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Summary

1. Second derivatives of the population growth ratemeasure the curvature of its response to demographic, physi-

ological or environmental parameters. The second derivatives quantify the response of sensitivity results to per-

turbations, provide a classification of types of selection and provide one way to calculate sensitivities of the

stochastic growth rate.

2. Using matrix calculus, we derive the second derivatives of three population growth rate measures: the dis-

crete-time growth rate k, the continuous-time growth rate r = log k and the net reproductive rateR0, whichmea-

sures per-generation growth.

3. We present a suite of formulae for the second derivatives of each growth rate and show how to compute these

derivatives with respect to projectionmatrix entries and to lower-level parameters affecting thosematrix entries.

4. We also illustrate several ecological and evolutionary applications for these second derivative calculations

with a case study for the tropical herbCalathea ovandensis.

Key-words: eigenvalues, Hessian matrix, invasion exponent, matrix population models, net repro-

ductive rate, sensitivity analysis

Introduction

Using matrix population models, ecological indices can be cal-

culated as functions of vital rates such as survival or fertility.

Measures of population growth rate, including the discrete-

time growth rate k, the continuous-time growth rate r = log k
and the net reproductive rateR0, are of particular interest. The

discrete-time population growth rate k is given by the domi-

nant eigenvalue of the population projection matrix. Sensitivi-

ties (first partial derivatives) of k with respect to relevant

parameters quantify how population growth responds to vital

rate perturbations. These first derivatives are used to project

the effects of vital rate changes due to environmental or man-

agement perturbations, uncertainty in parameter estimates

and phenotypic evolution (i.e. with k as a fitness measure, the

sensitivity of k with respect to a parameter is the selection

gradient on that parameter) (Caswell 2001).

APPLICATIONS OF SECOND DERIVATIVES OF GROWTH

RATES

The second derivatives of growth rates have applications in

both ecology (e.g. assessing and improving recommendations

from sensitivity analysis, approximating the sensitivities of sto-

chastic growth rates) and evolution (e.g. characterizing nonlin-

ear selection gradients and evolutionary equilibria). Several of

these applications are summarized in Table 1 and described in

the following sections.

Second-order sensitivity analysis and growth rate estimation

The sensitivity of growth rate provides insight into the popula-

tion response to parameter perturbations. However, such per-

turbations also affect the sensitivity itself, that is, sensitivity is

’situational’ (Stearns 1992). These second-order effects are

quantified by the sensitivity, with respect to a parameter hj, of
the sensitivity of k to another parameter hi, that is, by the sec-

ond derivatives o2k
ohjohi

. The sensitivity of the elasticity of growth

rate to parameters similarly depends on second derivatives

(Caswell, 1996, 2001).

In conservation applications, attention is often focused on

the vital rates to which population growth is particularly sensi-

tive or elastic; these first-order results may change depending

on parameter perturbations. First derivatives also provide a

linear, first-order approximation to the response of the growth

rate to changes in parameters. The linear approximation is

guaranteed to be accurate for sufficiently small perturbations

and is often very accurate even for quite large perturbations

(Caswell 2001). If the response of k to h is nonlinear, it is tempt-

ing to use a second-order approximation forDk:

Dk �
X
i

ok
ohi

Dhi þ
X
i

1

2

o2k

oh2i
ðDhiÞ2 þ

X
i 6¼j

o2k
ohiohj

ðDhiÞðDhjÞ

eqn 1*Correspondence author. E-mail: eshyu@whoi.edu
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We caution that although this may, in some cases, provide a

more accurate calculation, this is not guaranteed. As shown in

Fig. 1 of Carslake, Townley & Hodgson (2008), for example,

adding the second-order terms may actually reduce the accu-

racy of the approximation.

