
Journal of Applied Statistics, 2013

Vol. 40, No. 5, 1120–1131, http://dx.doi.org/10.1080/02664763.2013.780160

An empirical goodness-of-fit test for

multivariate distributions

Michael P. McAssey∗

Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

(Received 9 June 2012; final version received 23 February 2013)

An empirical test is presented as a tool for assessing whether a specified multivariate probability model is

suitable to describe the underlying distribution of a set of observations. This test is based on the premise

that, given any probability distribution, the Mahalanobis distances corresponding to data generated from

that distribution will likewise follow a distinct distribution that can be estimated well by means of a large

sample. We demonstrate the effectiveness of the test for detecting departures from several multivariate

distributions. We then apply the test to a real multivariate data set to confirm that it is consistent with a

multivariate beta model.
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1. Introduction

In a recent paper [14], measurements of instantaneous coupling (IC)were computed between pairs

of electroencephalogram signals in the gamma frequency band at selected tetrodes implanted in

different regions of the brain of a rat. It was assumed that, upon selecting one tetrode as a reference,

the distribution of its ICmeasurements with respect to any subset of the remaining tetrodesmay be

modeled with a multivariate beta distribution. While this assumption was intuitively valid based

on inspection of univariate histograms, its validity was not verified. This was a consequence of

the unavailability of a practical goodness-of-fit test for a multivariate beta distribution.

In fact, the literature on the topic of general multivariate goodness-of-fit tests is scarce. Tests

for multivariate normality are abundant, beginning with the seminal work of Pearson on the chi-

square goodness-of-fit test [1,15,19] and continuing with a multitude of additional approaches,

e.g. application of the Rosenblatt transformation [22] to examine multivariate normality [21],

tests using multivariate measures of skewness and kurtosis [11–13,25,26], a test based on the

multivariate Shapiro–Wilk statistic [24], a radii and angles test [8], a test based on the multivariate

Box–Cox transformation [28], and many other creative methods [2,5,16]. But these tests do not
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extend readily to the general case. Proposals for extending the Kolmogorov–Smirnov goodness-

of-fit test to multiple dimensions have been published [4,6,9,18], but the required test statistic

in each proposed method is extremely difficult to compute, even in the bivariate case, and a

suggested simplification in [6] still requires a transformation whose derivation is analytically

intractable for most multivariate distributions. Székely and Rizzo [27] proposed a test that is

applicable to any multivariate distribution having finite second moments, but the test is applied

only to the multivariate normal, as analytical derivation of the test statistic in other settings is

likewise unmanageable. A multivariate goodness-of-fit test based on the empirical characteristic

function has also been developed [3]. However, derivation of this test statistic is also not tractable

for most multivariate distributions, and one is additionally required to creatively choose a weight

matrix and a number of evaluation points.

What is needed is a goodness-of-fit test that is theoretically sound, is simple to implement in

scientific applications, is adaptable to any multivariate distribution of any dimension, and has

sufficient power. We propose below such an approach, with a focus on continuous multivariate

distributions. We compare the performance of the proposed test with that of several established

tests for multivariate normality to demonstrate its reliability in that setting, and then demonstrate

its effectiveness for testing the suitability of the multivariate uniform and beta models. Finally, we

apply this test to the IC measurement data referenced above to confirm the original multivariate

beta assumption.

2. Method

LetX ∈ <p be a sample fromapopulation having known p-variate continuous distributionF = Fθ ,

with θ in the parameter space 2 of F, and set µ = µ(θ) = EF(X) and 6 = 6(θ) = VF(X).

Recall [10] that the Mahalanobis distance1 ∈ < between X and µ is a continuous function from

<p → [0,∞) computed as

1 = 1(X| θ) = ‖6−1/2(X − µ)‖ =

√

(X − µ)′6−1(X − µ),

where ‖ · ‖ denotes the Euclidean norm. Given t > 0, the transformation 1 maps all points x

lying on the p-dimensional ellipsoid

Et = {x ∈ <p | 1(x | θ) = t}

onto a p-dimensional sphere St of radius t centered at the origin. Define G(t) = P(1 ≤ t) =

P(1 ∈ St). Hence, Pθ(X ∈ Et) = Pθ(‖6
−1/2(X − µ)‖ ≤ t) = G(t).

