displays plots of the first 100 estimated IC

values between this base gamma signal and the gamma signals at Tetrodes 6 and 26,

respectively, at the beginning of a recording epoch, using w = 6 and m = 2. Note that

the horizontal axis is not transformed back to the time scale, but is given in terms

of the sequence of measurement windows. Observe that the estimated IC alternates

between values above 0.6 and values below 0.4 in each plot. Frequent instants of high

synchrony are expected in the left plot since Tetrodes 1 and 6 are both located within
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Figure 1.5: Raw EEG signals and filtered gamma signals from MEC (1,6,7,11) and CA1

(16,19,22,25,26) of rat during first 2/3 second of a rest epoch.

the MEC, albeit in different parts, while instants of high synchrony should be less

frequent in the right plot, since Tetrode 26 is not in the MEC. For any given timespan
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Figure 1.6: First 100 Instantaneous Coupling estimates between gamma signals at Tetrodes 1 (base

signal) and 6 (left), and Tetrodes 1 (base signal) and 26 (right), at the beginning of an epoch.
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one may choose any of the nine available gamma signals as the base signal and use

the remaining signals to compute an eight-dimensional time series of IC estimates

corresponding to that base signal, using any appropriate values of w or m. This

section explores whether the time series can be partitioned into specific IC states.

Figure 1.7 shows eight histograms of the distributions of the 74, 490 estimated IC

values between Tetrode 1 and each of the other eight tetrodes during a twenty-minute

rest epoch. Almost all of the estimated IC values are distributed between zero and

one, with a negligible remainder just slightly below zero. Hence the MVB distribution

should be appropriate for modeling these data, as discussed in Section 1.2.2.
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Figure 1.7: Distributions of estimated instantaneous coupling between gamma signals at Tetrode 1

and each of the other eight tetrodes during a rest epoch.

The goal is to reduce this eight-dimensional time series to a single dimension by

identifying distinct IC states when different subsets of signals are coupled with the
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base. This single dimension — the IC state — will take one of the values in {1, . . . , p∗}

in each measurement window, where p∗ is defined in (1.2.5). The histograms in Fig-

ure 1.7 may be considered superpositions of the histograms of the IC estimates cor-

responding to these distinct states, each of which is modeled by a MVB distribution.

The EM algorithm is implemented as described in Section 1.2.2 to determine the

parameters of these distributions and to determine the state membership of each IC

estimate, using the R statistical package. To illustrate the method conveniently, a

ten-second block from the full recorded time series is considered, corresponding to

746 consecutive, overlapping three-cycle windows of the base signal. Moreover, only

four dimensions are selected rather than all eight, by choosing representatives from

each location in the brain in which multiple EEG signals are recorded. Using the IC

estimates between the base signal at Tetrode 1 and the signals at Tetrodes 6, 11, 25

and 26, computed during an interval when the rat is in its cage, the EM algorithm is

implemented.

The EM algorithm is run for values of p in the range 2 ≤ p ≤ 8. Once the

algorithm converges, the parameter estimates are used to compute the mixture log-

likelihood according to (1.2.3), and then to obtain the BIC according to (1.2.4). The

algorithm is implemented simultaneously for the seven values of p, using several 3.06

gHz machines. Model estimation required from one to eleven days as p increased in

value. Note that the BIC decreases as p increments from 2 to 4, is relatively constant

for p in the range of 4 to 6 states, and then increases thereafter (Figure 1.8). It may

be concluded that the instantaneous coupling between the base signal recorded in the
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Figure 1.8: Progression of BIC as p increases, for EEG application.

MEC and the signals from the four other selected locations transition among four to

six distinct IC states during the chosen ten-second block. Since the simplest model

is preferred, one should adopt a model consisting of four IC states.

The parameter estimates corresponding to each of these four IC states, resulting

from 108 iterations of the EM algorithm, are given in Table 1.1. To assign each IC

Table 1.1: Parameter estimates corresponding to each of these four IC states, resulting from 108

iterations of the EM algorithm.

State π θ1 θ2 θ3 θ4 θ5

1 0.16 8.4 4.7 3.1 2.9 2.9

2 0.40 3.2 13.6 2.8 2.8 2.7

3 0.07 2.8 39.2 2.6 2.2 2.8

4 0.38 2.1 3.8 3.2 3.2 1.9

estimate to its appropriate state, inspect the corresponding vector of responsibilities
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returned by the EM algorithm after its convergence (see (1.2.2) with p = 4), and note

the position of the largest value. That is, assign the ith IC estimate to state k, where

k = argmax
j
{rj,i | j = 1, 2, 3, 4} ,

for i = 1, . . . , 746. Then obtain the mean vector of the subsets of IC estimates assigned

to each of the four states, along with their corresponding standard deviations, as

shown in Table 1.2. The group means are plotted in Figure 1.9.

Table 1.2: Mean vector of the subsets of IC estimates assigned to each of the four states, along with

their corresponding standard deviations.

Mean (Standard Deviation)

State Tetrode 6 Tetrode 11 Tetrode 25 Tetrode 26

1 0.77 0.64 0.52 0.50

(0.08) (0.16) (0.16) (0.15)

2 0.54 0.84 0.51 0.50

(0.17) (0.07) (0.17) (0.16)

3 0.48 0.94 0.46 0.43

(0.17) (0.03) (0.16) (0.19)

4 0.52 0.66 0.63 0.64

(0.17) (0.16) (0.17) (0.17)

If one uses 0.6 as the threshold for distinguishing coupling from non-coupling, then

State 1, which comprises 16.2% of the block of IC estimates, represents instants when

the base signal is coupled with the other two MEC signals, but not with the CA1

signals. State 4, comprising 37.6% of the IC estimates, represents occasions when the
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Figure 1.9: Means of the subsets of IC estimates corresponding to each of the four IC states, with

the base signal at Tetrode 1, based on optimized mixed MVB model.

base signal is coupled with the signal at nearby Tetrode 11 in the MEC and with the

signals at Tetrodes 25 and 26 in the CA1, but not with the signal at Tetrode 6 in

another part of the MEC. Hence State 4 indicates synchronization between the MEC

and the CA1 cell layer in the rat’s brain. States 2 and 3, comprising 39.6% and 6.6% of

the IC estimates, respectively, represent instants when the base signal is only coupled

with the gamma signal at neighboring Tetrode 11, although at different levels. Since

the mean vectors for the subsets of IC estimates corresponding to these two states

appear to be very similar, and less than 7% of the estimates are assigned to State 3,
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one may consider combining them. However, what distinguishes the two states is not

the mean vectors of the corresponding subsets of IC estimates, but the parameter

estimates for the two states. The estimates of the parameter θ2 for States 2 and 3 are

very different, which implies that the IC estimates for these two states are distributed

quite differently. Moreover, the BIC criterion clearly recommends a minimum of four

distinct IC states.

Since this analysis has been performed only on one block of IC estimates taken

from a rest epoch, it cannot be assumed that these results apply to the entire epoch

or to any other time period. One may repeat the estimation using a block of similar

size from an interval during which the rat is motionless in its cage, and may be

asleep, or when the rat is performing tasks on the track. Moreover, these procedures

may be applied when the EEG signal at any tetrode is selected as the base signal,

so that occasions of coupling between any two brain regions can be identified. This

approach thus enables a neuroscientist to identify instants when different brain regions

are synchronized, and investigate the correspondence between the frequency of such

instants and behavioral covariates. Figure 1.10 shows the gamma signals extracted

from the EEG recordings at Tetrodes 1, 6, 11, 25 and 26 at the beginning of the

sample block on which this method was applied, along with a colored bar above each

window associated with three cycles of the base signal at Tetrode 1. The colored

bars indicate into which of the four IC states the signals are assigned by this method

at each instant. The colors and their corresponding states match those designated

in Figure 1.9. That is, black bars indicate coupling between the Tetrode 1 signal
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and the signals at Tetrodes 6 and 11 in the MEC, blue bars and red bars denote

coupling between the Tetrode 1 signal and the nearby signal at Tetrode 11, and green

bars denote coupling between the Tetrode 1 signal and the signals at Tetrodes 11, 25

and 26. Both the sequence and frequency of IC states within any interval may be

meaningful in future investigations.
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Figure 1.10: Gamma signals during a 2/3-second block of a recording epoch, with IC state designa-

tion indicated for each window when the base signal is at Tetrode 1 and four IC states are modeled.

Vertical dotted lines correspond to computed cycles of the base signal.

1.4 Discussion

A computational method has been presented for estimating the short time-scale cou-

pling between gamma signals filtered from two EEG recordings, along with confidence

bounds on the estimate. This computation requires the selection of one signal as the

base, and partitioning the recording epoch based on the cycles of that base. The
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instantaneous coupling (IC) on any measurement window is defined as the maximum

over a range of lags of the cross-correlation between the base and the other signal

during that window. This value is computed throughout the epoch on a sliding win-

dow consisting of three cycles of the base, incrementing one cycle at a time so that

consecutive measurements come from overlapping windows. At instants when the

coupling between signals is strong, the IC estimate should be in the 0.6 to 1.0 range.

A simulation study confirms that this procedure is sufficiently accurate in identifying

instants of low and high synchronization.

When one gamma signal is chosen as the base and the IC estimate is computed

between that signal and the other gamma signals at each of the other tetrodes, a

distribution of IC estimates is obtained, which may be jointly modeled using the

multivariate beta (MVB) distribution. The parameters of this distribution may be

estimated using the EM algorithm. One can examine the structure of the set of IC

estimates by implementing a mixture model with a pre-selected number of clusters

representing IC states among the estimates. If the estimates naturally fall into a

particular number of clusters, the Bayes Information Criterion will recommend that

number. This enables one to identify instants in which subsets of the gamma signals

are synchronized with the chosen base signal.

The method presented here allows neuroscientists to detect the evolution of IC

on a short time scale among multidimensional EEG gamma waves. This evolution

reveals the trajectory of local synchronous patterns and could be used to identify

binding between separate parts of the brain. These evolving patterns of local and
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global synchrony may provide a platform for scientists to map out moment-by-moment

progression of signal transmission pathways among distinct regions of the brain. This

methodology addresses several algorithmic challenges. First, the chosen measurement

window of three cycles of a base gamma signal seems to reasonably capture such

instantaneous synchronization, which typically lasts for fewer than five cycles. It is

proffered that this is a natural timescale for such synchronization manifested through

gamma rhythms. Secondly, the mixed MVB model with parameters estimated by the

EM algorithm provides an effective and reliable tool for identifying IC states that

signify the occurrence of synchronization among different regions of the brain.

One outstanding issue is the computational burden of the EM algorithm, which is

known to converge slowly. In this EEG example the analysis was limited to a ten-

second block and only four of the eight dimensions, and it took up to eleven days to

converge. However, the computational efficiency would be greatly improved by using

custom code, so that the method could be applied effectively to more dimensions and a

much longer time span. Alternate methods for model fitting, including Markov chain

Monte Carlo techniques or the simulated annealing algorithm, may also be developed.

The focus in this chapter is illustration of the method, rather than optimizing the

computational efficiency. This task will be undertaken in future work.

1.5 Derivation of the Multivariate Beta density

The derivation of the multivariate beta (MVB) density follows the approach of Olkin

and Liu [51]. A full derivation is presented here due to typographical errors found in
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the formula for the multivariate case presented in their original publication.

Let X1 ∼ Γ(θ1, 1), . . . , XJ ∼ Γ(θJ , 1) and Y ∼ Γ(θJ+1, 1) be independent gamma

random variables, where Γ(θj, 1) denotes the standard gamma distribution with shape

parameter θj. Hence the joint density of X1, . . . , XJ , Y is

f(x1, . . . , xj, y) =
J∏
j=1

x
θj−1
j yθJ+1−1 exp

{
−

(
J∑
j=1

xj + y

)}/
J+1∏
j=1

Γ(θj)

where Γ(·) denotes the gamma function and x1, . . . , xJ , y are all positive. Define

U1 =
X1

X1 + Y
, . . . , UJ =

XJ

XJ + Y
,

so that 0 < Uj < 1 for j = 1, . . . , J , and correlation among U1, . . . , Uj is established

by the common dependence on Y . Through simple algebra one has

Xj =
Y Uj

1− Uj
for j = 1, . . . J .

Hence

∂xj
∂uj

=
y

(1− uj)2
and

∂xj
∂y

=
uj

1− uj
for j = 1, . . . J ,

∂xj
∂uk

= 0 for j 6= k ,

while

∂y

∂uj
= 0 for j = 1, . . . J, and

∂y

∂y
= 1 ,

giving the Jacobian matrix

y
(1−u1)2

0 · · · 0 u1
1−u1

0 y
(1−u2)2

· · · 0 u2
1−u2

...
...

. . .
...

...

0 0 · · · y
(1−uJ )2

uJ
1−uJ

0 0 · · · 0 1


,
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whose determinant is just the product of the diagonal entries,

yJ∏J
j=1(1− uj)2

.

Therefore the joint density of U1, . . . , UJ , Y is

f(u1, . . . , uJ , y) =
yJ∏J

j=1(1− uj)2

J∏
j=1

(yuj)
θj−1

(1− uj)θj−1
yθJ+1−1

× exp

{
−

(
J∑
j=1

yuj
1− uj

+ y

)}/
J+1∏
j=1

Γ(θj)

=

∏J
j=1 u

θj−1
j y

∑J+1
j=1 θj−1∏J

j=1(1− uj)θj+1
∏J+1

j=1 Γ(θj)
exp

{
−y

(
1 +

J∑
j=1

uj
1− uj

)}
.

Let

q = 1 +
J∑
j=1

uj
1− uj

and θ =
J+1∑
j=1

θj .

Then obtain the joint density of U1, . . . , UJ , which is the objective here, by integrating

out y as follows:

f(u1, . . . , uJ) =

∏J
j=1 u

θj−1
j∏J

j=1(1− uj)θj+1
∏J+1

j=1 Γ(θj)

∫ ∞
0

yθ−1e−qy dy

=
Γ(θ)∏J+1

j=1 Γ(θj)

1

qθ

J∏
j=1

u
θj−1
j

(1− uj)θj+1

=
Γ
(∑J+1

j=1 θj

)
∏J+1

j=1 Γ(θj)

(
J∏
j=1

u
θj−1
j

(1− uj)θj+1

)(
1 +

J∑
j=1

uj
1− uj

)−∑J+1
j=1 θj

,

where 0 < uj < 1 for j = 1, . . . , J . This is the multivariate beta density given in

(1.2.1).
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Chapter 2

Slope estimation in structural

line-segment heteroscedastic

measurement error models

2.1 Introduction

Consider an observational study in which information on two variables is collected

from random samples of n distinct groups within a population. Suppose a researcher

is given only a set of summary statistics on the observed variables for each sample,

along with the corresponding sampling errors. He wishes to determine whether there

is a significant linear association between the two variables, and if so, to model that

association with an accurate slope estimate. The sampling error involved with each

variable eliminates the applicability of the simple linear regression approach, and calls
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for the implementation of a measurement error model. Moreover, the variability of

the error on each observation for each variable is likely to be different, due to different

sample sizes and other influences, so that a model that accounts for heteroscedastic

measurement error is required.

