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Computing a ranking network with confidence
bounds from a graph-based Beta random field
BY HSIEH FUSHING1,*, MICHAEL P. MCASSEY2 AND BRENDA MCCOWAN3

1Departments of Statistics and 3Population Health & Reproduction, University
of California, Davis, One Shields Avenue, Davis, CA 95616, USA

2Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan
1081a, 1081 HV Amsterdam, The Netherlands

We address two largely overlooked, fundamental issues in computing a ranking hierarchy
within a society: which information in the network is relevant, and what effect chance
has on the hierarchy. To properly account for uncertainty from limited data, we construct
a random field in a matrix form having entry-wise posterior Beta distributions based on
a graph of pairwise conflict outcomes. To evaluate relevant network information using
information transitivity, another random matrix of synthesized transitive dominance
odds is computed collectively along observed dominance paths. These two matrices
are coupled together to fuse both direct and indirect dominance information. An
ensemble of realizations of this fused random matrix facilitates an ensemble of optimal
ranking networks by means of simulated annealing. Conditional statistical inferences
regarding network features are derived, manifesting the effect of uncertainty. Our
computational approach is suitable for large graphs of pairwise conflict outcomes, and
can accommodate tremendous data heterogeneity—a typical feature in such studies. We
also demonstrate the infeasibility of the classical maximum-likelihood approach, and
expose the mechanistic flaws that stem from completely ignoring relevant information
residing in the graph. We analyse two real datasets of decisive conflict outcomes, the
first involving college football teams, and the second involving an adult rhesus macaque
society in captivity.

Keywords: Beta random field; information transitivity; nonlinear ranking hierarchy;
paired comparison; rhesus macaque
1. Introduction

Consider a society of individuals or organizations among whom many pairwise
conflicts (or competitions) are observed over a period of time. The decisive
outcomes of these conflicts, in terms of which is identifiable as the winner and
which is the loser, carry information about the hierarchy of the society and the
relative ranking of individuals and groups within that hierarchy. A collection of
pairwise conflict outcomes resulting from such a study is naturally represented
*Author for correspondence (fushing@wald.ucdavis.edu).
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by a weighted directed graph. The vertices (or nodes) of this graph represent
all subjects that were observed to have participated in at least one pairwise
conflict with a decisive outcome. We assign a direction and a weight for the edge
between each pair of nodes based on the observed conflict outcomes between the
corresponding pair of subjects. The direction represents the evident dominance of
one subject over the other, while the weight represents the strength of evidence
for that dominance. The most essential advantage of this graphical representation
of the pairwise data is the easy visualization of the data structure from a network
perspective. That is, not only can we immediately detect the extent of the data
heterogeneity, but more importantly we can compute the network structure for
the entire system of nodes.

For example, in the USA, the top 25 National Collegiate Athletic Association
(NCAA) Division I-A college football teams are assigned ranks throughout the
season based on an average of computer-generated rankings and the outcomes of
expert opinion polls. The final ranking at the end of the regular season is used to
determine which two teams are eligible to compete for the national championship
and which teams will participate in various bowl games. The principal criteria for
the rankings are the outcomes of the games, in terms of wins and losses. However,
the 120 teams in this division generally play only about 13 games in a season,
some of which involve opponents outside the division. Hence, a team’s winning
percentage is not sufficiently informative about its strength. It is necessary to base
a team’s rank in part on the performance of that team’s opponents in their games,
so that beating successful teams carries greater weight. Thus, this endeavour
requires a complex inter-related structure, making the computation of the overall
ranking especially challenging.

As a second example, the California National Primate Research Center
(CNPRC) at the University of California, Davis, houses multiple outdoor captive
groups of rhesus macaques. Researchers observe the interactions among the
macaques in each cage and record data regarding conflicts between them. Such
conflicts include all aggressive interactions that had a decisive outcome. For
example, an interaction where an initiator threatens a recipient and the recipient
runs away is counted as a win for the initiator and a loss for the recipient.
Other aggressive behaviours include lunging, chasing and biting. These observed
behaviours demonstrate an intrinsic social hierarchy wherein some individual
macaques and family groups (matrilines) possess a higher dominance status. In
Fushing et al. (2011), a new approach is developed to infer this hierarchy based
on the conflict data. Although this approach proved quite useful to primatologists
and confirmed their hypotheses about the macaque social structure, the method
had several shortcomings which hindered its ability to effectively accommodate
other settings, such as the NCAA rankings.

The general goal of a paired-comparison study is to transform an empirical
directed graph based on these kinds of data into a ranking hierarchy or network.
Two fundamental issues involved in such a task are:

Question Q1: In the directed graph, where is the relevant information
contained?

Question Q2: How can we properly assess the uncertainty of network features?
From the information aspect of Q1, a record of pairwise conflict outcomes

provides only direct and local information for the global ranking hierarchy. The
locality of this direct information alone is not sufficient to construct a ranking
Proc. R. Soc. A
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network without assuming a putative global structure. But if the edges of a
graph are linked in a certain fashion, they serve as evidence that contains indirect
local information about ranking as well. This concept heuristically says that if
dominance information is perceived to transmit through an edge as if through a
unidirectional noisy channel—as in signal processing or communication—then we
should be able to find an abundance of valuable dominance information between
any two nodes indirectly. Specifically, we intuit that dominance information
transmits from one edge through other edges which have the same dominance
direction, although in doing so the information content is attenuated owing to
the addition of noise. This concept is called information transitivity. For example,
if we know that A dominates B and B dominates C , then we can infer that
A dominates C . We further intuit that the information in one edge cannot be
transmitted through any other edge whose dominance direction is contrary to its
own direction. That is, if we know that A dominates B but B is dominated by
C , then we can infer nothing about whether or not A dominates C .

To the best of our knowledge, the information transitivity induced by such a
graph has not yet been explored in the paired-comparison literature. We make use
of this concept to extract indirect dominance information through a sequence of
edges with the same direction, which we call a dominance path. Let the observed
empirical graph be formally denoted by G = (V , E), where V and E are the
collections of subject nodes and of directed edges, respectively. The nodes are
arbitrarily labelled 1, . . . , N , while each directed edge is equipped with weights
(cij , cji), where cij is the number of observed conflicts between subjects i and
j in which subject i was the winner, and cji is the number in which subject j
was the winner. An edge is present between nodes i and j if cij + cji > 0. The
sign of its direction from i to j is positive (+) if cij > cji and negative (−) if
cij ≤ cji . A connected path in G from onset node i to offset node j is considered
a dominance path if node i is linked to node j by successive +-directional edges.
All nodes on a dominance path, excluding the onset and offset nodes, are called
intermediate nodes.