Now let T denote the set of all invertible affine transformations from <p to <p. Thus, for

T ∈ T , T(X) = AX + b for some invertible p × p matrix A and some b ∈ <p. If Y = T(X),

then Y has mean Aµ + b and variance A6A
′. However, although X ∼ Fθ , the distribution of

Y is in most settings not described by F for any choice of parameter. Nevertheless, given each

t > 0, the transformation T results in a corresponding transformation of the ellipsoid Et in <p,

producing the ellipsoid T(Et). Then, P(Y ∈ T(Et)) = Pθ(X ∈ Et). It is straightforward to show

that 1(Y) = 1(X) when T ∈ T :

1(Y) =
√

(Y − Aµ − b)′(A6A′)−1(Y − Aµ − b),

=
√

(AX + b − Aµ − b)′(A6A′)−1(AX + b − Aµ − b),

=

√

(X − µ)′A′(A′)−16−1
A−1A(X − µ),
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=

√

(X − µ)′6−1(X − µ),

= 1(X). (1)

Hence, P(1(Y) ≤ t) = P(1(X) ≤ t) = G(t) for all t. However, if T /∈ T , then the equality 1

does not hold, so that P(1(Y) ≤ t) 6= P(1(X) ≤ t) for all t.

Therefore, given Fθ with θ ∈ 2, let4 denote the set of all distributions8 such that, whenever

Y ∼ 8, there exists some T ∈ T such that T−1(Y) ∈ Fθ . When Fθ is a p-variate multivariate

normal distribution,4 consists of all p-variate multivariate normal distributions. But, in general,

the subset of elements of 4 that belongs to the same distribution family as Fθ has measure zero.

Now suppose G is the distribution of Mahalanobis distances corresponding to 4, and G′ is the

distribution of Mahalanobis distances corresponding to some unknown distribution F ′. On the

basis of the foregoing discussion, we can conclude the following: If G′ 6= G, then F ′ /∈ 4, and if

F ′ /∈ 4, thenG′ 6= G. Consequently, a goodness-of-fit test forG is equivalent to a goodness-of-fit

test for members of4. In the multivariate normal and many other symmetric settings, a goodness-

of-fit test for G will suffice for testing whether F ′ belongs to the same distribution family as F.

In asymmetric settings, such as the multivariate beta, one must employ further analysis when the

null hypothesis is not rejected to ensure that the hypothesized distribution is valid.

Consequently, we may generate a sample X1, . . . ,Xn from a known distribution F, compute

11, . . . ,1n, then estimate G via the corresponding empirical distribution function

Gn(t) =
1

n

n
∑

i=1

1(1i ≤ t), t > 0.

As n → ∞, Gn(t) → G(t), by well-established theoretical results. If data Y1, . . . ,Ym are gen-

erated from an unknown distribution F ′ belonging to 4, then the corresponding empirical

distribution G′
m should not differ significantly from Gn. However, if F ′ /∈ 4, then we should

detect a significant difference between Gn and G′
m provided m and n are sufficiently large.

Figure 1 displays plots of Gn(t) for samples randomly generated from four different bivari-

ate distributions, with n = 10, 000. The bivariate normal has a mean of µ = (−1, 2) and a

covariance of

6 =

[

4 −2

−2 9

]

.

The bivariate uniform consists of two independent samples, one from a uniform distribution of

(0, 1) and the other from a uniform distribution on (0, 5). The bivariate Student’s-t also consists of

two independent samples, from t distributionswith three and five degrees of freedom, respectively.

The bivariate beta likewise consists of independent univariate beta samples, the Be(2, 3) and the

Be(3, 2). For each bivariate distribution, we compute 11, . . . ,1n based on the respective values

of µ and 6, then obtain the corresponding functions Gn(t). Since the sample size is quite large

in each case, we have confidence that Gn(t) is very near G(t) for each example. As the figure

demonstrates, the values of Gn(t) among the four distributions are quite different, reflecting the

intrinsic distinction in the scatter structure of the samples about their respective means. Note,

however, that the distinction between the curves for the bivariate normal and the bivariate beta is

not as sharp.