Heteroscedastic measurement-error (ME) models have been developed for estimat-

ing the slope in such scenarios. Kulathinal, et al., apply this approach in [40] to the

data collected in the WHO MONICA Project (2000) on cardiovascular disease and

its risk factors. Patriota, et al., also examine these data in [52], as well as astronom-

ical data obtained from the Chandra observatory, accounting for the heteroscedastic

measurement error that characterizes each data set. Under this approach, each ob-

servation (xi, yi) is modeled as

xi = χi + εi, yi = ϕi + νi, with ϕi = α + βχi + γi ,

where εi ∼ N (0, σ2
i ) and νi ∼ N (0, τ 2

i ) are the independently-distributed heterosced-

astic measurement errors, γi ∼ N (0, ζ2) is the independently-distributed equation

error, and all three errors are mutually independent. To assure identifiability, it is

assumed that the measurement error variances (σi, τi), i = 1, . . . , n, are known or

can be estimated independently. Under the structural model the χi are indepen-

dent and distributed as N (µχ, σ
2
χ), while the ϕi are also independent and distributed

as N (µϕ, σ
2
ϕ). Both maximum-likelihood and method-of-moments estimators of the

slope have been derived under the structural heteroscedastic measurement error (ME)

model, as presented in [40, 52, 6] using this conventional equation error model. How-

ever, as will be demonstrated in an analysis of the WHO MONICA data, this model
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is not robust against misspecification, so that the inclusion of the equation error

component makes it susceptible to underestimation of the slope when the unknown

data-generating mechanism does not actually have the equation-error structure.

In this chapter, the line-segment model for homoscedastic measurement error, as

introduced by Davidov in [11], is extended to this heteroscedastic ME scenario. This

alternative approach omits the equation error component and is symmetric in the

two variables. These features make the line segment model more robust against mis-

specification, and thus preferable when the data-generation mechanism is completely

unknown. It is assumed in this setting that that the points (Exi, Eyi) are randomly

distributed on a line segment having latent endpoints at (ηX , ηY ) and (ξX , ξY ), with

ηX ≤ ξX . Let δX = ξX − ηX ≥ 0 and δY = ξY − ηY . Then the model is

xi = ηX + λiδX + εi, and yi = ηY + λiδY + νi, i = 1, . . . , n , (2.1.1)

where λ1, . . . , λn are independently drawn from a common distribution G and take

values in the unit interval, and εi ∼ N (0, σ2
i ) while νi ∼ N (0, τ 2

i ) for each i. It is also

assumed that the error variances σ1, . . . , σn are independently drawn from a common

distribution, and likewise for τ1, . . . , τn. Again, to assure identifiability, it is assumed

that these error variances are known for both variables. In practice, the error variance

is rarely known, but may be accurately estimated using repeated measurements, or,

when the observations are statistics based on samples, by using sampling errors. Let

µλ and σ2
λ denote the mean and variance of λi, respectively, which must be finite since

λi is bounded. Finally, assume that λi, σi and τi are mutually independent for all i.

Note that this model does not include equation error.
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Figure 2.1 provides a diagram of the above model along with the equation error

model. In this diagram, (xi, yi) is the observed data pair. The linear association

between X and Y is represented by the dashed trendline Y = α + βX, upon which

the line segment having endpoints at (ηX , ηY ) and (ξX , ξY ) rests. The conditional

expectation of (xi, yi), given χi, onto the line/segment is the point (χi, α+βχi) under

the equation error model. This point is equivalent to the point (ηX +δXλi, ηY +δY λi),

which is the conditional expectation of (xi, yi), given λi, under the line-segment model.

This point lies on the dotted line between (xi, yi) and the line segment from the

perspective of the line-segment model. But under the equation error model, it lies on

the vertical dotted line through the unobserved point (χi, ϕi).

Trivially, the path from the observed pair (xi, yi) to the line segment, corresponding

to the line segment model, is always smaller than the path that goes from (xi, yi) to

(χi, ϕi), and then to the line, corresponding to the equation error model. When there

is a strong correlation between the two variables, this difference in path lengths is

almost negligible when using either model to compute an estimate of the slope, since

the errors are small. In such cases, the dominating influence on the variance of the

slope estimate is the overall dispersion in X — the larger the spread, the smaller

the variance. Since the equation error is a vertical displacement, its inclusion in

the model attenuates the effect of the dispersion in X, giving it an advantage over

the line segment model. But when the errors become larger, the path difference

becomes the dominating influence on the variance of the slope estimate among the

two models. Hence in any scenario where the variances of the measurement errors are
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Figure 2.1: Diagram of equation error and line-segment models with heteroscedastic measurement

error.

not small, the line segment model will provide a more precise estimate of the slope.

This improvement is demonstrated using simulation studies.

The line segment model provides an additional benefit, whether or not there is

measurement error or heteroscedasticity. The equation-error model assumes a spe-

cific structure for the underlying data-generation mechanism, a structure which may

not not properly explain the association between the two variables. In this case,

points that lie far from the line and toward the horizontal extremes exert an ex-

cessive influence on the slope estimate in equation-error models due to the effect of
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including the equation errors. But in the line segment model, no such effect occurs.

Consequently the influence of such points on the slope estimate is attenuated. There-

fore the line segment model is more robust against outliers at the horizontal extremes,

and is better able to explain the association between the two variables in situations

in which the unknown data-generation mechanism does not have the equation-error

structure. This benefit will be illustrated in the application of our model to the same

WHO MONICA data, which contain influential points that have caused incorrect

slope estimates under the equation-error models.

In the next section a method-of-moments estimate of the slope is derived under

this extension of the line-segment model, and its asymptotic variance is obtained in

Section 2.3 using the delta method. A large-sample estimate of the variance of this

slope estimate is derived in Section 2.4 which may be used in real data analysis. In

Section 2.5 simulation studies are performed which verify the accuracy and precision

of these estimates when the data-generation mechanism conforms to the line-segment

model, and which show that the precision of this slope estimate is superior in this

setting to that of the method-of-moments estimate obtained through an equation

error model, using assorted ranges of measurement error variances. In Section 2.6

the application of this slope estimation to real data is illustrated, and estimates

derived under the line segment model are compared with those derived using several

equation error methods, and using the line-segment model when homoscedastic errors

are näıvely assumed. The results are summarized and briefly discussed in Section 2.8.
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2.2 Point estimation of the slope

Given the structural line-segment model described in Section 2.1, one has

Var(Xi) = δ2
Xσ

2
λ + σ2

i , Var(Yi) = δ2
Y σ

2
λ + τ 2

i , and Cov(Xi, Yi) = δXδY σ
2
λ ,

so that

Var

(
Xi

σi

)
=
δ2
Xσ

2
λ

σ2
i

+ 1 and Var

(
Yi
τi

)
=
δ2
Y σ

2
λ

τ 2
i

+ 1 .

Hence

1

n

n∑
i=1

Var

(
Xi

σi

)
= δ2

Xσ
2
λσ

?
n + 1 ,

1

n

n∑
i=1

Var

(
Yi
τi

)
= δ2

Y σ
2
λτ

?
n + 1 ,

and

1

n

n∑
i=1

Cov(Xi, Yi) = δXδY σ
2
λ ,

where

σ?n =
1

n

n∑
i=1

1

σ2
i

and τ ?n =
1

n

n∑
i=1

1

τ 2
i

.

One may then solve for δX (which is taken to be nonnegative) and δY , and use the

sign of the mean covariance to determine the sign of δY , to get

δX = σ−1
λ

√√√√[ 1

n

n∑
i=1

Var

(
Xi

σi

)
− 1

]
+

/
σ?n

and

δY = sgn

(
1

n

n∑
i=1

Cov(Xi, Yi)

)
σ−1
λ

√√√√[ 1

n

n∑
i=1

Var

(
Yi
τi

)
− 1

]
+

/
τ ?n ,

where [·]+ = max(0, ·). Then the slope of the line segment is β = δY /δX , provided

δX > 0. Note that in the ratio δY /δX the common σ−1
λ factor drops out, so that

knowing the moments of λ is unnecessary for slope estimation. However, estimates

of
∑n

i=1 Var(Xi/σi)/n,
∑n

i=1 Var(Yi/τi)/n, and
∑n

i=1 Cov(Xi, Yi)/n are required.
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Following the approach described in [12] and [11], method-of-moments estimators

are derived, by equating sample moments with theoretical moments:

1

n

n∑
i=1

Var

(
Xi

σi

)
set
=

1

n

n∑
i=1

(
xi − x
σi

)2

= S∗xx ,

1

n

n∑
i=1

Var

(
Yi
τi

)
set
=

1

n

n∑
i=1

(
yi − y
τi

)2

= S∗yy and

1

n

n∑
i=1

Cov(Xi, Yi)
set
=

1

n

n∑
i=1

(xi − x)yi = Sxy .

Hence

δ̂X = σ−1
λ

√
[S∗xx − 1]+ /σ

?
n and δ̂Y = sgn(Sxy)σ

−1
λ

√[
S∗yy − 1

]
+
/τ ?n , (2.2.1)

so that the estimated slope of the line segment is

β̂ = δ̂Y /δ̂X = sgn(Sxy)

√
σ?n
[
S∗yy − 1

]
+

τ ?n [S∗xx − 1]+
. (2.2.2)

When the measurement errors are homoscedastic, (2.2.1) agrees with (2.12) in [11].

Note that this estimate is only valid when both S∗xx > 1 and S∗yy > 1, which is not a

problem as long as the measurement error variances are not very large relative to the

dispersions in their respective variables. In the case that they are, estimation of the

slope becomes rather futile anyway.

2.3 Variance of the slope estimate

Derivation of the variance of this estimate also follows that in [11]. Since the slope

estimate β̂ is location invariant, one may without loss of generality set ηX = ηY = 0

in the derivation of Var(β̂). Define

Zi =

(
Xi,

Xi

σ2
i

,
X2
i

σ2
i

, Yi,
Yi
τ 2
i

,
Y 2
i

τ 2
i

, XiYi

)′
= (z1, z2, z3, z4, z5, z6, z7)′



41

and let

Tn =
1

n

n∑
i=1

Zi =

(
X,

1

n

n∑
i=1

Xi

σ2
i

,
1

n

n∑
i=1

X2
i

σ2
i

, Y ,
1

n

n∑
i=1

Yi
τ 2
i

,
1

n

n∑
i=1

Yi
τ 2
i

,
1

n

n∑
i=1

XiYi

)′
= (t1, t2, t3, t4, t5, t6, t7) .

This structure on Tn is more complex than its five-dimensional counterpart in the

homoscedastic case. Nevertheless, setting φλ = E(λ2
i ) = σ2

λ +µ2
λ, it is straightforward

to show that

µ = E(Tn) = (δXµλ, δXµλσ
?, δ2

Xφλσ
? + 1, δY µλ, δY µλτ

?, δ2
Y φλτ

? + 1, δXδY φλ)
′

based on the model assumptions in (2.1.1), and the assumed existence of σ? =

E(σ−2
i ) = limn→∞ σ

?
n and τ ? = E(τ−2

i ) = limn→∞ τ
?
n. The central limit theorem then

assures that the distribution of
√
n(Tn −µ) converges to the N (0,Σ) distribution as

n → ∞, where Σ is the 7× 7 covariance matrix of Zi with entries Σij = Cov(zi, zj),

1 ≤ i, j ≤ 7.

Now define Sn = (S∗xx, S∗yy, Sxy). Expanding each of these components and

applying some algebraic manipulation, one finds that

Sn = H(Tn) = (t3 − 2t1t2 + t21σ
?
n, t6 − 2t4t5 + t24τ

?
n, t7 − t1t4)′ ,

so that

φ = E(Sn) = H(µ) = (δ2
Xσ

2
λσ

? + 1, δ2
Y σ

2
λτ

? + 1, δXδY σ
2
λ)
′ .

Applying the delta method and Slutzky’s theorem to Sn, one has

√
n(Sn − φ)

L−→ N (0,MΣM ′) ,
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where

M =
∂H(Tn)

∂(Tn)

∣∣∣∣
Tn=µ

=


0 −2µλδX 1 0 0 0 0

0 0 0 0 −2µλδY 1 0

−µλδY 0 0 −µλδX 0 0 1

 .

The law of large numbers assures that Sn
P−→ φ, and the continuous mapping

theorem then implies that β̂ = β̂(Sn)
P−→ β̂(φ) = δY /δX = β, so that β̂ is a consistent

estimator of β. A second application of the delta method then gives

√
n(β̂ − β)

L−→ N (0, B′MΣM ′B) = N (0, ω) ,

where

B =
∂β̂(Sn)

∂(Sn)

∣∣∣∣∣
Sn=φ

=

[
−δY

2δ3
Xσ

2
λσ

?
,

1

2δXδY σ2
λτ

?
, 0

]′
.

Hence

ω =
δ2
Y

4δ6
Xσ

4
λ(σ

?)2
(4δ2

Xµ
2
λΣ22 + Σ33 − 4δxµλΣ23)

+
1

4δ2
xδ

2
yσ

4
λ(τ

?)2
(4δ2

Y µ
2
λΣ55 + Σ66 − 4δY µλΣ56)

− 1

2δ4
Xσ

4
λσ

?τ ?
(4δXδY µ

2
λΣ25 − 2δXµλΣ26 − 2δY µλΣ35 + Σ36)

is the desired asymptotic variance of
√
n(β̂ − β).

Substitute

Σ22 = δ2
Xσ

2
λσ

?? + σ? Σ33 = δ4
X(κλ − φ2

λ)σ
?? + 4δ2

Xφλσ
? + 2

Σ23 = δ3
X(γλ − µλφλ)σ?? + 2δXµλσ

? Σ55 = δ2
Y σ

2
λτ

?? + τ ?

Σ66 = δ4
Y (κλ − φ2

λ)τ
?? + 4δ2

Y φλτ
? + 2 Σ56 = δ3

Y (γλ − µλφλ)τ ?? + 2δY µλτ
?

Σ25 = δXδY σ
2
λ(στ)? Σ26 = δXδ

2
Y (γλ − µλφλ)(στ)?

Σ35 = δ2
XδY (γλ − µλφλ)(στ)? Σ36 = δ2

Xδ
2
Y (κλ − φ2

λ)(στ)?
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into this expression, where γλ = E(λ3
i ), κλ = E(λ4

i ), and, assuming the existence of

each, we define

σ?? = E(σ−4
i ) = lim

n→∞

1

n

n∑
i=1

1

σ4
i

= lim
n→∞

σ??n , τ ?? = E(τ−4
i ) = lim

n→∞

1

n

n∑
i=1

1

τ 4
i

= lim
n→∞

τ ??n ,

and (στ)? = E(σ−2
i τ−2

i ). Note that (στ)? = σ?τ ? by the independence of σi and τi for

all i.

