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Abstract

Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization
of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity
is difficult to determine experimentally. Current computational methods for estimating connectivity typically rely on the
juxtaposition of experimentally available neurons and applying mathematical techniques to compute estimates of neural
connectivity. However, since the number of available neurons is very limited, these connectivity estimates may be subject to
large uncertainties. We use a morpho-density field approach applied to a vast ensemble of model-generated neurons. A
morpho-density field (MDF) describes the distribution of neural mass in the space around the neural soma. The estimated
axonal and dendritic MDFs are derived from 100,000 model neurons that are generated by a stochastic phenomenological
model of neurite outgrowth. These MDFs are then used to estimate the connectivity between pairs of neurons as a function
of their inter-soma displacement. Compared with other density-field methods, our approach to estimating synaptic
connectivity uses fewer restricting assumptions and produces connectivity estimates with a lower standard deviation. An
important requirement is that the model-generated neurons reflect accurately the morphology and variation in morphology
of the experimental neurons used for optimizing the model parameters. As such, the method remains subject to the
uncertainties caused by the limited number of neurons in the experimental data set and by the quality of the model and the
assumptions used in creating the MDFs and in calculating estimating connectivity. In summary, MDFs are a powerful tool for
visualizing the spatial distribution of axonal and dendritic densities, for estimating the number of potential synapses
between neurons with low standard deviation, and for obtaining a greater understanding of the relationship between
neural morphology and network connectivity.
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Introduction

The dynamics of neuronal network activity, which underlies all

brain functions, depend crucially on the pattern and strengths of

synaptic connections between neurons. The formation of synaptic

connections between neurons requires physical contact between

axonal segments of one neuron and dendritic segments of another

neuron. These physical contact sites are potential locations where

synapses could be formed; they are called potential synapses, since

physical contact does not necessarily ensure the formation of a

synapse [1]. The occurrence of potential synapses is expected to

depend on the geometry of axonal and dendritic arbors, but the

relationship between neuronal morphology and synaptic connec-

tivity is not well understood. Investigating how synaptic connec-

tivity depends on neuronal morphology, at the neuron-to-neuron

level as well as at the global network level, requires both an

accurate representation of the various neuron morphologies and a

reliable computational method for translating morphological

information into valid estimators of neural connectivity.

In this paper, we use the density field approach in combination

with model-generated neurons in order to estimate neural

connectivity. Density fields of axonal and dendritic morphologies,

which we call morpho-density fields (MDFs), describe the statistical

distributions of axonal and dendritic mass in the space around the

soma. Axonal and dendritic MDFs are also referred to in the

literature as fiber densities [2], length densities [3], and statistical

representations [4]. We estimate the MDFs using a vast ensemble

of model-generated neurons that have been shown to be realistic

representations of their biological counterparts based on many

statistical properties [5]. These MDFs are then used for estimating

synaptic connectivity between neurons. We thereby test the

influence of sparsity of morphological data and the impact of

assumptions involved in the generation of MDFs. Lastly, we use

our MDF approach to generate neural networks and investigate

the efficiency of their connectivity patterns.
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We build upon the work of Liley and Wright [2] and Kalisman

et al. [4]. Liley and Wright [2] developed a method for estimating

the expected number of potential synapses between neuron pairs,

based on the spatial densities of their axonal and dendritic fibers.

These spatial densities are analogous to our MDFs. Their method,

which is built upon earlier work by Uttley [6], depends on three

limiting assumptions. The first assumption is that the dendritic

MDF is spherically symmetric. Second, for the axonal MDF a

specific spatial distribution is assumed without clear justification.

Finally, it is assumed that the orientations of dendritic and axonal

segments are uniformly distributed over the unit sphere. The need

for these restricting assumptions lies in the sparsity of experimental

data. In order to loosen or drop these assumptions we base the

estimated MDFs on a large ensemble of simulated data. Like

Kalisman et al. [4] we replace the first assumption by the more

realisitic assumption of cylindrical symmetry of the dendritic

MDF. The distribution of the dendritic mass in a pyramidal

neuron typically shows a cylindrical symmetry around the apical

dendrite. We further assume cylindrical symmetry of the axonal

MDF for the same reason. We drop the second assumption

completely. In [4] the third assumption is dropped, and the actual

orientations of the segments are incorporated in the connectivity

calculations. Since this yields a considerable computational burden

we investigate the influence of this third assumption on the

estimated connectivity values.

In both [2] and [4] the methods were applied to limited data of

experimentally reconstructed neurons. We demonstrate that this

sparsity of experimental data leads to a large variation (i.e.,

uncertainty) in the connectivity estimates, whereas connectivity

values based on MDFs calculated from a vast ensemble of model-

generated neurons considerably reduce this variability. To the

extent that the MDFs provide a realistic model of the distribution

of axonal and dendritic mass about the neuronal soma, and the

method for estimating the expected number of potential synapses

between two neurons at a given displacement is reliable, the

resulting connectivity estimates can provide a better prediction of

connectivity in biological neuronal networks.

