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Abstract

The clustering coefficient is typically used as a measure of the prevalence of node clusters

in a network. Various definitions for this measure have been proposed for the cases of

networks having weighted edges which may or not be directed. However, these techniques

consistently assume that only a subset of all possible edges is present in the network, whereas

there are weighted networks of interest in which all possible edges are present, that is,

complete weighted networks. For this situation, the concept of clustering is redefined, and

computational techniques are presented for computing an associated clustering coefficient for

complete weighted undirected or directed networks. The performance of this new definition

is compared with that of current clustering definitions when extended to complete weighted

networks.

Keywords: binary network, clustering coefficient, complete network, directed network, undirected

network, weighted network

Network theory has been developed to model complex systems which involve

elements represented as nodes (or vertices) of a network and their mutual connections

represented as edges between nodes (Albert & Barabási, 2003; Dorogovtsev &

Mendes, 2003; Newman, 2003). Initially, this theory concentrated on networks whose

edges are binary (either present or absent) and undirected. While such networks

have been sufficient to model many real-world phenomena, there has arisen a need

for further complexity to model systems in which heterogeneous strengths of the

connections between pairs of nodes must be considered, and systems in which the

presence of a connection between node pairs is asymmetric (node i may be connected

to node j, but node j is not necessarily connected to node i). These phenomena

are modeled respectively by weighted networks and by directed networks. Naturally,

these two concepts can be merged to form weighted directed networks (WDNs), in

which the edge from node i to node j may be assigned a different weight from that

of the edge from node j to node i, and either edge can be absent.

Various structural features of networks have been identified as useful properties

which enhance the efficiency of a network in carrying out its essential functionality.

Among these is the concept of clustering. This signifies the presence of well-connected

neighborhoods of nodes within the network, more than would be found in a random

network. The clustering coefficient was developed as a means to measure the degree

to which a network manifests this property. The clustering coefficient was first
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designed with binary undirected networks (BUNs) in mind (Szabó et al., 2004;

Watts & Strogatz, 1998). The measure has subsequently been extended to binary

directed networks (BDNs) and to weighted undirected networks (WUNs) (Barrat

et al., 2004; Li et al., 2009; Onnela et al., 2005; Saramäki et al., 2007; Zhang &

Horvath, 2005; Kalna & Higham, 2006), and eventually to WDNs (Fagiolo, 2007).

The clustering coefficient formulations for weighted networks, whether directed

or undirected, consistently assume that only a subset of node pairs have an edge

between them. See Saramäki et al. (2007) for a comparison among four such

definitions in the literature. For a network consisting of N nodes, these definitions

may involve the N ×N network adjacency matrix A = [aij], in which aij = 1 if there

is an edge (possibly directed) from node i to node j and aij = 0 otherwise, and the

N × N weight matrix W = [wij], which provides the weight wij of the edge from

node i to node j. (Typically aii = wii = 0 for all i, and the weights are normalized

so that 0 � wij � 1 for all pairs i and j. In the directed setting, aij and wij may

differ from aji and wji, respectively.) As with their binary counterparts, the clustering

coefficient for an individual node is generally conceived of as some function of the

edge weights of all existing triangular paths involving that node and all pairs of

adjacent nodes, normalized by some maximum. The clustering coefficient for the

network is then the average of its node-wise clustering coefficients. For sparsely

connected weighted networks, current definitions of this measure are adequate for

describing the prevalence of node clusters in the network.

However, there are many weighted networks which arise in practice for which

either directed or undirected edges exist between every pair of nodes. Such a network

will be referred to as a complete network. For example, when the nodes represent

some random phenomena and the weighted edges represent the pairwise correlations

of these phenomena, it is possible that all correlations are non-zero, although many

may be quite small. In such case the network is a complete WUN, with the weights

taken as the absolute values of the correlations. This would also be the case if the

edge weights are functions of the distances dij between nodes, as when wij = 1/dij
normalized by some constant. In another example based on a neuroscience study

(McAssey et al., 2013), a network is created in which the nodes are simulated

neurons, and each weighted, directed edge from one node to the other represents the

expected number of potential synapses in that direction. The displacement between

neurons may be more favorable for synaptic connectivity between neurons in one

direction as opposed to the other, so the edge weights are not symmetric. Hence this

is an example of a complete WDN.