After much labor, one obtains

ω =
1

4δ6
Xδ

2
Y σ

4
λ

{
2
δ4
X

(τ ?)2
+ 4δ2

Xδ
2
Y σ

2
λ

(
δ2
X

τ ?
+
δ2
Y

σ?

)
+ 2

δ4
Y

(σ?)2

+ δ4
Xδ

4
Y Γλ

[
σ??

(σ?)2
+

τ ??

(τ ?)2
− 2

(στ)?

σ?τ ?

]}
, (2.3.1)

where Γλ = κλ−4µ4
λ+8µ2

λφλ−4µλγλ−φ2
λ. The Cauchy-Schwartz inequality guarantees

that σ?? ≥ (σ?)2 and τ ?? ≥ (τ ?)2, so that the expression σ??/(σ?)2 + τ ??/(τ ?)2 −

2(στ)?/σ?τ ? will be nonnegative, and will vanish in the case of homoscedasticity.

Although the ratio (στ)?/σ?τ ? equals one, it is advantageous to keep it in the form

of (2.3.1) because it will need to be estimated in the next section. Therefore, the

large-sample variance of the estimated slope based on n independent observed pairs

(xi, yi) with heteroscedastic measurement error is Var(β̂) = ω/n.

Note that in the case of homoscedastic error variance, (2.3.1) reduces to (3.3) given

in [11].

2.4 Estimating the variance of the slope estimate

To obtain an estimate of Var(β̂), replace each occurrence of δX and δY in (2.3.1) with

the corresponding estimates given in (2.2.2). Also replace σ?, τ ?, σ??, τ ?? and (στ)?
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with σ?n, τ ?n, σ??n , τ ??n and (στ)?n, respectively. After some simplification, one obtains

V̂ar(β̂) =
σ?n/τ

?
n

n(S∗xx − 1)

{
1 +

1

2(S∗yy − 1)
+
S∗yy − 1

S∗xx − 1
+

S∗yy − 1

2(S∗xx − 1)2

+
S∗yy − 1

4

[
σ??n

(σ?n)2
+

τ ??n
(τ ?n)2

− 2
(στ)?n
σ?nτ

?
n

]
σ−4
λ Γ̂

}
.(2.4.1)

To derive the estimate σ−4
λ Γ̂, an estimate of λi is required for i = 1, . . . , n. Suppose

(xi, yi) is observed, while E(Xi, Yi) = (ηX + λiδX , ηY + λiδY ). Assume that λi is the

unique value in [0, 1] that minimizes the Euclidean distance between (xi, yi) and the

line segment whose endpoints are at (ηX , ηY ) and (ξX , ξY ). Simple calculus gives

λi =
δX(xi − ηX) + δY (yi − ηY )

δ2
X + δ2

Y

,

so that

λ̂i =
δ̂X(xi − η̂X) + δ̂Y (yi − η̂Y )

δ̂2
X + δ̂2

Y

=

(xi − η̂X)
√

[S∗xx − 1]+ /σ
?
n + (yi − η̂Y ) sgn(Sxy)

√[
S∗yy − 1

]
+
/τ ?n

(S∗xx − 1)/σ?n + (S∗yy − 1)/τ ?n

σλ
= ψ(xi, yi)σλ = ψiσλ .

One then has

µ̂λ = σλ

(
1

n

n∑
i=1

ψi

)
, φ̂λ = σ2

λ

(
1

n

n∑
i=1

ψ2
i

)
, γ̂λ = σ3

λ

(
1

n

n∑
i=1

ψ3
i

)
,

and

κ̂λ = σ4
λ

(
1

n

n∑
i=1

ψ4
i

)
.
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Thus

Γ̂λ = κ̂λ − 4µ̂4
λ + 8µ̂2

λφ̂λ − 4µ̂λγ̂λ − φ̂2
λ

= σ4
λ

(
1

n

n∑
i=1

ψ4
i

)
− 4σ4

λ

(
1

n

n∑
i=1

ψi

)4

+ 8σ4
λ

(
1

n

n∑
i=1

ψi

)2(
1

n

n∑
i=1

ψ2
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)

− 4σ4
λ

(
1

n

n∑
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ψi

)(
1

n
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i=1

ψ3
i

)
− σ4

λ

(
1

n

n∑
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ψ2
i

)2

,

so

σ−4
λ Γ̂λ =

(
1

n

n∑
i=1

ψ4
i

)
− 4

(
1

n

n∑
i=1

ψi

)4

+ 8

(
1

n

n∑
i=1

ψi

)2(
1

n

n∑
i=1

ψ2
i
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− 4

(
1

n

n∑
i=1

ψi

)(
1

n

n∑
i=1

ψ3
i

)
−

(
1

n

n∑
i=1

ψ2
i

)2

. (2.4.2)

Then (2.4.2) may be substituted into (2.4.1) to compute V̂ar(β̂).

However, the issue of estimating (ηX , ηY ), which is necessary for computing ψi, i =

1, . . . , n, has been sidestepped. One remote possibility is that ηX and ηY are known.

Another approach, given in [12] under the assumption that µλ and σ2
λ are known, uses

the Method of Moments to obtain η̂X = x − µλδ̂X and η̂Y = y − µλδ̂Y . Thirdly, one

may construct consistent estimators of ηX and ηY using nonparametric estimation of

G, as discussed in [12]. When information about G cannot be determined, a heuristic

alternative is suggested here.

The line segment in our model rests on the line having slope β and passing through

the point (ηX+µλδX , ηY +µλδY ). We estimate the location of this segment with a line

having slope β̂ and passing through the point (x, y), whose equation is thus y = β̂(x−

x)+y. Now, for i = 1, . . . , n, consider the perpendicular line having slope −1/β̂ which

passes through the point (xi, yi), whose equation is thus y = −1/β̂(x−xi) + yi. Then
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both lines contain the orthogonal projection (x∗i , y
∗
i ) of (xi, yi) onto the estimated line

segment. We substitute (x∗i , y
∗
i ) into each equation in place of (x, y), and set their

right-hand sides equal, to get β̂(x∗i − x) + y = −1/β̂(x∗i − xi) + yi. Solving for x∗i and

simplifying gives us

x∗i =
β̂(yi − y + β̂x) + xi

β̂2 + 1
.

This value can then be used to compute y∗i = −1/β̂(x∗i − xi) + yi. If we let x∗0 =

min{x∗1, . . . , x∗n}, we have x∗0 → ηX as n→∞. If β̂ ≥ 0, we let y∗0 = min{y∗1, . . . , y∗n}.

Otherwise, we let y∗0 = max{y∗1, . . . , y∗n}. In either case, y∗0 → ηY as n → ∞. Hence

(x∗0, y
∗
0) is a biased but consistent estimator of (ηX , ηY ), so we propose the use of

(η̂X , η̂Y ) = (x∗0, y
∗
0) in the computation of ψi, i = 1, . . . , n when nothing is known

about the distribution of λi.

2.5 Simulation study

To confirm the accuracy of these estimates, n = 50 data pairs are generated using

(2.1.1) with ηX = 0, ηY = 0, δX = 9, and δY = 6, so that β = 2/3. For i = 1, . . . , n,

λi is drawn from a beta distribution with both parameters equal to 2, σi is drawn

from a uniform distribution on (a, 2a), and τi is drawn from a uniform distribution

on (b, 2b), where a and b are fixed but arbitrary positive numbers. Hence Γλ can be

computed from the known moments of a beta distribution, while σ?, τ ?, σ?? and τ ??

are derived from the known moments of a uniform distribution. A range of values for

a and b is selected, then (2.2.1), (2.3.1), (2.4.1) and (2.4.2) are used to compute β̂, its

variance Var(β̂), and the estimate V̂ar(β̂) of this variance. For this first simulation it
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is assumed that ηX and ηY are known. The procedure is repeated 500 times, and the

estimates at each iteration are recorded.

For each run of the simulation, Table 2.1 presents the selected values of a and b,

which control the magnitude of the error variances, in the first two columns. Column 3

gives the median value of β̂, computed over 500 iterations using (2.2.1), along with

the sample variance of this estimate in column 4. Column 5 provides the expected

value of Var(β̂), based on (2.3.1) divided by n. Column 6 provides the median value

of V̂ar(β̂), computed over 500 iterations using (2.4.1). Ideally, the value in column 3

matches the true value of the slope, i.e., 2/3, and the values in columns 4 and 6 are

both close to the value in column 5 for each run.

Table 2.1: Simulation results for several choices of a and b, based on 500 iterations, with (ηX , ηY )

known and β = 2/3. (S.V. = sample variance)

a b median(β̂) (S.V.) Var(β̂) median(V̂ar(β̂))

0.05 0.03 0.669 (0.00086) 0.00087 0.00083

0.35 0.25 0.662 (0.00224) 0.00204 0.00219

0.50 0.55 0.663 (0.00564) 0.00550 0.00610

0.75 0.70 0.666 (0.01077) 0.00982 0.01085

0.85 0.90 0.657 (0.02037) 0.01618 0.01801

For all choices of a and b, the estimate of the line segment slope is centered very near

the true value of 0.667. Moreover, the observed variance among 500 computed values

of β̂ (in column 4) is consistently close to the expected variance of β̂ (in column 5),

and the median estimate of the variance of β̂ over 500 iterations (in column 6) also
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proves to be quite accurate, with a gradual loss of accuracy as the error variances

grow. To the extent that these estimates of the variance are off-target, they are

consistently a bit high, and hence give more conservative estimates. The precision

of these estimates even as the error variance grows is remarkable given the need to

estimate many parameters. Hence this first simulation confirms the reliability of the

estimates under the line segment model when ηX and ηY are known.

In a second simulation, set ηX = 2, ηY = 3, δX = 9, and δY = −6, so that

β = −2/3. This time it is assumed ηX and ηY are unknown, and the heuristic

estimates of Section 2.4 are employed. All other conditions are the same as above.

Table 2.2, which has the same structure as Table 2.1, displays a summary of these

results.

Table 2.2: Simulation results for several choices of a and b, based on 500 iterations, with (ηX , ηY )

unknown and β = −2/3. (S.V. = sample variance)

a b median(β̂) (S.V.) Var(β̂) median(V̂ar(β̂))

0.05 0.04 −0.667 (0.00086) 0.00087 0.00085

0.30 0.33 −0.665 (0.00228) 0.00239 0.00257

0.46 0.52 −0.660 (0.00581) 0.00490 0.00528

0.71 0.65 −0.673 (0.00976) 0.00849 0.00968

0.98 0.93 −0.664 (0.02160) 0.01871 0.02178

Despite the need to use biased estimates of ηX and ηY to compute the values in

column 6, these estimates of the variance of β̂ are centered at values only slightly

larger than the expected values listed in column 5. The sample variance of β̂ over



49

500 iterations, given in column 4, also corresponds well with the expected variance

in every run given in column 5, although it becomes inflated as the error variances

grow. Moreover, the sample median of β̂ is consistently accurate even as the variance

of the measurement errors increases. Hence the derivations in the preceding sections

are strongly validated by these simulations.

The performance of the slope estimate under the line-segment model may be com-

pared to the performance of the method-of-moments slope estimate proposed re-

cently in [52], based on the structural heteroscedastic ME model with equation error

described in the introduction. An EM algorithm to compute maximum-likelihood

estimates for these model parameters was proposed in [40], and additional estima-

tion methods were presented in [6]. In [52], Patriota, et al., derive both method-of-

moments and maximum-likelihood estimates for the parameters and provide perfor-

mance comparisons with the earlier approaches. The focus here is on their method-

of-moments estimate, which is designated as MM-P, as a contrast to the estimate

under the line segment model, since that estimate is provided in closed form, and

the authors found its performance to be superior to that of alternate equation-error

models when the Gaussian error assumption is valid.

Using notational equivalents, the MM-P slope estimate is β̂ = Sxy/(Sxx − σ?n),

where Sxx =
∑n

i=1(xi− x)2/(n− 1), Sxy =
∑n

i=1(xi− x)(yi− y)/(n− 1), and (needed

below) Syy =
∑n

i=1(yi − y)2/(n − 1). The asymptotic variance corresponding to the

MM-P slope estimate is [2β2(σ?? − σ4
χ) + π]/σ4

χ, where π = β2σ2
χσ

? + ζ2σ2
χ + (στ)? +

ζ2σ? + σ2
χτ

? + 2β2σ4
χ. For the line-segment model, σ2

χ = δ2
Xσ

2
λ and the equation
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error ζ2 equals zero. Hence once may compute the expected large-sample variance

of β̂ under MM-P for the above simulation scenarios using the known moments of

the beta and uniform distributions, once a and b are specified. Moreover, using the

proposed estimates of these parameters, the MM-P estimate of Var(β̂) is

V̂ar(β̂) =
2S2

xy[σ
??
n − (Sxx − σ?n)2]

n(Sxx − σ?n)4
+
S2
xy + SxxSyy + (στ)?n − σ?nτ ?n

n(Sxx − σ?n)2
. (2.5.1)

When the first simulation is repeated using the MM-P estimates, with the same

choices for a and b, the median of the 500 point estimates of β is consistently close

to the true value of 2/3. The first two columns of Table 2.3 show the expected value

of Var(β̂) under the MM-P model for each pair (a, b), along with the corresponding

median of the 500 estimates of Var(β̂) computed using (2.5.1). As the magnitude of

the error variance grows, the difference between these two values grows, but remains

within reason. But note that when these values are compared with those in the last

two columns, which are the corresponding columns imported from Table 2.1, one

finds that the MM-P expected variance and estimated variance of β̂ are much smaller

than those obtained under the line segment model (MM-LS) when a and b are small

(first two rows), about the same when a and b are close to 0.5 (middle row), and

much larger when a and b are larger than 0.5 (last two rows). In other words, the

MM-P estimates are more precise when the error variances are quite small, but the

line segment model estimates have greater precision when the error variances become

appreciable. Hence there is evidence that the line segment model will provide a better

estimate of the slope when the measurement error variances are not small.

Of course, the estimates from Table 2.1 are based on the assumption that ηX and
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Table 2.3: Simulation variance estimates for several choices of a and b, based on 500 iterations, using

the MM-P model and the MM-LS model, with β = 2/3.

