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Abstract

Consider a coherent system whose n components have independent,
identically distributed (i.i.d.) lifetimes. The signature of the system
is an n-dimensional vector s = (s1, . . . , sn) representing the probabil-
ity distribution of the index of the ordered component whose failure
causes the system to fail. A brief review of the theory and applications
of system signatures is given. The notions of “stochastic ordering” and
“stochastic precedence,” and the way these notions are applied in com-
paring the performance of two system designs, are discussed. Some of
the limitations of pairwise comparisons using these orderings are noted.
A new metric (the “maximum lifetime ordering”) is proposed for se-
lecting the “best” system from among k systems: if the probability
P (Ti = max{T1, . . . , Tk}) is a maximum when i = r, then system r is
selected as the preferred system. The interpretation and computation
of this metric are discussed and its use is illustrated in an example
in which this metric provides meaningful comparisons while pairwise
comparisons fail to do so. Justification is provided for the recommen-
dation that a specific stepwise process be employed when selecting a
system for use.

Key words: Coherent systems, multiple comparisons, stochastic order,

stochastic precedence, system signatures.

1 Introduction

Consider a coherent system of order n whose components have i.i.d. lifetimes.

As is well known (see, e.g., Barlow and Proschan (1981)), coherent systems
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are characterized by the properties of component relevance and the mono-

tonicity of system performance as a function of component performance. In

this paper, we investigate a problem in structural reliability dealing with the

comparison of multiple systems and the selection of the “best” system for

use. Since our treatment will involve the application of the theory of sys-

tem signatures and the use of stochastic notions of ordering among random

variables or among their distributions, we will begin with a brief overview

of these ideas and some comments about their utility in studying the reli-

ability of engineered systems. A well-known tool in distinguishing between

and among n-component coherent systems is the structure function, a func-

tion ϕ : {0, 1}n → {0, 1} which characterizes the deterministic relationship

between the system’s functioning and the functioning of its components (see

Barlow and Proschan (1981)). While there is a one-to-one correspondence

between coherent systems and their structure functions, these functions are

somewhat awkward algebraic objects that do not easily serve as an index for

coherent systems. Samaniego (1985) introduced a characteristic of system

designs which, while being less general than the structure function, has the

virtues of being more interpretable, more easily computed and more useful

in many applications. Most importantly, the so-called “system signature” of

a coherent system of order n is of fixed dimension n and is distribution-free,

justifying its use as an index for coherent systems of any size. A formal

definition follows.

Definition 1.1. Consider a coherent system of order n. Assume that the

system’s n components are independent and identically distributed (i.i.d.)

according to the (continuous) lifetime distribution F . The signature of the

system, denoted by s, is an n-dimensional probability vector whose ith ele-

ment is given by si = P (T = Xi:n) for i = 1, 2, . . . , n, where T is the lifetime

of the system and the variables X1:n < X2:n < · · · < Xn:n are the order

statistics corresponding to the failure times X1, X2, . . . , Xn of the system’s

components.

Some comments on the i.i.d. assumption on component lifetimes might
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be helpful. One of the important uses of signatures in reliability analysis

has been the comparison of system designs. It is evident that a comparison

between two systems with quite different component characteristics can of-

ten be misleading or inconclusive. For example, a series system in n highly

reliable components may well outperform a parallel system with n relatively

poor components. But it is clear that a parallel structure is a better sys-

tem design than a series structure with the same number of components.

Once the i.i.d. assumption is made, any remaining differences in system per-

formance must be attributable to the system’s design. In that sense, the

i.i.d. assumption “levels the playing field” so that one has a basis for com-

paring the designs themselves. From an analytical point of view, signatures,

as defined above, make available for use the tools of combinatorial mathe-

matics and the well-known distribution theory for the order statistics of an

i.i.d. sample for studying the performance of a particular system. It should,

of course, be acknowledged that specific applications of signature-related re-

sults in non-i.i.d. settings must be done, if at all, with considerable caution.

This caveat notwithstanding, signature-based results should shed light on

models in some “neighborhood” of the i.i.d. setting that can be studied via

system signatures. The five distinct coherent systems in three components

are easily seen to have signatures (1, 0, 0), (1/3, 2/3, 0), (0, 1, 0), (0, 2/3, 1/3)

and (0, 0, 1). In terms of reliability, it is clear that these five systems would

be increasingly reliable as one goes from first (series) to last (parallel).