The concept of clustering has not been defined for the case of a complete network,

that is, a network consisting of N nodes and N(N−1)/2 undirected edges, or N(N−1)

directed edges. Clustering does not make sense for complete binary networks, but

when the edges are weighted, particularly when most of the edges have small weights,

a meaningful definition of clustering is plausible. Applying the currently available

definitions for WUNs and WDNs in the complete network context does not produce

values for the clustering coefficient of a node which have any practical meaning.

Four current definitions for the clustering coefficient of WUNs are described and

compared in Saramäki et al. (2007). The definition of Barrat et al. (2004) for the

weighted clustering coefficient for node i, when applied to complete WUNs (where

the node degree di = N − 1 and aijajkaik = 1 for all i, j, k), always equals 1/(N − 2)
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regardless of the weights:

CB
i =

1

si(di − 1)

∑
j,k �=i

wij + wik

2
aijajkaik =

∑
j �=i wij +

∑
k �=i wik

2si(N − 2)
=

2si
2si(N − 2)

=
1

N − 2
,

(1)

where the strength of node i is si =
∑

j �=i wij . Note that CB
i does not involve the

weights wjk of the connections among neighbors. The definition given by Onnela

et al. (2005) does consider these weights, but the normalization factor preceding the

sum does not involve the node strength:

CO
i =

1

di(di − 1)

∑
j �=i

∑
k �=i,j

(wijwikwjk)
1/3. (2)

The definition of Zhang & Horvath (2005) is based entirely on the weights of all

triangle edges:

CZ
i =

∑
j,k �=i wijwjkwik∑

j �=i

∑
k �=i,j wijwki

. (3)

This definition can assign a high clustering coefficient to a node all of whose

connections to other nodes have very low weight, a result which is counter-intuitive.

The definition of Holme et al. (2007) is very similar to that of Zhang & Horvath

(2005) and thus will not be included here. As is demonstrated below, each of

these definitions fails to provide an intuitively satisfactory value for the clustering

coefficient in the complete WUN context.

To define the clustering coefficient for complete WUNs, it is essential to first

decide what an intuitively satisfactory value in this setting should be. Typically, all

edge weights are normalized by dividing by some constant, e.g., by the maximum

(possible) weight. Hence we assume that each edge weight wij ∈ [0, 1] for all i, j. The

nearer wij is to one, the more nodes i and j will be considered “strong” neighbors,

while the nearer wij is to zero the more these nodes will be regarded “weak”

neighbors. Those pairs with edge weights in the middle range will be regarded as

“moderate” neighbors. It is proposed that the clustering coefficient for any individual

node within a complete WUN should have the following characteristics:

C1. The clustering coefficient for node i should be large (close to one) if the set

of strong neighbors of i are themselves strong neighbors of each other, and

should become smaller as the proportion of its strong neighbors who are

themselves weak neighbors increases.

C2. As the weights of the links involving the remaining neighbors of node i increase,

the clustering coefficient for node i should also increase proportionately.

C3. The clustering coefficient for node i should be small if it has only weak

neighbors, or at most one non-weak neighbor.

To achieve these goals, a new definition is proposed for computing the clustering

coefficient of node i in a complete WUN, and then extended to complete WDNs.

The idea is to capture the mean cluster prevalence of the network as the scale at

which the network is viewed ranges from the zoom-in level (where all edges are

visible) to the zoom-out level (where only the strongest edges are visible). First

consider the complete WUN case:
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1. For t ∈ [0, 1], set At = [1{wij � t}]. This is the adjacency matrix corresponding

to the network Nt formed when an edge is assigned between every pair of

nodes having a weight at or above the threshold t. Denote the element in row

i and column j of At by atij .

2. Let γi(t) denote the number of triangles formed by consecutive edges with

node i at one vertex and any two neighbors of node i as the other two vertices,

and let Γi(t) denote the number of triangles that would be formed with node i

at one vertex if every pair of neighbors of node i were also neighbors of each

other, i.e.,

γi(t) =
∑
j �=i

∑
k �=i,j

atija
t
jka

t
ik = [A3

t ]ii and Γi(t) =
∑
j �=i

∑
k �=i,j

atija
t
ik = [AtOAt]ii. (4)

Here O = 1 · 1′ − I , that is, a matrix consisting of zeros on the diagonal and

ones in all other positions, I is the N×N identity matrix, 1 is a vector of length

N consisting of ones in every position, and 1′ is its transpose. The clustering

coefficient Ci(t) for node i corresponding to Nt is then defined as the ratio of

these two quantities (which is the established clustering coefficient for a node

in a BUN), i.e.,

Ci(t) =
γi(t)

Γi(t)
=

[A3
t ]ii

[AtOAt]ii
, (5)

provided [AtOAt]ii �= 0. Otherwise set Ci(t) = 0.