To test for a significant departure from G, we proceed as follows. Given any p ∈ (0, 1), let

qp denote the p-quantile of G, i.e. G(qp) = P(1 < qp) = p. Given any partition 0 = p0 < p1 <

· · · < pT = 1 of (0, 1), we then obtain a corresponding partition 0 = qp0 < qp1 < · · · < qpT
= ∞
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Figure 1. Plots of Gn(t), with n = 10, 000, for samples randomly generated from a bivariate normal

distribution, a bivariate uniform distribution, a bivariate Student’s-t distribution, and a bivariate beta

distribution.

such that

Pj = G(qpj
) − G(qpj−1

) = pj − pj−1, j = 1, . . . ,T ,

where G(∞) = 1. Meanwhile, let qp,n denote the p-quantile of Gn, defined as

qp,n = min{t ∈ < | Gn(t) ≥ p}.

As n → ∞, qp,n → qp, since Gn(t) → G(t). So, if we set

Pj,n = Gn(qpj ,n) − Gn(qpj−1,n)

for j = 1, . . . ,T , it is clear that Pj,n → Pj as n → ∞. Thus, when n is very large, Pj,n is a reliable

estimate of Pj.

Consequently, givenGn(t)with n large, and a new set of observations y1, . . . , ym ∈ (0,∞), one

can test the null hypothesis that these data are realizations from the distribution G by

(1) selecting a partition {p0, p1, . . . , pT } as described above, with T large (but not so large that

mPj,n becomes too small for any j),

(2) computing Ej = mPj,n, i.e. the (approximate) expected number of observations in the interval

(qpj−1
, qpj

] under the null hypothesis, for j = 1, . . . ,T ,

(3) counting the number Oj of observations among y1, . . . , ym in the interval (qpj−1
, qpj

], for j =

1, . . . ,T ,

(4) calculating an appropriate test statistic to measure the global deviation of the counts of

observed data from the expected counts among the intervals, e.g.

AT =

T
∑

j=1

|Ej − Oj|

Ej

,

(5) deciding whether AT is too large to be plausible under the null hypothesis.
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The basis for determining what constitutes ‘too large’ must be established empirically, since

the distribution of AT cannot be determined analytically.

However, our interest in this paper is not in deciding whether observed univariate data are

realizations from G, but rather in deciding whether observed multivariate data are realizations

from the distribution family corresponding to some Fθ . Moreover, while we shall assume that the

mean and covariance of Fθ exist, we shall not assume that θ, µ or 6 are known. We only require

that themaximum-likelihood estimate (MLE) of θ can be computed based on a sample drawn from

Fθ . Consequently, letX1, . . . ,Xn ∈ <p denote a sample from some unknown p-variate continuous

distribution 8. Let 4 be the set of distributions generated by all invertible affine transformations

of data generated from Fθ , as described above. We test

H0 : 8 ∈ 4

against

H1 : 8 /∈ 4

at some specified significance level α. Of course, this assumes that X1, . . . ,Xn lie within the

support of some element of 4. Let X̄ and S denote the sample mean and sample covariance

matrix, respectively. Then, the sample Mahalanobis distance Di betweenXi and X̄ is given by the

familiar form

Di =

√

(Xi − X̄)′S−1(Xi − X̄), i = 1, . . . , n.

Since X̄
P

−→ µ and S
P

−→ 6 as n → ∞ under the null hypothesis, the continuous mapping

theorem guarantees that Di
P

−→ 1i as n → ∞. Now consider the empirical distribution function

Ĝn(t) given by

Ĝn(t) =
1

n

n
∑

i=1

1(Di ≤ t), t > 0,

which is the sample version of Gn(t). Under the null hypothesis, at each t > 0, 1(Di ≤ t)
P

−→

1(1i ≤ t) as n → ∞, so that the difference between Ĝn(t) and Gn(t) will tend to zero as n

increases. Since Gn converges to G as n → ∞, we conclude that Ĝn likewise converges to G

when H0 holds.