MM-P Model MM-LS

a b Var(β̂) median(V̂ar(β̂)) Var(β̂) median(V̂ar(β̂))

0.05 0.03 0.00002 0.00002 0.00087 0.00083

0.35 0.25 0.00150 0.00151 0.00204 0.00219

0.50 0.55 0.00569 0.00555 0.00550 0.00610

0.75 0.70 0.01248 0.01259 0.00982 0.01085

0.85 0.90 0.02043 0.02003 0.01618 0.01801

ηY are known. However, even in the second simulation scenario, in which (ηX , ηY )

must be estimated, the estimate of Var(β̂) under the line segment model still returns

a smaller value than the MM-P version once the error variances become appreciable,

as Table 2.4 shows. In this scenario it is observed that the variance estimate is indeed

smaller under the MM-P model when the σi and the τi are restricted to small values,

but when the σi are drawn from the interval (0.46, 0.92) and the τi are drawn from

(0.52, 1.04), the estimates of the variance of β̂ are approximately the same under

both methods. Then, when the σi are drawn from the interval (0.71, 1.42) and the τi

are drawn from (0.65, 1.30), the variance estimate under the line segment method is

significantly smaller, and when the σi are drawn from the interval (0.98, 1.96) while

the τi are drawn from (0.93, 1.86), the line segment model estimate of the variance

of β̂ is almost half of the corresponding estimate under the MM-P model. Hence the

line segment approach is recommended for slope estimation when the heteroscedas-
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tic measurement error variances are not small, as that method will yield narrower

confidence intervals for the slope.

Table 2.4: Simulation variance estimates for several choices of a and b, based on 500 iterations, using

the MM-P model and the line segment model, with β = −2/3.

MM-P Model MM-LS Model

a b Var(β̂) median(V̂ar(β̂)) Var(β̂) median(V̂ar(β̂))

0.05 0.04 0.00003 0.00003 0.00087 0.00085

0.30 0.33 0.00184 0.00179 0.00239 0.00257

0.46 0.52 0.00488 0.00472 0.00490 0.00528

0.71 0.65 0.01057 0.01102 0.00849 0.00968

0.98 0.93 0.02660 0.02685 0.01871 0.02178

It should be noted that in this simulation the data-generation mechanism was

specified according to the line-segment model, while the MM-P procedure is based on

the equation-error model. Thus our estimation procedure had a built-in advantage.

When the data-generation mechanism is unknown, one must take care in choosing a

model, as the results from disparate models can be quite different. The next section

demonstrates this issue.

2.6 Real data application

The World Health Organization (WHO) established the Multinational MONItoring

of trends and determinants of CArdiovascular disease (MONICA) during the 1980s

to study the association between known risk factors, like smoking and obesity, and
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trends in cardiovascular disease. The linear association between data on the average

annual change in the observed risk score (X) and the average annual change in event

rate (Y ), both given as percentages, was modeled in [40] and [52] using measurement

error models with equation error, with the sampling error in the trend estimates taken

as the heteroscedastic measurement error. Table 2.5 displays the estimated slope and

its estimated standard error for each gender computed under several different models.

The ordinary least squares (OLS) method disregards the measurement error. K-2000

and K-2002 represent maximum likelihood estimates provided in [40], while MM-

P and ML-P represent the method-of-moments and maximum-likelihood estimates

reported in [52], using measurement error models. Finally, the MM-LS estimates are

those obtained using the line segment model.

Table 2.5: Estimates of the slope and standard errors of the estimates for the WHO MONICA data

on males and females, based on seven models.

Males Females

Model β̂

√
V̂ar(β̂) β̂

√
V̂ar(β̂)

OLS 0.31 0.20 0.51 0.33

K-2000 0.43 0.22 0.57 0.33

K-2002 0.47 0.23 0.68 0.24

MM-P 0.35 0.22 0.58 0.38

ML-P 0.47 0.23 0.68 0.41

MM-LS 1.76 0.23 2.10 0.38

Figure 2.2 displays the data for males (N = 38) and for females (N = 36) sep-
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arately, with the magnitude of the measurement errors indicated by the crosshairs.

Lines having the estimated slopes under the line segment model and under the ML-P

and MM-P models are added to each plot in Figure 2.2. For the MM-LS results, the

lines are passed through the means (X,Y ) for each gender, while for the ML-P and

MM-P results the estimated intercepts provided in that paper are used. It is quite
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Figure 2.2: Scatterplot of change in event rate versus change in risk score, with standard errors,

from WHO MONICA project, and lines having estimated slopes under three models, for males and

females.

surprising that the estimated slopes under the line segment model are dramatically

steeper than those obtained under all the other models — more than three times

the size — while the standard errors of the slope estimates are about the same for

all six models. While this initially makes the MM-LS results appear to be in error,

inspection of the data scatter in each plot of Figure 2.2 reveals that these results are
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more consistent with the observable trend. This discrepency illustrates the effect of

using equation error in measurement error models when there is insufficient support

for this assumption, as discussed in the introduction. In contrast, the line segment

model omits the equation error component and produces a slope estimate which is

able to capture the observed trend more accurately. Indeed, the steeper slopes send

an even stronger message to the public about the urgency of maintaining cardiovas-

cular health. While it is difficult to ascertain which model is most appropriate for the

latent WHO MONICA data-generation mechanism, tools are available for assessing

model fitness.

The robustness of the MM-LS method may be demonstrated by deleting each of

several identified influential points one at a time and computing the slope estimate

on each subset of the data. The same is done for the MM-P model, and the results

are displayed in Table 2.6. Deletion of influential points alters the slope under the

line segment model by 5% to 14% for males and by −8% to 14% for females. But

under the MM-P model the slope is altered by −34% to 29% for males and by −24%

to 24% for females. This illustrates the robustness of the line segment model to

influential points and helps explain the disparity between the slope estimates from

the two models. Given that the precision of the slope estimates is equivalent between

the two models, the robustness property recommends the line segment model over

the others considered.
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Table 2.6: Estimates of the slope and standard errors of the estimates for the WHO MONICA

data on males and females, based on two models, when no points are deleted, and when individual

influential points are deleted.

Males

Model Full Data Point 1 Point 2 Point 3

MM-P 0.35(0.22) 0.45(0.24) 0.31(0.25) 0.23(0.25)

MM-LS 1.76(0.23) 1.85(0.25) 1.86(0.26) 2.01(0.27)

Females

Model Full Data Point 1 Point 2 Point 3 Point 4

MM-P 0.58(0.38) 0.72(0.35) 0.65(0.41) 0.63(0.35) 0.44(0.44)

MM-LS 2.10(0.38) 1.93(0.38) 2.22(0.41) 2.10(0.37) 2.39(0.50)

2.7 Illustration: Slope underestimation with the SLM

Consider again the WHO MONICA data discussed in Section 2.6. If one were to

disregard the measurement error, and näıvely apply the ordinary least squares (OLS)

method to estimate the parameters of the linear trend, the resulting best-fit line would

not correspond with the trend. Figure 2.3 again displays the data scatterplots for

males and for females separately, along with the best-fit lines derived under the OLS

method. Clearly, the slope of the plotted OLS best-fit line is significantly smaller than

the slope estimation under the line segment model, which more accurately captures

the trend observed in the scatterplots. This is not a defect in the OLS method, but a

result of applying a model for the data-generating mechanism that is not appropriate
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in this case. Moreover, any other model which relies in part on structural specifi-

cations comparable to those in the simple linear model, including the measurement

error models examined above, is susceptible to similar underestimation of the slope.
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Figure 2.3: Scatterplot of change in event rate versus change in risk score, from WHO MONICA

project, and best-fit lines based on the OLS method, for males and females.

To further illustrate this point, generate a random sample of 100 points scattered

uniformly between −2 and 2 about the line Y = 0 in a thick cloud. In this case, the

data are clearly not generated from the SLM. Then rotate the line and each point in

the data cloud 51.3◦ about the origin, so that the resulting data cloud should properly

be perceived to follow a linear trend whose slope is about 1.25, based on both the

underlying data generation mechanism and the geometry of the cloud. However, if

OLS is applied to estimate the trend, the OLS slope estimate is only 1.1, which is a

significant underestimate. As the angle of rotation is increased, the underestimation
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of the slope by OLS becomes more pronounced. Figure 2.4 displays the data cloud

along with its actual linear trend and the OLS best-fit line for six different progres-

sively steeper linear trends. Clearly, if a researcher attempted to estimate the linear

association between the two variables in any of the displayed scenarios using OLS,

the result would not guide the researcher to the truth about that association. While

subsequent diagnostic tools might pick up the lack-of-fit in the most extreme cases,

they may well miss it in more subtle cases. The structure of the data clouds must not

be ignored, and models which can properly estimate the linear trend in light of that

structure must be employed. In Figure 2.5, the slope of the data-generating trendline

as it makes a complete rotation through 2π radians is shown, along with the corre-

sponding estimated slope based on OLS regression on the generated data. The larger

the magnitude of the slope of the actual trend, the greater the underestimation when

OLS is misapplied. This illustrates a common outcome of misspecifying the SLM:

the slope estimate is pulled toward zero. In a scenario in which the data are indeed

generated from a SLM (with a reasonably small error variance) and the OLS slope

estimate is computed as the plane rotates, the plot of the slope estimate follows that

of the trendline slope very closely even when it becomes quite steep, as displayed in

Figure 2.6. This is how the plot of slope estimates for rotating centered data should

appear when the model is specified correctly—like the plot of the tangent function.

Of course, as the error variance increases this ideal result deteriorates.

This illustration suggests a test for misspecification of the SLM. Suppose one is

presented with bivariate data whose association might be represented by the SLM.
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Figure 2.4: Rotating data cloud, with the underlying linear trend and the estimated trend under

OLS regression.
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Figure 2.5: Progression of the slope of the trendline for the rotating centered data cloud, and the

corresponding estimated slope using OLS regression when the data are not generated from the SLM,

as the plane rotates about the origin.

Center the data about zero for both variables, select one variable as the covariate,

apply OLS regression, and obtain a slope estimate β̂ and an estimate σ̂2 for the error

variance. Then rotate the plane completely about the origin in small increments and

compute a new OLS slope estimate at each step. Plot the progression of OLS slope

estimates against the angle of rotation, as in Figures 2.5 and 2.6. Meanwhile, generate

a new data set from the SLM with normal error, using the same centered values of the

covariate, and the initial estimates β̂ for the slope and σ̂2 for the error variance. Then
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Figure 2.6: Progression of the value of the slope estimate using OLS regression as the plane rotates

about the origin when the centered data are generated from the SLM with a small error variance.

compute OLS slope estimates for the generated data as the plane is rotated about

the origin, and add the progression of these slope estimates to the previous plot. If

the original data were generated in a manner consistent with the SLM, the two plots

should be similar in amplitude, phase and shape. Of course, variability is expected

in the generated data, especially when σ̂2 is large. Thus N data sets are generated in

the same way, and the rotating OLS slope estimation procedure is repeated on each
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set. At each increment of the rotation there will be a distribution of N OLS slope

estimates. Select an upper and lower quantile for this distribution at each angle and

thereby obtain a pointwise confidence band for the path of the slope estimate if the

original data may indeed be regarded as having been generated from the SLM. If the

path of OLS slope estimates for the actual rotating centered data does not lie entirely

within this band, it may be concluded at the corresponding significance level that the

SLM is not the correct model for these data.

For instance, consider again the WHO MONICA data for the males. When the

procedure described above is implemented, the results shown in Figure 2.7 are ob-

tained. The progression of OLS slope estimates as the centered real data rotate about

the origin is represented by the solid line. After N = 10, 000 data sets are generated

under the SLM, using the OLS slope estimate for the unrotated real data, and a ro-

bust estimate of the error variance based on the middle 50% of the ordered residuals,

a distribution of slope estimates at each angle of rotation becomes available. The pair

of dashed lines shown in Figure 2.7 represents the middle 50% of OLS slope estimates

for the rotating generated data, and the pair of dotted lines represents the middle

90%. Clearly, the path for the real data does not fall within either band, since its

amplitude and phase are quite different, so that there is strong evidence that the SLM

would be a misspecification for these data. After the same experiment is performed

with the centered WHO MONICA data for females, the progression of OLS slope

estimates is also found to lie outside the confidence bands, as shown in Figure 2.8.

Hence it is also inappropriate to specify the SLM for the female data. It is therefore
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Figure 2.7: Progression of the value of the slope estimate using OLS regression on the centered

WHO MONICA data for males as the plane rotates about the origin, along with 50% (dashed) and

90% (dotted) pointwise confidence bands for a specified SLM based on 10,000 generated data sets.

justified to suspect the suitability of any measurement error model which involves

an equation error component for these data, as such models produce slope estimates

very close to those obtained using OLS (as in [40] and [52]).

Meanwhile, suppose orthogonal least squares is used to estimate the slopes for

each data set, based on the model which regards the observations as perpendicular

deviations from the trendline. In this model, Yi = βXi + νi for i = 1, . . . , n, with
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Figure 2.8: Progression of the value of the slope estimate using OLS regression on the centered

WHO MONICA data for females as the plane rotates about the origin, along with 50% (dashed)

and 90% (dotted) pointwise confidence bands for a specified SLM based on 10,000 generated data

sets.

independent errors νi = εi
√
β2 + 1 with εi ∼ N (0, σ2). The progression of these slope

estimates as the centered real data for males and for females rotate about the origin

is represented by the solid line in each plot of Figure 2.9. Now generate N = 1000

data sets under this model, using the orthogonal least squares slope estimate for the

unrotated real centered data, and an estimate of the error variance based on the
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entire collection of residuals. The pairs of dashed lines represent the middle 50%

and 90% of slope estimates for the rotating generated data. But since there is little

variability over 1000 iterations, both of these confidence bands are very narrow. In

this scenario the path for the real data comes very close to falling within the bands,

despite the narrowness of the bands. Moreover, the paths of the estimates have

the tangent function appearance that is expected when the model is specified well.

Thus there is evidence that this model would be a more legitimate specification for
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Figure 2.9: Progression of the value of the slope estimate using orthogonal least-squares regression on

the centered WHO MONICA data for males (left) and for females (right) as the plane rotates about

the origin, along with 50% (dashed) and 90% (dotted) pointwise confidence bands for a specified

perpendicular-deviation model based on 1000 generated data sets.

these data. Hence when the measurement error for the observations on each variable

is considered, it would be wise to implement a model which aims to minimize the

sum of perpendicular distances between the observations and the trendline. The line
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segment model proposed here approaches that general framework, and thus provides

a slope estimate which is more consistent with the geometry of the data cloud.

2.8 Discussion

Many scientific investigations involve assessing the association between two variables

when measurements recorded on both variables are subject to random error. When

the variance of this error differs from one subject to another, a heteroscedastic mea-

surement error model is appropriate. Conventional ME models incorporate an equa-

tion error component, which involves making potentially insupportable assumptions

about the unknown data-generation mechanism. Misspecification of the chosen model

can lead to significant underestimation of the slope, regardless of the estimation pro-

cedure used.