3. The clustering coefficient Ci for node i corresponding to the complete WUN

is then the average of Ci(t) overall t in [0, 1]:

Ci =

∫ 1

0

Ci(t) dt. (6)

Since Ci(t) is in practice a step function which changes value at the finitely

many points at which t equals one of the edge weights in N, the integral

decomposes into a finite sum.

4. The clustering coefficient C for network N is, as usual, the average clustering

coefficient over all nodes: C = N−1
∑N

i=1 Ci.

This definition can then be extended to the setting in which the edges are directed.

Consider a complete WDN N in which wij and wji are not necessarily equal. Again

assume 0 < wij � 1 for all i, j. The desired characteristics C1–C3 for the clustering

coefficient in a complete WUN still apply in the complete WDN context, but with

the understanding that a neighboring node may be a strong neighbor with respect

to one direction, but a weak neighbor with respect to the other. In this scenario,

there are eight directed triangles corresponding to each triplet of nodes, based on the

eight different combinations of orientations of the three directed edges comprising

a triangle (as described in Fagiolo (2007)). Among these eight directed triangles,

two are cyclic triangles, i.e., triangles in which all three edges have the same cyclic

orientation. The clustering coefficient may be defined in terms of all eight triangles,

or only in terms of the two cyclic triangles. Based on the characteristics C1–C3, the

clustering coefficient at node i should be close to one if, in every directed triangle

(or cyclic triangle) for which the two edges involving node i have large weight, the

remaining edge also has large weight, and should be lower if most of these remaining
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edges have small weight. Moreover, nodes which have no more than one directed

edge of high weight associated with them should have a low clustering coefficient.

Fagiolo (2007) defines the clustering coefficient for a WDN as

CF
i =

[W [1/3] + (W ′)[1/3]]3ii
2[dtoti (dtoti − 1) − 2d↔

i ]
, (7)

where W [1/3] = [w
1/3
ij ], dtoti is the total degree and d↔

i is the number of bilateral

edges between node i and its neighbors. In a complete WDN, dtoti = 2(N − 1) and

d↔
i = N − 1. When only cyclic triangles are considered, Fagiolo (2007) defines the

clustering coefficient at node i as

CFc
i =

(W [1/3])3ii
dini d

out
i − d↔

i

, (8)

where the in- and out-degrees dini and douti both equal N − 1 in a complete WDN.

In both definitions, the normalization factor does not involve the actual strength

of a node, but only its maximum possible strength if all weights equal one, that

is, its degree. In a complete WDN, this results in deflated clustering coefficients

which cannot fulfill characteristics C1–C3. As the size of the network increases, this

deflation can become very serious.

In contrast, the proposed definition of the clustering coefficient for a complete

WDN does fulfill these characteristics, independent of network size. As with the

proposed complete WUN definition, the matrix At corresponding to network Nt

for threshold t in [0, 1] is derived from the asymmetric weight matrix W . The

clustering coefficient for node i in Nt in this setting essentially involves replacing

At with (At + A′
t)/2 in Equation (5), where A′

t is the transpose of At. Dividing by

two ensures that the WDN definition will reduce to the WUN version definition (5)

when At = A′
t. Let

γDi (t) =
∑
j �=i

∑
k �=i,j

(
atij + atji

2

)(
atjk + atkj

2

)(
atik + atki

2

)
=

[(At + A′
t)

3]ii
8

and

ΓD
i (t) =

∑
j �=i

∑
k �=i,j

(
atij + atji

2

)(
atik + atki

2

)
=

[(At + A′
t)O(At + A′

t)]ii
4

,

so that the clustering coefficient CD
i (t) for node i in Nt is:

CD
i (t) =

γDi (t)

ΓD
i (t)

=
[(At + A′

t)
3]ii

2[(At + A′
t)O(At + A′

t)]ii
, (9)

provided the denominator is positive (and equals zero otherwise). Hence, the

clustering coefficient for node i in Nt is the ratio of the number of directed

triangles involving node i to the maximum number of possible directed triangles

involving node i. Then, analogous to its WUN counterpart, the clustering coefficient

for node i in the complete WDN N is CD
i =

∫ 1

0
CD
i (t) dt, and the mean clustering

coefficient for N is CD = N−1
∑N

i=1 C
D
i .