Samaniego (1985) showed that the distribution of the system lifetime T ,

given i.i.d. components lifetimes ∼ F , can be written in terms of s and F

alone:

Theorem 1.1. Let F be a continuous distribution on (0,∞), X1, . . . , Xn
iid
∼

F be the component lifetimes of a coherent system of order n, and T be the

system lifetime. Then

F T (t) = P (T > t) =
n−1
∑

j=0





n
∑

i=j+1

si





(

n

i

)

(F (t))i(F (t))n−i . (1.1)
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In addition to “representation results” such as Theorem 1.1, reliability

analysts are often also interested in “preservation theorems” which show

that certain characteristics of an index of a class of systems are inherited

by the systems themselves. Such results are often essential tools in study-

ing the comparative performance of systems. The result below shows that

several types of stochastic relationships enjoyed by pairs of system signa-

tures are preserved by the lifetimes of the corresponding systems. The three

most commonly used criteria for comparing the relative sizes of two random

variables are defined below. These orderings apply to comparisons between

continuous variables and between discrete variables. For more detail, see

Shaked and Shanthikumar (2007).

Definition 1.2. Given two independent random variables X and Y , (i) X is

smaller than Y in the stochastic ordering (denoted by X ≤st Y ) if and only

if their respective survival functions satisfy the inequality FX(t) ≤ F Y (t)

for all t, (ii) X is smaller than Y in the hazard rate ordering (denoted

by X ≤hr Y ) if and only if the ratio of survival functions FX(t)/F Y (t) is

increasing in t, and (iii) X is smaller than Y in the likelihood ratio ordering

(denoted by X ≤lr Y ) if and only if the ratio fY (t)/fX(t) is non-decreasing

in t, where fX and fY represent the densities or probability mass functions

of X and Y , respectively. For each of these orderings (denoted generally by

“≤∗”), the notation X ≤∗ Y and FX ≤∗ FY are used interchangeably.

In the following preservation theorem, proven by Kochar, Mukerjee and

Samaniego (1999), signature vectors are seen as the distributions of discrete

variables (namely, the index r of the ordered component failure time Xr:n

which is fatal to the system).

Theorem 1.2. Let s1 and s2 be the signatures of the two systems of order

n, both based on components with i.i.d. lifetimes with common distribution

F . Let T1 and T2 be their respective lifetimes. The following preservation

results hold:

(a) if s1 ≤st s2, then T1 ≤st T2,
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(b) if s1 ≤hr s2, then T1 ≤hr T2, and

(c) if s1 ≤lr s2 and F is absolutely continuous, then T1 ≤lr T2.

The conditions on the system signatures in Theorem 1.2 are sufficient

but not necessary conditions for the similar ordering to hold for system

lifetimes. Block, Dugas and Samaniego (2006) generalized the result above,

giving explicit signature-based necessary and sufficient conditions for the

inequalities of the system lifetimes to hold in each of the stochastic orders

considered above.

While the stochastic relationships above between system signatures are

clearly useful tools in the comparison of competing systems, they provide

only a partial rather than a total ordering among systems. Kochar, Mukerjee

and Samaniego (1999) give examples of systems that are non-comparable

according to the standard orderings. There is, however, a metric that does

induce a complete ordering among systems. Arcones, Kvam and Samaniego

(2002) treated the notion of “stochastic precedence,” an alternative way to

quantify the fact that one random variable is smaller than another. The

“sp” relationship may be defined as follows.

Definition 1.3. Let X and Y be independent random variables with re-

spective distributions F1 and F2. Then X is said to stochastically precede Y

(written X ≤sp Y ) if and only if P (X < Y ) ≥ P (X > Y ). The variables

are equivalent in the sp ordering if P (X < Y ) = P (X > Y ). Continuous

variables X and Y are sp-equivalent if and only if P (X ≤ Y ) = 1/2.

Suppose that T1 and T2 are the lifetimes of two coherent systems of ar-

bitrary sizes. Even without any restrictions on the joint distribution of the

components of each of the two systems, one will always be able to classify the

second system as better than, equivalent to or worse than the first system

according to whether P (T1 ≤ T2) is less than, equal to or greater than 1/2.

