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a b s t r a c t

Inter-individual variance in longevity (or any other demographic outcome) may arise from heterogene-
ity or from individual stochasticity. Heterogeneity refers to differences among individuals in the demo-
graphic rates experienced at a given age or stage. Stochasticity refers to variation due to the random
outcome of demographic rates applied to individuals with the same properties. The variance due to indi-
vidual stochasticity can be calculated from aMarkov chain description of the life cycle. The variance due to
heterogeneity can be calculated from a multistate model that incorporates the heterogeneity. We show
how to use this approach to decompose the variance in longevity into contributions from stochasticity
and heterogeneous frailty for male and female cohorts from Sweden (1751–1899), France (1816–1903),
and Italy (1872–1899), and also for a selection of period data for the same countries.

Heterogeneity inmortality is described by the gamma-Gompertz–Makehammodel, inwhich a gamma
distributed ‘‘frailty’’ modifies a baseline Gompertz–Makehammortality schedule.Model parameterswere
estimated by maximum likelihood for a range of starting ages. The estimates were used to construct
an age×frailty-classified matrix model, from which we compute the variance of longevity and its
components due to heterogeneous frailty and to individual stochasticity. The estimated fraction of the
variance in longevity due to heterogeneous frailty (averaged over time) is less than 10% for all countries
and for both sexes. These results suggest that most of the variance in human longevity arises from
stochasticity, rather than from heterogeneous frailty.

© 2017 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Individual variance, especially in fitness components, plays a
key role in demography, ecology, and evolutionary biology. From
an evolutionary perspective, variance in fitness components is po-
tential material on which natural selection can operate. From a de-
mographic perspective, identifiable differences among individuals
are the basis for structured population models (Metz and Diek-
mann, 1986; Tuljapurkar and Caswell, 1997; Caswell, 2001); dif-
ferences due to age lead to age-structured models, differences due
to size lead to size-structured models, etc.

Longevity (age at death) is a fitness component that varies
widely among individuals. This variance arises as a result of two
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different underlying causes: individual stochasticity and hetero-
geneity. Individual stochasticity is variance due to random out-
comes of probabilistic demographic processes (living or dying,
reproducing or not, making or not making a life cycle transition).
Even in a completely homogeneous population, in which every
individual experienced exactly the same (age-specific) mortality
rates, variance due to individual stochasticitywould exist (Caswell,
2009). Any calculation of the variance in longevity fromanordinary
life table implicitly assumes that every individual is subject to the
(age-specific) mortality rates in that life table, and hence that the
variance is only due to individual stochasticity.

Variance in longevity can also result from unobserved, or
latent, heterogeneity in the properties of individuals. For example,
individuals of the same age may differ in their mortality rates due
to genetic, environmental, ormaternal effects. Such differences are
often referred to as heterogeneity in individual frailty (Vaupel et al.,
1979). Because more frail individuals are more at risk than others,
heterogeneity in frailty leads to changes in cohort composition
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with age, due to within-cohort selection. As a cohort ages, the
representation of less frail individuals increases, and the average
mortality rate in an old cohort will be lower than one would
expect based on extrapolation of mortality rates at younger ages.
This selection effect has been suggested as an explanation for the
mortality plateaus often observed at very old ages (Horiuchi and
Wilmoth, 1998; Vaupel et al., 1979; Vaupel, 1985).

The effects of unobserved heterogeneity in survival analysis can
be estimated using frailty models (Vaupel et al., 1979; Wienke,
2010). In frailty models, a baseline mortality schedule is mod-
ified by a term representing individual frailty. A widely used
example is the gamma-Gompertz model, which assumes an ex-
ponentially increasing age-specific baseline mortality rate (the
Gompertz model), and that frailty acts as a proportional hazard
multiplier of the baseline mortality (Vaupel et al., 2014). Frailty,
which is fixed over the life of the individual, follows a gamma dis-
tribution, the variance of which measures the amount of unob-
served heterogeneity.