If, however, one prefers to base the clustering coefficient only on the two cyclic

triangles having node i as a vertex from among the eight triangles, the clustering
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5

4

1

3

2

Fig. 1. A complete weighted undirected network consisting of five nodes, with line thickness

corresponding to edge weights (thick edge = 0.9, thin edge = 0.1).

coefficient in a complete WDN based on cycles is defined as

Cc
i (t) =

∑
j �=i

∑
k �=i,j a

t
ija

t
jka

t
ki∑

j �=i

∑
k �=i,j a

t
ija

t
ki

=
[A3

t ]ii
[AtOAt]ii

. (10)

Then the clustering coefficient for node i in the WDN N based on cyclic triangles

is Cc
i =

∫ 1

0 Cc
i (t) dt, and the corresponding mean clustering coefficient is Cc =

N−1
∑N

i=1 C
c
i .

To illustrate the proposed definitions, first consider the WUN depicted in Figure 1.

The thick edges represent edges whose weights equal 0.9, while the thin edges

represent edges whose weights are 0.1. The value of Ci(t) for each of the five nodes

as t ranges from 0 to 1 is shown in Figure 2. As can be observed, Ci(t) is a step

function. However, this function is not necessarily monotonic: Figure 3 shows the

non-monotonic plot of Ci(t) for a single node in a WUN consisting of 100 nodes

with edge weights drawn from a uniform distribution on the interval (0, 1). In each

of these examples, the clustering coefficient for the corresponding node is simply the

area beneath the curve.

Under the proposed definition, the clustering coefficient Ci for any node is a

continuous function of the N edge weights in the network, as is the mean clustering

coefficient C . To illustrate, suppose the strong edges of the WUN shown in Figure 1

each have value x in [0.5, 1] while the weak edges each have value 1 − x. As shown

in Figure 4, as x varies from 0.5 to 1, the clustering coefficients for all five nodes,

and the mean clustering coefficient, vary continuously from a common value of

0.5 to their respective values in the BUN obtained when x = 1. Using the same

illustration, the mean clustering coefficient using the proposed definition and the

three definitions of Onnela et al., Zhang et al., and Barrat et al. as x varies from

0.5 to 1 are compared in Figure 5. As x approaches one it is clear that the different

definitions produce very different values.

Consider again the complete WUN shown in Figure 1. Note that node 1 has only

two strong neighbors (nodes 2 and 5). These two strong neighbors are themselves

strong neighbors, so the clustering coefficient C1 for node 1 should be close to one,

with some room for improvement if the strong edge weights increase above 0.9. The
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Fig. 2. Evolution of Ci(t) for the five nodes in the WUN depicted in Figure 1 as t ranges

from 0 to 1.

two strong neighbors are themselves strong neighbors of the two weak neighbors

(nodes 3 and 4), but these weak neighbors are weak neighbors of each other, which

diminishes their impact on the value of C1. Based on definition (6), C1 = 0.901,

a value that makes sense in this context. However, using the weighted clustering

coefficient definition given in definition (2), CO
1 is only 0.418, due to the greater

influence of the two weak edges, while that given in definition (3) is a more sensible

CZ
1 = 0.832. These values are shown in Table 1. Node 3 has the same configuration

as node 1, and hence the same clustering coefficient regardless of the definition

selected.