Thus, stochastic precedence provides a total ordering among all coherent

systems of a given size and, in fact, among any arbitrary collection of coher-

ent systems. Hollander and Samaniego (2008) provide an explicit formula for
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calculating the probability P (T1 ≤ T2) when all components have i.i.d. life-

times with common continuous distribution F . Theorem 1.3 is stated in the

more general setting in which the component lifetime distributions of the

two systems may differ.

Theorem 1.3. Consider coherent system 1 with components having lifetimes

X1, . . . , Xn
iid
∼ F1 and coherent system 2 with components having lifetimes

Y1, . . . , Ym
iid
∼ F2. Denote the systems’ signatures by s1 and s2 and their

respective lifetimes by T1 and T2. Then

P (T1 ≤ T2) =
n

∑

i=1

m
∑

j=1

s1is2jP (Xi:n ≤ Yj:m) . (1.2)

Hollander and Samaniego (2008) provide a combinatorial argument which

establishes an explicit expression for the probability P (Xi:n ≤ Yj:m) in (1.2)

under the assumption that all component lifetimes are i.i.d. with common

distribution F . In this case, P (Xi:n ≤ Yj:m) is seen to be a constant indepen-

dent of F . Substituting this expression for P (Xi:n ≤ Yj:m) in Theorem 1.3

yields:

Theorem 1.4. Under the conditions of Theorem 1.3, with F1 = F2,

P (T1 ≤ T2) =
n

∑

i=1

m
∑

j=1

s1is2j

n
∑

s=i

(

n
s

)(

m
j

)

(

n+m
s+j

) ·
j

s + j
. (1.3)

Example 1.1. It is easy to verify that the two four-component systems with

respective minimal cut sets {{1}, {2, 3, 4}} and {{1, 2}, {1, 3}, {1, 4}, {2, 3}}

are non-comparable in the “st” sense (or, of course, also in the stronger “hr”

or “lr” senses). The first of these systems has signature s1 = (1/4, 1/4, 1/2, 0)

and the second has signature s2 = (0, 2/3, 1/3, 0). Using Theorem 1.4,

P (T1 ≤ T2) may be computed as

(1/6)(11/14) + (1/12)(13/14) + (1/6)(1/2) + (1/12)(53/70)

+ (1/3)(17/70) + (1/6)(1/2),

a sum that reduces to the fraction 109/210 = 0.519. From this we con-

clude that the second system will last longer than the first slightly more
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than half the time. Thus, in the “sp” ordering, the second system is to be

preferred to the first. When comparing larger or more complex systems,

the direct calculation using formula (1.3) can be a tiresome exercise; how-

ever, since this formula is easily programmed, even seemingly cumbersome

pairwise comparisons can be done in a few milliseconds. �

The expression in (1.3) is clearly distribution-free, immediately yielding

signature-based necessary and sufficient conditions for stochastic precedence

between two systems of arbitrary order with i.i.d. component lifetimes.

Theorem 1.5. Let T1 and T2 represent the lifetimes of two systems of or-

ders n and m based on two independent i.i.d. samples of sizes n and m

from a common continuous distribution F . Let s1 and s2 be their respective

signatures, and let W be the function of these signatures given by

W (s1, s2) =
n

∑

i=1

m
∑

j=1

s1is2j

n
∑

s=i

(

n
s

)(

m
j

)

(

n+m
s+j

) ·
j

s + j
. (1.4)

Then

P (T1 ≤ T2) > 1/2 if and only if W (s1, s2) > 1/2, (1.5)

P (T1 ≤ T2) = 1/2 if and only if W (s1, s2) = 1/2, (1.6)

P (T1 ≤ T2) < 1/2 if and only if W (s1, s2) < 1/2, (1.7)

A comprehensive account of the theory and applications of system sig-

natures is presented in the recent monograph by Samaniego (2007). Covered

there are the topics of signature-based closure and preservation theorems in

reliability, applications of signatures to special system designs (e.g., direct

and indirect majority systems and consecutive k-out-of-n systems), system

comparisons based on “stochastic precedence,” applications of signatures to

the comparison of communication networks and optimality results in a Re-

liability Economics framework (i.e., based on criteria which depend on both

performance and cost). Recent extensions of the signature concept, and new

applications of signatures in engineering reliability, include the extension of

system signatures to systems whose components have exchangeable lifetimes
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(Navarro et al. (2008)), the development of “dynamic signatures” and their

applications to the comparisons of new and used systems and to the engi-

neering practice of “burn-in” (Samaniego et al. (2009)), statistical inference

about the common lifetime distribution of components based on system fail-

ure time data (Bhattacharya and Samaniego (2010)), the joint signature

of systems with shared components (Navarro et al. (2010)) and applica-

tions of signatures to systems with heterogeneous components (Navarro et

al. (2011)).