Intuitively, each dominance path implies a certain degree of empirical transitive
dominance of the onset node over the offset node. If there is a large collection of
non-overlapping dominance paths linking the same pair of onset and offset nodes,
then we expect a large degree of empirical transitive dominance of the onset node
over the offset node (here two paths are non-overlapping if they do not share any
common edge, i.e. any common intermediate node). Of course, in any real dataset
there are inevitably many conflicting dominance paths, leading to varying degrees
of uncertainty about the relative ranks of the subjects being studied. We expect
that the use of information transitivity along dominance paths will have a great
impact on the success of the ranking task while providing a resolution to both
Q1 and Q2. The reason for this impact is as follows.

The endeavour to construct a ranking network always faces the challenging
issue: how can we transform local information into global information? The
major challenges come from the fact that, if a classical version of transitivity
is imposed to provide the means of going from a local to a global ranking
network, an empirical directed graph usually cannot be turned into a ranking
network in a straightforward manner owing to the prevalence of divergent
evidence. This divergent evidence is commonly manifested through many
forms of motifs or patterns in the data graph. For instance, one prospective
Proc. R. Soc. A
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high-ranking subject may lose one or more conflicts to a prospective low-ranking
subject. There generally exist many prospective ranking patterns which are
circular. The underlying mechanism of classical transitivity, such as the weak
or strong stochastic transitivity found in Davidson & Solomon (1973), are like
mathematical logic rules. They are too rigid to handle the aforementioned
divergent information, while our use of information transitivity can easily adapt
to such information.

Nevertheless, the classical transitivity constraint is commonly imposed either
implicitly or explicitly in constructing ranking hierarchies. Under this constraint,
the ranking task is performed routinely in many aspects of human society,
from NCAA college football team rankings to business decision-making, from
individual choices to corporate plans, and from governmental policy to academic
research. So would it not be legitimate to question the authenticity of these
applications when there is divergent information embedded in almost all real-
world datasets involving conflict outcomes? Considering such a wide spectrum of
applications, and keeping the authenticity of the question in mind, it is surprising
that in the literature the chief way of avoiding the divergent information
patterns is to make use of a linear dominance model, such as the popular one
proposed by Bradley & Terry (1952), which can be traced back to Thurstone
(1927). This linearity modelling assumption uses only the direct information
from decisive conflict outcomes to construct a likelihood function, and wishfully
thinks that the likelihood contains all the information needed for constructing
the ranking network.

The popularity of this approach is owing to a great extent to the illusion
that it is free from the necessity of accommodating the classical transitivity into
the likelihood function, which would indeed be very difficult if not impossible.
Specifically, let C denote the matrix whose off-diagonal elements consist of the
data cij . The linearity modelling assumption postulates that subject i is equipped
with some intrinsic dominance potential di imposed by nature, which dictates
which individuals in the society will submit to him and to which individuals
he will submit. That is, if di > dj then subject j will submit to subject i in
any confrontation. Under this approach, one arbitrarily sets dN = 0 to establish
a baseline dominance potential, and lets d = (d1, . . . , dN−1). Since subject N is
not necessarily at the bottom of the hierarchy, it is possible for di < 0 for one
or more subjects. All that ultimately matters is the order of the dominance
potentials, so the choice of baseline is not important. Then the likelihood function
is calculated as

LN (d|C ) =
∏
i �=j

K (di − dj)cij ,

where the logistic version of the Bradley–Terry model sets

K (di − dj) = [1 + exp{−(di − dj)}]−1

as the kernel that transforms the difference between dominance potentials into a
probability of winning. Therefore, the full likelihood involves N − 1 parameters.
The resulting ranking is obtained by simply reordering the maximum-likelihood
estimate (MLE) d̂ = (d̂1, . . . , d̂N−1) from largest to smallest.
Proc. R. Soc. A
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We immediately recognize the potential curse of dimensionality that will cause
the MLE to be very unreliable. But beyond that, in this setting, there is neither
a need to deal with the inevitable divergent information, nor to accommodate
classical transitivity. All difficulties are seemingly resolved by this modelling setup
and the likelihood approach. Many practitioners and researchers are so allured
by the convenience and computational simplicity as to believe that the likelihood
function contains all the information embedded in the data set, and that MLE
takes care of all the divergent patterns that appear in the data graph. We claim
this assurance is not valid under this network setting.

This is indeed a misconception in network-related analysis. There is no way
that any modelling structure, such as the linearity in ranking, can model
away the difficulties in accommodating the empirically observed divergent
information and simultaneously achieve the nearly impossible task of retaining the
classical transitivity constraint. The derived likelihood function simply ignores the
divergent information and provides a compromised answer in a heavy-handed but
an unknown fashion. Our concern becomes even more profound when the data
involve considerable heterogeneity, such as when a sizable proportion of pairs
have cij = cji = 0 and prospective high-ranking subjects have almost no direct
contact with very low-ranking ones. We illustrate in the next section that the
MLE approach also produces counterintuitive ranking results. Through the two
examples, we motivate our use of information transitivity and the development
of a methodology that can resolve the central issues of deriving ranking networks
in most paired comparison studies and applications.

The general idea of our approach is this: we develop a random field consisting of
random variables Pij with posterior Beta distribution Be(cij + 1, cji + 1) on each
edge linking node pair (i, j). That is, Pij is a possible value of the probability
that subject i is dominant over subject j , based on the outcomes of the observed
conflicts between them. We regard this as the dominance probability of i over j ,
with corresponding direct dominance odds W 0

ij = Pij/(1 − Pij). This random field
allows us to account for the uncertainty inherent in the data. We further derive a
scheme to compute the dominance odds along each dominance path by mimicking
a signal passing through a noisy channel. A dominance path with no intermediate
nodes provides the most direct and least noisy information about the dominance
odds, while paths with one or more intermediate nodes provide indirect and
noisier information through the instrument of transitivity. Hence, a collection
of non-overlapping paths produces a collection of mutually independent direct
and indirect sources of information about the dominance odds of i over j . The
collection of the corresponding indirect dominance odds computed via transitivity
is multiplied together to produce the synthesized indirect dominance information.
It is then coupled with the corresponding direct dominance odds to produce an
enhanced version P∗

ij of the random variable Pij , which represents the dominance
probability of onset node i over offset node j . The random variables for all
node pairs are collected together to form a random matrix P∗ of enhanced
dominance probability.

Furthermore, to go from local to global information while simultaneously
evaluating the effect of uncertainty, we generate a large ensemble of realizations
of this random matrix. Upon each realization, we use a global optimization
technique—the Simulated Annealing Algorithm—to find the optimal ranking
coordinates as a realization of the ranking network. Finally, this ensemble of
Proc. R. Soc. A
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optimal permutations of i = 1, . . . , N forms the basis for statistical inference on
the ranking network, including a mean-field version of the ranking network for
point estimation of ranking coordinates. We may then provide a confidence set
for any network feature of interest with a desired level of confidence.