Next, note that node 2 has three strong neighbors (nodes 1, 3, and 5). Among

these strong neighbors, there are three edges, two of which are strong. Hence C2

should be about 2/3, and using definition (6) the value of C2 is indeed 0.634, as

shown in Table 1. But using the definition (2), CO
2 is only 0.514. Meanwhile, node 5

has four strong neighbors, among which there are two strong edges out of the

six present. Hence C5 should be about 1/3, and indeed using definition (6) one

obtains C5 = 0.368. But using definition (2) one computes a much higher value of

CO
5 = 0.588, the largest clustering coefficient among the five nodes based on this

definition. Lastly, node 4 has only one strong neighbor, so it cannot participate in
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Fig. 3. Evolution of Ci(t) as t ranges from 0 to 1 for one node in a WUN consisting of 100

nodes with edge weights drawn from a uniform distribution on (0, 1).
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Fig. 4. Continuity of the nodewise and mean clustering coefficients as the common weight

of the strong edges in the WUN shown in Figure 1 varies from 0.5 to 1 while the common

weight of the weak edges varies from 0.5 to 0.
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Table 1. Clustering coefficients for each of the five nodes in the complete WUN depicted in

Figure 1, and for the network itself, based on the proposed definition and two definitions in the

current literature.

Node Proposed Onnela, et al. Zhang, et al.

1 0.901 0.418 0.832

2 0.634 0.514 0.607

3 0.901 0.418 0.832

4 0.101 0.302 0.873

5 0.368 0.588 0.367

Mean 0.581 0.448 0.702

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Strong edge weight

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Definition

Proposed
Onnela
Zhang
Barrat

Fig. 5. The mean clustering coefficients based on four different definitions as the common

weight of the strong edges in the WUN shown in Figure 1 varies from 0.5 to 1 while the

common weight of the weak edges varies from 0.5 to 0.

any strong triangles and thus C4 should be quite small. Indeed, C4 = 0.101 based

on definition (6), while CO
4 is 0.302 using definition (2). Note also that CZ

4 = 0.873

using definition (3), which is the one significant difference between that definition

and the one proposed here, and is quite the opposite of the desired value expressed

in characteristic C3. This is because the normalization factor in definition (3) is

based only on the weights of the edges between a node and its neighbors, so that

the magnitude of the clustering coefficient does not depend on these weights, but

only on the weights of the edges between the neighbors.

Consequently, the proposed definition for the clustering coefficient of individual

nodes in a complete WUN corresponds quite well with the desired characteristics

C1–C3 identified as desirable for the complete WUN context, while alternative

definitions do not.

Moving to the complete WDN context, consider now the complete WDN consist-

ing of five nodes shown in Figure 6. In this figure, a thick arrow indicates a weight
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5

4

1

3

2

Fig. 6. A complete weighted directed network consisting of five nodes, with arrow thickness

corresponding to edge weights (thick edge = 0.9, thin edge = 0.1) and arrow direction

corresponding to edge direction. A double-arrow signifies the same weight in each direction.

of 0.9 for that directed edge, and a thin arrow indicates a weight of 0.1. A double-

arrow signifies the same weight in both directions. Table 3 provides the clustering

coefficient for each node based on all triangles or on cyclic triangles, using both the

proposed definitions (9) and (10) and those of Fagiolo (7) and (8). Note that node 1

has two strong neighbors, nodes 2 and 5, but node 5 is only strong with respect to

one direction. Among the eight directed triangles involving these three nodes, four

of them involve the three strong edges beginning or ending at node 1. Out of these

four, two also involve the strong edge from node 2 to node 5. This is shown in

Table 2. Hence the clustering coefficient CD
1 for node 1 should be about 0.5. Using

the proposed definition (9), CD
1 = 0.501. Meanwhile, definition (7) gives CF

1 = 0.086,

a considerably lower value. If only the two cyclic paths are to be considered (the first

and last rows of Table 2), note that nodes 2 and 5 are strong neighbors of node 1

for only one of these, and that nodes 2 and 5 are themselves strong neighbors in this

triangle (first row of the table). Then the clustering coefficient based on cyclic paths

should be close to one, and indeed the proposed definition (10) yields Cc
1 = 0.901.

This value would approach one as the edge weights are increased. Meanwhile, the

corresponding definition (8) produces a much lower value of CFc
1 = 0.313. Observe

that node 3 has the same topology as node 1, and thus the same clustering coefficient

under either definition.