2 Comparisons among three or more systems

Our discussion of the comparison of systems in this section will touch upon

the notion of “mixed systems.” In brief, a mixed system, as defined in Boland

and Samaniego (2004), is simply a stochastic mixture of two or more coherent

systems of a given size n, each of which has components with i.i.d. lifetimes

with common distribution F . Such systems may be viewed as being selected

from the class of all systems of size n by a randomization process which

chooses a coherent system for use according to a fixed probability distribu-

tion. If one randomly selects from among k systems with signature vectors

s1, s2, . . . , sk according to the probability distribution p = (p1, p2, . . . , pk),

the mixed system is easily shown to have the signature vector s =
∑k

i=1 pisi.

In practice, mixed systems would be used in situations in which a set of

coherent systems are to be chosen sequentially according to a fixed distri-

bution p. The extension from coherent systems to mixed systems broadens

the space of possible signature vectors from a large, discrete space (whose

size is not, in general, known) to a larger but more manageable space, the

simplex of n-dimensional probability vectors. Dugas and Samaniego (2007)

demonstrated that, in a large class of problems, the optimal system of size

n, relative to criterion functions which account for both performance and

cost, will be a mixed system rather than an individual coherent system.

Let us consider the comparison of three or more systems using the pair-

wise stochastic precedence criteria discussed in Section 1.
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Example 2.1. Suppose that we have a choice among three mixed systems of

order 6, the components of which are assumed to have independent lifetimes

with common distribution F . Suppose these three systems have the following

signature vectors:

s1 = (0.2, 0.2, 0.2, 0.0, 0.2, 0.2)

s2 = (0.2, 0.1, 0.2, 0.2, 0.2, 0.1) (2.1)

s3 = (0.3, 0.1, 0.1, 0.1, 0.2, 0.2)

It is not difficult to confirm that these signatures are not ordered in stochastic

precedence; specifically, denoting as X1, X2 and X3 the random variables

on the integers 1, 2, 3, 4, 5, 6 with the signatures s1, s2 and s3 above

as their probability mass functions, then X1 =sp X2 while X3 <sp X1 and

X2 <sp X3. However, the fact that these signature vectors are not sp ordered

does not preclude the possibility that the corresponding system lifetimes T1,

T2 and T3 are ordered in stochastic precedence. That determination requires

an application of Theorem 1.4. For the systems with signatures in (2.1), we

may obtain, using formula (1.3), that

P (T1 < T2) = 0.5006,

P (T2 < T3) = 0.5001, and (2.2)

P (T1 < T3) = 0.4975,

that is, T1 <sp T2 and T2 <sp T3 but T3 <sp T1. Thus, we see that on the

basis of direct pairwise comparisons, no system can be declared better than

the other two in stochastic precedence. Since stochastic ordering implies

stochastic precedence, it is evident that the system lifetimes T1, T2 and T3

are not stochastically ordered either. �

It is apparent that pairwise comparisons using either the st or sp metric

might well fail to give helpful guidance about which of several systems stands

to provide better performance. Examples such as the one above lead us to

suggest an alternative approach to the comparison of multiple systems.
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We will define a general criterion for comparing k systems, and we will

illustrate the approach concretely in the comparison of three systems. In

particular, we shall see that the ambiguity reflected in the example leading

to (2.2) can be ameliorated by the application of the proposed criterion. We

note that the MLO criterion defined below reduces to a pairwise comparison

relative to stochastic precedence when only two systems are being compared.

Definition 2.1. Consider k systems of possibly varying sizes n1, n2, . . . , nk.