Consequently, our development conceptually recognizes that the local
information regarding the dominance of one subject over another makes its
contribution to the global ranking network through its connected neighbouring
subjects. We particularly focus on the whole collection of dominance paths up
to a chosen length between a focal pair of onset and offset nodes. Therefore,
our algorithmic statistical inference is conditional, given the collection of chosen
dominance paths. In this way, our ranking network jointly reflects the locality of
the targeted global structure.

We demonstrate our approach through the analysis of two real datasets of
conflict outcomes. The first involves the 120 NCAA Division I-A college football
teams in the USA during the 2010 regular season. The second concerns a colony
of captive adult rhesus macaques at the CNPRC in 2008–2009. Both computed
ranking hierarchies correspond well with the expectations of experts.

2. Motivation and illustrating examples

We impose two assumptions as the backbone of our developments in this paper:

A1 We have independence among the collection of conflict outcome data.
A2 Non-overlapping dominance paths independently provide degrees of

stochastic transitive dominance potential.

Assumption A1 is made purely for computational feasibility. We are aware
of possible local dependencies, or even global dependence (such as behaviour
cascades), embedded in the directed data graph (Mézard & Montanari 2008).
However, dealing with dependence-induced complexity is beyond the scope of
this endeavour. Assumption A2 is a device to tailor scattered pieces of local
information together. Neither ‘weak’ nor ‘strong’ stochastic transitivity is used
here (Davidson & Solomon 1973). Nonetheless, in the next section, we develop
the concept of information transitivity, and its result, called filtered transitive
dominance, to extract indirect information that can enhance or dilute the direct
dominance information provided by the pairwise conflict outcomes. In this
section, we illustrate why the MLE produces counterintuitive results through
simple examples, and at the same time we motivate resolutions for Q1 and Q2
under assumptions A1 and A2.

For illustration, consider the following two examples: (1) three nodes with
highly heterogeneous conflict outcome records; (2) four nodes with uniform single
conflict outcome records. Both cases result in a counterintuitive ranking order
under the Bradley–Terry model with a logistic probability function.

Example 2.1. Consider three nodes labelled A, B and C , with corresponding
dominance potential parameters dA, dB and dC = 0. Recall that cij is the number
of observed conflicts in which node i defeated node j . Consider the hypothetical
observation record: cAB = 1, cBA = 0, cAC = 0, cCA = 1, cBC = 10 and cCB = 0, as
Proc. R. Soc. A
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(a)

B

A

C

1 : 0

10 : 0

1 : 0

(b)

B

A

C

1 : 0

1000 : 0

1 : 0

(c)

B

A

CD

1 : 0

10 : 0

1 : 0
1 : 0

10 : 0

Figure 1. Three examples of conflict networks. (a,b) Networks of three nodes and (c) four nodes
with edge weights and directions based on decisive conflict outcomes.

graphically portrayed in figure 1a. Under the Bradley–Terry model, the likelihood
is calculated as

L(dA, dB) =
(

edA

edA + edB

) (
edB

1 + edB

)10 (
1

edA + 1

)
.

The MLE is computed to be (d̂A, d̂B) = (1.24, 2.48), with the maximum
log-likelihood value equal to −3.79. The point estimate of the odds of node
A dominating node C is thus equal to ed̂A−dC = e1.24−0 = 3.46. This result is
counterintuitive. The reason is as follows: given that it is almost certain that
node B dominates node C , the one win of node A over node B logically can
be regarded as ‘a fraction of one win’ of node A over node C via the idea of
transitivity. That is, at the very least, nodes A and C should have virtually equal
odds for winning one and losing one to each other. This heuristic idea is also
supported by the following computations. With data cAB = 1 and cBA = 0, the
posterior mean of the dominance probability of node A over node B, based on
the posterior distribution Be(2, 1) derived from the prior distribution Be(1, 1),
is calculated to be 2

3 . Likewise, the posterior mean of the dominance probability
of node B over node C , based on the posterior distribution Be(11, 1), is 11

12 . We
can conservatively compute that the indirect filtered transitive dominance odds
of node A over node C is equal to

2/3 × 11/12
1 − 2/3 × 11/12

= 0.61
0.39

≈ 3
2
.

The direct dominance odds of node A over node C , based on the single loss
of node A to C , is calculated to be 1

2 . Then combining the direct and indirect
dominance odds into the resulting dominance odds of node A over node C is
only 3

2 × 1
2 = 3

4 . Hence, our intuitive computations result in an estimate of the
dominance odds that is strikingly different from the one derived from maximum-
likelihood estimation.

One can ordinarily use the observed Fisher information matrix to obtain a CI
for the MLE, provided there are sufficiently many observations to justify a normal
approximation. A naive normality assumption in this example would yield a 95%
Proc. R. Soc. A
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CI for dA which includes zero, so that the conflict with our intuitive result is
seemingly resolved. However, there are far too few observations to support using
a normal approximation for such an inference.

Switching to the network depicted in figure 1b, where cBC = 1000, the
computed MLE is (d̂A, d̂B) = (3.47, 6.94). Consequently, the dominance odds for
node A over node C is e3.47 = 32.14. However, the 95% CI for dA based on the
observed Fisher information matrix again includes zero, and now there should
be enough observations to justify a normal approximation. Yet the 95% CI for
dB includes zero as well, even though B is clearly dominant over C . Hence, the
likelihood approach is unable to give precise parameter estimates in this example.
Meanwhile, using the same heuristic demonstrated above, the dominance odds of
node A over node C is

2/3 × 1001/1002
1 − 2/3 × 1001/1002

≈ 2.

Therefore, by combining this indirect dominance odds with the direct dominance
odds, the resulting estimate of the dominance odds of node A over node C is
2 × 1

2 = 1; that is, nodes A and C are equal in rank. Heuristically speaking, the
one win of node A over node B is regarded fully as a win over node C , with
no discounting effect as in the case pertaining to the data in figure 1a. This is a
much more satisfying result than that obtained under the likelihood approach.

On the other hand, if there exists an extra dominance path that provides
another independent source of filtered transitive dominance odds, such as is
portrayed in figure 1c, we can heuristically compute the indirect dominance odds
of node A over node C as

(2/3 × 11/12)2

(1 − 2/3 × 11/12)2
=

(
0.61
0.39

)2

≈ 9
4
.

Then combining this indirect dominance odds with the direct odds, the resulting
dominance odds of node A over node C is 9

4 × 1
2 = 9

8 . Hence the dominance
probability of node A over node C is 9

17 (> 1
2). These series of Bayesian

computations give us estimates of the dominance odds which match our intuition
very well. At the same time, we demonstrate the importance of incorporating
information through filtered transitive dominance. In contrast, we also illustrate
that the likelihood approach under a linearity assumption within the Bradley–
Terry model does not work as well as we expected. This computational
approach via the posterior mean, first developed in Fushing et al. (2011), is
rather conservative in extracting indirect dominance information relative to the
improved approach based on the Beta random field which is developed in the
next section.