The variance in longevity in a frailty model is a result of both
stochasticity and heterogeneity. Little is known about the relative
contribution of each to the total variance in longevity, and how
those contributions may depend on species, sex, environmental
conditions, etc. Caswell (2014) presented an ad hoc approach
to this problem, using an age × frailty-classified matrix model.
The variance in longevity was computed from the model and the
relative contributions of heterogeneity and stochasticity estimated
by reducing the initial variance in frailty to zero and attributing
the remaining longevity variance to stochasticity. In an analysis of
gamma-Gompertz parameters for a single year Swedish females
(obtained from Missov, 2013), the fraction of variance due to
heterogeneity was estimated to be only 0.071. Applying the same
approach to a gamma-Gompertz–Makeham model for women
from Turin (Zarulli et al., 2013) resulted in an even lower estimate
of 0.012.

Here, we present a more rigorous variance decomposition,
which does not require a hypothetical reduction of frailty variance
to zero. We apply it to large cohort mortality data sets for three
different countries: Sweden, France and Italy, over a long time
period. This will enable us to see whether any patterns in variance
can be generalized across countries, time periods, or sexes.

The paper is organized as follows. Section 2 describes the
gamma-Gompertz–Makeham mortality model. Section 3 presents
the construction of the age × frailty matrix model, and Section 3.2
provides themethods used to calculate longevity statistics and de-
compose the variance. Section 4 gives details about the mortality
data and estimation of the gamma-Gompertz–Makeham param-
eters. Section 5 presents the implementation of the age × frailty
matrix model. Section 6 presents the results for the cohort and pe-
riod data, and Section 7 discusses the interpretation of the results.

2. Frailty in the gamma-Gompertz–Makehammodel

Unobserved heterogeneity in mortality risk, or frailty, can be
included in mortality models by assuming that this frailty acts
to modify a baseline mortality rate shared by all individuals. The
gamma-Gompertz–Makeham mortality model has been shown to
give a good fit to human mortality data (Manton et al., 1986;
Yashin et al., 1994). It is an extension of the Gompertz model
(Gompertz, 1825), in which mortality at adult and older ages is an
exponentially increasing function of age. The Gompertz mortality
function has a baseline mortality parameter a and a parameter b
that determines the steepness of the exponential increase with
age. The Makehammodel an age-independent component c to the
mortality (Makeham, 1860). The Makeham term has been shown
to be essential to prevent distorted parameter estimates (Missov
and Németh, 2016). In the Gompertz–Makehammodel, the hazard
at age x equals:

µ(x) = aebx + c. (1)

In the gamma-Gompertz–Makeham model (hereafter called
Γ GM), the frailty of an individual is included as a (gamma-
distributed) random effect that is fixed over the lifetime. Dynamic
frailty, that can change with age or with health-related events, has
been included in other models (e.g., Vaupel and Yashin, 2006; Le
Bras, 1976; Gavrilov andGavrilova, 1991; Yashin et al., 1994, 2000).
The matrix analysis we develop here also applies to such dynamic
frailty models (Caswell, 2014); see Section 3.1. Frailty in the Γ GM
affects the (age-dependent part of) mortality as a proportional
hazard; the hazard µ(x, z) for an individual with frailty z at age
x is

µ(x, z) = zaebx + c. (2)

The initial frailty distribution in the cohort is gamma-
distributed, Z ∼ Γ (κ, λ), with shape parameter κ and scale pa-
rameter λ. The mean and variance of this distribution are E(Z) =

κ/λ and V (Z) = κ/λ2. The mean is set equal to 1, so that the co-
hort starts life with an average frailty of 1.When this is the case, i.e.
E(Z) = 1, λ = κ and the variance V (Z) = 1/λ := γ . The marginal
hazard function, which gives the unconditional population hazard
Manton et al. (1981) and Missov and Vaupel (2015), is a sigmoid
function

µ(x) =
aebx

1 +
aγ
b (ebx − 1)

+ c. (3)

Heterogeneity is described by the variance γ of frailty at the
starting age of analysis; the higher the variance, the greater the
heterogeneity between individuals. In a completely homogeneous
population, V (Z) = 0 and every individual experiences the same
age-dependent hazard.