In this paper we have provided an alternate heteroscedastic ME model based on

a line-segment parameterization. This model does not incorporate equation error

and is symmetric in both variables. For any setting in which this model corresponds

well with the underlying data-generation mechanism, we have provided an accurate

estimate of the linear association between the two variables, signified by the slope of

the line segment, along with a reliable estimate of its precision. We have demonstrated

through simulations that, under conditions when the line-segment model is properly

specified, the corresponding variance estimate will yield smaller confidence intervals

than will equation-error models when the error variances are not small. This novel

estimation procedure enables an investigator to make precise inferences about the
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slope when heteroscedastic ME models are applied to scientific data, and thereby draw

conclusions that will generally be more trustworthy than those derived using other

ME models. Moreover, because the line-segment parameterization is robust against

influential points which may plague equation-error models when their implementation

is misspecified, the advantages of our model are further reinforced.
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Chapter 3

Detecting physiological synchrony

during dyadic interactions

The synchronization of oscillatory systems – or coupled oscillations – is widely stud-

ied in the biological and physical sciences (e.g., in [47], [53], and [65]), and also has

applications in the social sciences, economics, and medicine (e.g., in [55]). The syn-

chrony of these oscillations can provide information about the system not available

from separate univariate analyses. Consider, for example, the investigation of several

electroencephalographic (EEG) signals measured simultaneously from an individual’s

scalp during a particular task. Each signal could be analyzed separately, and those

with the most activity would indicate an area of relative activation. However, various

signals can show simultaneous activation, revealing communication between different

areas of the brain during the task ([14], [20], and Chapter 1 of this dissertation).

Furthermore, different types of such coherence – or synchrony – may be evident for
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different mental processes, as is the case with epileptic seizures ([55]). Thus, the

study of synchrony and oscillatory systems can provide a valuable means of study-

ing psychophysiological processes, as well as possible changes in those processes as a

function of different stimuli and conditions.

In the current study the application of two recently developed methodologies for

examining the relations between two time series is proposed. The first technique is

the Empirical Mode Decomposition (EMD), an algorithm to filter continuous time

series data. The second method is the structural heteroscedastic measurement-error

(SHME) model, which is adapted here for detecting a linear association between

two discrete time series. These techniques are applied to physiological data from

individuals in couples that participated in a laboratory-based social interaction task.

The chapter is organized as follows. First, some of the common synchronization

measures and their rationale are briefly reviewed in the context of emotional processes

in dyadic interactions. Second, the EMD and SHME methods are described, with

details for each of the required steps. Third, an application of the proposed methods is

provided for illustration. The chapter is ended with a brief discussion of the potential

of these models in psychophysiological research.

3.1 Synchronization measures

Synchronization measures have become an important tool for exploring the associa-

tions between time series. Multiple methods now exist to identify and characterize

synchronization, including indices of linear interdependence, such as cross-correlation,
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coherence, and event-related coherence, and more recent measures of nonlinear inter-

dependence, such as mutual information ([37]). In econometric research, for example,

one of the most common methods to assess synchronization between two time series

is co-integration ([25], [15]). In psychological research, perhaps the most standard

method consists of cross-correlations (e.g., in [24], [46]). This method can be useful

to examine concurrent and lagged relations between two time series, either the entire

series or through windows of interest (e.g., [3]).

3.1.1 Synchronization of emotion in dyadic interactions

The theoretical rationale for this analyses comes from human and animal research

suggesting that psychophysiological linkages between two conspecifics are an inherent

element of social bonding and attachment ([7], [8], [16], [23], [26], [31], [32], [58]).

The study of dyadic interactions indicates that emotional exchanges between the two

members of a couple can be highly interdependent ([63], [10], [17], [18], [61]). This

research shows, for example, that the adoption of one individual’s emotion state by

another promotes relationship longevity ([29]), that the length of the relationship

between romantic and non-romantic partners corresponds to the level of emotional

coherence that the pair maintains ([1]), and that the facial expression and emotional

tone exhibited by romantic partners is a strong predictor of relationship dissolution

([44]).

Research in dyadic interactions using psychophysiological signals is scarcer. In a

classic study of couples, Levenson and Gottman [43] found that, during a conver-
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sation of disagreement, distressed couples showed significantly higher levels of syn-

chrony between the partners’ autonomic response signals than non-distressed couples.

Moreover, this synchrony was predictive of current marital satisfaction in the same

couples. This study notwithstanding, the relative absence of research on psychophys-

iological synchrony in couples is conspicuous, largely because most theories of human

attachment and emotion regulation suggest that the emotional experiences of one

member of a couple are highly related- if not dependent upon- the experiences of his

or her partner (cf. [58]). The view taken here is that a large part of the problem is

methodological; theoretical developments in this area greatly outpace methodological

innovations. In order to fully understand dyadic emotion regulation and psychophysi-

ological synchrony in couples, the field needs accessible methods that can capture and

adequately represent the complexity in interdependent emotional regulatory systems

([9]).

3.1.2 Synchrony between continuous measures: Signal extraction using

Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) was developed by Huang, et al. [34],

to filter continuous data into any number of intrinsic mode functions (IMFs). Each

IMF represents a particular frequency of the original data, and the most powerful

frequencies are separated out of the original time series until a desired number of

IMFs has been achieved (or until no powerful frequency can be detected within the

residual series). These IMFs must satisfy two conditions. First, in each IMF, the
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total number of extrema and the total number of zero crossings may differ at most

by one. Second, at every point in the IMF, the mean value of the envelopes defined

by the local maxima and the local minima must equal zero. These conditions are

necessary for the purpose of defining the concept of instantaneous frequency in a

meaningful way. The IMFs are extracted from a time series one-by-one beginning

with the highest intrinsic frequency using an iterative process called sifting. The goal

of this process is the empirical identification of intrinsic oscillatory modes in the data

based on their characteristic time scales. The time lapse between successive extrema

define this time scale.

In the sifting process, the local maxima of the original time series are identified

and connected by a cubic spline line to form an upper envelope. A lower envelope

is similarly formed. Adjustments at the signal boundaries must be implemented

to eliminate boundary effects in forming the cubic spline. Then the mean of the

two envelopes is computed and subtracted from the original time series to form a

new series. If this new series satisfies the two IMF conditions, it is taken as the

first IMF. Otherwise, the process is repeated on the new series, and so on, until

the IMF conditions are satisfied. Once the first IMF is identified, it is subtracted

from the original data, and the residual becomes the starting point for finding the

next IMF. The procedure stops when the residual signal fails to yield any suitable

IMF candidates, or the maximum number of desired IMFs is achieved. Kim and Oh

[35] have developed an R package called EMD that implements this procedure very

efficiently.
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The input to the EMD is any continuous time series, without any consideration of

stationarity. The output from the EMD consists of a residual signal and a set of n

IMFs in decreasing-frequency order. The first few IMFs cumulatively carry any high-

frequency noise in the original time series, while the latter k IMFs together carry the

actual signal of interest. Summing the residual and the last k IMFs together, thus

produces the denoised time series. An important goal here is determining the value

of k. The Fast-Fourier Transform may be used to detect the most powerful frequen-

cies within each IMF, and only those IMFs whose dominant frequencies are below a

desired threshhold are selected. However, it is informative to compare the plot of the

extracted denoised signal with that of the original signal in every case to determine

whether more or fewer IMFs should be included. The synchrony between the result-

ing signals can be assessed using cross-correlations. These steps are illustrated with

empirical data in subsequent sections.

3.1.3 Synchrony between discrete measures: Slope estimation using a

Structural Heteroscedastic Measurement-Error Model

The SHME model may be adapted to detect a linear association between discrete time

series. This approach is particularly suited for capturing the relationship between two

time series when the variability within each time series is not constant. The first step

in the application of the SHME model consists of filtering the raw signal. For example,

if the observed time series consists of EKG data (as in the empirical application in

this study), the raw signal is transformed into a heart rate in the form of, say, beats
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per minute. This can be accomplished in various ways, as is illustrated in subsequent

sections. A line-segment version of this model is presented in Chapter 2, where it is

shown that the precision of the parameter estimates under the line segment model

was superior to that of the equation error model of Patriota, et al. [52], when the

variance of the measurement error was not small. However, in this application the

latter model is used, since it has been discerned that the measurement error—in the

form of the computed sampling error—is rather small.

Once the data are filtered, each of two time series are partitioned into n segments

of some specified width, where n depends on the duration of the task. The choice of

the segment width is a function of both detailed information and precision. Denote

these segments I1, . . . , In. Consider, for example, a selected time of five seconds

for the segments. Each segment Ii will consist of mi distinct heart rate values xj,i,

j = 1, . . . ,mi, for one of the series (e.g., one person’s signal), each of which lasts for

kj milliseconds, and pi distinct heart rate values yj,i, j = 1, . . . , pi for the other series

(e.g., the other person’s signal), each of which lasts for lj milliseconds. Thus, for each

segment Ii, the weighted mean heart rates are computed as

ui =
1

5000

mi∑
j=1

kjxj,i and vi =
1

5000

pi∑
j=1

ljyj,i

for each series, respectively. Similarly, the weighted variances of the mean heart rate

for each segment are approximated as

σ2
i ≈ s2

i

mi∑
j=1

(
kj

5000

)2

and τ 2
i ≈ t2i

pi∑
j=1

(
lj

5000

)2

,

where s2
i and t2i are the sample variances for each time series over Ii, respectively.
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Since these 2n variances are potentially different across the two series (e.g., as in two

individuals in a couple), any method for estimating the linear association between

u = (u1, . . . , un) and v = (v1, . . . , vn) must account for heteroscedastic measurement

error on each variable.

As described in the second chapter, the SHME model with equation error assumes

that

ui = χi + εi , vi = µi + νi and µi = α + βχi + γi ,

where the independent measurement errors are εi ∼ N (0, σ2
i ) and νi ∼ N (0, τ 2

i ),

and the equation error is γi ∼ N (0, σ2). Moreover, all error terms are mutually

independent.

Under a structural model, both χi and µi are assumed to be random with unspeci-

fied but finite first and second moments. Note that the symmetry of this model would

allow one to switch µi and χi in the latter model equation above, so that there is no

implication of directionality. Techniques for estimating the slope β in this setting

are available in the literature (e.g., in [6], [40], [52], and in Chapter 2 here). When

the measurement error variance is small, as in the application here, the method-of-

moments estimate of Patriota, et al. ([52]), provides an efficient estimate of the slope

that is simple to compute. This approach will be used to estimate β and test whether

it is significantly nonzero in the empirical application.

To this end, let

Suu =
n∑
i=1

(ui − u)2

n− 1
, Suv =

n∑
i=1

(ui − u)(vi − v)

n− 1
, Svv =

n∑
i=1

(vi − v)2

n− 1
,
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σ?n =
n∑
i=1

σ2
i

n
, τ ?n =

n∑
i=1

τ 2
i

n
, σ??n =

n∑
i=1

σ4
i

n
, and (στ)?n =

n∑
i=1

σ2
i τ

2
i

n
.

Moreover, let σ2
χ = Var(χ), σ? = limn→∞ σ

?
n, σ?? = limn→∞ σ

??
n , τ ? = limn→∞ τ

?
n, and

(στ)? = limn→∞(στ)?n. Then, having established that the distribution of
√
n(β̂ − β)

converges to N (0, ω), the slope estimate β and its asymptotic variance ω under this

model are

β̂ =
Suv

(Suu − σ?n)
and ω =

2β2(σ?? − σ4
χ) + π

σ4
χ

,

where

π = β2σ2
χσ

? + σ2σ2
χ + (στ)? + σ2σ? + σ2

χτ
? + 2β2σ4

χ .

Thus Var(β̂) ≈ ω/n for n large. Substituting the parameter estimates given in Patri-

ota, et al. [52], and simplifying, the estimated variance of β̂ is

V̂ar(β̂) =
2S2

uv[σ
??
n − (Suu − σ?n)2]

n(Suu − σ?n)4
+
S2
uv + SuuSvv + (στ)?n − σ?nτ ?n

n(Suu − σ?n)2
.

Then reject the hypothesis H0 : β = 0 when the ratio β̂/

√
V̂ar(β̂) deviates signifi-

cantly from zero with respect to the standard normal. This procedure is illustrated

with empirical data in subsequent sections.

3.2 Empirical illustration

3.2.1 Procedures

The data in this study are from four couples who completed psychophysiological

measurements as part of a study of dyadic interactions (see [18]). All four couples

were heterosexual with ages across all participants ranging from 26 to 32 years. The
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first three couples defined their relationship as “exclusively dating” and the fourth

coupled as “married.”

3.2.2 Measures

Physiological measures were collected through the MP150 physiological data collec-

tion system (BIOPAC systems) and AcqKnowledge. Stimuli were administered in a

computer monitor using E-prime (Psychology Software Tools, Inc.). Three autonomic

response variables were recorded from each individual within the dyad simultaneously

throughout the experiment. Respiration was recorded using an elastic belt that was

attached to each of the participants. The belt was placed on each subject’s chest

at the point of highest extension during inhalation and exhalation. The center of

the belt contained a device that recorded the level of stretch within the belt at any

moment, with greater stretch indicating inhalation and lower stretch indicating ex-

halation. Level of stretch within the belt was measured continuously at a rate of

1000hz.

Thoracic impedance was measured using four spot electrodes placed at the well of

the neck, back of the neck, center of the chest, and center of the back. This configu-

ration is known formally as the Qu, et al., configuration ([54]). Each spot electrode

came prepared with Ag/AgCl paste, and had an adhesive collar to ensure both good

conductivity as well as stationarity of the electrode during the experiment. Level of

impedance was measured continuously at a rate of 1000hz. An electrocardiogram was

recorded using a lead II configuration, with spot electrodes on the left and right torso
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(bipolar leads), as well as the right collarbone (unipolar lead). All spot electrodes

came prepared with Ag/AgCl paste, and had an adhesive collar (for the same reasons

as the impedance measures). The electrocardiogram was measured continuously at a

rate of 1000hz. All signals were recorded via the BIOPAC 150 and sent online to an

external computer for storage using Acqknowledge. Though Acqknowledge contains

a suite of processing techniques available at the researcher’s disposal, all of the raw

signals were exported to text files and processed in the software package R [56] for

analysis.

Participants visited a laboratory for the physiological assessment in couples. They

were instructed about the experiment and completed three tasks. During the first

task (Baseline) participants were seated in comfortable armchairs and instructed to

relax and refrain from making bodily movements or gestures for a period of five

minutes. Blindfolds were placed over the participants’ eyes and the overhead lights

were turned off in order to induce an environment of relaxation. The purpose of this

first task was to gain a baseline signal for each individual. During the second task

(Gazing), participants were asked to gaze into one another’s eyes without talking

or touching each other for three minutes. The purpose of this task was to elicit a

stressful interaction between the participants. During the third task (In-sync), they

were instructed to try to become in-sync with each other for three minutes. The

term in-sync was described to the participants as being analogous to becoming one

individual, and therefore their goal would be to match their partner’s physiological

signal. After the completion of the three tasks, the participants were debriefed and
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paid for their participation.

3.2.3 Application of EMD to respiration and impedance

The EMD was applied to two continuous signals — the respiration and the tho-

racic impedance — which were obscured by high-frequency components taken as

background noise. The respiration signal is a measurement of the expansion and

contraction of the rib cage as the subject breathes, and thus oscillates about a fairly

constant value at a varying frequency. The impedance measures the cyclical changes

in cardiopulmonary output and, thus is correlated with heartbeat and respiration.

Figure 3.1 displays the raw impedance signal for one individual (i.e., male) in Cou-

ple 3 during the first minute of the gazing task. As depicted in the figure, this time

series is very noisy.

