Shadow Banking

Alexi Savov

New York University Stern School of Business

Micro Foundations for Macro Finance Workshop
Amsterdam, August 2014
Shadow banking and liquidity transformation

1. Three perspectives on shadow banking
 i. Regulatory arbitrage
 ii. Neglected risks
 iii. Liquidity transformation

2. Liquidity transformation
 - Creating money-like securities from risky illiquid assets (ABCP, Repo)
 - Fragile liquidity, evaporates quickly

3. Welfare tradeoff (pecuniary externalities)
 - Good times better, bad times worse
 - Rationale for regulation
Shadow banking and liquidity transformation

1. Three perspectives on shadow banking
 i. Regulatory arbitrage
 ii. Neglected risks
 iii. Liquidity transformation

2. Liquidity transformation
 - Creating money-like securities from risky illiquid assets (ABCP, Repo)
 - Fragile liquidity, evaporates quickly
Shadow banking and liquidity transformation

1. Three perspectives on shadow banking
 i. Regulatory arbitrage
 ii. Neglected risks
 iii. Liquidity transformation

2. Liquidity transformation
 - Creating money-like securities from risky illiquid assets (ABCP, Repo)
 - Fragile liquidity, evaporates quickly

3. Welfare tradeoff (pecuniary externalities)
 - Good times better, bad times worse
 - Rationale for regulation
Demand for money-like claims has grown

1. Cash pools have limited access to M2 ⇒ invest in “shadow money” (Pozsar 2014)
Shadow banking responds to demand for money-like claims

1. Sunderam (2013)
 - ABCP issuance correlated with premium for money-like TBills
 - Can explain half of pre-crisis ABCP issuance

2. Nagel (2014)
 - GC Repo-TBill spread correlated with opportunity cost of money
Shadow money is uncertainty-sensitive

1. Normal-times liquidity that evaporates when uncertainty rises (Kacperczyk and Schnabl 2013)
 - Economizes on collateral when it is more scarce
 - Tradeoff: fragility versus quantity of liquidity
How to regulate the shadows?

1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)
How to regulate the shadows?

1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)

2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)
How to regulate the shadows?

1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)

2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)

3. Price-based approach: Pigouvian taxation, mandatory insurance
 - Perotti and Suarez (2009); Acharya, Pedersen, Philippon and Richardson (2009)
How to regulate the shadows?

1. Command and control: capital requirements, liquidity coverage
 - May backfire due to regulatory arbitrage
 - Harris, Opp, and Opp (2014)

2. Supervisory discretion: measurement, stress tests, FSOC
 - Works under neglected risk view; helps limit contagion
 - Acharya, Pedersen, Philippon and Richardson (2010)

3. Price-based approach: Pigouvian taxation, mandatory insurance
 - Perotti and Suarez (2009); Acharya, Pedersen, Philippon and Richardson (2009)

4. Public liquidity provision: Fed’s reverse repo, floating-rate Treasurys
 - Preserves liquidity supply
 - Emerging consensus: Greenwood, Hanson and Stein (2014); Gorton and Ordonez (2013); Cochrane (2014)
 - Apply Moreira and Savov (2014) to explore how this could work
Crowding out private liquidity transformation

 - Government debt negatively related to ST debt in financial sector
Moreira and Savov (2014) in a nutshell

1. Households demand liquid securities to self-insure against shocks
 - Liquidity \Leftrightarrow low information sensitivity
Moreira and Savov (2014) in a nutshell

1. Households demand liquid securities to self-insure against shocks
 - Liquidity ⇔ low information sensitivity

2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe ⇒ liquid
 - Shadow money s_t safe except in a crash ⇒ liquid except in a crash
 - Equity residual ⇒ illiquid
Moreira and Savov (2014) in a nutshell

1. Households demand liquid securities to self-insure against shocks
 - Liquidity ⇔ low information sensitivity

2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe ⇒ liquid
 - Shadow money s_t safe except in a crash ⇒ liquid except in a crash
 - Equity residual ⇒ illiquid