Assume that the components of each system have i.i.d. lifetimes with com-

mon distribution F . Let the signature vectors of the k systems be de-

noted by s1, s2, . . . , sk, and denote the corresponding system lifetimes by

T1, T2, . . . , Tk. Then, system r is said to be optimal in the maximal lifetime

ordering (MLO) for the k systems of interest if

P (Tr = max
1≤j≤k

{Tj}) ≥ P (Ti = max
1≤j≤k

{Tj}) for all i ∈ {1, . . . , k, i 6= r} .

(2.3)

The criterion in Definition 2.1 has a characteristic that is immediately

appealing, namely, that it constitutes a total ordering of the k systems. Any

pair of systems among the k can be compared by this criterion, and all k

systems can be ranked from best to worst. The criterion also has a natural

interpretation. The system that is declared optimal among these k systems

is the system that has the highest probability of lasting the longest if all k

systems began operation simultaneously. We propose the use of this criterion

only in circumstances in which lower-order (e.g., pairwise) comparisons fail

to identify the best system. If a system dominates a set of competitors

in pairwise (st or sp) comparisons, one would have no real motivation to

study other metrics involving the joint behavior of the systems of interest.

We will comment further on the interpretation and potential utility of our

proposed optimality criterion in the concluding section. We note that Blyth

(1972) gives examples of paradoxical behavior that can occur when using

the maximum as in (2.3). His example in the case when the variables are

independent uses a discrete distribution that puts all its mass on one point.
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Such models are of course inapplicable in any discussion of system lifetimes.

Thus, Blyth’s examples do not undermine the value of the maximum lifetime

ordering in the setting studied here. We turn now to a result which provides

a formula that facilitates its computation.

Theorem 2.1. Consider k systems, with the ith system having ni com-

ponents. Assume that the components of each system have i.i.d. lifetimes

with common distribution F . Let the k system signature vectors be de-

noted by s1, s2, . . . , sk, and denote the corresponding system lifetimes by

T1, T2, . . . , Tk. Then

P (Tr = max
1≤j≤k

{Tj}) =

n1
∑

i1=1

n2
∑

i2=1

· · ·

nk
∑

ik=1

s1i1s2i2 · · · skik

×P
(

Xr,ir:nr > Xj,ij :nj
∀ j ∈ {1, . . . , k}, j 6= r

)

,

(2.4)

where Xu,v:w is the vth order statistic among the w lifetimes of the compo-

nents of system u.

Proof. By the Law of Total Probability, we have

P (Tr = max
1≤j≤k

{Tj}) =

n1
∑

i1=1

· · ·

nk
∑

ik=1

k
∏

j=1

P (Tj = Xj,ij :nj
)

×P
(

Tr > Tj ∀ j 6= r|Tj = Xj,ij :nj
, j = 1, . . . , k

)

.

By the definition of the signature vector, we may rewrite this representation

as

P (Tr = max
1≤j≤k

{Tj}) =

n1
∑

i1=1

n2
∑

i2=1

· · ·

nk
∑

ik=1

s1i1s2i2 · · · skik

×P
(

Tr > Tj ∀ j 6= r|Tj = Xj,ij :nj
, j = 1, . . . , k

)

.

It follows from the independence assumption of all component lifetimes that

this latter identity may be rewritten as (2.4). �
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Calculation of the metric in (2.4) is thus seen to require the computabil-

ity of the probability P
(

Xr,ir:nr > Xj,ij :nj
∀ j ∈ {1, . . . , k}, j 6= r

)

for r =

1, 2, . . . , k. These probabilities depend, in turn, on the probabilities that k

independent order statistics (obtained from k independent samples) have a

particular ordering. A formula for probabilities of this latter type is given

in Kvam and Samaniego (1993). However, for k ≥ 3, the formula contains a

minor typographical error and is not correct as written. For the purpose of

this paper, it will suffice to establish the correct formula for the case k = 3.

This enables us to return to the example involving three 6-component sys-

tems treated earlier in this section. Our further treatment of this example

will illustrate the use and utility of the maximal lifetime ordering metric. We

prove the result below using a different approach than in the calculus-based

proof given in Kvam and Samaniego (1993).