Example 2.2. In the next example, the ranking uncertainty is more evidently
illustrated than that in the previous example. Consider a set of conflict outcome
data, as portrayed graphically in figure 2, as follows: cAB = 1, cBA = 0, cAC = 1,
cCA = 0, cBC = 1, cCB = 0, cBD = 1, cDB = 0, cCD = 1, cDC = 0, cAD =, 0 and
cDA = 1. The likelihood function of (dA, dB , dC ) under the Bradley–Terry model
Proc. R. Soc. A
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1 : 0

1 : 0
1 : 0

1 : 0

1 : 0

1 : 0

CB

A

D

Figure 2. Example of conflict network. Network of four nodes with edge weights and directions
based on decisive conflict outcomes.

(with dD = 0), with a logistic probability function, is calculated as

L(dA, dB) =
(

edA

edA + edB

) (
edA

edA + edC

) (
edB

edC + edB

) (
edB

1 + edB

)

×
(

edC

1 + edC

) (
1

edA + 1

)
.

The computed MLE is (d̂A, d̂B , d̂C ) = (1.10, 1.10, ±0.0001), with the maximum
log-likelihood value equal to −3.64. The ± is owing to the fact that the likelihood
function around the vicinity of (1.10, 1.10, 0.0) is rather flat and gives rise to an
estimate that is imprecise around zero. However, the MLE seems to indicate
strongly that nodes A and B dominate nodes C and D, despite the sparse and
conflicting evidence. This result can hardly be regarded as reliable. Since there
are only six observations, it is pointless to derive CIs for the parameters using
the observed Fisher information matrix.

In contrast, the approach using a Beta posterior mean does not provide an
assertive dominance odds estimate for any pair of nodes. This inconclusive result
points to an important issue in any paired comparison analysis: the ranking
uncertainty is essential and needs to be accommodated. This paper proposes a
computational approach to bring out such kinds of uncertainty not only for any
pair of nodes, but also for any empirical global features or patterns embedded
within the whole ranking network. The heuristic idea and scheme are illustrated
through example 2. For each pair of nodes, we assume that the prior winning
probability, say Pij , of one node over the other follows the standard uniform
distribution, i.e. the Be(1, 1) distribution. With pairwise conflict outcomes (cij , cji)
between nodes i and j , and nij = cij + cji , the corresponding posterior distribution
of Pij is Be(cij + 1, cji + 1), with posterior mean (cij + 1)/(nij + 2). This pairwise
Bayesian structure with a posterior distribution avoids infinite dominance
odds when there are no losses and a positive number of wins, while keeping
the odds equal to one when there are no losses and no wins. The direct dominance
odds of node i over node j is then denoted by W 0

ij = Pij/(1 − Pij).
Proc. R. Soc. A
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With the above pairwise posterior distribution structure, we can derive
a filtering scheme for transitive dominance as follows. Let W r

ij denote the
indirect dominance odds of node i over node j via information transitivity
of order r , based on all independent dominance paths having r intermediate
nodes. Meanwhile, let W r

ij (·) denote the indirect dominance odds of node i over
node j based on the specific dominance path through the r intermediate nodes
specified within the parentheses. To maintain independence of dominance paths,
edges on any dominance path between two nodes cannot appear in any other
dominance path between the same two nodes. We argue in a supplemental file
that the inclusion of such paths in our computation of indirect dominance odds
is not necessarily a liability, but for the moment we confine our analysis to
independent paths.

For example, consider the winning path from node A to B and node B to D in
figure 2, and denote this dominance path by s(A, B, D). Thus, node B is the only
intermediate node between onset node A and offset node D on this dominance
path. The random variables representing the dominance probability of node A
over node B and the dominance probability of node B over node D, PAB and
PBD, respectively, are filtered—or diluted—and transformed into the transitive
dominance odds of node A over node D through single intermediate node B by
the following scheme:

W 1
AD(B) = max

{
1,

PABPBD

1 − PABPBD

}
.

When there are two or more intermediate nodes, the form of this expression is
extended. For example, along the dominance path s(A, C , B, D), the transitive
dominance odds of node A over node D through intermediate nodes C and B is

W 2
AD(CB) = max

{
1,

PAC PCBPBD

1 − PAC PCBPBD

}
.

This filtering is conservative. In order to obtain a value of W 1
AD(B) larger

than 1, both PAB and PBD must be much larger than 0.5, so that their product
exceeds 0.5. Likewise, to obtain a value of W 2

AD(CB) larger than 1, the product
PAC PCBPBD must exceed 0.5. From this perspective, our filtered transitive
dominance does not follow weak stochastic transitivity (Davidson & Solomon
1973). Also, choosing the maximum is a device designed to retain only the
directional dominance without imposing a penalty. Consequently, this indirect
dominance odds of node A over node D via the filtered transitive dominance
through path s(A, B, D) is a random variable taking a discrete value equal
to 1 with high discrete probability and a continuous value following a density.
Hence, the uncertainty can be well-expressed through the distribution of this
random variable W 1

AD(B). Furthermore, in order to evaluate the complete set of
filtered transitive dominances, we must look for all independent (non-overlapping)
dominance paths of node A over node D via different intermediate nodes among
all subgraphs sharing the edge between nodes A and D.

To complete evaluating the dominance odds of node A over node D, we
must seek all directed dominance paths between the two nodes. So for the
indirect dominance of node A over node D, we observe three paths on the
directed graph displayed in figure 2: s(A, B, D), s(A, C , D) and s(A, C , B, D).
Proc. R. Soc. A
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This latter path through intermediate nodes C and B overlaps with both
s(A, B, D) and s(A, C , D), so we might disregard it outrightly. However, even
if we do not, this dominance path is likely to be filtered, since PAC PCBPBD is
very unlikely to exceed 0.5 in this example. Hence, the resulting dominance-odds
random variable WAD is the product of four random dominance odds: WAD =
W 0

ADW 1
AD(B)W 1

AD(C )W 2
AD(CB). The distribution of WAD will be analytically

derived and numerically evaluated in the next section.
Similarly, we have the following dominance odds derivations:

WBA = W 0
BAW 1

BA(D)W 2
BA(CD), WAC = W 0

AC W 1
AC (B),

WCA = W 0
CAW 1

CA(D), WBD = W 0
BDW 1

BD(C ),

WDB = W 0
DBW 1

DB(A) and WDC = W 0
DC W 1

DC (A),

while Wij = W 0
ij for all remaining pairs (i, j).

Intuitively, based on the six distributions of Wij , it is rather difficult to
conceive that there could possibly be evidence for linearity in ranking among
the four nodes, as strongly indicated by a dominance potential scheme such
as d̂ = (d̂A, d̂B , d̂C ) under the Bradley–Terry model. Many ranking features are
obscured by significant levels of uncertainty. We believe that this computational
approach, using a Beta random field, is far more realistic.