Our test ofH0 is thus linked to a test ofH ′
0:D1, . . . ,Dn ∼ G. If we rejectH ′

0, we must also reject

H0. Otherwise, we do not reject H0, and investigate further. But we cannot proceed exactly as

whenFθ is completely specified. Instead, we follow a longer, modified procedure. Let x1, . . . , xn ∈

<p denote the observed multivariate data, and d1, . . . , dn the corresponding observed sample

Mahalanobis distances. First check that the hypothesized distribution Fθ is sensible for explaining

the observed multivariate data. Then, execute the following steps:

(1) Assuming H0 is true, estimate θ with its MLE θ̂ under Fθ based on x1, . . . , xn;

(2) Generate a very large sample u1, . . . ,uN of size N À n from F
θ̂
(we use N = 10, 000);

(3) Determine the sample mean µ̂ and sample covariance 6̂ for this very large sample;

(4) Compute the sample Mahalanobis distances d̂1, . . . , d̂N for this very large sample, where

d̂i =

√

(ui − µ̂)′6̂
−1

(ui − µ̂);
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(5) Compute

ĜN (t) =
1

N

N
∑

i=1

1(d̂i ≤ t), t > 0,

our estimate of G(t), using very small increments of t from 0 to a sufficiently large value

(we use 2maxi d̂i);

(6) Select a partition {p0, p1, . . . , pT } of [0, 1], with p0 = 0 and pT = 1 (where T is selected so

that a sufficient number of observations are expected per bin, e.g., T = 5). Then, estimate

the corresponding p-quantiles of G(t) by setting

q0 = 0, qj = min{t ∈ < | ĜN (t) ≥ pj}, j = 1, . . . ,T − 1, and qT = ∞

(7) ComputeEj = n( pj − pj−1), i.e. the expectednumber of observations in the interval (qj−1, qj]

under H0, for j = 1, . . . ,T ;

(8) Count the actual number Oj of observations among d1, . . . , dn in the interval (qj−1, qj], for

j = 1, . . . ,T − 1, and in the interval (qT−1,∞) for j = T ;

(9) Calculate an appropriate test statistic to measure the global deviation of the counts of

observed data from the expected counts among the intervals, e.g.

AT =

T
∑

j=1

|Ej − Oj|

Ej

.

Since AT depends on T and N , AT is not exact.

(10) Determine whether AT is too large under H0, based on an empirical p-value which can be

obtained using a procedure to be described below.

Since the sample Mahalanobis distances computed in Step (4) depend on the sample u1, . . . ,uN

generated in Step (2), which in turn affects all subsequent computations, we do not obtain consis-

tent output at Step (9) for the statistic AT unless we repeat Steps (2)–(5) R times, where R is not

too small (we use R = 100, although smaller values are probably sufficient). Then, at Step (6), we

use the pointwise average of ĜN (t) over these R repetitions in order to obtain consistent values

for the quantiles q0, . . . , qT , and ultimately for AT .

Step (10) requires a simulation to obtain the empirical p-value. The idea is to obtain an empirical

distribution (in lieu of an exact distribution) of values forAT whenH0 holds, and determinewhether

the statisticAT computed in Step (10) is plausible under this distribution. This is done in the setting

where a sample of the same size n is generated from F
θ̂
, but after the sample is generated from

F
θ̂
, its sample mean and sample covariance are used as was done with the original data. Then, for

b = 1, . . . ,B, where B is quite large, repeat the following procedure:

(a) Generate a sample x∗
1 , . . . , x

∗
n from F

θ̂
;

(b) Obtain the sample mean and sample covariance, then compute the sample Mahalanobis

distances d∗
1 , . . . , d

∗
n ;

(c) Estimate θ̂ with its MLE θ̂
∗
based on x∗

1 , . . . , x
∗
n;

(d) Follow Steps (2)–(9) (substituting θ̂
∗
for θ̂ at Step (2), and substituting d∗

i for di at Step (8))

to obtain test statistic AT ,b. Again, repeat Steps (2)–(5) R times and use the average for ĜN (t)

at Step (6).
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Having obtained AT ,1, . . . ,AT ,B, the empirical p-value is then

pe =
1

B

B
∑

b=1

1(AT ,b > AT ).