Biological neurons of any specified type show large variations in

their morphology, and the estimation of stable density fields

therefore requires large data sets. Sparse experimental data sets

will inevitably result in large uncertainties in the density fields and

hence in the connectivity estimates. With large data sets of model-

generated neurons, however, density fields and connectivity

measures can be estimated with much lower variability. Evidently,

the model-generated neurons must reflect truly their biological

variability. As the parameters of the generating model are

optimized on a limited experimental data set, our method remains

dependent on the sampling variation in the experimental data, as

well as on the quality of the model and the assumptions used in

creating density fields and calculating synaptic connectivity.

The paper is organized as follows. In the Methods section we

describe the computational method by which estimators of the

morpho-density fields can be constructed. Then the different

connectivity measures are explained: either based on uniformly-

distributed orientations of segments or not. Also a sparse data

approach is presented in order to investigate the influence of

sparsity. Finally, we describe how a network of neurons can be

generated based on the estimated connectivity measures. In the

Results section, we show how variation in neuron morphology

propagates into uncertainty of connectivity measures. The

pyramidal cell morpho-density fields were directly based on the

axonal and dendritic arborizations of the model-generated cells,

i.e., cylindrical instead of spherical symmetric dendritic fields and

no assumed exponentially decreasing axonal field. Moreover, we

show that the actual orientations of axonal and dendritic segments

do not differ markedly from the uniform distribution assumed in

previous studies. Furthermore, we demonstrate that the generated

neural networks may be classified as economic small-world

networks. The paper concludes with a discussion of the findings.

Methods

Generated neurons
We generated 100,000 L2/3 pyramidal neurons from the rat

cortex using the NETMORPH software tool [5]. The parameters

governing the stochastic growth of the axonal and dendritic arbors

for each generated neuron were specified based on an analysis of

available experimental neurons, as described in [5]. The estimates

of these parameters are consequently subject to sampling

variability due to limited experimental data. Nevertheless, Koene

et al. [5] demonstrate convincingly that the statistical character-

istics of neurons generated by NETMORPH correspond very

closely with those of experimentally-reconstructed neurons. In our

implementation, NETMORPH simulated 18 days of neuronal

development, involving the axon, apical dendrite, and 4 to 8 basal

dendrites. The elongation, turning and branching of the growth

cones — specialized structures at the tip of growing axons and

dendrites — during this process occurred randomly at fixed time

increments within the constraints of the specified parameters.

Hence, each generated L2/3 pyramidal neuron is posited as a

unique and realistic representative from the population of its

biological counterparts. Our approach can also be implemented

using any other computational model for generating neuronal

morphologies.

Pyramidal neurons in rat cortical layers 2 and 3 typically show

cylindrical symmetry in the branching patterns. This is due to the

orientation of their axonal and dendritic arbors: the axon root

segment grows downward from the soma, while the apical

dendrite extends upward and the root segments of the basal

dendrites have a lateral/downward orientation. Furthermore, as a

result of the behavior of the growth cones, the axon and dendrites

branch extensively during development to produce large arbors.

This cylindrical symmetry is exploited in the sequel.

Morpho-density fields
Suppose we center the neuron soma at the origin. Let x denote

an arbitrary point in the space around the soma. Consider all

possible axonal morphologies v that can develop for a given

neuron type, and let p(v) denote the probability density in v.

Finally, let fa(x,v) represent the axonal segment mass (measured

in length of segment in mm) per unit volume for morphology v at

point x. Then the axonal morpho-density at x is defined as

Ma(x)~

ð
fa(x,v)p(v) dv, ð1Þ

where the integral is taken over all possible axonal morphologies

v. The dendritic morpho-density Md (x) at x is defined likewise.

The collections Ma~fMa(x); x[R3g and Md~fMd (x); x[R3g
then constitute the axonal and dendritic morpho-density fields

(MDFs), respectively, for that neuron type.

We constructed estimators for Ma and Md using the large

ensemble of 100,000 computer-generated neurons. First of all, we

superimposed all generated neurons, such that their spherically-

shaped somata are centered at the origin and the z-axis is parallel

to the apical dendrite. Second, we discretized space into voxels of

2|2|2 mm3. Now, the estimated dendritic MDF at position x

A Morpho-Density Approach
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would equal the average dendritic segment length per mm3 at x.

However, in a third step we exploited the cylindrical symmetry of

the MDFs, as was done in [4]. To this end, we averaged the MDF

values over points (x,y,z) with x2zy2~r2, where r is the

horizontal displacement from the vertical z-axis. This average

morpho-density field was then stored as a function of vertical

displacement from the soma (z) and horizontal displacement from

the vertical axis (r). This yielded the estimated dendritic MDF

M̂Md (r,z), and likewise the estimated axonal MDF M̂Ma(r,z).
Although these smoothed MDFs were stored in a two-dimensional

array, one can easily convert back to the three-dimensional (x,y,z)
space, taking into account a proper normalization.