3. Beta random field and filtered transitive dominance odds

We construct a Beta random field upon a network in the following fashion. We
have denoted the dominance probability of node i over node j by the random
variable Pij , and have shown that the posterior distribution of Pij , given cij and
cji , is Be(cij + 1, cji + 1). With such a Beta posterior distribution coupled with a
+ or − direction on each edge of a network, we say that the network is equipped
with a Beta random field.

In this paper, we focus on independent dominance paths of orders 1, 2, . . . ,
up to some reasonable threshold R dependent on the data. Let us first confine
our development to the case R = 1. Let Di

j (1) denote the collection of order-1
dominance paths having node i as the onset and node j as the offset. An
order-1 dominance path in Di

j (1) through node h is then denoted by s(i, h, j).
We illustrate such paths in figure 3. Figure 3a–c presents a dominance path from
onset node A to offset node C through intermediate node B. Each arrow from
node k to node � is labelled with the ratio of wins ck� to losses c�k among observed
conflict outcomes between the corresponding individuals. Note that cBC increases
from 1 to 10 to 1000 from figure 3a to 3b to 3c. In figure 3d a matching dominance
path from node A to node C through intermediate node D has been added to
that which is displayed in figure 3b.

In general, the filtered transitive dominance odds of node i over node j through
the order-1 path s(i, h, j) is defined as

W 1
ij (h) = max

{
1,

PihPhj

1 − PihPhj

}
.
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Figure 3. Examples of dominance paths of order 1. Dominance paths from node A to C through
intermediate nodes B and D, with win–loss ratios.

The distribution of the random variable W 1
ij (h) is derived as follows. First, we

derive the density of random variable Oij = PihPhj/(1 − PihPhj). With some labour
we arrive at

fOij (u) = G(nih + 2)
G(cih + 1)G(cih + 1)

G(nhj + 2)
G(chj + 1)G(cjh + 1)

uchj

(1 + u)chj+3

×
∫ ln{u/(1+u)}

0
(ez)(cih−chj−cjh)(1 − ez)chi

(
ez − u

1 + u

)cjh

dz .

Secondly, we note that the random variable W 1
ij (h) has a discrete part taking the

value 1 with probability qij = ∫1
0 fOij (u) du and a continuous density part specified

by fOij (u) in the range (1, ∞).
The random variable of filtered transitive dominance contributed by the

collection of order-1 dominance paths from node i to node j is then calculated as

W 1
ij =

∏
s(i,h,j)∈Di

j (1)

W 1
ij (h),

and its distribution can be derived theoretically by employing a logarithmic
transform and the mutual independence of the random variables {W 1

ij (h)}.
This derivation is not straightforward, and the finite normal approximation
is unsuitable since each random variable is a mixture of a discrete part and
a continuous part. Although its distribution can be numerically evaluated
using fOij (u), applying sampling techniques to simulate and approximate the
distribution of W 1

ij would be far too clumsy, since the form of fOij (u) is quite
involved. As an alternative, we evaluate the distribution of W 1

ij by sampling from
a random field. Furthermore, it is intuitive that the distributional form of W 1

ij will
be critically determined by the size of Di

j (1). When its cardinality |Di
j (1)| is small,

the discrete part of W 1
ij is still significant, since P(W 1

ij = 1) = ∏
h∈Mi

j
P(W 1

ij (h) = 1)

will be small but not insignificant. But when |Di
j (1)| is large, this product will

approach zero, leaving only the continuous part, so that W 1
ij behaves much like

a continuous random variable.
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Figure 4. Empirical cumulative distribution functions (CDFs) for W1
AC. Empirical CDF for W 1

AC
corresponding to the four configurations shown in figure 3a–d. (P(W 1 = 1) Solid line, 0.5954;
dashed line, 0.3026; dotted line, 0.2517; dashed-dotted line, 0.0902).

In figure 4, plots of the empirical cumulative distributions of W 1
AC for the

four cases displayed in figure 3 are demonstrated. In each case, we draw 10 000
conditional realizations of PAB , given cAB and cBA, from the Be(cAB + 1, cBA + 1)
distribution. We do likewise for PBC and in the fourth case, for PAD and PDC ,
so that we have 10 000 sets of realizations for each of the four cases. For each set
of realizations we compute W 1

AC (B) and, in the fourth case, W 1
AC (D). For the

first three cases, we have W 1
AC = W 1

AC (B), while for the fourth case we have
W 1

AC = W 1
AC (B)W 1

AC (D). The proportion of the 10 000 computations of W 1
AC

for which its value equals one is the empirical probability P(W 1
AC = 1), and is

thus an estimate of the discrete part of W 1
AC . The remaining computations for

which W 1
AC > 1 give the empirical probability P(W 1

AC ≤ w) = F(w) for w > 1,
and is thus an estimate of the continuous part of W 1

AC . The top-most plot of
F(w) corresponds to figure 3a. Below that is the plot of F(w) corresponding to
figure 3b, with that corresponding to figure 3c below it, and the plot
corresponding to figure 3d at the bottom. We note that, as we move from left
to right in figure 3, the discrete part of W 1

AC diminishes, so that the filtered
transitive dominance between A and C will contribute more information toward
the estimate of the dominance probability PAC .

Let us denote the N × N random matrix of filtered transitive order-1
dominance odds by W 1 = [W 1

ij ]. This matrix is based on the Beta random
field and is capable of offering the indirect order-1 dominance odds for the
whole ranking network. Thus, W 1 is a kind of conditioning statistic given the
configuration of the graph. In contrast, the N × N random matrix W 0 = [W 0

ij ],
with W 0

ij = Pij/(1 − Pij), offers the direct dominance odds based on the conflict
matrix C . Combining the direct and indirect dominance odds, we arrive at the
synthesized dominance odds random matrix based on the network graph as

W = [Wij ] =
[

W 1
ij

W 1
ji

· W 0
ij

]
,
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where · denotes the entry-wise product. While, it is always the case that W 0
ij =

1/W 0
ji , it is not generally the case that W 1

ij = 1/W 1
ji . Yet, it is essential that

Wij = 1/Wji so that the enhanced dominance probability derived below satisfies
P∗

ij =1−P∗
ji . Dividing W 1

ij by W 1
ji in the computation of Wij ensures this reciprocal

relationship. Moreover, this step incorporates a balance of all conflicting evidence
regarding the dominance between node pairs, as when there are dominance paths
of various lengths flowing in both directions. Thus, if both W 1

ij > 1 and W 1
ji > 1,

this step incorporates only the relative size of one to the other in the computation
of the synthesized dominance odds Wij and Wji .