Using (3) and applyingmaximum likelihood yields estimates for
the baseline mortality parameters a, b, c and for γ , the parameter
that describes the heterogeneity in frailty. This optimization is
described in more detail in Section 4.2.

3. An age × frailty matrix model

We incorporated the Γ GM mortality function into an age ×

frailty-classified matrix model (for a more general description of
age–stage classified matrix models see Caswell (2009, 2012)). Age
is described by a set of ω discrete age classes and frailty by a set
of g frailty classes that discretize the gamma distribution of frailty.
Vector µ0 of dimension ω contains the baseline age-specific part
of the mortality rates:

µ0 =

 ae0b
...

ae(ω−1)b

 . (4)

If zi is the frailty for the ith group, then the mortality vector for
frailty group i is

µi = ziµ0 + c i = 1, . . . , g. (5)

3.1. Cohort projection

The state of the cohort at age t is given by a vector ñ(t), which
is derived from an array

N (t) =

n11 · · · nω1
...

...
n1g · · · nωg

 (6)
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that describes the abundance of all age–frailty categories. The
age–frailty population vector is

ñ = vecN ; (7)

that is,

ñ =



n11
...

n1g

...

nω1
...

nωg


. (8)

The jth block of entries in ñ contains a sub-vector giving the
abundance of the g frailty classes within age class j.

The survival of frailty class i is given by a survival matrix Ui of
dimension ω × ω that contains age-specific survival probabilities
on the first subdiagonal and zeros elsewhere.

Ui =


0 0 · · · 0

e−µ(zi,0) 0 · · · 0
...

. . .
...

0 · · · e−µ(zi,ω−1) 0

 . (9)

The transition probabilities among frailty classes for age class j are
given by a matrix Dj, of dimension g × g . However, in the Γ GM
model, frailty is fixed, so Dj = Ig for all j. In a model with dynamic
frailty,Dj would be a column-stochasticmatrix of frailty class tran-
sition probabilities. Caswell (2014, Section 5.4) gives an example
where frailty develops as a diffusion processwith reflecting bound-
aries.

Block-diagonal matrices U and D are created by placing the
Ui (respectively, Dj) on the diagonal with zeros elsewhere. Both
matrices are of dimension ωg × ωg .

U =

U1 · · · 0
...

. . .
...

0 · · · Ug

 D =

D1 · · · 0
...

. . .
...

0 · · · Dω

 . (10)

The joint age–frailty composition of the cohort is projected as

ñ(t + 1) = Ũñ(t) (11)

where the projection matrix is

Ũ = DKTUK, (12)

withK = Kg,ω the vec-permutationmatrix (Henderson and Searle,
1981; Hunter and Caswell, 2005; Caswell, 2012), which rearranges
the population vector to permit multiplication by the appropriate
block diagonal matrices. Because, in this special case, frailty is
fixed,D is an identitymatrix of dimensionωg×ωg and the formula
reduces to

Ũ = KTUK. (13)

3.2. Longevity: means, variances, and variance decomposition

The matrix Ũ is the transient matrix of an absorbing Markov
chain, with death as an absorbing state (e.g., Caswell, 2001, 2009,
2014). The fundamental matrix of this chain is

Ñ =


Iωg − Ũ

−1
(14)
with dimension ωg × ωg . The (i, j) entry of Ñ is the expected
number of visits to state j by an individual in state i, where states
include all combinations of age and frailty.