Theorem 2.2. Let X1, . . . , Xn, Y1, . . . , Ym and Z1, . . . , Zp be three indepen-

dent i.i.d. samples from a common continuous distribution F , and let Xi:n,

Yj:m and Zk:p represent, respectively, the ith, jth and kth order statistic of

the first, second and third sample. Then

P (Xi:n < Yj:m < Zk:p) =
n

∑

s=i

n+m
∑

t=j+s

(

n
s

)(

m
j

)(

m+n
t

)(

p
k

)

(

n+m
j+s

)(

m+n+p
k+t

) ·
j

s + j
·

k

k + t
. (2.5)

Proof. We will establish the identity in (2.5) by the following combinatorial

argument. Let us imagine the Xs, Y s and Zs above as colored balls in an

urn, with the Xs being red, the Y s being white and the Zs being blue.

We will view each ball selected as being the next smallest of its type, that

is, the smallest possible of its type that is not already drawn. The event

“Xi:n < Yj:m < Zk:p” will occur if and only if, (1) for some s ≥ i, there

are, among the first s + j non-blue balls drawn, precisely s red balls and j

white balls, (2) taking (1) as given, the last ball drawn among these s + j

balls is red, (3) taking (1) and (2) as given, for some t ≥ s + j, there are k

blue balls and t non-blue balls drawn among the first t + k balls drawn, and

(4), taking (1), (2) and (3) as given, the last of these t + k balls is blue. In

validating the above accounting, note that steps (1) and (2) do not specify
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where these s+j non-blue balls lie relative to the blue balls. The ordering of

blue and non-blue balls is determined only in steps (3) and (4). Furthermore,

given (1) and (2), it is implicit that the t non-blue balls selected in step (3),

thought of there as the first t non-blue balls to be chosen, automatically

include the s red balls and j white balls drawn in step (1). This is because

t ≥ s + j, and the s + j balls selected in step (1) represent by definition the

smallest s Xs and the smallest j Y s, with all s Xs smaller than the jth Y ;

thus, the selection of the smallest t non-blue balls would necessarily include

them. We now proceed to the calculation of the probability that the four

events in steps (1)–(4) happen simultaneously. Given that all of the balls in

the urn at any given time are equally likely to be drawn, the probability of

selecting s red balls and j white balls in these s + j draws from the urn is

the hypergeometric probability

(

n
s

)(

m
j

)

(

n+m
j+s

) . (2.6)

Further, given (1), the probability that the last ball drawn is white is equal

to
j

s + j
. (2.7)

Now, given (1) and (2), the probability of selecting k blue balls and t non-blue

balls as the first k + t draws from the urn is the hypergeometric probability

(

m+n
t

)(

p
k

)

(

m+n+p
k+t

) . (2.8)

Finally, the probability that the last of these k + t balls is blue is

k

t + k
. (2.9)

The product of the unconditional probability in (2.6) and the three successive

conditional probabilities in (2.7), (2.8) and (2.9) is

(

n
s

)(

m
j

)(

m+n
t

)(

p
k

)

(

n+m
j+s

)(

m+n+p
k+t

) ·
j

s + j
·

k

t + k
,
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a value which represents the probability of having s Xs before the jth Y

and having the jth Y before the kth Z. Since s can range from i to n and,

given s, t can range from s+ j to n+m, the Law of Total Probability yields

the identity in (2.5). �

Example 2.1 (continued). Consider the three systems of order 6 whose

signature vectors are displayed in (2.1). Under an i.i.d. assumption on the

lifetime of the components in each of the three systems, the pairwise com-

parisons of these systems under stochastic ordering and under stochastic

precedence have both been shown to be inconclusive. Let us now execute

the comparisons using the maximal lifetime ordering criterion. Under the

conditions of Theorem 2.1, we write P (T3 = max1≤j≤3{Tj}) = P (T1 < T2 <

T3)+P (T2 < T1 < T3). Now, with system sizes n1 = n, n2 = m and n3 = p,

we have

P (T1 < T2 < T3) =
n

∑

i1=1

m
∑

i2=1

p
∑

i3=1

s1i1s2i2s3i3

n
∑

s=i1

n+m
∑

t=i2+s

(

n
s

)(

m
i2

)(

m+n
t

)(

p
i3

)

(

n+m
i2+s

)(

m+n+p
i3+t

)

i2
s + i2

i3
t + i3

.

(2.10)

Since among the signature vectors in (2.1) there is only one zero element,

the triple sum in (2.10) must account for 180 non-zero products s1i1s2i2s3i3 .