3. Collateral constrains liquidity provision, quantity vs. fragility tradeoff

\[
\text{Money} \times 1 + \text{Shadow money} \times \left(1 - \text{Crash loss}\right) \leq \text{Bank assets crash value}
\]

\[
m_t + s_t \left(1 - \bar{\kappa}\right) \leq 1 - \kappa_{A,t}
\]
Moreira and Savov (2014) in a nutshell

1. Households demand liquid securities to self-insure against shocks
 - Liquidity ⇔ low information sensitivity

2. Intermediaries invest in (safe/risky) real capital and finance with
 - Money m_t safe ⇒ liquid
 - Shadow money s_t safe except in a crash ⇒ liquid except in a crash
 - Equity residual ⇒ illiquid

3. Collateral constrains liquidity provision, quantity vs. fragility tradeoff

\[
\text{Money} \times 1 + \text{Shadow money} \times \left(1 - \text{Crash loss}\right) \leq \text{Bank assets crash value}
\]

\[
m_t + s_t \left(1 - \bar{\kappa}\right) \leq 1 - \kappa_{A,t}
\]

4. Uncertainty drives demand for crash-proof vs. crash-fragile liquidity
Moreira and Savov (2014) equilibrium

- Collateral supply $1 - \kappa_{A,t}$ limits overall liquidity provision
- Optimal mix pinned down by uncertainty λ_t
Balance sheets

Capital

Intermediaries

Households

Risky

Assets

Liabilities

Assets

Liabilities

-safe

Crash risk

$\kappa_{A,t}$

Collateral

$1 - \kappa_{A,t}$

Equity

e_t

Shadow money

s_t

Money

m_t

Wealth

$m_t + s_t + e_t$

Liquidity

$m_t + s_t$

Crash-proof

m_t

κ
Balance sheets with “tax-backed” public money

<table>
<thead>
<tr>
<th>Capital</th>
<th>Intermediaries</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risky</td>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td></td>
<td>Crash risk $\kappa_{A,t}$</td>
<td>Equity e_t</td>
</tr>
<tr>
<td></td>
<td>Collateral $1 - \kappa_{A,t}$</td>
<td>Shadow money s_t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Money m_t</td>
</tr>
<tr>
<td>Safe</td>
<td></td>
<td>Wealth $m_t + s_t + e_t$</td>
</tr>
</tbody>
</table>

Government

- Taxes
- Public money g_t

Households

- Public money g_t
- Taxes

\[\text{Crash risk } \kappa_{A,t} \]
\[\text{Collateral } 1 - \kappa_{A,t} \]
\[\text{Money } m_t \]
\[\text{Equity } e_t \]
\[\text{Shadow money } s_t \]
\[\text{Wealth } m_t + s_t + e_t \]
\[\text{Liquidity } m_t + s_t \]
\[\text{Crash-proof } m_t \]
Equilibrium with “tax-backed” public money

- **Spreads**
 \[\mu_{e,t} - \mu_{m,t} \propto e^{-\tau\lambda_t} e^{-\eta(g_t+m_t+s_t)} + (1 - e^{-\tau\lambda_t}) e^{-\eta(g_t+m_t)} \]
 \[\mu_{s,t} - \mu_{m,t} \propto (1 - e^{-\tau\lambda_t}) e^{-\eta(g_t+m_t)} \]

- **Collateral constraint**
 \[m_t + s_t (1 - \kappa) \leq 1 - \kappa_{A,t} \]

- **Public money lowers discount rates**
 - Does NOT directly affect incentive to produce shadow money

- **Indirect effect through collateral values**
 - Raises collateral values if expected to remain in place in bad times, e.g. deposit insurance, TBills, floating-rate Treasurys
 - Lowers them if it disappears, e.g. stigma, fiscal/political constraints
“Tax-backed” public money

\[g_t = 0 \quad \text{or} \quad g_t = 0.5 \]

Liquidity services

Risky asset price

Safe asset price

Collateral $1 - \kappa_{A,t}$

Private money m_t

Shadow money s_t

Value-weighted capital mix 75% risky.