The EMD of this impedance series produces 10 IMFs (displayed in Figure 3.2).

Only the last two IMFs are selected, and added to the residual, to obtain the

smoother signal shown in Figure 3.3.

Preceding IMFs could be added to obtain more detail, but at the cost of gaining

noise. Figure 3.4 displays the resulting denoised impedance signals for both members

of each couple during the first minute of the baseline task.

After removing the noise from each individual’s time series across the three tasks,

occasions of synchrony were detected between the denoised signals for the two individ-

uals in each of the couples. For this, each pair of extracted signals was examined using

a sliding window of a fixed six-second width, which moved in two-second increments
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Figure 3.1: Male’s impedance signal during gazing task, for Couple 3.
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Figure 3.2: IMFs produced by EMD of male’s impedance signal during gazing task.
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Figure 3.3: Denoised form of male’s impedance signal during gazing task.
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Figure 3.4: Denoised impedance for the male (dark) and the female (light) during the baseline task

for each couple.
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from the beginning to the end of each three- to five-minute task. This choice of the

window width and the increment size is arbitrary; other choices result in equivalent

outputs but with different details.

At each point, the cross-correlation was then computed between the signals over

a range of lags, and the maximum computed value was selected as a measure of

synchrony during that moment. The default lag range in R was used, which is

±b10 log10(3000)c = ±34. This measure is referred to as the Instantaneous Cou-

pling (IC) strength, as in the first chapter. Figure 3.5 displays the IC series for the

third couple during the baseline task with respect to their respiration (solid line)

and their impedance (dashed line). Note that the two series are highly correlated,

as one would expect. Moreover, there appear to be many occasions during this task

when the couple’s physiological responses appears to be highly synchronized in both

variables.

For each of the three tasks in the experiment, the proportion π̂ of IC values that

exceeded a given threshhold was then computed. Threshholds of 0.6 for the respiration

and 0.5 for the impedance were chosen, as these values provided a reasonable baseline

proportion (i.e., not too small). Finally, the proportions above the threshhold for

the second and third tasks were compared with that from the baseline, and a routine

hypothesis test was conducted to determine whether any subsequent proportion was

significantly higher than the baseline proportion. If so, it was considered as evidence

of synchronization between the individuals’ physiological signals. Table 3.1 displays

the results of these analyses for respiration and impedance for each of the four couples.
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Figure 3.5: IC strength for Couple 3 during baseline task, with respect to respiration (solid line)

and impedance (dashed line).
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Table 3.1: Significant increase in relative frequency of strong Instantaneous Coupling across tasks

Couple Task Respiration π̂ P -value Impedance π̂ P -value

1 baseline 0.149 — 0.020 —

gazing 0.239 0.048 * 0.102 0.008 **

in-sync 0.886 0.000 *** 0.011 0.709

2 baseline 0.068 — 0.007 —

gazing 0.125 0.080 0.045 0.048 *

in-sync 0.659 0.000 *** 0.364 0.000 ***

3 baseline 0.236 — 0.122 —

gazing 0.125 0.988 0.045 0.986

in-sync 0.818 0.000 *** 0.375 0.000 ***

4 baseline 0.216 — 0.027 —

gazing 0.114 0.984 0.148 0.001 ***

in-sync 0.841 0.000 *** 0.000 0.979

0.05 < ∗ < 0.01 < ∗∗ < 0.001 < ∗∗∗
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For respiration, the results indicate a significant increase in synchrony from base-

line between the partners’ signals during the in-sync task, for all four couples. During

the gazing task, such increase in synchrony was only evident for the first couple. With

regard to impedance, the significant increase in synchrony between the partners was

perceptible during the gazing task for three of the couples, and such amplification

was also true for two couples during the in-sync task.

3.2.4 Application of SHME to heart rate

In the first step, the raw EKG signal during each task was transformed into a heart

rate. For this, the duration of each R-R (peak-to-peak) interval (in milliseconds)

was determined, and its reciprocal was used to compute the heart rate (in beats per

millisecond). Then the obtained values were multiplied by 60,000 to convert them

to beats per minute. Because the first recorded ventricular contraction usually does

not occur in the EKG signal until after a few milliseconds, the beginning of the time

series was padded with the first computed heart rate value. Similarly, because the

last recorded ventricular contraction usually occurs a few milliseconds prior to the

end of the EKG signal, the end of the heart rate time series was padded with the last

computed value.

Figure 3.6 displays the resulting heart rate signals during the first 100 seconds of

the baseline task for both individuals in the four couples. Note that each heart rate

oscillates over a large range of values except for that of the male in the second couple,

who has an almost constant heartbeat. In every case, the female’s heart tends to
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Table 3.2: Slope estimates for association between heart rates using the SHME model across tasks

Couple Task β̂

√
V̂ar(β̂) P -value

1 baseline 0.002 0.274 0.993

gazing 1.071 0.212 0.000 ***

in-sync 1.344 0.626 0.032 *

2 baseline 0.358 0.703 0.610

gazing 0.504 0.436 0.248

in-sync 0.579 0.473 0.221

3 baseline −0.089 0.079 0.254

gazing 0.171 0.099 0.083

in-sync 0.369 0.149 0.013 **

4 baseline −0.142 0.185 0.445

gazing −0.227 0.961 0.813

in-sync 0.497 0.239 0.037 *

0.05 < ∗ < 0.01 < ∗∗ < 0.001 < ∗∗∗

beat faster. The objective here is to examine whether there is a significant linear

association between the two heart rates within any of the tasks.

For each of the tasks, the heart rate time series for both the male and female

were partitioned into n segments of five seconds following the procedure described in

previous sections. Then the SHME model was applied to the EKG data generated

separately for each of the four couples. The results from these analyses are presented

in Table 3.2.

The results from these analyses indicate that, during the gazing task, two of the
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Figure 3.6: Heart rate for the male (dark) and the female (light) during the baseline task for each

couple.
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four couples showed a significant linear association between their heart rates. During

the in-sync task, such synchrony between the partners’ heart rates was evident for

three couples. In contrast, and as expected, no synchrony was perceptible during the

baseline task for any couple.

3.2.5 Cross-equivalence analysis

To confirm that the discovery of synchrony in heart rate, respiration, and thoracic

impedance within each of the four couples using these methods was not artificial,

the same methods were applied to two mismatched couples. For this, the male from

Couple 1 was paired with the female from Couple 2 as one dyad, and the male from

Couple 2 was paired with the female from Couple 3 as a separate dyad. Then the

same procedures were implemented to detect synchrony in heart rate, respiration, or

thoracic impedance during the three tasks. Table 3.3 reports the results from these

cross-equivalence analyses. These results indicate no synchrony across couples and

tasks (i.e., all P -values exceeding 0.1).

3.3 Discussion

3.3.1 Summary of results

In this chapter two techniques for assessing synchrony between psychophysiological

time series are presented. For respiration and thoracic impedance, which are contin-

uously oscillating signals, the EMD was used to filter the data and extract smooth

versions of the time series. A moving window was applied to measure the maximum
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Table 3.3: Measures of synchrony between heart rates, respiration and thoracic impedance for

mismatched couples across tasks

Mismatched Couple Task β̂

√
V̂ar(β̂) P -value

1 baseline -11.525 12.356 0.823

gazing 0.250 0.206 0.117

in-sync -54.825 482.732 0.545

2 baseline 0.000 0.001 0.500

gazing 0.023 0.022 0.151

in-sync 0.000 0.021 0.500

Mismatched Couple Task Respiration π̂ P -value Impedance π̂ P -value

1 baseline 0.095 — 0.041 —

gazing 0.091 0.538 0.011 0.930

in-sync 0.148 0.118 0.080 0.119

2 baseline 0.230 — 0.108 —

gazing 0.091 0.999 0.045 0.968

in-sync 0.216 0.598 0.114 0.448
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cross-correlation between the signals of the two individuals in the couple within the

window over a lag range, and to determine when this coupling exceeded a chosen

threshold. The relative frequency of high coupling values during the baseline was

then compared with those during the gazing and in-sync tasks. Synchronization in

respiration or impedance was inferred when the proportion of coupling occurrences

increased significantly from the baseline to the experimental tasks.

For heart rate, which is discrete in nature, the SHME model with equation error

was applied to identify synchrony between the partners’ signals. Using this approach,

the slope representing the linear association between the heart rates of the two in-

dividuals in the couple during each of the three tasks was estimated. This slope

was taken as an indicator of synchronization between the two individuals’ heart rate.

Importantly, a cross-validation analyses provided no evidence for synchrony when

different members of a couple were randomly paired, thus providing evidence for the

discriminative validity of the synchrony detection approaches.

Synchronization of the physiological signals was regarded as a reflection of emo-

tional coherence between the two individuals in the couple. For example, during

the in-sync task, participants might have concentrated on matching each other’s

breathing—as a way to mirror their partners’ physiological state—thus resulting in

an increase in synchrony for respiration. This effect might have carried over to the

impedance. Similarly, matching each other’s breathing could have resulted in an in-

crease of the coupling between their heart rates. Accordingly, the methods used in

these analyses appear to be useful to study emotional coregulation in dyadic inter-
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actions (c.f. [58]). An explanation for the detection of synchrony during the gazing

task for some of the couples, however, is elusive. It is plausible that these partners

have developed a subconscious habit of synchronization, so that they matched their

breathing rates without any prompting to do so.

3.3.2 Methodological considerations and future directions

The two approaches for assessing synchrony described in this chapter present a num-

ber of benefits. For example, the EMD algorithm, as a tool to parse out noise from

continuous data, has two important advantages over other standard methods. First,

it does not rely on assumptions of stationarity, assumptions required by methods

such as the Fourier transform. Second, in the decomposition of the original series

via EMD, there is no leakage of energy, which is common in techniques such as the

Wavelet transform. Moreover, in many situations, heart rate data are analyzed using

methods for continuous signals. The heart rate signal, however, constitutes a step

function, since it is constant on intervals between contractions. Hence, analyzing this

signal as a continuous measure is not appropriate. A smoothing method could be

used to transform the step function into a continuous signal, but making inferences

using an imputed signal is hard to justify statistically.

A fundamental hope for the proposed statistical methods is that they can be used

profitably to better understand dyadic emotion regulation and human coregulation.

When two individuals interact, we assume that emotional synchronization is a con-

tinuous process that is best studied in a manner that is as close to the raw data
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as possible. The EMD and SHME approaches allow for this type of data analy-

sis. One obvious extension of these analyses is the use of covariates to assess the

extent to which psychophysiological synchronization is related to couple-level or in-

dividual difference variables of interest. For example, when studying intact couples,

the approaches described here can be examined as a function of marital satisfaction

or attachment styles, with the degree of synchronization evidenced across a study

paradigm serving as a both an outcome variable (e.g., do more highly satisfied cou-

pled evidence greater heart rate synchronization?) as well as a predictor of future

relationship outcomes. Also, this study investigated associations between two time

series. An important extension of this work would involve the use of multivariate

time series. For example, a pertinent question here is how to identify synchronization

among multiple physiological signals. In particular, emotion researchers would be in-

terested in examining under which conditions, and to what extent, such multivariate

coherence is most likely to emerge. These applications, of course, would require the

inclusion of more couples in the sample.
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Chapter 4

Optimal and robust design for

efficient system-wide

synchronization in networks of

randomly-wired neuron-nodes

4.1 Introduction

This study was motivated in part by a study of network coherence of emotion variables

[33] and a book on brain rhythms [4]. In the emotion study, tight connections with

strong wiring potentials are found in several subgroups among a collection of emotion

variables. In contrast, sparse connections and weak wiring are observed between sub-

groups. This result immediately leads to the following question: Does this empirical
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network structure efficiently lead to system-wide synchronization as a phenomenon

of emotion arousal? In addition, the system-wide synchronization of neuron-firing is

believed to be closely related to memory reactivation in the animal brain when it is

sleeping. However, many memories must be relocated from one part of the hippocam-

pus to the other parts of the brain, and different memories are believed to be stored

in different locations within the hippocampus. Thus a system of neurons responsi-

ble for one memory needs to be activated as one whole in a very efficient manner.

Contemplating representations of the signal transmission in network models of these

phenomena has led to the innovative approach presented here.

An artificial neural network (ANN) is an interconnected group of artificial neurons

that uses a mathematical or computational model for information processing based

on a connectionistic approach to computation. The study of ANNs is motivated by

their comparability to biological neural networks. They are investigated in order to

increase understanding about their biological counterparts, and to use the functional

power of biological neural networks to guide the development of modern technology.

In particular, technicians seek to adapt the brain’s capacity for self-organization,

learning, generalization and fault-tolerance. Introductions to ANNs and their appli-

cations may be found in [27], [30], [39], [42] and [60]. The use of ANNs to study the

dynamics of neurological networks in the brain of a behaving animal is ubiquitous

throughout the neuroscience literature, as in [21].

In this chapter, a simple ANN consisting of a fixed number of neuron-like hy-

pothetical nodes (or “neurodes”) is considered. A novel approach is proposed for
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modeling signal transmission among these nodes as follows: a node becomes acti-

vated at a point in time when it receives a signal from any of its nearest neighbors, in

a manner similar to the accumulation of action potential in a neuron. And, similar

to the discharge of that accumulated action potential, every activated node transmits

its signal to all its immediate neighbors at the next time point after activation and

instantly becomes deactivated, until reactivated by a neighboring node. In this sim-

ulation of signal transmission in biological neural networks, nodes change activation

states within a discrete time resolution.

One particular phase of interest pertaining to the network under consideration

is called system-wide synchronization (SWS), which is specifically defined as that

state in which all nodes simultaneously activate all their nearest neighbors and are

activated by all their nearest neighbors. This SWS phase is employed to represent

the synchronization mentioned in the above two motivating examples. In regard to

this phase, the kind of wiring configuration on a deterministic network that produces

an efficient SWS phase is studied. Then random networks are considered. Here the

wiring between any two nodes is regarded to be governed by an independent Bernoulli

random variable. This consideration reflects the fact that two emotion variables or

two neurons may not be invariantly wired together at all times when responding to all

stimuli. Furthermore, this randomness is a valid approach because the true dynamics

underlying this wiring are still not yet understood, especially in neuroscience.

It is also known that not all neurons are wired together equally-well at all times, nor

are the emotion variables. Thus it is important to consider the efficiency of achieving



98

SWS upon a class of random networks subject to a budget of total probabilities for all

potential wirings. Furthermore, sometimes a neuron or emotion variable in a network

may malfunction. Ideally, the remaining nodes in the network should still perform

and achieve the SWS phase. This leads to the necessity of robustness with respect

to a malfunctioning node in the network. Hence the following two optimal design

problems are studied:

Q1: How can one allocate wiring probabilities subject to a budget constraint in order

to maximize the probability of achieving SWS?

Q2: What impact would a robustness criterion have on this wiring structure?