Computing the combinatorial portion of formula (2.10) is also tedious. Thus,

to compare the three systems with signatures in (2.1) simultaneously via the

MLO criterion, we have programmed formula (2.10) and obtained from it

the required probabilities:

P (T1 = max{T1, T2, T3}) = 0.3369,

P (T2 = max{T1, T2, T3}) = 0.3169, and (2.11)

P (T3 = max{T1, T2, T3}) = 0.3462.

Thus, by the maximal lifetime ordering criterion, system 3 is optimal among

the three systems under consideration. �
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The result in Example 2.1 may be interpreted as follows. If the three

systems with signatures in (2.1) were started at the same time and run

in parallel until all three of them failed, the probability is 0.3462 that the

third system would be the last to fail. As this probability is larger than the

probabilities that either of the other two systems will be the last to fail, the

third system is identified as optimal according to the MLO criterion.

3 Conclusions

As has been mentioned in the foregoing discussion, there are circumstances

in which the standard methods for the pairwise comparisons of multiple sys-

tems of interest fail to yield a definitive ranking among them. In this paper,

we propose an ordering that is applicable to the comparison of k systems,

where k is an arbitrary integer greater than 2. The maximal lifetime ordering

has the positive attribute of providing a total ordering of the systems being

compared. Further, the sense in which optimality is claimed has an easily

understood interpretation, namely, that the optimal system has the highest

probability of lasting the longest if all the systems of interest were started

at the same time. A general signature-based computational formula is given

for calculating the relevant probabilities. For the special case of the compar-

ison of three systems, the formula required for computing these probabilities

explicitly is established. The latter result is applied in a specific example in

which pairwise comparisons are inconclusive, and the optimal system in the

sense of maximal lifetime ordering is identified.

The recommended ordering is seen as a reasonable alternative when one

needs to choose among several available systems and pairwise comparisons

are unable to identify an optimal system. A word of caution is warranted

regarding the possible routine usage of the criterion introduced in this paper.

It is possible for a system to be judged optimal in the presence of several sys-

tems but to be judged inferior to one of these competing systems in a direct

comparison. The example above serves to illustrate this apparent dilemma.

Our comparison of the three systems simultaneously leads to the judgment
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that system 3 is the best, that is, is optimal with respect to the maximal

lifetime ordering. Recall, however, that in (2.2), the pairwise comparisons

of the signatures of the three systems treated in Example 2.1 reveal that

system 1 is better than system 3 in the stochastic precedence order. These

two results together indicate that if system 3 is tested simultaneously with

systems 1 and 2, system 3 will last the longest 34.62% of the time, a higher

percentage than can be associated with either system 1 or system 2. How-

ever, if system 3 and system 1 are tested simultaneously, system 1 will last

the longest 50.25% of the time, that is, system 1 is better than system 3.

While these two conclusions seem contradictory, they can be reconciled by

noting the fact that at the pairwise level, there is no clear winner. The

comparisons in (2.2) show that in pairwise tests, while system 1 is superior

to system 3, system 2 is superior to system 1 and system 3 is superior to

system 2. Since no system dominates the others in pairwise comparisons,

the conclusion drawn from the 3-way comparison remains as the only one of

the comparisons that is unambiguous.

Our recommendation regarding the use of the method of multiple com-

parisons of systems presented here is to perform these comparisons in a

stepwise manner. If one system can be declared best in a class of k systems

based on a collection of pairwise comparisons, then this system should be se-

lected for use, as further comparisons are unnecessary. As one might suspect,

when the pairwise comparisons of three systems result in transitivity among

the three system lifetimes relative to stochastic precedence, the maximum

lifetime ordering of the three systems will usually lead to the same conclu-

sion regarding optimality. This circumstance is illustrated in the following

example.

Example 3.1. Suppose that we have a choice among three mixed systems of

order 6, the components of which are assumed to have independent lifetimes

with common distribution F . Suppose these three systems have the following

signature vectors:



Signature-based Comparisons of Systems 99

s1 = (0.2, 0, 0, 0.8, 0, 0)

s2 = (0, 0, 0.7, 0, 0, 0.3) (3.1)

s3 = (0, 0.3, 0, 0, 0.7, 0)

For the systems with signatures in (2.12), we may use formula (1.3) to obtain

pairwise comparisons among the system lifetimes T1, T2 and T3, obtaining

P (T1 < T2) = 0.5642,

P (T2 < T3) = 0.5363, and (3.2)

P (T1 < T3) = 0.6217.