Defining connectivity
Connectivity between a pre-synaptic and a post-synaptic neuron

is measured by the expected number of potential synapses between

the two neurons. A potential synapse is a site where an axonal

segment of the pre-synaptic neuron and a dendritic segment of the

post-synaptic neuron meet within a certain distance e. Throughout

this study e~2 mm. The number of such potential synapses

between two neurons of a specific type varies about a certain

mean. This mean (or expectation) can be computed using MDFs,

since the MDFs contain the average segment length density of the

neuronal mass. Hence, for any neuron pair we computed N , the

expected number of potential synapses. N~N(s) depends on the

displacement s~(r,f) between the somata of the two neurons

involved, where r is the displacement in the horizontal (x,y)-plane

and f is the displacement in the vertical direction (see Figure 1).

Connectivity based on uniform orientations
In [2] the expected number of potential synapses is derived,

assuming that orientations of both axonal segments and dendritic

segments are uniformly distributed over the unit sphere. The

formula derived for N for displacement s in [2] is

Nu(s)~
pe

2

ð
V

Ma(r)Md (r{s)dV , ð2Þ

where r is integrated over V , the volume containing the overlap

between the two MDFs. The subscript u in Nu denotes the

assumption of uniformly-distributed segment orientations. In [2]

Md is estimated using Sholl plots of experimentally reconstructed

neurons, assuming spherical symmetry of the basal dendrites, and

the estimate for Ma is based on an exponentially decaying

distribution that is somewhat ad hoc. In place of Ma and Md , we

used our estimated MDFs, M̂Md (r,z) and M̂Ma(r,z), based on the vast

representative sample of generated neurons. The estimated

number of potential synapses then becomes

N̂Nu(s)~
pe

2

X
k

M̂Ma(rk)M̂Md (rk{s)D: ð3Þ

Here the overlap between the two cylindrical volumes containing

M̂Ma and M̂Md is partitioned into a fine grid of contiguous voxels vk

at corresponding locations rk, each having volume D. Figure 1

illustrates the two cylindrically symmetric MDFs at displacement

s~(r,f), with the overlap region shaded. Using formula (3) we

estimated Nu(s) for a range of values of r (the horizontal

displacement) and f (the vertical displacement).

Connectivity based on actual orientations
The assumption of uniformly-distributed segment orientations is

arguable. Dropping this assumption implies that in the computa-

tion of formula (2) the actual orientations of the segments have to

be taken into account. This naturally leads to the axonal and

dendritic templates Fa and Fd introduced by Kalisman et al [4]. A

template F (r,v) denotes the density of (either axonal or dendritic)

segments having orientation v at position r. The number of

potential synapses then becomes

No(s)~2e

ð
V

Fa(r,va)Fd (r{s,vd)sin c(va,vd ) dvadvd dV , ð4Þ

where c(va,vd) is the angle between orientations va and vd. The

subscript o in No denotes the incorporation of actual segment

orientations. In [7] the computation of formula (4) is facilitated by

discretizing the range of the orientations into seven principal

directions v1~(1,0,0), v2~(0,1,0), v3~(0,0,1), v4~(1,1,1),
v5~({1,1,1), v6~(1,{1,1), v7~({1,{1,1). Moreover, in

the estimated templates F̂Fa and F̂Fd based on experimental L2/3

pyramidal neurons, the cylindrical symmetry of these neurons is

exploited. The resulting discretized version of formula (4) is (see

[4])

N̂No(s)~2e
X

k

X7

i~1

X7

j~1

F̂Fa(rk,vj)F̂Fd (rk{s,vi)sin c(vi,vj)D, ð5Þ

where the sum over k is defined in the same way as in formula (3).

For sparse templates F̂Fa and F̂Fd , based on only a few neurons,

the computation time needed for (5) is comparable to that for (3).

However, for non-sparse templates, based on a large number of

generated neurons, computing (5) is significantly more time-

intensive than computing (3). Therefore, the grid of values of r

and f that we used for computing N̂No(s) was coarser than that for

the computation of N̂Nu(s).

Connectivity based on sparse data
To investigate the influence of sparsity of data, we compared

our MDF approach to two sparse data approaches. First we

computed (5) for simulated data, consisting of 10 to 1000 neurons.

For each sample size 20 different data sets were simulated and N̂No

Figure 1. Overlap between the axonal and dendritic morpho-
density fields when the soma center of the latter is displaced
from that of the former by s~(r,f).
doi:10.1371/journal.pone.0086526.g001
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was computed. We anticipated that the 20 estimated MDFs would

vary less for larger sample sizes, and, hence, that the variation in

the 20 values of N̂No would decrease with sample size. This is

quantified in the estimated standard deviation of N̂No for each

sample size. This whole procedure was repeated for different

displacements s~(r,f).