- Permanent fiscal expansion \Rightarrow stable liquidity supply \Rightarrow greater collateral values \Rightarrow crowds private money in, shadow money out.
“Tax-backed” public money in good times only

\[g_t = 0 \quad \text{vs} \quad g_t = 1_{\lambda_t \leq 0.25} \]

- Liquidity crunch in crisis \Rightarrow collateral values lower ex ante
 - Collateral runs (margin spirals) depress liquidity below level with no public money
 - Crowds private money out, shadow money in
“Asset-backed” public money

- Taxation power + commitment
 - Government not subject to collateral constraint unlike private sector
 - Allows for greater liquidity provision
 - Distortions due to taxes, redistribution
 - E.g. deposit insurance

- Fed lacks taxation power
 - Monetary policy via open market operations
 - Uses assets to back liabilities
 - E.g. Fed’s reverse repo

- Two types of liquidity policy
 - Fiscal = tax-backed
 - Monetary = asset-backed
 - Trade off: cost of taxation versus effectiveness
Balance sheets, “asset-backed” public money

<table>
<thead>
<tr>
<th>Capital</th>
<th>Intermediaries</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risky</td>
<td>Assets</td>
<td>Liabilities</td>
</tr>
<tr>
<td></td>
<td>Crash risk $\kappa_{A,t}$</td>
<td>Equity e_t</td>
</tr>
<tr>
<td></td>
<td>Collateral $1 - \kappa_{A,t}$</td>
<td>Shadow money s_t</td>
</tr>
<tr>
<td></td>
<td>Money m_t</td>
<td></td>
</tr>
<tr>
<td>Safe</td>
<td></td>
<td>Wealth $m_t + s_t + e_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquidity $m_t + s_t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crash-proof m_t</td>
</tr>
</tbody>
</table>
Balance sheets, “asset-backed” public money

Capital

Risk

Safe

Intermediaries + government

Assets

Liabilities

Crash risk

$\kappa_{A,t}$

Collateral

$1 - \kappa_{A,t}$

Equity

e_t

Shadow money

s_t

Money

m_t

Public money

g_t

Households

Assets

Liabilities

Wealth

$m_t + s_t + e_t$

Liquidity

$m_t + s_t$

Crash-proof

m_t

Public money

g_t
Equilibrium with “asset-backed” public money

- Collateral constraint

\[m_t + s_t (1 - \bar{\kappa}) \leq 1 - \kappa_{A,t} \]

- If Fed buys safe asset, private sector collateral \(1 - \kappa_{A,t} \) falls
 - The financial sector shifts to shadow money
 - Intuition: public money crowds out closest substitute, private money
 - Even total collateral (Fed + banks) can fall if safe asset has flight to quality (negative beta, e.g. Treasurys).

- If Fed buys risky asset, private sector collateral \(1 - \kappa_{A,t} \) rises
 - Requires taxes to back potential losses
 - The financial sector shifts to money
 - Taxes as additional “collateral”, (Fed ultimate “shadow bank”)

Micro Foundations Workshop 2014
“Asset-backed” public money

- Public money backed by safe asset ⇒ Less collateral in private hands ⇒ Shift to shadow money
- Excess collateral at Fed wasted ⇒ Less overall collateral, liquidity

Value-weighted capital mix 75% risky. Public money backed by stock of safe asset.
Takeaways

1. Emerging consensus for public money to crowd out shadow banking. But...
 - Public money substitute for fully safe securities, e.g. bank deposits
 - Can lead financial sector to substitute toward shadow banking
 - Especially true if public money backed with safe assets

2. Tax-backed public money, e.g. floating-rate debt expands liquidity supply
 - Directly by increasing collateral supply
 - Multiplier effect by increasing collateral values
 - Requires counter-cyclical taxation or deficits

3. A possible combination: risky-asset backed reverse repo
 - Trades off cost of taxation and effectiveness