To resolve the above two problems, the Simulated Annealing (SA) algorithm is

employed as an optimization technique. No analytic solution is envisioned, but nu-

merical ones are obtained, since the number of potential wirings grows as the square

of the number of nodes in the network. For example, 15 nodes will give rise to 105

potential wirings in the network. Here the computations needed for optimizing a

105-dimensional function are overwhelming. However, results obtained in this chap-

ter as the study pass from deterministic networks to random networks, and then to

random networks with a robustness criterion, allow a reduction of the computational

complexity to a rather manageable level. The energy functions employed in the SA

algorithm are developed accordingly.

This chapter is organized as follows. First a mode of signal transmission in a

connected deterministic network, in which the nodes change activation states as de-

scribed above, is described. Then it is shown that one of two distinct phases will
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occur: system-wide synchronization (SWS), or subgroup alternation (SGA). Next,

both geometric and algebraic criteria are obtained by which one may determine which

phase a network will generate. After this, random networks under a constraint on

the sum of the edge-probabilities are considered, and search is conducted for an opti-

mal allocation of the edge-probabilities such that SWS networks will occur with high

probability, using the simulated annealing algorithm. Then a further goal is imposed:

to find an optimal allocation that will frequently generate SWS networks that are

also robust against loss of a node. The outcome of this search is presented. The

concluding section consists of remarks on potential applications of these findings.

4.2 Deterministic networks and signal transmission

Consider a network N consisting of n nodes, arbitrarily labeled 1, 2, . . . , n, and let

the set of nodes be denoted {N}. An edge (or wiring) between nodes i and j may be

denoted ei,j, and the set of all edges in network N is thus denoted E {N}. Note that

the cardinality of E {N} is at most n(n− 1)/2. In a neural network, nodes represent

neurons and edges represent the connections between them. Regard a network as a

system through which a signal travels from node to node by means of available edges.

The definitions of all terms and notation used in the foregoing discussion, when not

provided, may be found in the literature, e.g., in [2], [50] or [64].

Initially, regard every node in a network N to be in an “off” state, that is, deacti-

vated. Then at some moment, say, at step 0, node i switches to an “on” state, i.e., is

activated. It may be that a signal was applied to node i from some external source, or
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some internal process activated it. This signal will then be transmitted throughout

the network in discrete time steps, activating other nodes as it reaches them. How-

ever, once the signal is transmitted from any node to its immediate neighbors, that

node deactivates until the signal returns at a later step. The only exception occurs

if the node receives the signal back from a neighbor during the same step in which it

also transmits the signal. Hence, at step 1 each neighbor of node i will be activated,

but node i will again become deactivated. At step 2, the neighbors of the neighbors of

node i (which include node i itself) will be activated, while the neighbors of node i are

deactivated. Assume that the signal then continues to be transmitted indefinitely in

this manner at steps 3, 4, . . .. This mode of signal transmission, in which nodes switch

to an “off” state until turned “on” by neighboring nodes, is intended to represent the

behavior of neurons in the brain.

Note that, if N is a connected network, then its diameter with respect to node

i (i.e., the shortest path between node i and the node most distant from it) cannot

exceed n− 1 for each i = 1, . . . , n, so that the overall diameter D(N ) of the network

may not exceed n − 1 (a connected network consisting of a string of n consecutive

nodes, with n− 1 edges linking them, has the maximum possible diameter). Clearly

then, a signal which originates at any node in a connected network N will have been

propagated at least once to every other node within n − 1 steps. The interest here

focusses on network configurations which result in the simultaneous and sustained

activation of all nodes after finitely many steps.

For example, suppose a network consists of nine nodes, as in Figure 4.1: Note that
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Figure 4.1: Networks NA and NB
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network NA is fully connected, while network NB is connected, but not fully. Each

network can be represented by a symmetric 9× 9 connectivity matrix, with zeros on

the main diagonal, and with mij indicating the presence of an edge between nodes i

and j, as shown below:

M(NA) =



0 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1

1 1 1 1 0 1 1 1 1

1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 0


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M(NB) =



0 1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 0 1 0 0 1 0 0

0 0 1 0 1 1 1 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 0 0 0

0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0


Signal transmission within a network N is modeled by a variation of matrix mul-

tiplication. Define the state of node i at step k, denoted sk(i), such that sk(i) = 1

if node i is activated at step k, and sk(i) = 0 if node i is deactivated at step k. Let

the network state vector v = (v1, . . . , vn) at step k be a vector of length n such that,

at step k, vi = sk(i) for i = 1, . . . , n. Thus at step 0 the network state vector con-

sists of a 1 in the position corresponding to one of the nodes, and a 0 in every other

position. At subsequent steps, the elements of the vector will change to reflect the

changes in the state of the network. In this setting, the product [Mv] of the matrix

M = M(N ) with v at step k produces the network state vector v at step k+1, where

[Mv] is found by computing the usual product of a matrix with a vector, but with

the restriction that all non-zero entries in the result are set equal to one. Hence if v

represents the state of the network at step 0, then [Mkv] represents the state of the

network at step k.
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To illustrate, the evolution of the network state vector at steps 0 through 5 for

both networks NA and NB, if the signal originates at node 1, is displayed:

Network state vector for NA, steps 0 through 5

1

0

0

0

0

0

0

0

0



→


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1

1

1

1

1

1



→


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1

1

1

1

1



→


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

→


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1
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

→ · · ·

Network state vector for NB, steps 0 through 5

1

0

0

0

0

0

0

0

0



→



0

1

1

0

0

0

0

0

0



→



1

1

1

1

0

0

1

0

0



→



1

1

1

1

1

1

1

1

1



→



1

1

1

1

1

1

1

1

1



→ · · ·
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Notice that, by step 2, the network state vector for NA consists of a 1 in each

position, indicating that all nine nodes are simultaneously activated, and remains in

this state thereafter. This phenomenon is described as system-wide synchronization

(SWS). Hence network NA has achieved SWS after two steps. The same result occurs

with the network state vector for NB, but not until step 3. For either network, if

instead the signal begins at a different node, the network still achieves SWS, but not

necessarily after the same number of steps, because the signal will eventually reach

node 1. In general, a connected network is SWS if and only if there exists some step

k at which all of its nodes are concurrently activated. Define the order of a SWS

network N with respect to node i, denoted Oi(N ), as the minimum number of steps

from activation of node i at step 0 until SWS occurs. Then the order of a SWS

network N having n nodes, denoted O(N ), may be defined as the maximum over

i = 1, . . . , n of Oi(N ).

One may then inquire whether or not all connected networks are SWS. Consider

network NC in Figure 4.2, along with the corresponding evolution of the network

state vector when node 1 is activated at step 0. Observe that SWS does not occur in

this case:
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Figure 4.2: Network NC
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Network state vector for NC



1

0

0

0

0

0

0

0

0



→



0

0

1

0

0

0

0

0

0



→



1

1

0

1

0

0

0

0

0



→



0

0

1

0

1

0

1

0

0



→



1

1

0

1

0

1

0

1

0



→



0

0

1

0

1

0

1

0

1



→



1

1

0

1

0

1

0

1

0



→



0

0

1

0

1

0

1
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1



→ · · ·

This time, the network state vector eventually begins to alternate indefinitely

between two complementary states, so that SWS never occurs. Instead, the network

is partitioned into two subgroups which are activated at alternating time steps. Hence
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a network may be classified as a SWS network if SWS occurs after finitely many steps,

and as a Subgroup Alternating (SGA) network if the above phenomenon occurs.

4.3 Criteria for System-Wide Synchronization in determin-

istic networks

Now consider whether there is some geometric feature of a network that determines

whether or not SWS occurs. To address this question, first consider the following

two lemmas, whose proofs are supplied in the appendix. Here, a node is periodic

with period 2 if the node is activated at even-numbered time steps and deactivated

at odd-numbered time steps, or vice versa, while a node is periodic with period 1 if

it is activated at every time step. Also, Di(N ) denotes the diameter of network N

with respect to node i.

Lemma 1. Every activated node in a connected network is periodic with period p ≤ 2.

Lemma 2. If an activated node i in a connected network N becomes periodic with

period p = 1 at some step k, then SWS will occur within Di(N ) additional steps.

Together, these lemmas infer that the key to the SWS of a connected network is

that one of the nodes must become periodic with period 1 at some step in the signal

transmission process. Note that this occurred in the evolution of the network state

vector for NB at step 1, since nodes 2 and 3 remained activated in going from the

first to the second step. The geometric feature which allowed this to happen is the

presence in the structure of the network of a loop consisting of an odd number of
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edges. Refer to such a loop, in which there is a closed path consisting of an odd

number of edges, as an odd-length loop.

Note that in network NB there are four such loops of length 3, while in network

NA there are numerous such loops of lengths 3, 5, 7 or 9. But there are no odd-length

loops in network NC . This leads to the following theorem and corollary, whose proofs

are in the appendix:

Theorem 1. System-wide synchronization occurs in a connected network if and only

if its structure includes a loop consisting of an odd number of edges.

Now, suppose one has a SWS network. One can then determine an upper bound

on the order of the network, based on its diameter:

Corollary 1. A SWS network N having n nodes has order O(N ) ≤ 2D(N ), regard-

less of the node at which the signal originates.

Hence the most efficient SWS network, in terms of having the smallest order, is one

with the smallest diameter possible. For example, if n− 1 nodes are each connected

by a single edge to one hub node, the network will have a diameter of 2. Thus if this

same network also includes a loop of length 3, it will be a SWS network of order at

most 4. Network NA has a diameter of 1, since each node is a neighbor to every other

node. Thus NA is a SWS network of order 2.
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4.4 Subgroup Alternation in deterministic networks

Corollary 1 together with Lemmas 1 and 2 imply that if a connected network N is

not SWS, then after at most 2D(N ) steps every node will be periodic with period

p = 2. Moreover, the network will itself have a period of 2 no later than step 2D(N ),

with one subset of nodes activated simultaneously at only the odd-numbered steps,

and the remaining subset of nodes activated concurrently at only the even-numbered

steps, as noted in the example of network NC . Of course, which subset corresponds

to the odd-numbered steps depends on the choice of initial node. Hence if a network

is not SWS, it will begin subgroup alternation (SGA) after finitely many steps.

One may then identify a feature of the matrix M(N ) = M corresponding to a

connected network N that establishes the network as SGA. This feature is the ability

to partition M into two sub-matrices M1 and M2 such that M1 consists of m ≥ 1

columns from M and M2 consists of the remaining n−m ≥ 1 columns, and such that

each sub-matrix consists of one or more rows of zeros, but in complementary rows.
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As an example, consider the matrix corresponding to SGA network NC :

M(NC) =



0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0

0 0 1 0 1 0 1 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 0


Take columns 1, 2, 4, 6 and 8 for M1 and the remaining columns for M2:

M1 =



0 0 0 0 0

0 0 0 0 0

1 1 1 0 0

0 0 0 0 0

0 0 1 1 0

0 0 0 0 0

0 0 1 0 1

0 0 0 0 0

0 0 0 0 1



, M2 =



1 0 0 0

1 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0



.

Note that M1 has rows of zeros in rows 1, 2, 4, 6 and 8, which correspond to one of

the two subsets of nodes which are activated concurrently once the network achieves
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SGA. Meanwhile M2 has rows of zeros only in the other four rows, i.e., in rows 3, 5,

7 and 9, corresponding to the other subset of nodes.

Given this condition, one may simply relabel the nodes of NC in such a way that

M(NC) takes on a block off-diagonal form. This is done by consecutively labeling

the nodes corresponding to one of the two subsets, and then labeling the remaining

nodes corresponding to the other subset. For instance, if in NC one relabels node 3

as node 6, node 4 as node 3, node 5 as node 7, node 6 as node 4, node 7 as node 8,

and node 8 as node 5, the matrix for network NC becomes

M(NC) =



0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0


The lower-left block is matrix M1 with its zero-rows removed, while the upper-right

block is matrix M2 with its zero-rows removed. If the lower-left block is referred to

as submatrix A, then the upper-right block is its transpose A′. In general, the matrix

of every SGA network can be represented in this manner. This may be stated in a

theorem:
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Theorem 2. A connected network N consisting of n nodes achieves subgroup alter-

nation if and only if there is some m ∈ {1, . . . , n − 1} and some permutation of the

node labels {1, . . . , n} such that its matrix M = M(N ) can be partitioned into a block

off-diagonal matrix of the form

M =

 0 A′

A 0

 ,
where A is an (n−m)×m matrix.

The proof is supplied in the appendix.

Now suppose M takes this block off-diagonal form, and suppose λ is an eigenvalue

of M with corresponding eigenvector v = (v1, . . . , vm, vm+1, . . . , vn)′. Since M is

symmetric, λ is real. Then the block off-diagonal form ofM and the relationMv = λv

implies A′(vm+1, . . . , vn)′ = λ(v1, . . . , vm)′ and A(v1, . . . , vm) = λ(vm+1, . . . , vn)′. If

λ 6= 0, then −λ must also be an eigenvector of M , with corresponding eigenvector

v = (−v1, . . . ,−vm, vm+1, . . . , vn)′, since the relations

A′(vm+1, . . . , vn)′ = −λ(−v1, . . . ,−vm)′ = λ(v1, . . . , vm)′

and

A(−v1, . . . ,−vm) = −A(v1, . . . , vm)′ = −λ(vm+1, . . . , vn)′

also hold. Hence, if n is even, the set of eigenvalues of M must be representable as

{±λ1, . . . ,±λn/2}. If n is odd, the requirement that nonzero eigenvalues appear in

positive/negative pairs requires that at least one eigenvalue must be zero, so that the

sum of the eigenvalues equals the trace of M , which is zero. Thus, if n is odd, the set
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of eigenvalues of M must be representable as {0,±λ1, . . . ,±λ(n−1)/2}. In general, the

matrix corresponding to a SGA network must have symmetry of its eigenvalues about

zero. Therefore, if a network N is SWS, the eigenvalues corresponding to its matrix

will not be symmetric about zero, i.e., there will be at least one nonzero eigenvalue

whose additive inverse is not an eigenvalue.

Hence both a geometric criterion (odd-length loops) and an algebraic criterion

(asymmetry of eigenvalues) have been obtained by which one may determine whether

or not a deterministic network is SWS.

4.5 Optimization of a random network under a budget con-

straint

Armed with these criteria, this section directs its attention to a random network

consisting of n nodes with N = n(n− 1)/2 distinct potential edges. In a sequence of

independent trials, each edge may or may not occur, so that any particular realization

of the network may or may not be SWS (or even connected). Moreover, even when a

SWS network is realized, it may not be relatively efficient, i.e., the average number

of steps required to achieve SWS over the n nodes may be relatively large. Suppose

that the probability that edge ei,j occurs between nodes i and j in any trial is some

fixed number pi,j ∈ [0, 1]. One may then form a vector p of length N consisting of
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these probabilities, such that

p = (p1,2, p1,3, . . . , p1,n, p2,3, . . . , p2,n, . . . ,

pn−2,n−1, pn−2,n, pn−1,n) .