Thus, we have that T1 <sp T2, T2 <sp T3 and T1 <sp T3. We conclude

from this that system 3 is optimal. For the comparison of the three system

lifetimes simultaneously, we obtain from formula (2.10) that

P (T1 = max{T1, T2, T3}) = 0.2272,

P (T2 = max{T1, T2, T3}) = 0.3522, and (3.3)

P (T3 = max{T1, T2, T3}) = 0.4206.

We see that for these three systems, system 3 would be identified as optimal

by the MLO criterion as well. �

One might conjecture that, when a particular system is optimal in pair-

wise sp comparisons among k systems, it will also be optimal when the k

systems are compared via the MLO criterion. The following example shows

that this need not be the case.

Example 3.2. Suppose that we have a choice among three mixed systems of

order 6, the components of which are assumed to have independent lifetimes

with common distribution F. Suppose these three systems have the following

signature vectors:

s1 = (0.3, 0.3, 0.1, 0, 0, 0.3)

s2 = (0.1, 0.2, 0.3, 0, 0.3, 0.1) (3.4)

s3 = (0.1, 0.2, 0.2, 0.2, 0.2, 0.1)
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For the systems with signatures in (3.4), we may use formula (1.3) to obtain

pairwise comparisons among the system lifetimes T1, T2 and T3, obtaining

P (T1 < T2) = 0.5770,

P (T2 < T3) = 0.5004, and (3.5)

P (T1 < T3) = 0.5785.

Thus, we have that T1 <sp T2, T2 <sp T3 and T1 <sp T3. We conclude from

this that system 3 is optimal. However, for the comparison of the three

system lifetimes simultaneously, we obtain from formula (2.10) that

P (T1 = max{T1, T2, T3}) = 0.2953,

P (T2 = max{T1, T2, T3}) = 0.3538, and (3.6)

P (T3 = max{T1, T2, T3}) = 0.3509.

We see that for these three systems, system 2 would be identified as optimal

by the MLO criterion. �

Example 3.2 shows that it is possible that 2-way, 3-way, . . . , and k-way

comparisons will not all lead to the same conclusion regarding the optimality

of a given system. In this particular example, one can see that the 3-way

comparisons of the systems with signatures in (3.4) are extremely close, and

that systems 2 and 3 are nearly equivalent in the MLO ordering. Indeed,

they are nearly equivalent, as well, in a pairwise comparison. So choosing

system 2 over system 3 would not make much of a difference in a practical

sense. It is nonetheless true that the pairwise and 3-way comparisons dis-

agree. This provides further motivation for searching for an optimal system

in a stepwise fashion. The stepwise strategy relieves the experimenter of the

additional labor required to execute higher-order comparisons when lower-

order comparisons are definitive. It avoids the unnecessary redundancy seen

in Example 3.1, where lower-order and higher-order comparisons lead to the

same conclusion. More importantly, it leads the experimenter to a sound

conclusion when lower-order comparisons are definitive, leading to a partic-

ular conclusion while higher-order comparisons lead to a different conclusion.
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A definitive ranking among k systems can always be achieved using the MLO

criterion in k-way comparisons. But when a lower-order comparison yields a

definitive result regarding optimality, it trumps all higher order comparisons.

This is evident in the case of Example 3.2. In pairwise comparisons, it is

seen that system 3 tends to last longer than either of the other two systems,

quite a strong form of optimality. On the other hand, when all three systems

are compared together, system 2 has the highest probability of failing last.

Were we to select system 2 for use, we would do so knowing that system 3

will tend to last longer than either system 1 or 2. It is clear that choosing a

system that will tend to outperform each of the available alternative systems

is best.

When the results of pairwise comparisons are ambiguous, with no system

dominating all others, then a higher-order comparison can be used to obtain

a definitive answer. The k-way comparison of k systems with respect to

the maximal lifetime ordering will always identify one or more systems that

are optimal in the MLO sense. In general, we suggest that one employ a

k-way comparison of k systems only when all lower-order comparisons are

inconclusive.
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