The statistics of longevity are calculated from Ñ (e.g., Caswell,
2009). The vectors of first and second moments of longevity, and
of the variance in longevity, are given by

η̃1 =


1T

ωÑ
T

gω × 1 (15)

η̃2 =


η̃T
1


2Ñ − I

T
gω × 1 (16)

V (η̃) = η̃2 − η̃1 ◦ η̃1 gω × 1. (17)

These vectors contain the moments of the longevity of all gω
age–frailty combinations. We are interested in the longevity of
age class 1, which is a mixture of individuals with a mixing
distributionπ defined by the parameter λ that defines the variance
of the gamma distribution. The vectors of means and variances of
longevity in the g frailty groups within age class 1 are extracted
from the full vectors by

E(ηgroups) =

eT1 ⊗ Ig


η̃1 g × 1 (18)

V (ηgroups) =

eT1 ⊗ Ig


V (η̃) g × 1 (19)

where e1 is a vector of lengthω with a 1 in the first entry and zeros
elsewhere.

The variance in longevity of age class 1, treated as a mixture
of all the frailty groups with mixing distribution π, can be decom-
posed into a within-group component due to individual stochas-
ticity and a between-group component due to heterogeneity in
frailty:

V (η) = Eπ


V


ηgroups


+ Vπ


E


ηgroups


1 × 1 (20)

= Vwithin + Vbetween. (21)

The within-group component is the weighted mean of the entries
of the vector V(ηgroups):

Vwithin = πTV (ηgroups) (22)

=

eT1 ⊗ πT


V (η̃) 1 × 1. (23)

The between-group component is theweighted variance of the en-
tries of the vector E(ηgroups):

Vbetween = πT

E(ηgroups) ◦ E(ηgroups)


−


πTE(ηgroups)

2 (24)

= πT

eT1 ⊗ Ig


η̃1 ◦


eT1 ⊗ Ig


η̃1


−


eT1 ⊗ πT


η̃1

2 1 × 1. (25)
This variance decomposition is a well-known theorem in

probability theory (Renyi, 1970, Chapter 5.6, Theorem 1), forms
the basis of the analysis of variance in statistics (Kempthorne,
1957), is used in quantitative genetics to calculate heritability
(Falconer, 1975), and is widely used in the analysis of mixture
models (Frühwirth-Schnatter, 2006).

The variance in longevity due to heterogeneous frailty is the
variance among the mean longevities in the frailty groups. The
variance due to stochasticity is the mean of the variances due
to stochasticity within each frailty group. In the hypothetical
situation inwhich survivorship is perfectly rectangularwithin each
frailty group, Vwithin = 0 and all the variance in longevity is
due to differences among the means. In the equally hypothetical
situation in which the variance in frailty approaches zero, there is
no heterogeneity and Vbetween = 0.

4. Parameter estimation

The gamma-Gompertz–Makeham model is fitted to cohort
mortality data for the three selected countries.
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Fig. 1. Variance in remaining longevity, conditional on survival to age 40, estimated from cohort mortality data. The variance is decomposed into variance resulting from
stochasticity (light grey) and from heterogeneity (dark grey) and is plotted for all birth cohorts in the countries’ data set (1872–1899 for Italy, 1816–1903 for France and
1751–1899 for Sweden).
4.1. Data (countries, cohorts, periods)

Cohortmortality datawere obtained from the HumanMortality
Database (http://www.mortality.org) for Italy (1872–1899), France
(1816–1903), and Sweden (1751–1899). These countries were
selected because of the availability of long mortality data times
series of comparatively high data quality. The cohortmortality data
consist of death counts (D(x)) and number of exposures (E(x))
at each age x for each birth cohort and for males and females
separately.

To assure that our results were not dependent on the use
of cohort survival, we also analysed period mortality data for
Italy (1872–2012), France (1816–2013), and Sweden (1751–2014).
Period mortality rates are calculated from data on deaths at each
age in a specified year. The resulting mortality schedule applies to
a ‘synthetic cohort’, an imaginary group of people who experience
the demographic conditions in that year throughout their lives
(Wilmoth, 2005). The Γ GM parameters estimated from period
data apply to this synthetic cohort. As such, they more clearly
reflect the impact of short-term mortality events, such as disease
epidemics and wars, that affect mortality only in that period. On
the other hand, period data do not reflect the patterns of real
cohorts. As some demographers prefer cohort data and others
prefer period data, we analysed both types of data to ensure that
the choice of data did not influence our overall results. Also, both
types of data appear in ecological studies; cohort data typically
originating from laboratory longevity experiments and period
data from capture–mark–recapture studies. Results for the period
mortality analyses are given in the Appendix A.