Therefore, Step (10) becomes: Reject H0 if and only if pe < α. If H0 is not rejected, additional

work may be required to decide whether the observed data can be described adequately by Fθ for

some θ, depending on the symmetry of F.

We demonstrate the simplicity and effectiveness of this method in the next section.

3. Results

To illustrate the effectiveness of themethod inmultivariate goodness-of-fit testing,wefirst conduct

a test of the null hypothesis

H0 : 8 = N2(µ,6) for some (µ,6)

against the alternative

H1 : 8 6= N2(µ,6) for any (µ,6)

based on samples of size n = 100, where 8 denotes the true distribution family from which the

data are sampled (Since the multivariate normal family is closed under affine transformations, 4

is equivalent to the set of all bivariate normal distributions.).We conduct this test using themethod

presented above and, for comparison, four established methods: the multivariate Shapiro–Wilk

test [23,24], the energy test of Székely and Rizzo for multivariate normality [27], and the tests of

Kankainen et al. [7], based on skewness and on kurtosis. We generate samples from 10 distinct

bivariate normal, bivariate uniform, and bivariate Student’s-t distributions, with the parameters

randomly selected for each of the 30 samples. We implement our method for each sample with

N = 10, 000, R = 100, T = 20 and B = 100. We then compute the mean empirical p-value for

each method over the 10 samples of size 100 corresponding to each distribution family. We

expect large empirical p-values for samples from the bivariate normal family, and small empirical

p-values for the samples from the other two families.We also compute the false detection rate for

each method, based on a significance level of α = 0.05, for the bivariate normal samples, and the

true detection rate for the bivariate uniform and Student’s-t samples. Our results are as follows:

True distribution Our method Shapiro–Wilk Energy Skewness Kurtosis

Mean empirical p-value

Bivariate normal 0.504 0.320 0.487 0.417 0.486

Bivariate uniform 0.044 0.356 0.005 0.759 0.010

Bivariate Student’s-t 0.148 0.025 0.015 0.126 181

Detection rates at α = 0.05

Bivariate normal 0.1 0.1 0.0 0.1 0.1

Bivariate uniform 0.7 0.0 1.0 0.0 1.0

Bivariate Student’s-t 0.6 0.9 0.9 0.7 0.8

The energy test performs the best in detecting (and not falsely detecting) departures from

normality for all three bivariate distribution families, followed closely by the kurtosis test, while

the Shapiro–Wilk test outperforms our method only in the case of the Student’s-t distribution.
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But our method performs reasonably well in the case of the uniform distribution, while Shapiro–

Wilk and the skewness test do very poorly. Overall, our method shows more promise than the

multivariate Shapiro–Wilk test and the skewness test in this setting.

Next, we increase the dimension and test the null hypothesis

H0 : 8 = N3(µ,6) for some (µ,6)

against the alternative

H1 : 8 6= N3(µ,6) for any (µ,6)

based on samples of size n = 100, where 8 denotes the true distribution family from which the

data are sampled.We repeat the above simulation in this trivariate setting, and obtain the following

results:

True distribution Our method Shapiro–Wilk Energy Skewness Kurtosis

Mean empirical p-value

Trivariate normal 0.431 0.225 0.447 0.583 0.584

Trivariate uniform 0.000 0.577 0.007 0.800 0.035

Trivariate Student’s-t 0.061 0.004 0.011 0.068 0.003

Detection rates at α = 0.05

Trivariate normal 0.2 0.4 0.1 0.0 0.0

Trivariate uniform 1.0 0.0 1.0 0.0 0.9

Trivariate Student’s-t 0.9 1.0 0.9 0.7 1.0

While the energy test again yields the best overall performance, followed by the kurtosis test,

the performance of our method is almost identical. The Shapiro–Wilk test and the skewness test

are once again unable to distinguish the uniform family from the normal family, while the other

three methods succeed in almost all 10 samples of size 100. Our conclusion is that, with respect to

goodness-of-fit tests for multivariate normality, the accuracy of our method is comparable to that

of existing tests, and better in some situations. But our goodness-of-fit test is easily extended to

other multivariate distribution families, while the other tests are not, in general, so versatile. We

emphasize that the multivariate goodness-of-fit test proposed here is not intended as a competitor

to the dozens of superb tests for multivariate normality available in the literature. It is intended

as an accessible tool for evaluating goodness-of-fit to multivariate distributions which are not

normal, concerning which alternative tractable methods cannot be found. We only compare the

performance of our test to other tests in the multivariate normality setting in order to demonstrate

its reliability, since we have no tractable tests against which to compare it in other settings.