Second, we applied one of the existing sparse data approaches,

the smoothing method presented by Stepanyants and Chklovskii

[7]. Their approach to estimating the expected number of

potential synapses between neurons uses an estimate of the spatial

density of the neurite fibers based on a set of experimental

neurons. For each available reconstructed neuron, its axonal and

dendritic segment geometries are convolved with a Gaussian

kernel to create continuous three-dimensional axonal and

dendritic density profiles. The estimated number of potential

synapses between a pre-synaptic neuron and a post-synaptic

neuron at displacement s is then computed as

N̂Nk(s)~2e
X

i,j

li
al

j
d Dsin vi

a,vj
d

� �
D

exp { ri
a{(r

j
d{s)

��� ���2

=4s2

� �
=(4ps2)3=2,

ð6Þ

where each individual axonal or dendritic segment is characterized

by its position with respect to the soma ra or rd , its length la or ld ,

and its orientation va or vd , respectively. The subscript k in Nk

denotes the kernel smoothing approach. This formula involves the

two parameters e (as in (3) and (5)) and a smoothing parameter s
(the standard deviation of the Gaussian kernel). In [7] the range

for the latter parameter is given as 10 to 30 mm. We computed (6)

for different displacements and varying values of s.

Neural networks
Given the estimated number of potential synapses for various

displacements, it is possible to generate a random directed

weighted neural network to represent L2/3 pyramidal neurons

in the rat cortex. The vertices represent the neurons, and each

directed edge from one vertex to another represents a potential

synaptic connection from the pre-synaptic neuron to the post-

synaptic neuron. The weight of the connection between any

neuron pair represents the strength of the connection and is based

on the estimated number of potential synapses. We randomly

generated locations (the vertices) for the somata of simulated

pyramidal neurons within a cylinder with no two vertices closer

than 20 mm. For each pair (i,j) of vertices we computed

Ni,j~N̂Nu(s) with s the directed displacement between the two

vertices.

Once a neural network has been generated, the efficiency of its

connectivity pattern can be investigated. In biological neural

networks, strong inter-connectivity among neighboring neurons

may enhance local computational efficiency, and short paths

between local clusters may enhance the transmission of informa-

tion throughout the network [8–11]. For binary graphs the small-

world coefficient is typically used for assessing the efficiency of the

network [11,12]. This coefficient depends on shortest path lengths

and cluster coefficients. However, since the definition for the

cluster coefficient of weighted graphs has not yet been settled, the

small-world coefficient is not directly applicable for weighted

directed graphs. Latora and Marchiori have proposed a proper

alternative for weighted graphs in their efficiency measures [13].

In their approach a weighted graph is given by its adjacency

matrix A~(ai,j) and its weight matrix W~(wi,j). The adjacency

value ai,j equals 1 if the connection from node i to j exists, and

equals 0 otherwise. The weights wi,j are given for all connections,

including the connections that do not exist, i.e. those with ai,j~0.

The efficiency of a weighted graph G consisting of N vertices is then

defined as

E(G)~
1

N(N{1)

X
i=j[G

1

di,j

ð7Þ

where di,j is the shortest path from i to j. The length of a path is

defined as the sum of the reciprocals of the weights of its edges.

Small weights correspond to long/weak connections, whereas

large weights represent short/strong connections. The global

efficiency of a graph is

Eglob~
E(G)

E(Gideal)
ð8Þ

where Gideal is the weighted graph with all ai,j~1. The local

efficiency is

Eloc~
1

N

X
i[G

E(Gi)

E(Gideal
i )

ð9Þ

where Gi is the weighted subgraph consisting of neighbours of

vertex i. Both these efficiency values are between 0 and 1. For

binary networks, global efficiency is closely related to the average

shortest path length, while the local efficiency value expresses the

local connectivity, like the cluster coefficient for binary graphs.

The cost of a weighted network expresses the weighted number of

realized connections and is defined as

Cost~

P
i=j

ai,jwi,j

P
i=j

wi,j
: ð10Þ

An economic small-world network has high global and local efficiency,

while the cost of such a network is low [13]. Such networks can

efficiently process information at low infrastructural cost.

In order to apply these efficiency measures to our generated

neural networks, we needed to define both an adjacency matrix

and a weight matrix for each generated network. The adjacency

value ai,j , representing the existence of a connection from i to j,

was generated in the following way: we randomly generated each

ai,j as the outcome of a Bernoulli trial with success probabilty

equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni,j=maxk,l Nk,l

p
. The elements of the weight matrix

were defined by wi,j~
ffiffiffiffiffiffiffi
Ni,j

p
. Using this combination of ai,j and

wi,j , we ensure that the expectation of wi,j|ai,j is linear in Ni,j . In

other words, the realized weighted connection strength between

two neurons in the generated network scales linearly with the

expected number of potential synapses between them.

Results

Estimated morpho-density fields

Figure 2 displays the value of the estimated MDF M̂Md for the

dendritic arbors near the neural soma as a function of the radial

distance rd and height zd , based on an ensemble of 100,000 L2/3

pyramidal NETMORPH-generated neurons. The left and right

panel show the same estimated MDF from two different

perspectives. Note that this dendritic morpho-density estimate

A Morpho-Density Approach
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has a peak at about zd~25mm for small rd , corresponding to the

position of the apical dendrite above the soma before it branches

off in all directions. The morpho-density is low at the soma

(around zd~0mm), then has a taller peak at about zd~{5 mm,

corresponding to the extension of the basal dendrites downward

and away from the soma. Basal dendrites generally spread out as

they extend from the soma, accounting for the ridge in the

morpho-density for zdv0 mm and 0mmvrdv24mm. As we move

away from the soma, the morpho-density decreases to very small

values, due to the dispersion of the dendrite arborization over the

surrounding volume.