Characterizing nonlinear selection processes

The second derivatives of fitness with respect to trait values

have consequences for selection. The first derivatives of fitness

are selection gradients (Lande 1982). When fitness is a linear

function of a trait, its second derivatives are zero, and there is

selection to shift the trait’s mean value. When fitness is a non-

linear function of a trait, its second derivatives are nonzero and

provide additional information on how selection affects the

trait’s higher moments (Lande & Arnold 1983, Phillips &

Arnold 1989, Brodie, Moore & Janzen 1995). Such nonlinear

selection can be classified as concave or convex depending on

whether the second derivatives are negative or positive.

One can classify a selection process as linear, concave or

convex using quadratic selection gradients, the local second

derivatives of fitness with respect to trait value (Phillips &

Arnold 1989). If fitness is measured as k, these quadratic selec-
tion gradients are equivalent to o2k/oh2, the pure second deriv-

atives of k with respect to trait h (e.g. the second derivatives

with respect to stage-specific survival in C. ovandensis, as

shown in Fig. 3a). Concave, linear and convex selection

correspond to negative, zero and positive second derivatives,

respectively.

Concave selection reduces the variance in the trait, and con-

vex selection increases it; Lande & Arnold (1983, p.1216)

equate this to a more sophisticated version of the concepts of

stabilizing and disruptive selection. Brodie, Moore & Janzen

(1995) provide further analysis of the curvature of the fitness

surface and its effects on selection.

Selection operating on pairs of traits is said to be correla-

tional if the cross second derivatives are nonzero. Thus, if the

pure second derivatives of two different traits, hi and hj, are
both nonzero, their mixed second derivative o2k/ohjohi is a

measure of correlational selection. If o2k/ohjohi<0, there is

selection to decrease the phenotypic correlation between the

two traits; if o2k/ohjohi>0, there is selection to increase their

correlation. The concepts of nonlinear selection are powerful,

but require the second derivatives of fitness to be applied.

Stability of evolutionary singular strategies

Second derivatives play a role in adaptive dynamic analyses.

Evolutionary singular strategies (SSs) are phenotypes for

which the selection gradient is locally zero (e.g. Geritz et al.

1998). SSs are classified as stable, attracting or repelling, and

by whether they can invade or coexist with other nearby phe-

notypes (Geritz et al. 1998, Diekmann 2004, Waxman &Gav-

rilets 2005, Doebeli 2011).

These classifications depend on the local second derivatives

of invasion fitness, the growth rate of a rare mutant in an equi-

librium resident environment. For example, the second deriva-

tive of the mutant growth rate k to the mutant trait y

determines whether a SS is evolutionarily stable (o2k/oy2<0)

or evolutionarily unstable (o2k/oy2>0). Evolutionarily stable

strategies, once established, are unbeatable phenotypes against

which no nearby mutants can increase under selection and are

thus long-term evolutionary endpoints. Evolutionarily unsta-

ble strategies, on the other hand, are branching points open to

phenotypic divergence and may ultimately become sources of

sympatric speciation (Geritz et al. 1998).

Sensitivity of the stochastic growth rate

Second derivatives provide a way to calculate the sensitivity of

the stochastic growth rate in some cases. The stochastic growth

rate is

logks ¼ lim
t!1

1

t
logNðtÞ eqn 2

where N(t) is the population size at time t. Tuljapurkar (1982)

derived a small-noise approximation for log ks in the absence

of temporal autocorrelation. As shown by Caswell (2001

Section 14.3.6), this approximation can be written in terms of

the first derivatives of k, the dominant eigenvalue of the mean

Table 1. Potential applications for the pure andmixed second derivatives of k. Analogous interpretations apply to r orR0 as alternative measures of

growth or fitness

Second derivative Sign Interpretations

o2k

oh2
=0 Sensitivity of k to h is independent of h

Linear selection on trait h
>0 Sensitivity of k to h increases with h

Convex selection on trait h
Evolutionarily unstable singular strategy

<0 Sensitivity of k to h decreases with increases in h
Concave selection on trait h
Evolutionarily stable singular strategy

o2k
ohjohi

>0 Sensitivity of k to hi increases with hj
Selection to increase correlation between traits hj and hi

<0 Sensitivity of k to hi decreases with increases in hj
Selection to decrease correlation between traits hj and hi

H k; vec�A
� �

N/A Used to calculate sensitivity of the stochastic growth rate ks
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projection matrix �A. Thus, the derivatives of this approxima-

tion can be written in terms of the second derivatives of that

eigenvalue (Caswell 2001, Section 14.3.6). We discuss this

application further in the section ‘Sensitivity analysis of sto-

chastic growth rates’.