As an additional example, we generate a sample of size n = 100 from a trivariate uniform

distribution in the box [0, 2] × [−1, 1] × [0, 1], and then use our approach to test the goodness-

of-fit of the trivariate uniform distribution to these data. Here, the parameter θ consists of the

three upper and three lower bounds of the distribution, estimated by the maxima and minima in

the three dimensions, respectively. Inspection of plots of the data confirm that such a distribution

is plausible. Our test yields an empirical p-value of 0.91, so that the quality of fit is deemed good,

as expected. Meanwhile, we generate a sample of size 1000 from a trivariate normal distribution

with µ = (0.5, 0.5, 0.5) and 6 = 0.01I, and randomly select n = 100 points from among those

lying in the box [0.3, 0.7]3. We test the goodness-of-fit of the trivariate uniform distribution to

these data using our method, and obtain an empirical p-value of 0. Hence, we properly reject the

trivariate uniform as an explanation for these data.

Being now confident that our method is sufficiently reliable, we investigate its performance

in evaluating the goodness-of-fit of a sample from the p-variate beta (MVBp) distribution. The
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MVBp distribution is defined by a (p + 1)-dimensional parameter θ = (θ0, θ1, . . . , θp) for random

vectors U = (U1, . . . ,Up) in the p-dimensional cube (0, 1)p according to the density

f (u1, . . . , un) =
0

(

∑p

j=0 θj

)

∏p

j=0 0(θj)





p
∏

j=1

u
θj−1

j

(1− uj)
θj+1







1+

p
∑

j=1

uj

1− uj





−
∑p

j=0 θj

,

where 0(·) denotes the gamma function [14,17]. Given θ, an observation U = (U1, . . . ,Up) from

the MVBp distribution of dimension p can be randomly generated by first generating indepen-

dent samples X0,X1, . . . ,Xp from p + 1 univariate gamma distributions with respective shape

parameters θ0, θ1, . . . , θp. Then, for j = 1, . . . , p, set

Uj =
Xj

X0 + Xj

.

We therefore generate a sample of n = 200 observations from the MVB3 distribution with θ

chosen arbitrarily as (4.2, 5.8, 1.9, 3.6). The multivariate beta family is not closed under affine

transformations. Consequently, let 4 denote the set of all distributions resulting from invertible

affine transformations of data generated by some trivariate beta distribution with parameter θ. We

test the null hypothesis

H0 : 8∈ 4

against the alternative

H1 : 8/∈ 4,

where8 denotes the hypothesized distribution underlying the sample. Since we already know that

these data are generated from a trivariate beta distribution, failure to rejectH0 in this example will

confirm that themethod has been successful.We implement our procedure, withN = 10, 000,R =

100, B = 100 and T = 20, to compute our test statistic AT . This involves numerical optimization

to obtain the MLE θ̂ of θ based on the sample, and then generating R samples of size N as a

basis for computing ĜN (t) and its quantiles. We obtain AT = 14. We then derive an empirical

distribution for AT by generating B samples from the MVB distribution with θ = (2, 2, 2, 2) and

computing AT for each sample using the same procedure. The subsequent empirical p-value is

0.42, so that H0 is correctly affirmed.

We also generate a sample of the same size from the trivariate normal distribution with mean

µ = (0.5, 0.5, 0.5) and covariance 6 = 0.01I, where I is the identity matrix, and from a hybrid

sample consisting of three independent samples from univariate χ23 ,0(5, 2) and F4,3 distributions.