Suppose further that there exists some fixed budget constraint B ≤ N such that

B =
∑

1≤i<j≤n

pi,j .

Then the question is: Are there optimal allocations of probabilities among the N com-

ponents of p that conform to the budget constraint and that maximize the probability

that a relatively efficient SWS network will be realized in any trial?

Certainly, if B is large enough (at least n), one may assign a probability of 1 to

each of n edges chosen such that, when present, the resulting network is SWS and as

efficient as possible. Thus only situations where B is relatively small are of interest,

so that high probabilities cannot be assigned very liberally. In nature, systems are

configured so as to allocate limited resources in an optimal manner. By requiring a

low budget, this tendency is modeled.

One exhaustive method would require an examination of each of the 2N possible

networks to identify which of these are SWS and have a desired level of efficiency.

Then one would need to search for those vectors in [0, 1]N that conform to the bud-

get constraint while maximizing the probability of producing one of these identified

networks in any trial. This is clearly impractical.

As an alternative, first substitute [0, 1]N with the lattice {0.0, 0.1, . . . , 0.9, 1.0}N ⊂

[0, 1]N , and require B to be a positive multiple of 0.1. If optimal vectors are found
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in the lattice, it may be assumed that the optimal vectors in [0, 1]N lie nearby. Thus

consider now the space consisting of only those vectors p whose components pi,j

lie in the set {0.0, 0.1, 0.2, . . . , 0.9, 1.0} and sum to B. Nevertheless, an exhaustive

exploration of this search space remains intractable. Hence it is necessary to employ a

tool like the simulated annealing (SA) search algorithm, as developed independently

by Kirkpatrick, et al. [36], and by Černý [5].

In the SA algorithm, one starts at some initial vector in the search space. Then

a neighboring vector is selected, which is defined to be a vector whose components

match those of the initial vector in all but two of the N positions, and which dif-

fer from the initial vector in those two positions by ±0.1. For instance, if p =

(0.2, 0.1, 0.3, 0.4, 0.0, 0.8), the vector (0.2, 0.1, 0.2, 0.4, 0.1, 0.8) would be a neighbor.

If the neighboring vector is more likely to produce an efficient SWS network, the

search moves to that vector. Otherwise, the search may still move to it with a certain

probability which gradually diminishes from one to zero as the algorithm progresses.

Then, at the next iteration, a neighbor is selected and the decision to move to that

neighbor is repeated.

To implement the SA algorithm, a positive real-valued energy function E(p) that

estimates the “energy” of each point p in the search space is required. Here the energy

of p represents its likelihood to generate networks which are not SWS, and networks

which are SWS but relatively inefficient. Hence the energy function is constructed

such that it decreases toward zero as optimal solutions are encountered.

The energy function implemented here consists of I iterations. At each iteration
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the function uses the probabilities pi,j to create a realization of the random network.

The function then determines whether the realized network is SWS. If the network

is SWS, the energy function determines the geometric mean order of the network

starting at each of the n nodes, as a measure of its efficiency. Upon completing I

iterations, the energy function computes the proportion ϕ of the I realized networks

which were not SWS, and, among those realized networks which were SWS, the

average ψ of the geometric mean order. Note that the intention is to minimize both

ϕ and ψ. Then a weighted average W = aϕ + bψ is formed, with a and b chosen

such that ϕ dominates until it becomes very small, at which point ψ begins to have

greater influence. To control the rate at which the energy function decreases as W

decreases, W is passed to the sine function, ensuring that 0 ≤ W ≤ π/2. In this

implementation, the energy function is

E(p) = sin(0.5ϕ+ 0.001ψ).

As anyone would surmise, this energy function is highly variable, no matter what

value is chosen for I (I = 1, 000 is used here), unless p consists almost exclusively

of ones and zeros. To reduce the variability, the average function value over 10

applications to any vector p is computed. Nevertheless, the variability remains. While

this does not prove to be a critical problem when n is small (say, 4 or 5), it attenuates

the success of the algorithm when n = 10 or n = 15.

Throughout the SA algorithm, a record is maintained of the best vector the search

has encountered, i.e., the vector whose computed energy is lowest. Once the algorithm

terminates, the best vector is declared to be optimal in the sense of having the lowest
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energy in the search space, and thus the greatest likelihood of producing efficient

SWS networks among those having the same budget constraint. In practice, the

vector identified by the algorithm may not be optimal, but it is usually quite good.

Moreover, it is not unique, since permuting the labels of the nodes would change the

labels of the potential edges among them, producing a different vector of probabilities.

The SA algorithm also requires a temperature function which decreases monoton-

ically from one to zero as the algorithm progresses from its first iteration to its last.

In this study, the function T (z) = 1 − e5(z−1) is used, where z is the proportion of

iterations completed. The algorithm relies on the temperature at any iteration to

determine the probability of moving from a state whose energy is lower to a neigh-

boring state whose energy is higher, as mentioned above. This probability decreases

as the temperature decreases, so that the algorithm gradually narrows its focus to

one convex region of the search space.

For example, consider a random network consisting of five nodes and thus 10 poten-

tial edges. Suppose B = 4, which is low enough to ensure that a SWS network cannot

be guaranteed in any realization. If the search starts with an initial vector consisting

of a probability of 0.4 for each potential edge (with corresponding energy 0.3536), the

SA algorithm returns as the optimal result (0.8, 0.8, 0.8, 0.8, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8),

whose energy is found to be 0.3301. Four realizations of the random network with this

optimal allocation of probabilities to the 10 potential edges are displayed in Figure

4.3. Note that only three of the networks are connected, and of these only two are

SWS (having a loop of length 3): The two SWS networks are identical, each of di-
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Figure 4.3: Four realizations of an optimized random five-node network
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ameter 2. Given the low budget, this is the best allocation of probabilities the search

can find.

As a second example, consider a random network consisting of 15 nodes and 105

potential edges, with a relatively high budget of B = 21. If the search starts with

an initial vector consisting of a probability of 0.2 for each potential edge (with cor-

responding energy 0.2510), the SA algorithm returns an optimal result whose energy

is computed to be 0.0077, which is remarkably low. Four realizations of this random

network are displayed in Figure 4.4. Note that all four networks are SWS, as loops

of length 3 may be easily identified among each set of edges, and odd-length loops

of higher dimension are also evident. Hence the SA algorithm proves quite effective

in finding an allocation of probabilities among potential edges that maximizes the

likelihood that any realization of a random network will be SWS.
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Figure 4.4: Four realizations of an optimized random fifteen-node network
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4.6 Robust networks

A desirable feature of a SWS network is that it be robust. One way of defining

robustness is in terms of the loss of wirings between nodes. An alternative definition

of robustness involves the preservation of a SWS network if one node “malfunctions.”

This study focusses on networks which are robust under the latter definition, i.e.,

robust against the loss of a node. Observe that network NA is robust against loss of a

node, whereas if nodes 3, 4 or 7 were to be removed from network NB, the remaining

sub-network would not even be connected.
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The energy function E(p) implemented in the SA algorithm may be modified

so that it can also check each SWS network N among the I realized networks for

robustness. This is achieved by successively removing the ith row and column from

M(N ), i = 1, . . . , n, and determining whether the resulting submatrix corresponds to

a SWS network. This obviously slows down the algorithm considerably. Let χ denote

the proportion of SWS networks which are not robust among I realized networks.

This time the weighted average W = aφ+ bψ+ cχ is computed, with the constants a,

b and c chosen to balance the influences of system-wide synchronization, robustness,

and efficiency as the algorithm progresses. In this implementation, the energy function

used is

E(p) = sin(0.5φ+ 0.001ψ + 0.1χ).

To make the problem more realistic, and hence more interesting, the probabilities

pi,j comprising probability vector p are further restricted to the set {0.0, 0.1, . . . , 0.9},

so that no edge in the network can ever be guaranteed. This reduces the search space

slightly.

The SA algorithm is implemented with these modifications, using a network of 10

nodes and a budget of B = 22.5, beginning with an equidistribution of pi,j = 0.5

among the 45 potential edges, yielding an energy of 0.100. The optimal probability

vector returned by the procedure has a computed energy of 0.046, which is quite

good given the additional restrictions. Then the search is repeated using a 15-node

network with a budget of 31.5, starting with an equidistribution of pi,j = 0.3 among

the 105 potential edges, and an energy of 0.292. The SA algorithm returns an optimal
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result whose energy is 0.180. Four realizations of random networks based on this

optimal result are displayed in Figures 4.5 and 4.6. In Figure 4.5, the lower-right

Figure 4.5: Four realizations of a robust optimized random ten-node network
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network is SWS, but not robust, since the loss of nodes 7 or 9 would render the

remaining network unconnected. But the other three networks are both SWS and

robust. Coincidentally, the lower-right network in Figure 4.6 is also SWS, but not

robust, while the other three are both. One may observe that in the robust networks,

odd-length loops (particularly, triangles) occur at multiple distinct locations in the
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Figure 4.6: Four realizations of a robust optimized random fifteen-node network
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network. Hence optimal robust configurations of random networks are those which

connect smaller subnetworks which are themselves SWS networks. This of course

requires a sufficient budget to permit such a configuration.
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4.7 Conclusion

System-wide synchronization has been defined in networks based on the premise that,

once a signal leaves a node, the node becomes inactive, and remains so until the signal

returns to it, as is known of neurons. Working with this definition, this study discovers

that a system which can be modeled by such a network either achieves a state of

system-wide synchronization after an initial start-up period, or wavers indefinitely

between two complementary states. This outcome ultimately depends only on the

geometry of the network. Hence the functionality of such a system would require

attention to whether or not its structure contains loops with an odd number of edges.

In a system where the connectivity among nodes is random, perhaps dependent on

the correlations between them, one may further determine an optimal allocation of

probabilities among the potential edges, subject to certain budget constraints, such

that the functionality of the system is most likely. In application to such a system

which is not functioning optimally, one might determine how to reallocate resources in

order to improve performance. Moreover, to promote robustness of such a system, one

should ensure that its subsystems are independently designed to function optimally.

The results obtained in this chapter may be summarized as follows:

S0 [Deterministic network:] A SWS phase can only be achieved in a connected net-

work containing at least one substructure consisting of a closed loop comprised

of an odd-number of edges.

S1 [Random network:] Any wiring probability allocation scheme achieves a high
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potential of producing an efficient SWS phase when it frequently gives rise to

several heavily-connected hubs.

S2 [Random network with robustness:] The robustness constraint requires a higher

budget, and at the same time replaces the potential hubs with many well-

scattered potential triangular substructures.

Result [S0] regarding deterministic networks affords a huge reduction in computa-

tions for Result [S1], which in turn partly anticipates Result [S2]. However the appear-

ance of abundant triangular substructures in a robust random network is somewhat

surprising.

Immediate implications of these results on the study of emotion and memory re-

activation are posited as follows:

I1 : An emotion arousal can be effectively triggered when subgroups of emotion vari-

ables, such as behavioral, experiential and physiological variables, are well-wired,

even though the subgroups themselves are sparsely connected with redundant

wiring.

I2 : Even in the absence of an inhibiting mechanism, the feed-forward and feed-

back mechanisms of signal transmission are sufficient to efficiently and robustly

generate SWS phases among a designated group of neurons with strong local

connections and sparse global wiring.
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4.8 Proofs

Proof of Lemma 1. Assume node i is activated at step k. At step k+1, each neighbor

of i is activated, while i may either be deactivated or reactivated by a neighbor. At

step k + 2, each neighbor of node i reactivates node i. This cycle then repeats

indefinitely, so that node i is never deactivated for more than one consecutive step.

Hence node i is periodic with period at most two.

Proof of Lemma 2. Assume activated node i is periodic with period p = 1 at step k.

At step k + 1, every neighbor of node i is activated, and node i remains activated

since node i has period 1. Now the neighbors of node i have period 1 since their

neighbor, node i, is activated at every step. At step k + 2, every neighbor of the

neighbors of node i is activated, node i remains activated, and every neighbor of node

i remains activated. Now the neighbors of the neighbors of node i have period 1. By

step k + Di(N ), this effect will have been transferred to the nodes which are at the

greatest distance from node i, so that every node in N is activated. Hence all nodes

of N are simultaneously activated within Di(N ) additional steps.

Proof of Theorem 1. It is evident from the proof of Lemma 2 that an activated node

i becomes periodic with period 1 if and only if the signal reaches both i and some

neighbor of i in the same step. This requires the presence of a closed path in the

network structure comprised of an odd number of nodes, i.e., an odd-length loop.

Then, and only then, the signal will follow two branches which reach two neighboring

nodes at the same step. By Lemma 2, such a network is SWS.
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Proof of Corollary. Assume N is a SWS network with n nodes. If node i is activated

at step 0, the signal will propagate to every node of N within Di(N ) ≤ D(N ) steps.

Since N is SWS, N must have at least one odd-length loop in its structure. Thus the

signal must enter the loop and reach two neighboring nodes h and j at the same step

while propagating throughout the network, so that h and j each become periodic with

period 1. By Lemma 2,N will then achieve simultaneous activation of all nodes within

Dh(N ) ≤ D(N ) steps. Therefore SWS occurs within Di(N )+Dh(N ) ≤ 2D(N ) steps.

Hence Oi(N ) ≤ 2D(N ). Since i is arbitrary, O(N ) ≤ 2D(N ).

Proof of Theorem 2. Assume N is a connected network which is SGA, with corre-

sponding n×n matrix M . Then after finitely many steps every node of N is periodic

with period 2. This implies that the network state vector v = (v1, . . . , vn) eventually

begins to alternate indefinitely between two states, call them α and β, in which each

vi alternates between one and zero for i = 1, . . . , n (at each step, v consists of at

least one zero component and at least one nonzero component). Since each successive

state results from the product [Mv], the inner product of the ith row of M with

v must be zero whenever vi = 1 and be nonzero otherwise. Hence the ith row of

M must have zeros in those columns corresponding to the positions of the nonzero

components in v in one of the two alternating states, and a one in at least one of

the remaining columns. One may thus let M1 be the matrix consisting of the m ≥ 1

columns of M which have zeros in the rows corresponding to all the positions of the

nonzero components in v when it is in state α, and let M2 be the matrix consisting of

the remaining n−m ≥ 1 columns of M which have zeros in the rows corresponding
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to all the positions of the nonzero components in v when it is in state β. Then M1

has one or more rows consisting only of zeros, while each corresponding row of M2

contains at least one nonzero entry. Likewise, M2 has one or more rows consisting

only of zeros, while each corresponding row of M1 contains at least one nonzero entry.

By relabeling the nodes so that those which are activated in state α are consecu-

tively numbered 1, . . . ,m, and those which are activated in state β are consecutively

numbered m+ 1, . . . n, the matrix M will thus take the form

M =

 0 A′

A 0

 ,
where A is an (n−m)×m matrix.

Moreover, if M may be partitioned in this way, then after finitely many steps every

node of N must be periodic with period 2. Hence N is SGA.
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