Similarly, Figure 3 displays the value of the estimated MDF M̂Ma

for the axonal arbors near the neural soma as a function of the

radial distance rd and height zd , based on the same ensemble,

from two different perspectives. The axonal morpho-density has a

single peak just below the soma, from which the axon emerges

before branching away. As we move away from the soma, the

morpho-density decreases to very small values, due to the

extensive dispersion of the axon over the surrounding volume.

The heatmaps in Figures 4 and 5 give yet another visualization

of the morpho-densities near the soma. Figures 2, 3, 4 and 5

demonstrate an additional advantage of using a large generated

data set instead of a sparse data set: given ideal simulated neurons,

the morpho-densities of biological neurons can be estimated and

visualized for a fine resolution of radius and height values, r and z.

This resolution would increase as the voxel size decreases.

Estimated connectivities

Figure 6 shows N̂Nu(s), the estimated number of potential

synapses (3) assuming uniformly-distributed segment orientations,

for various values of s~(r,f), based on MDF estimates made from

100,000 simulated neurons. The figure demonstrates the continu-

ity of the function N̂Nu(s) over its domain. This suggests that Nu(s)
can be reasonably estimated for any s~(r,f) by interpolating

among the stored grid of previously-computed values without

having to resort to (3) in future instances. These values for N̂Nu(s)
are consistent with the corresponding estimates presented in

earlier studies of connectivity among L2/3 pyramidal neurons (see

[1]).

Figure 7 shows N̂No(s), the estimated number of potential

synapses (5) using the actual segment orientations (rounded to the

nearest principal direction), for various values of s~(r,f), based

on 100,000 generated neurons. Since the computation of N̂No is

significantly more time-intensive than the computation of N̂Nu, the

grid for (r,f) taken in Figure 7 is coarser than that in Figure 6.

Nevertheless, the shapes of the lines for the different f values look

similar to those in Figure 6.

In Figure 8 a comparison of the two methods is made for five

values of f. It shows both N̂Nu(s) based on (3) and N̂No(s) based on (5)

for a selection of r and f values. For r~0mm and small f the

estimated connectivity values N̂Nu assuming uniformly-distributed

segment orientations are lower than the estimated connectivity

values N̂No based on actual segment orientations. A displacement

with r~0 mm means that there is only a vertical shift between the

somata of the two neurons. Hence, the apical dendrites are partly

overlaid. The orientation of the apical dendrite is far from

uniformly distributed, since it is predominantly vertical. This

causes the difference between the two methods for r~0 mm.

Figure 8 shows that this difference decreases when vertical

displacement increases, i.e. when DfD increases. For larger r values

differences are hardly noticeable and insignificant (see Figure 8).

From Figure 8 it appears that, apart from the apical dendrite,

the orientations of the segments seem not to differ from uniform

over the unit sphere substantially. To investigate this further we

generated 100 L2/3 pyramidal neurons using NETMORPH. For

each neuron we took an inventory of its axonal and dendritic

segments and their respective orientations, that is, their azimuthal

and polar angles in radians. Histograms of the azimuthal and polar

angles are shown in Figure 9 for dendritic and axonal segments

separately. When the orientation is uniformly-distributed over the

unit sphere, the distribution of the azimuthal angle is uniform

between 0 and 2p radians and the polar angle has a sinusoidal

distribution between 0 and p radians. It appears from Figure 9 that

the azimuthal angles comply with this assumption, whereas the

distribution of the polar angles is slightly skewed in both dendritic

Figure 2. The estimated morpho-density for the dendritic arbors near the neural soma with respect to the radius rd and the height
zd (both in microns), with 0 mmvrdv24 mm and {50 mmvzdv50 mm, from two perspectives. Note the different scales for the radius and
height axes.
doi:10.1371/journal.pone.0086526.g002

A Morpho-Density Approach
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and axonal segments (compare with the superimposed sine curves).

This indicates that the orientations are directed somewhat more

downwards than one would expect under a perfect uniform

distribution of the orientations. Such a small skewness may be

expected as the initial dendritic root segments at the start of

neuronal development have a lateral/downward orientation, while

the axonal root segment is fully downward oriented. Nevertheless,

the deviation is very small, and does not play a visible role in the

estimated connectivities.