As stated above, we may also consider dominance paths of higher order, up to
some threshold. Let Dj

i (2) denote the set of all order-2 dominance paths from
i to j through two intermediate teams, such as when node i beats node h,
node h defeats node k and node k beats node j . To maintain independence of
dominance paths, we must ensure that Dj

i (2) contains no paths which overlap each
other nor overlap any paths in Dj

i (1). This can create considerable computational
complexity, and we argue in the electronic supplementary material that treating
all distinct dominance paths as independent, whether or not they overlap, is
very unlikely to inflate the indirect dominance odds. We then denote the random
variable representing the order-2 dominance odds of node i over node j through
all order-2 dominance paths from i to j as

W 2
ij =

∏
s(i,h,k,j)∈Dj

i (2)

max
{
1,

PihPhkPkj

1 − PihPhkPkj

}
.

The computational impact of order-2 information transitivity on the indirect
dominance is thus even more conservative, as the product PihPhkPkj must
exceed 0.5. Likewise, we compute the random variable representing the order 3
dominance odds of node i over node j through all order-3 dominance paths from
i to j as

W 3
ij =

∏
s(i,h,k,�,j)∈Dj

i (3)

max
{
1,

PihPhkPk�P�j

1 − PihPhkPk�P�j

}
.

We continue to impute dominance odds via transitivity in this manner through
order R. The information is then synthesized to produce the random variable Wij
representing the overall odds that node i dominates node j based on both direct
conflicts and indirect dominance through information transitivity up to order R,
computed as

Wij = W 0
ijW

1
ij . . . W R

ij

W 1
ji . . . W R

ji
.

The denominator is designed to ensure that Wij = 1/Wji . The matrix W = [Wij ]
then contains the synthesized dominance odds up to order R for all node pairs.
Now it may be that node j has beaten node i, even though there is evidence
that node i dominates node j indirectly through various dominance paths of
different orders, leading to conflicting information. There may even be dominance
Proc. R. Soc. A
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paths of various orders from j to i that produce further conflict. But our method
accommodates and integrates such conflicting information to produce a balanced
evaluation of the dominance relationships among all pairs of nodes.

It is necessary, of course, to choose a suitable value for the threshold R. Finding
dominance paths and computing the order r odds up to a large value of R among
all N (N − 1) ordered pairs of nodes would be computationally intensive even for
a moderate N . But if there are few order-0 and order-1 dominance paths between
a majority of node pairs, R should be sufficiently large so as to extract enough
useful transitive dominance information from the record of conflicts such that a
meaningful ranking is possible. We regard the distance from node i to node j to
be the shortest dominance path from i to j . The diameter of the network is the
largest distance among its N (N − 1) ordered node pairs. We may also consider
the average distance among the node pairs. To ensure useful ranking information
without overtaxing the computations, we suggest that R should be chosen at least
as large as this average distance, and no larger than the diameter.

Finally, the enhanced dominance probability matrix P∗ based on W is
derived as

P∗ = [P∗
ij ] =

[
Wij

1 + Wij

]
.

We can then construct the ranking hierarchy based on an optimal permutation
of the rows and columns of P∗, and make inference based on the distribution of
the ranking network. These tasks are performed by applying the algorithm given
in the next section. We believe that the effect of chance in the ranking hierarchy
is addressed in this fashion for the first time in the paired-comparison literature.

4. Computing algorithm

Our computing algorithm is conditional on the observed empirical graph, in the
sense that we not only fix the observed conflict outcomes matrix C , but also, for
each (i, j) pair, we fix its empirically observed collection of dominance paths. Our
algorithm based on the Beta random field takes the following steps:

Step S1: We choose a large integer K and a suitable threshold R, and create
an ensemble of K dominance probability matrices conditioned on the conflict
matrix C . For the kth replication, 1 ≤ k ≤ K , we generate a random value P (k)

ij

from Be(cij + 1, cji + 1) for all (i, j) with i < j , and set P (k)
ji = 1 − P (k)

ij . However, to
reduce the variability in the random field, when cij = cji = 0 we set Pij = Pji = 0.5,
which is the mean of the corresponding Be(1,1) distribution. Then we follow
the procedural steps described in the previous section to derive the matrices
W 0, W 1, . . . , W R, and finally the synthesized dominance odds matrix W and the
corresponding enhanced dominance probability matrix P∗(k). Once we have the
ensemble {P∗(k)}Kk=1, we compute their component-wise average

P̄∗
K = 1

K

K∑
k=1

P∗(k),

which we call the mean field.
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Step S2: For each enhanced dominance probability matrix replication in the
ensemble {P∗(k)}Kk=1, as well as for the mean field P̄∗

K , an optimal set of ranking
coordinates is individually computed and denoted by s(k), k = 1, . . . , K , and s̄K ,
respectively. Ideally, an optimal set of ranking coordinates s(k) is a permutation of
the node indices (1, 2, . . . , N ) such that, when the rows and columns of P∗(k) are
permuted according to s(k), the resulting permuted matrix 〈P∗(k)〉s(k) has as little
cumulative error as possible. An error occurs whenever one subject is assigned
a rank j while another subject is assigned an inferior rank i > j , but the (i, j)
component of 〈P∗(k)〉s(k) exceeds 0.5. The error is magnified based on the extent
to which this component exceeds 0.5, and based on the size of the difference i − j
in their assigned ranks. Hence, an optimal permutation should produce as few
entries exceeding 0.5 as possible in the lower triangle of the permuted matrix,
and those entries which do exceed 0.5 should be as small as possible and as close
to the diagonal as possible. Mathematically, we define the optimal permutation as

s(k) = argmin
s

∑
i>j

H (〈P∗(k)
ij 〉s)G(i, j),

where the minimum is taken over all possible permutations s of (1, 2, . . . , N ), the
loss function H (p) is a function on [0, 1] that takes the value zero for p ∈ [0, 0.5]
and takes strictly increasing positive values on (0.5, 1], and the penalty function
G(i, j) increases as (N + 1 − j)(i − j) increases, i.e. as (i, j) is further from
the diagonal. In our computation we use H (p) = max(0, − log[2(1 − p)]), as in
Fushing et al. (2011), and G(i, j) = exp[(N + 1 − j)(i − j)/N 2]. The optimization
is carried out by applying the simulated annealing algorithm (Kirkpatrick et al.
1983), which requires choosing a suitable neighbourhood system and a scheme
for decreasing the temperature. See Fushing et al. (2011) for a full description.
In general, the cumulative error is substantially lower when the mean field P̄∗

K
is optimized than is the cumulative error when any individual matrix P∗(k)

is optimized.
Note that the optimization on K + 1 matrices via simulated annealing can be

split up among multiple servers to reduce the computational time. Moreover, if
K is large, one may choose to optimize only a subset of the matrices among
{P∗(k)}Kk=1. For example, if K = 1000 one might optimize every tenth matrix and
also the mean field. This would yield a mean-field ranking based on all 1000
generations of P∗, and 100 sets of ranking coordinates suitable for empirical
confidence bounds, as described in the next step.