Now consider node 5 in Figure 6. This node has four strong neighbors, although

for three of them the strength lies in only one direction. Among the eight triangles

involving nodes 5, 1 and 2, two of them include the strong directed edges 5 → 1 and

2 → 5, and both of these triangles include a strong directed edge between nodes 1

and 2. Continuing in this manner through all neighbor pairs, one can identify 18

triangles in which node 5 has a strong directed edge with both neighbors in the pair,

and among these 18 triangles there are six for which the directed edge between the

neighbors is also strong. Hence CD
5 should be about 1/3 according to the proposed

definition, and indeed CD
5 = 0.368, as shown in Table 3. Meanwhile, definition (7)

gives a much lower value of CF
5 = 0.118. Also, 5 of the 18 triangles are cyclic
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Table 2. Summary of the eight directed triangles in Figure 6 involving nodes 1, 2 and 5,

indicating for which triangles nodes 2 and 5 are both strong neighbors of node 1, and among

these, for which triangles nodes 2 and 5 are also strong neighbors, thereby forming a strong

triangle.

Directed triangle Strong neighbors? Strong triangle?

1 → 2 2 → 5 5 → 1 Yes Yes

1 → 2 2 → 5 1 → 5

1 → 2 5 → 2 5 → 1 Yes

1 → 2 5 → 2 1 → 5

2 → 1 2 → 5 5 → 1 Yes Yes

2 → 1 2 → 5 1 → 5

2 → 1 5 → 2 5 → 1 Yes

2 → 1 5 → 2 1 → 5

Table 3. Clustering coefficients for each of the five nodes in the complete WDN depicted

in Figure 6, and for the network itself, when all eight triangles among each node triplet are

considered, and when only the two cyclic triangles are considered, based on the proposed

definitions and the definitions given in Fagiolo (2007).

All triangles Cyclic triangles

Node Proposed Fagiolo Proposed Fagiolo

1 0.501 0.086 0.901 0.313

2 0.301 0.107 0.501 0.398

3 0.501 0.086 0.901 0.313

4 0.421 0.103 0.634 0.371

5 0.368 0.118 0.581 0.418

Mean 0.418 0.100 0.704 0.363

paths, and three of these consist of three strong edges, so the clustering coefficient

based only on cyclic paths should be about 3/5. Using definition (10) for cyclic

paths, Cc
5 = 0.581, in agreement with this reasoning. But using definition (8) one has

CFc
5 = 0.418, which is somewhat lower.

Following the same procedure, one can estimate values favorable to characteristics

C1–C3 for the clustering coefficient of the remaining two nodes in Figure 6, and

apply the proposed definition to obtain values which match these estimates closely,

whether all eight triangles per node triplet are considered or only the two cyclic

triangles per triplet are considered (see Table 3). In each case, applying the definitions

(7) and (8) of Fagiolo to complete WDNs, leads to clustering coefficients which are

considerably smaller and which do not satisfy characteristics C1–C3. This is mostly

due to the inflated normalization factor, as discussed above.

The definition proposed here provides intuitively sensible values for the clustering

coefficient of a node in a complete weighted network, both when the edges are

undirected and when they are directed. Moreover, this definition also produces

reasonable values when a network is not complete, and reduces to the usual

definitions of the clustering coefficient in BUNs and BDNs that are not complete.

Consequently, it could in fact be considered a global definition of the clustering

coefficient for networks in general. Furthermore, the methodology employed here to
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construct a valid and useful clustering coefficient for complete weighted networks

can be generalized easily to the construction of other common network metrics, such

as the minimum path length or the small-world coefficient, for weighted networks

in general. For each t ∈ [0, 1], form a binary network and compute the metric of

interest μ(t) for the binary network. Then integrate μ(t) over [0, 1] to obtain the

desired metric μ for the weighted network.

The given definition allows researchers who model phenomena using complete

weighted networks to discuss the prevalence of tightly-clustered neighborhoods

in these networks, which could not be done using methods currently found in

the literature. For example, a potential field of application is the modeling of

brain networks. Although complete WUNs are studied with increasing frequency

in this field, in many studies the complete WUNs are converted into BUNs by

using some arbitrary threshold on the edge weights, thereby sacrificing much useful

information (see, e.g., the review studies in Tijms et al. (2013) and van den Heuvel

& Fornito (2014)). The researchers then proceed to investigate network properties

using the BUNs. But with the definition proposed here, the neuroscientists can

conduct their investigation using the complete WUNs, and thereby retain the

valuable information carried by the edge weights and arrive at conclusions that

can be properly substantiated. As a result, this approach opens the door to liberate

researchers to investigate network properties of weighted networks to the same

extent that they investigate the same properties for binary networks, without having

to wrest those weighted networks from their natural context.
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