Results based on sparse data
In the first sparse data approach we investigated the influence of

sparsity on the variability (i.e., standard deviation) of the estimated

number of potential synapses N̂No. To this extent, we computed N̂No

for 20 MDF pairs, with each pair based on a different sample of

model-generated neurons, and estimated its standard deviation

from the variation in the 20 obtained N̂No values. Using

NETMORPH, 20 different MDF pairs were generated, each

comprised from a sample of b virtual L2/3 pyramidal neurons,

Figure 3. The estimated morpho-density for the axonal arbors near the neural soma with respect to the radius ra and the height za

(both in microns), with 0 mmvrav8 mm and {40 mmvzav5 mm, from two perspectives. Note the different scales for the radius and height
axes.
doi:10.1371/journal.pone.0086526.g003

Figure 4. Heat map of the logarithm of the estimated morpho-
density in Figures 2, for small values of the radius r and height
z.
doi:10.1371/journal.pone.0086526.g004

Figure 5. Heat map of the logarithm of the estimated morpho-
density in Figures 3, for small values of the radius r and height
z.
doi:10.1371/journal.pone.0086526.g005
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with b~10, 20, 40, 100 and 1000, respectively. For each sample

size b we created the estimated axonal and dendritic MDFs, and

computed N̂No(s) for (r,f)~(30mm,{30 mm). This yielded 20

estimates N̂No for each sample size b. Since the variation in the

estimated MDFs propagates to the N̂No values, the standard

deviation of the so-obtained N̂No values will drop with increasing

sample size. In Figure 10 these estimated standard deviations are

shown as a function of sample size. The estimated standard

deviation drops significantly between small sample size (10

neurons) and larger sample size (1000 neurons). This figure shows

that connectivity measures based on sparse data suffer from the

large variability in such data, which is reflected in the large

standard deviation for small sample sizes. The MDF approach is

based on a sample size of 100,000 model-generated neurons,

which clearly has a much smaller standard deviation (by

extrapolation of the figure). Consequently, a confidence interval

for No based on a very large sample will be quite narrow, while

one based on a small sample of experimental neurons must of

necessity be rather large.

To investigate the dependence of the standard deviation on the

displacement, N̂No(s) was computed for 14 different values of (r,f),
using a sample size of 10 neurons. Table 1 displays for each

displacement the mean, standard deviation, minimum and

maximum values of these connectivity values. It appears that the

variability in the estimated connectivity is large for all displace-

ments. Reported standard deviations are about 20 to 30% of the

mean, irrespective of the displacement.

In the second sparse data approach we applied the smoothing

method (6). We generated 10 NETMORPH L2/3 pyramidal

neurons and stored the positions, lengths and orientations for all

neurite segments comprising each arbor. As in [7], we combined

in the computation of N̂Nk(s) the axonal template and dendritic

template of one neuron. This yielded 10 combinations. For two

fixed displacements (x,y,z)~(30mm,0 mm,{30mm) and

Figure 6. Estimated number of potential synapses N̂Nu between the axonal arbor of one L2/3 pyramidal neuron and the dendritic
arbor of another when the latter is horizontally displaced by r microns and vertically displaced by f microns, based on formula (3),
assuming uniformly distributed segment orientations.
doi:10.1371/journal.pone.0086526.g006

Figure 7. Estimated number of potential synapses N̂No between the axonal arbor of one L2/3 pyramidal neuron and the dendritic
arbor of another when the latter is horizontally displaced by r microns and vertically displaced by f microns, based on formula (5),
using actual segment orientations.
doi:10.1371/journal.pone.0086526.g007
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(x,y,z)~(0 mm,30 mm,{30 mm) we computed N̂Nk(s) for each of

the 10 combinations for s~10, 20 and 30 mm, using (6). Note that

for both displacements we have (r,f)~(30 mm,{30mm), i.e., the

displacements are equivalent with respect to the cylindrical

symmetry. The results for the two equivalent displacements did

not differ significantly. Therefore, we show in Table 2 the mean,

standard deviation, minimum, maximum values of N̂Nk(s) for each

s, pooled over the two equivalent displacements. Although in [7] it

is stated that N̂Nk-values do not depend strongly on the smoothing

Figure 8. A selection of the values for N̂Nu from Figure 6 (m),
and N̂No from Figure 7 (N).

doi:10.1371/journal.pone.0086526.g008

Figure 9. Frequency distribution of the azimuthal and polar angles of the orientation of axonal and dendritic segments among 100
NETMORPH-generated neurons. A superimposed sine curve shows the slight skewness of the polar angle distribution.
doi:10.1371/journal.pone.0086526.g009

Figure 10. Estimated standard deviations for N̂No based on
sparse data of varying sample size for displacement
r,fð Þ~ 30 mm,{30 mmð Þ.

doi:10.1371/journal.pone.0086526.g010
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parameter s, we find that the N̂Nk-value drops significantly with

increasing s. Moreover, the variability of N̂Nk is high, given that the

estimated standard deviation is larger than the mean. Thus

connectivity estimates based on sparse data using the smoothing

method have large sampling variability.

Economic small-world property

Three neural networks were randomly generated using the N̂Nu

values, as described in the Methods section. Each generated neural

network consisted of 2000 neurons. These 2000 vertices were

distributed uniformly in a cylinder. Three different shapes were

used for the cylinder: a tall pipe, a flat disc and an intermediate

cylinder. These three were chosen in order to check whether the

economic small world property of a neural network depended on

the shape of the volume containing it. The three cylinders had the

same volume, such that the density of each the cylinder was 75,000

neurons/mm3 (comparable to layers 2 and 3 of the rat cortex [1]).

We maintained a minimum distance of 20 microns between soma

pairs since the soma radius is about 10 microns.