4.2. Estimation of the Γ GM parameters

For each birth cohort, the four Γ GM parameters (i.e. a, b, c
and γ ) were estimated bymaximum likelihood. Death counts D(x)
were assumed to be Poisson-distributed with a rate parameter
E(x)µ(x) (Brillinger, 1986), where E(x) denotes exposure at age
x and the marginal hazard rate µ(x) depends on a, b, c and γ as in
Eq. (3). The log-likelihood is

ln L [a, b, c, γ |D(x), E(x)] =


x

{D(x) lnµ(x) − E(x)µ(x)} , (26)

and was maximized by differential evolution (Storn and Price,
1997) using the R-package ‘DEoptim’ (Mullen et al., 2011). Dif-
ferential evolution is a robust fast-converging global optimization

http://www.mortality.org
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Fig. 2. Variance in remaining longevity, conditional on survival to age 70, estimated from cohort mortality data. The variance is decomposed into variance resulting from
stochasticity (light grey) and from heterogeneity (dark grey) and is plotted for all birth cohorts in the countries’ data set (1872–1899 for Italy, 1816–1903 for France and
1751–1899 for Sweden).
method for possibly non-linear and non-differentiable continuous-
space functions.

The Γ GM model was fit for a range of different starting ages
for each cohort. Since the Γ GM model is often not considered
appropriate to describe humanmortality belowage 40 andbecause
above age 70, the number of exposed and deceased decrease fast,
which could lead to unreliable estimates, we used starting ages 40,
50, 60 and 70.

5. Implementation of the age × frailty model

For each birth cohort and starting age, the estimates of a, b and
c were used to create a baseline age-specific mortality schedule
as in Eq. (4). The estimate of γ determines the variance in the
initial gamma distribution of frailty. Two hundred frailty classes
were defined, with a mean of 1, logarithmically spaced between
a minimum and a maximum frailty value based on the cdf of the
gamma distribution, such that cdf(zmin) = 10−5 and cdf(zmax) =

0.9999. If the estimated variance of the frailty distribution was
less than 10−5, heterogeneity was assumed to be zero and all
individuals were assigned the frailty z = 1. Mortality schedules
were created with 150 age classes.

6. Results

The patterns of variance in remaining longevity, conditional on
survival to the starting age, are remarkably consistent across birth
cohorts, sexes, countries, and starting ages (Figs. 1–2). As shown in
Fig. 1, at starting age 40, the variance in longevity is 150–200 a2,
of which only 4%–5% is due to heterogeneous frailty. (The units of
the variance are years squared.) At starting age 70, the variance in
longevity is 30–60 a2, of which 7%–10% is due to heterogeneous
frailty (Fig. 2).

Averaging over cohorts within each of three historical periods
(1751–1815, 1816–1871, and 1872–1899), we find that no more
than 10% of the variance is due to heterogeneity, regardless of
country, sex, or starting age. In each country and each historical
period, the fraction of variance due to heterogeneity increaseswith
starting age.

The fraction of the variance that is attributable to heteroge-
neous frailty is shown in Fig. 3, in the form of a mean over birth
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Fig. 3. The mean fraction of the variance due to heterogeneity in remaining longevity for Italy, France and Sweden. Means are shown for the total period (1872–1899 for
Italy, 1816–1903 for France, and 1751–1899 for Sweden) and also for three time periods: (1) 1751–1815, (2) 1816–1871, and (3) 1872–1899 (or 1872–1903, in the case of
France).
cohorts, for starting ages of 40, 50, 60 and 70 years. Because cohort
mortality data were available for different periods for each coun-
try, we show results for three time periods. During the first period
(1751–1815), we have results only from Sweden; for the period
1816–1871, we have results for both Sweden and France; and for
1872–1899 (or 1872–1903, in the case of France), we have data for
all three countries. In all cases, the fraction of variance due to het-
erogeneity increaseswith age.When considering thewhole period,
this fraction is below 0.10 for each country at age 70 and (much)
lower for younger ages.