Step S3: We take the optimal set of ranking coordinates s̄(K ), based on
optimization of the mean field P̄∗

K , as the point estimate for the ranking
coordinates of the network. The confidence set for any network features of interest
are then based on the ensemble {s(k)}Kk=1. For instance, a 90 per cent empirical CI
for the rank of any particular node can be derived by computing the 5th and 95th
quantiles of the distribution of that node’s assigned ranking among {s(k)}Kk=1.

We apply this computing algorithm with K = 1000 to the network of four
nodes displayed in figure 2. The resulting point estimate s̄K of the ranks for
this network assigns ranks 1, 2, 3 and 4 to nodes A, B, C and D, respectively.
However, owing to the sparsity of information about conflict outcomes in this
example, the uncertainty of the ranking estimates is very high. This uncertainty
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Figure 5. Frequency distribution of rankings. Bar plots for each node of figure 2 indicating the
frequency of assignments of that node among each of the four possible ranks among 1000 iterations
of our computing algorithm applied to the corresponding network.

can be observed in figure 5, which provides for each node a bar plot indicating
the frequency of assignments of that node among each of the four possible
ranks. Indeed, it would be unwise to confidently assert the true rank of any
node here.

As a further illustration, we create an artificial dataset consisting of 20 subjects
which are ranked linearly, with each subject assigned a true dominance potential
greater than 0.5 over all lower-ranking subjects, which increases as the difference
in ranks increases. We randomly select pairs to experience conflicts, and determine
the outcome of each conflict stochastically based on the true dominance potential.
Each subject experiences between 17 and 24 conflicts, so that sufficient data
should be available to estimate well both the true ranking and the true dominance
potentials using the Beta random field. Given that there are many cases in our
generated data in which a lower-ranking subject won the conflict (31 out of 200),
we expect some ranking error. The point estimate for the ranking coordinates
after executing steps S1 and S2, with K = 1000 and R = 3, is

1 6 3 4 9 2 10 8 16 7 11 5 13 14 12 17 18 15 19 20.

The ranks of nine subjects are estimated perfectly, while all but two are incorrect
by no more than four positions. Hence, the overall ranking error is quite low.
Looking instead at the estimates of the pairwise dominance potentials, we
count the frequency with which the true dominance potential falls within the
corresponding 90 per cent empirical CI, and find success in 95 per cent of
the cases. On average, the point estimate of the dominance potential based on
the mean field differs from the true dominance potential by 0.144. Hence, we have
strong grounds for confidence in our ability to accurately predict the outcome of
a new pairwise conflict based on past observations.
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5. Analysis for real datasets

(a) Ranking of college football teams

To illustrate our method, we analyse the games played among the 120 NCAA
Division I-A college football teams in the United States on a week-by-week
basis throughout the 15 weeks of the 2010 regular season. We base our indirect
dominance odds calculations on dominance paths of orders one, two and three,
since the network diameter is 4 while the average distance between nodes is 2.43
and the median distance is 3. Since the network is very sparse, we do not make
the effort to ensure that all dominance paths are non-overlapping. As we discuss
in the electronic supplementary material, this should only make the estimates
more conservative, if it impacts them at all. For each week of the season, we
construct a competition matrix based on all games played between Division I-
A teams up through the previous week. In this matrix, cij denotes the number
of games in which Team i has beaten Team j up to the current week of the
season. We then generate K = 100 realizations of the Beta random field, and for
each realization we compute the direct and indirect dominance odds, form the
enhanced dominance probability matrix, and obtain an optimal ranking order
for the 120 teams, following the procedures described above. We also obtain the
corresponding mean field and its optimal ranking order.

In table 1, we list the top 21 teams at the close of the 2010 regular season based
on the computed optimal ranking order of the mean field. We also include the
remaining four teams which received an official rank from the Bowl Championship
Series (BCS), and provide the rank assigned by the BCS and the regular season
record for games against other Division I-A teams. We observe considerable
disagreement between some of our rank assignments and both the BCS rank
assignments and the average computer ranks. For example, we give South
Carolina a rank of 7 and Alabama a rank of 8, while their BCS ranks are 20
and 16, respectively. Meanwhile, although Florida State, Hawaii, West Virginia
and Central Florida were among the top 25 BCS ranks, we place them far down
the list. This disagreement demonstrates the importance of including indirect
dominance odds via dominance paths when evaluating the relative strengths
of teams.

During the first five weeks most components of P̄∗ equal 0.5, since few games
have been played, so that numerous mean-field rankings produce a minimum
cost of zero. Hence, there is considerable uncertainty in the rankings. As the
season progresses, the optimal value of the cost function when the rows and
columns of the mean field P̄∗ are permuted according to the computed optimal
ranking increases steadily, reaching 22.89 by Week 10 and 30.34 by the end of the
regular season. When the teams are arranged in an alphabetical order, which is
the order prior to optimization, the computed cost of the corresponding mean field
is 1267.29. Hence simulated annealing produces a dramatic reduction in the cost
by finding an optimal ranking order. It should be noted that many permutations
of the top ranks will produce the same minimal cost, since any pair of undefeated
teams will always have a dominance probability of 0.5 in the mean field.

Figure 6 is a graphical representation of the mean field P̄∗ after its rows and
columns are arranged in the optimal ranking order. Cell (i, j) is coded with a
grey square if P̄∗

ij > 0.5, and is left blank otherwise. The darkness of the grey
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Table 1. Top 21 teams for the 2010 regular season based on the Beta random field, plus the
remaining four teams among the BCS top 25, with the regular season record for Division I-A
games and the rank assigned by the BCS.

rank team record BCS rank

1 Auburn 12–0 1
2 Oregon 11–0 2
3 TCU 11–0 3
4 Stanford 10–1 4
5 Arkansas 9–2 8
6 LSU 9–2 11
7 South Carolina 8–4 20
8 Alabama 8–3 16
9 Michigan State 10–1 9
10 Texas A&M 8–3 17
11 Oklahoma 11–2 7
12 Wisconsin 10–1 5
13 Ohio State 11–1 6
14 Nebraska 9–3 18
15 Oklahoma State 10–2 14
16 Utah 10–2 19
17 Mississippi State 7–4 21
18 Missouri 9–2 12
19 Nevada 11–1 15
20 Boise State 11–1 10
21 Virginia Tech 11–1 13
29 Florida State 8–4 23
44 Hawaii 9–3 24
45 West Virginia 8–3 22
57 Central Florida 9–3 25

square represents the value of P̄∗
ij , so that values close to 1 are dark grey and

values close to 0.5 are light grey. Each grey square in the lower triangle indicates
a lower-ranked team that dominates a higher-ranked team, while blank squares in
the upper triangle signify both the counterparts to the grey squares in the lower
triangle and cases in which neither team dominates the other. We observe that the
majority of the grey squares in the lower triangle are light grey, and that they are
concentrated near the diagonal. This concurs with our goal of finding a ranking
order that minimizes the cumulative error. As discussed above, there are other
ranking orders that also achieve this minimum, reflecting the true uncertainty in
the rankings.