Table 3 shows the values of the global and local efficiency for

the three networks. Both local and global efficiency values are very

high (.85%) for all three shapes of the cylinder, reflecting a highly

efficient network in each case, and demonstrating that this

efficiency is robust to the shape of the cylinder. The cost value,

shown in the most right column, is extremely low for all three

shapes, and decreases with decreasing height of the cylinder. This

is due to the fact that the N̂Nu values decrease relatively more

rapidly for increasing r (horizontal displacement) than for

increasing f (vertical displacement), as shown in Figure 6. In the

bottom line of Table 3 the displacements are mainly horizontal,

leading to small values of Ni,j , and hence, a sparse adjacency

matrix which results in a low cost value.

The reported efficiency values are comparable to values

reported for the human brain network, which range up to 85%

[14]. Reported efficiency values for transportation networks are

around 70%, with a cost value similar to the cost values in Table 3

[15]. Such networks can be classified as economic small-world

networks, which are characterized by high global and local

efficiency combined with a low cost. We conclude here that for

each cylinder the generated neural network may thus be classified

as an economic small-world network. Small-world topology

supports efficient communication between neurons at both the

local and global levels while minimizing the demand for resources

[8–11].

Discussion

In this paper we have presented a morpho-density field

approach based on model-generated neurons to estimating neural

connectivity. Morpho-density fields (MDFs) of axonal and

dendritic morphologies describe the statistical distributions of

axonal and dendritic mass in the space around the soma. The

MDFs are extremely useful for visualization of the density of

neurite segments for any specified neuron type. The vivid detail in

the MDFs, as demonstrated in Figures 2, 3, 4 and 5, is made

possible by the ability to generate a large ensemble of simulated

neurons using software such as NETMORPH. By using such tools

to estimate axonal and dendritic MDFs, it will be possible to create

detailed characteristic morphological profiles of different types of

neurons to an extent which cannot be accomplished using small

samples of experimentally reconstructed neurons. These MDF

profiles can subsequently form the basis for the investigation of

neural networks and their synaptic connectivity.

In [1,7,16,17] other approaches to estimating connectivity have

been presented. All these studies represent the spatial densities of

the neuronal fibers through extrapolations from a small set of

experimental neurons, and use these spatial densities to calculate

connectivity measures. Braitenberg and Schüz [16] projected the

dendritic arbors onto a plane perpendicular to the axonal

Table 1. Variability of estimates using (5).

(r mm, f mm) mean std.dev. min max

(0, 230) 4.161 1.325 2.388 5.887

(30, 230) 3.110 0.921 1.883 4.688

(60, 230) 2.173 0.520 1.325 2.830

(90, 230) 1.626 0.331 1.075 1.991

(120, 230) 1.247 0.230 0.918 1.551

(30,0) 2.549 0.801 1.565 3.933

(60,0) 1.832 0.545 1.045 2.754

(90,0) 1.413 0.372 0.872 1.979

(120,0) 1.094 0.267 0.693 1.433

(0,30) 1.884 0.754 1.016 3.044

(30,30) 1.754 0.698 0.956 3.013

(60,30) 1.455 0.53 0.797 2.384

(90,30) 1.206 0.393 0.758 1.983

(120,30) 0.946 0.264 0.609 1.409

Variability in the estimation of the expected number of potential synapses at 14
different displacements s~(r,f) using the formula (5) based on axonal and
dendritic templates created from 9 different sets consisting of 10 generated L2/
3 pyramidal neurons each. Values given are mean, standard deviation,

minimum and maximum of N̂No(s) for indicated displacement s~(r,f).
doi:10.1371/journal.pone.0086526.t001

Table 2. Variability of estimates using (6).

s mm mean std.dev. min max

10 3.121 3.656 0.134 13.321

20 2.575 3.049 0.168 11.382

30 2.143 2.483 0.155 9.356

Results for the sparse data approach, using formula (6). Given numbers are the
mean, standard deviation, minimum and maximum of N̂Nk(s) for each indicated

value of s. For each line 20 values for N̂Nk(s) are generated, based on 10 axon-
dendrite template combinations and on two symmetrically equivalent
displacements, s~(30 mm,0 mm,{30mm) and s~(0 mm,30 mm,{30mm).
doi:10.1371/journal.pone.0086526.t002

Table 3. Local and global efficiency.

radius
(mm)

height
(mm)

global
efficiency

local
efficiency cost

130 500 0.8685 0.8663 0.005500

200 212 0.8583 0.8563 0.005600

500 34 0.9175 0.8930 0.000022

Local and global efficiency values of the generated network consisting of 2000
neurons, placed in a cylinder of the indicated radius and height. The right-most
column shows the cost values of the networks.
doi:10.1371/journal.pone.0086526.t003

A Morpho-Density Approach

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86526



direction, and made the probability of a connection proportional

to the dendritic density on the projected plane. Hellwig [1]

counted potential synapses occurring between pairs of experimen-

tally reconstructed axonal and dendritic arborizations digitally

juxtaposed over a range of distances, and used the averages over

these pairs to compute connection probabilities. Amirikian [17]

used synaptic density fields based on observed potential synapses

occurring on available two-dimensional drawings of neurons to

estimate the number of synaptic contacts for different displace-

ments. Stepanyants and Chklovskii [7] convolved the locations of

neurite segments of reconstructed neurons with a Gaussian kernel

in order to accomodate the variability in arbor geometries and

measurement imprecision due to small sample sizes. Of all these

approaches, the latter one is closest to the MDF approach, since it

defines neural density in the space, which has a similar

interpretation to that of the MDF. Nevertheless, we have shown

that the MDF approach, using generated neurons from a

parametric outgrowth model, results in estimates of connectivity

which have a much smaller variability than estimates obtained

using the kernel-smoothing method in [7].