Analyses based onperiodmortality rather than cohortmortality
permit us to examine more recent mortality patterns, although
the analyses are of synthetic rather than real cohorts. The results
(Figs. A.1–A.3) are similar to those for cohort data; the mean
fraction of variance due to heterogeneity is never greater than 15%.

Although not central to our question, we note some interesting
patterns in these data. First, the total variance in remaining
longevity decreases with age; this is a well known property of
human mortality schedules (e.g., Caswell, 2010). The variance in
both cohort and period longevity at the oldest age examined here
(70) increases in recent decades. The variance in period longevity
at age 40 declines in recent decades, except for Frenchmales. These
patterns are also well documented in other studies (e.g., Engelman
et al., 2014).

7. Discussion

Individual stochasticity and heterogeneous frailty both con-
tribute to the variance in longevity. Combining age (or stage) and
frailty in a demographic model makes it possible to partition this
variance into its components. Caswell (2014) presented a prelimi-
nary and somewhat ad hoc analysis of three published estimates of
gamma-Gompertz and gamma-Siler models, and found that frailty
contributed only 2%–7% of the variance. In this study, we have
extended those results by analysing a large data set comprising
cohort mortality data of three countries, using more rigorous es-
timation procedures. The long times series (28 years for Italy, 88
for France and 149 for Sweden for cohort data, and even longer
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Fig. A.1. Estimated variance in remaining longevity, conditional on survival to age 40, based on the Γ GM model estimates obtained from period mortality data. The total
variance is decomposed into variance resulting from stochasticity (light grey) and from heterogeneity (dark grey). The panels represent the results for males (left) and
females (right) for Italy (1872–2012), France (1816–2013), and Sweden (1751–2014).
series for period data) permit a more rigorous analysis of the rela-
tive contributions of stochasticity and heterogeneous frailty to the
variance.

The results were consistent between countries and sexes: most
of this variance in remaining longevity is due to stochasticity.
Only a small fraction is attributable to heterogeneity. This
fraction increases with starting age, because stochasticity-induced
variance decreases faster with age than does heterogeneity-
induced variance. However, even conditioning on survival to a
starting age of 70 years, the average fraction due to heterogeneity
is less than exceeded 0.10 (for cohort mortality) or 0.15 (for period
mortality). Although data quality is, for obvious reasons, better for
later cohorts and periods than for earlier ones, we found no clear
temporal patterns in the fraction of variance due to heterogeneity.
Only in the earliest period in Sweden, we see comparatively
lower average values, which is due to the fact that the estimated
heterogeneity in frailty was zero in some of the cohorts, probably
due to the lower data quality in this period.

The Γ G and Γ GM models are widely applied to studies of
human adult and late age mortality (Yashin et al., 2000; Horiuchi
andCoale, 1990; Gage, 1989), but theymake the strong assumption
that heterogeneity is fixed and unchanging over the life of an
individual. Dynamic heterogeneity occurs when individuals can
change their state over time. Provided only that the dynamics are
Markovian, dynamic heterogeneity can be incorporated into the
matrix D in (12). The result is a multistate model incorporating
age and, in this case, frailty (Caswell, 2014, 2009, 2012). Individual
stochasticity, as in any demographic model, is then measured
relative to the stages included in the model, and just as in fixed
frailty models, can be decomposed into components within and
between the heterogeneity classes. See Li and Anderson (2009) for
a model based on a Wiener process for vitality, Caswell (2014)
for a dynamic frailty model based on diffusion, and particularly
Steinsaltz et al. (2012) for a valuable general discussion of the
formulation and interpretation of mortality models in terms of
Markov chains.