In both samples, we then apply a linear transformation to ensure that all observations fall within

the unit cube, so that we can test for membership in4. We implement our multivariate goodness-

of-fit test for each sample, and obtain an empirical p-value of 0.07 for the first sample, and 0 for

the second sample. Hence, there is strong grounds for concluding that the latter sample is not a

trivariate beta sample, but we are not strongly convinced of the same conclusion regarding the

former sample. It seems that the distinction between the distributions of Mahalanobis distances

for the multivariate beta and the transformed multivariate normal is not very sharp, corresponding

to our earlier observation concerning Figure 1. But there are still reasonable grounds to reject H0
under our method, since the empirical p-value is below 0.10.

To confirm the validity of this test in the quadrivariate beta setting, we implement it on two

samples also of size 200, one from a quadrivariate normal and the other a hybrid of independent

samples from the χ24 , 0(2, 3), F3,2 and U(0, 1) distributions. Again we transform the data before

proceeding with the test. The respective empirical p-values are 0.07 and 0, just as we found using
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the three-dimensional versions of these samples. The power of our test is not diminished with the

increase of dimension.

We are unable to identify any other tractable goodness-of-fit test with which to compare the

performance of our method in this setting, but we are convinced that the proposed goodness-of-fit

test procedure has sufficient power to detect departures in data from a multivariate beta model or

some invertible affine transformation thereof. Hence, we return to our earlier investigation of IC

measurements from the brain of a rat, as introduced in [14]. In particular, our null hypothesis is

that the n = 746 four-dimensional observationsmay bemodeledwith some distribution belonging

to the set 4 corresponding to some quadrivariate beta distribution. All these data fall within the

four-dimensional unit cube, so if we do not reject H0, we will further argue that the quadrivariate

beta model is valid. Under H0, the MLE of θ is approximately θ̂ = (1.7, 3.6, 1.8, 1.8, 1.4). We

implement our goodness-of-fit procedure to compute our test statistic AT , with N = 10, 000,

R = 100 and T = 20, and obtain AT = 55.4. We then generate B = 100 samples of size n from

the quadrivariate beta distribution with parameter θ̂, and compute the test statistic for each sample

using the same settings. Given the empirical distribution of AT over these samples, we arrive at an

empirical p-value of 0.17, so that we do not reject our null hypothesis. We compare histograms

for each of the four dimensions of real data with corresponding histograms for simulated data

of the same size from a quadrivariate beta distribution with parameter θ̂. As can be observed from

Figure 2, the histograms are very similar. Consequently, it is quite reasonable to conclude that the

data can be fit by a quadrivariate beta model without requiring an affine transformation. Based on

our goodness-of-fit test and this additional evidence, there is no basis to dispute our hypothesis

that the multivariate beta distribution is a suitable model for the IC data.

The computational burden for our goodness-of-fit procedure is quite reasonable. The choices for

the settings R and B have the greatest impact on the time demand.With R = 100, the computation

of our test statistic in each of the provided examples was under five minutes using the R statistical

environment [20], for sample sizes up to 750 and dimensions up to four. Increasing the dimension

significantly will force one to increaseR to maintain an accurate estimate ofG(t), while increasing

the sample size will allow one to decrease R. Setting B = 100 adds an additional 500 minutes to
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Figure 2. Histograms of the four dimensions of IC data (n = 746) and corresponding histograms of simulated

data from a quadrivariate beta distribution having parameter θ̂, where θ̂ is the MLE of θ based on the data

under the quadrivariate beta distribution.
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obtain a sufficient empirical distribution of the test statistic under the null hypothesis, but one can

break up these B computations into smaller chunks that can run in parallel. Once an empirical

distribution of the test statistic has been obtained, it can be retained for further use when testing

the same hypotheses based on different samples of the same size and dimension. Moreover, the

computational burden can certainly be further reduced in the hands of skilled programmers using

a more powerful programming platform.

4. Discussion

We present a goodness-of-fit test for general multivariate distributions that is simple to implement,

involves a reasonable computational burden, does not require analytically intractable derivations,

and proves to have sufficient power to detect a poor fit in most situations. One must be able to

compute the MLE θ̂ of θ corresponding to a hypothesized distribution Fθ from F , and be able

to generate samples from F
θ̂
. While we have focused here on continuous Fθ , the method should

easily extend to the discrete case.We anticipate that this straightforward test procedure will prove

widely useful in many statistical applications involving multivariate data analysis, particularly

outside the multivariate normality setting.
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