In contrast to these approaches described above, our MDF

approach is not based on a limited data set of neuron

morphologies, and does not rely on several restricting assumptions

characteristic of other approaches: spherical symmetry of dendritic

fields [2], a radial exponentially-decreasing axonal density

function [2], a uniform distribution of dendritic and axonal

segment orientations [2], or a smoothing method to create density

profiles [1,7,16,17]. We have shown here that sparsity of data

produces connectivity estimates with high sampling variability.

Using the morpho-density fields, this variability is greatly reduced.

Our obtained estimates N̂Nu and N̂No fall within the range of

corresponding estimates reported in [1] for L2/3 pyramidal

neurons at equivalent displacements. However, rather than

depending on a pool of relatively few representatives of a neuron’s

morphology and averaging the numbers of potential synapses

between neuronal pairs over just a few symmetrically-equivalent

displacements, we rely on a vast number of morphologies. Hence,

the connectivity estimates based on the MDF approach have a

very small standard deviation, as illustrated in Figure 10.

Nevertheless, it should be acknowledged that the sparsity of

experimental data affects the MDF approach as well. That is

because the estimates of the NETMORPH parameters are derived

from the morphological characteristics of a single set of

experimental neurons. Because of the lack of large datasets of

reconstructed neurons, we could not investigate how the

connectivity estimates would change if another sample of neurons

was used. Another sample, or an extension of the current sample,

could result in different experimental distributions, different

NETMORPH parameters and consequently also different con-

nectivity estimates. Whether these differences would be non-

negligible requires further investigation. The availability of

experimental data on neuronal morphologies will increase over

time, and methods for deriving estimates for these parameters will

keep improving, so that the generated neurons which form the

basis of our estimators of the MDFs will become even more

realistic representations of biological neurons. Meanwhile we have

demonstrated convincingly that, given a fixed set of experimental

neurons, we obtain connectivity estimates with a much smaller

standard deviation using the MDF approach (Figure 10, Table 1)

based on that set than we would if we used a sparse data method

(such as the Gaussian convolution approach in (6), Table 2) on the

same set.

The MDFs do not carry spatial correlation information. It is

certainly the case that, in a single instance of a neuron, the

presence of a neurite segment at one location increases the

likelihood of segments being found concurrently at neighboring

locations. In order to take this spatial correlation into account, one

would need to store the full arbor geometry densities v jointly,

instead of storing the densities of the locations marginally, as in (1).

This poses a condition on computational resources that currently

cannot be met.

We have further shown that the assumption of uniformly-

distributed segment orientations is not violated significantly in the

ensemble of generated neurons. The histograms in Figure 9 agree

with a uniform distribution on the unit sphere to a large extent.

The small deviation from the sinusoidal distribution of the polar

angle does not lead to a systematic under- or over-estimation of the

connectivity, apart from the small deviations for r~0mm (see

Figure 8). Hence, once may avoid the computational burden of the

templates in (5) and use (3) instead.

The generated networks based on the estimated connectivity

values appear to be economic small-world networks in terms of

global efficiency, local efficiency and cost values. However, it is still

an open question whether these measures are optimal for

quantifying efficiency of weighted networks. Different approaches

to answering this question are currently being investigated (see the

review in [18] and references therein). In any case, we have

demonstrated that the ability to estimate connectivity among

neurons in this manner provides a simple tool for investigating

connectivity properties of neural networks.

The present study has shown how the uncertainty in the

expected number of potential synapses between two neurons

depends on the size of the data set, as visualized in Figure 10 for

L2/3 neurons at a given distance. As these uncertainties find their

origin in the variability between neuronal morphologies, it is

expected that the connectivities, measured between actual neurons

in experimental studies, will show at least similar variability. As

such, the presented MDF approach may be helpful in estimating

the number of neuron pairs required if a connectivity estimate

with a given uncertainty (standard deviation) is desired.

In summary, our morpho-density approach to estimating

neuronal connectivity incorporates the characteristics of neuronal

growth and network formation without being directly dependent

on small data sets. We have shown that the so-obtained estimated

connectivity values have a much lower standard deviation than

connectivity values based on sparse data. Moreover, this approach

is not restricted to L2/3 pyramidal neurons, but can be applied to

any type of neuron, and combinations of different types.

Therefore, we anticipate that our approach may serve as an

important tool for analyzing the shapes of neuronal morphologies

as well as the generation and study of synaptic connectivity of

neural networks.
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