The estimates of the Γ GM parameters are affected by how
well the model describes mortality, and how well the gamma
distribution captures frailty (e.g., Heckman and Singer, 1982).
The baseline Gompertz model assumes that mortality increases
exponentially with age. In cohort data, the increase in age is
confounded with the passage of time, and thus can be affected by
short-term events that influence mortality. Such a mortality event
may distort the estimation of theΓ GMparameters; highmortality
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Fig. A.2. Estimated variance in remaining longevity, conditional on survival to age 70, based on the Γ GM model estimates obtained from period mortality data. The total
variance is decomposed into variance resulting from stochasticity (light grey) and from heterogeneity (dark grey). The panels represent the results for males (left) and
females (right) for Italy (1872–2012), France (1816–2013), and Sweden (1751–2014).
rates at early ages may result in an overestimation of a, whichmay
in turn affect the estimates of b, γ and c (Missov et al., 2015). For
example, the small peak in total variance for Frenchmales of age 40
born in or around the year 1874 in Fig. 1(c) may be a result of this
effect. For these men, the onset of the analysis coincides with the
onset ofWorldWar I, whichmeans that their cohortmortality data
start with a few years of exceptionally high mortality rates. This
effect may have created this peak visible for these cohorts, but it
did not affect the order of magnitude of the variance nor the result
that most of it is attributable to stochasticity.

Period mortality schedules are affected by short-term fluctua-
tions, especially. There are, for example, small peaks in the total
variance in longevity corresponding to the influenza pandemic of
1918, for both men and women, in Italy and France, at starting
age 40 (Fig. A.1). No such peaks are apparent at starting age of
70 (Fig. A.2); the influenza pandemic particularly affected young
adults. Our results from period mortality data are very similar to
those from cohort mortality data. The estimated fraction of vari-
ance due to heterogeneous frailty is small for all countries and
for all periods, for both men and women (Fig. A.3). Variance in
longevity is mostly due to stochasticity rather than to heteroge-
neous frailty, independent of the type of mortality data used.
Note that we do not conclude that heterogeneity in frailty is
generally unimportant, only that its contribution to the variance
in remaining longevity is much less than that of individual
stochasticity. Heterogeneous frailty has other effects not addressed
here, such as the creation of mortality plateaus (Steinsaltz and
Wachter, 2006; Missov and Vaupel, 2015).

Because models with unobserved heterogeneity are difficult to
fit, and suitable data are not common, it is worth considering our
results in an ecological perspective. Humans are long-lived, slowly
developing,monovular largemammals. The data seriesweuse rep-
resent a range of conditions sufficiently wide to change remaining
life expectancy at age 40 by up to 50%, and at age 70 by up to 75%.
Such effects in an animal population would be viewed as signif-
icant mortality changes. Across this range of conditions, and for
both males and females, and for three populations, heterogene-
ity contributes only a small fraction of the variance in remaining
longevity. Frailty (whatever may cause it) in human populations
is, of course, expressed in the context of human social and cul-
tural conditions. Itwill be interesting to compare these resultswith
the components of variance in non-human species, in short-lived
species, and over a range of field and laboratory conditions.
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Fig. A.3. The mean fraction of variance, due to heterogeneity, in remaining longevity for Italy, France, and Sweden, based on Γ GM model estimates obtained from period
mortality data. Means are shown for the total period (1872–2012 for Italy, 1816–2013 for France, and 1751–2014 for Sweden) and for the periods: (1) 1751–1815, (2)
1816–1871, (3) 1872–1899, and (4) 1900–2012 (or 2013 or 2014, for France and Sweden, respectively).
The vec-permutation matrix model for the joint age × frailty
distribution is not limited to the Gompertz–Makeham mortality
model or even to age-classified analyses (Caswell, 2014). It would
apply equally well to models based on size, stage, or physiological
state. Nor is it limited to the choice of gamma-distributed frailty,
or to the case where the frailty is a fixed property of an
individual. It applies equally well to other distributional choices,
or to semiparametric finite mixture models of heterogeneity
(Hartemink and Caswell, in preparation).
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Appendix A. Period mortality data

See Figs. A.1–A.3.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2017.01.001.
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