We may also use the components of the mean field computed for each week to
help predict the outcomes of future games between teams. That is, we forecast
that Team i will beat Team j if P̄∗

ij > 0.5. As the season progresses and more data
become available, our accuracy should improve. To test this claim, we predict the
outcomes of games for weeks 7–15 of the regular season based on the values in
the matrix P̄∗ at game time, and then check our success rate. Prior to week seven
most of these values are 0.5, so that no prediction is possible for the majority of
Proc. R. Soc. A
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Figure 6. Optimized mean field. Graphical representation of the mean field P̄∗ with its rows and
columns in the computed optimal ranking order. Grey squares indicate cells containing values
exceeding 0.5, with the darkness of a square signifying the magnitude corresponding value.

Table 2. Weekly success rates for predicting game outcomes.

successes total rate

week 7 12 22 0.545
week 8 20 30 0.667
week 9 28 41 0.683
week 10 28 43 0.651
week 11 34 54 0.630
week 12 39 53 0.736
week 13 32 50 0.640
week 14 15 19 0.789
week 15 1 1 1.000

games. Note that the only game in the 15th week is the Army–Navy game. In
table 2, we display the number of successful predictions out of the total number
of games for which a prediction is possible, with the corresponding success rate,
for each week. The rate generally improves later in the season, with a 79 per cent
success rate in week 14. Of course, it can be argued that the outcomes of most
of these games were not surprising to college football fans, and that the ones for
which we were unable to make a prediction are the ones for which an accurate
prediction would be most impressive. Neverthless, the reasonably high success
rates are confirmation of the usefulness of our approach.
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Figure 7. Cage 5 rankings, with uncertainty. Top 30 macaques in Cage 5, according to their
estimated rank coordinates (signified by the small circles), with boxplots indicating the uncertainty
of the individual coordinate estimates.

(b) Ranking of rhesus macaques

We apply our computing algorithm to conflict outcome data collected on a
captive society of rhesus macaques housed at the CNPRC. These behavioural
data were collected between June 2008 and April 2009, and include all observed
aggressive interactions that had a decisive outcome (for detailed methods, see
Beisner et al. 2010). For example, an interaction where an initiator threatens a
recipient and the recipient runs away is counted as a win for the initiator and a loss
for the recipient. Other aggressive behaviours include lunging, chasing and biting.
The group in Cage 5, which was analysed in Fushing et al. (2011), using an earlier
version of the current approach, includes 94 adult rhesus macaques. We obtain an
estimated ranking coordinate for each macaque, along with a distribution of rank
estimates, based on the outcomes of each of K = 100 iterations of our algorithm.
In figure 7, the top 30 macaques are listed according to their estimated rank
coordinates, based on their ID numbers, along with a boxplot that indicates
the uncertainty of that rank estimate. The top-ranking macaque is the alpha
male (ID 24926), whose position in the hierarchy is virtually certain. The Beta
male (ID 22898) occupies the second position with very little uncertainty. The
rank coordinates for the next 28 macaques (mostly females) are less certain,
based on the application of our method to the available data. The simulated
annealing algorithm arrives at coordinate assignments that result in a reduction
in the cost from initial values in the range 333–505 to optimal values in the
range 209–359, with an average reduction of 138. However, when the mean field
is formed, simulated annealing reduces the cost from an initial value of only 22.44
to an optimal value of 11.98. Given the uncertainty in the data, this low value
provides strong evidence of the general accuracy of the estimated ranking of the
94 subjects.
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Table 3. Summary of ranking coordinates for rhesus macaques in Cage 5 grouped according to
matrilines.

matriline ranking coordinates

NRM 1
C7 3 4 5 6 7 10 11 14 17 21 23
X1 9 13 18 19 26 87 91 92 94
S16 15 24 25 30 36 65 67
J6 28 31 32 44
L4 16 29 40
D10 12 42
F10 20 22 27 33 34 35 38 43 45 48 50 51 55 56 59 69 73
N4 39 41 46 53 54 57 58 60 61 66 70 74 76
M10 2 37 47 62 78 81
Z2 8 49 52 63 68 72 75 77 79 80 82 83 84 85 86
G8 64 71 88 89 90 93

Macaque societies are organized according to matrilines. Based upon the
optimal ranking network, we list in table 3 the estimated rank coordinates for the
adult members of each matriline in the Cage 5 enclosure. Males are distinguished
by bold italics. The most significant finding from this analysis is that the ranking
network for this macaque society seems to have a ‘governing’ group consisting of a
dominant matriline (C7) subordinate only to the alpha non-related male (NRM)
and Beta (M10) males. This dominant matriline is at the top of a hierarchy
of matrilines, some of which appear to be on the same tier (e.g. matrilines
X1 and S16). There are also several elite individuals of either gender from
several lower-ranking matrilines, such as the high-ranking male from matriline
Z2. Our results agree well with the expectations of the primatologists at the
CNPRC. This sophisticated structure may be one of the key factors underlying
the group’s stability.

6. Discussion

We show the impropriety and counter-intuitivity of MLE in the task of
constructing a nonlinear ranking network. In contrast, we present an algorithmic
network ranking approach that incorporates both direct and indirect sources
of local information in the data, and provide a basis for conditional statistical
inference that addresses the inherent uncertainty in computing dominance
potential. From both aspects, our approach is rather unconventional, but very
effective. The idea of a Beta random field on a graph is proper and essentially
informative. It is also new. The conditional statistical inference is a brand-new
way to analyse data represented by a graph or network. The computational load
is very economical for even a very large number of nodes.

The perspective of incorporating indirect information extracted from the
empirically observed dominance paths is important in our development. The
induced transitive dominance odds coupled with the direct dominance odds make
our analysis informative and effective. In contrast, MLE and Bayesian analysis
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suffer from severe computational complexity and become very unreliable even
for a network having as few as 20 nodes (Adams 2005). As a consequence, the
compromising nature of the likelihood approach can further cause severe bias in
MLE-based ranking, whereas this approach is essentially bias-free.

Our analysis of real datasets from the NCAA and the CNPRC brings out
remarkable results that illustrate the range of usefulness for this approach, from
improving the legitimacy of the rankings for a variety of sports teams to enhancing
biologists’ understanding of the structural network in societies of primates and
other social species. We anticipate that this ranking approach will provide a
powerful scientific tool for computing more reliable ranking networks and resolve
many potential disputes in diverse scientific fields and real-world applications.
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