CALCULATING SECOND DERIVATIVES OF GROWTH

RATES

The second derivatives of k with respect to matrix elements

were introduced by Caswell (1996); see also Caswell (2001,

Section 9.7). However, these calculations are awkward and

error-prone, because they involve all the eigenvalues and ei-

genvectors of the projection matrix. McCarthy, Townley &

Hodgson (2008) introduced an alternative approach for calcu-

lating the second derivatives of eigenvalues (they call them

’second-order sensitivities’) based on transfer functions, par-

tially to avoid the calculation of all the eigenvectors. How-

ever, they consider only rank-one perturbations of a subset of

the matrix elements, excluding fertilities, and their calcula-

tions are perhaps equally difficult.

Here, we reformulate the second derivative calculations

using matrix calculus, providing easily computable results. We

extend previous results by including not only second deriva-

tives with respect to matrix elements, but also those with

respect to any lower-level parameters that may affect the

matrix elements, and by presenting the second derivatives of

the continuous-time invasion exponent r and the net reproduc-

tive rateR0.

The key to our approach is that the calculation of first

derivatives using matrix calculus yields a particular expression,

the differentiation of which leads directly to the second deriva-

tives. Second derivatives are easily computed by this method

in any matrix-oriented language, such as MATLAB or R.

Although we consider only the second derivatives of popula-

tion growth rates, our approach extends naturally to other

scalar-dependent variables.

In the section ‘A case study:Calathea ovandensis’, we present

an example of the calculation of second derivatives in a case

study of the tropical herbCalathea ovandensis.

NOTATION

Matrices are denoted by upper-case boldface letters (e.g. A)

and vectors by lower-case boldface letters (e.g.w); unless other-

wise indicated, all vectors are column vectors. Transposes of

matrices and vectors are indicated by the superscript |. The
matrix In is the n9n identity matrix, the vector e is a vector of

ones, and e1 is a vector with 1 as its first entry and zeros else-

where. The matrixKm,n is amn9mn commutation matrix (vec-

permutation matrix) (Magnus & Neudecker 1979, Henderson

&Searle 1981), which can be calculated using theMATLAB func-

tion provided in Appendix S1-D. The expression diag(x) indi-

cates the square matrix with x on the diagonal and zeros

elsewhere.

TheKronecker product is denoted byX⊗Y and theHadam-

ard (element-by-element) product by X∘Y. The vec operator

(e.g. vecA) stacks the columns of a matrix into a single vector.

For convenience, we will write (vecA)| as vec|A .Wewill make

frequent use of Roth’s theorem (Roth 1934), which states that

for anymatricesX,Y andZ:

vecðXYZÞ ¼ ðZ| � XÞvecY : eqn 3

Matrix calculus

MATRIX CALCULUS NOTATION

Matrix calculus is a system formanipulating vectors andmatri-

ces in multivariable calculus and simplifies partial derivative

calculations by allowing the differentiation of scalar, vector or

matrix functions with respect to scalar, vector or matrix argu-

ments. While there are multiple matrix calculus notations, we

will use the system ofMagnus&Neudecker (1999). For amore

detailed introduction to these methods in an ecological con-

text, see Appendix 1 of Caswell (2007).

The first derivative of a m91 vector y with respect to a n91

vector x is defined to be them9n Jacobianmatrix

dy

dx|
¼ dyi

dxj

� �
; eqn 4

that is, a matrix whose (i,j) entry is the derivative of yi with

respect to xj. We will also write this as an operator D[y;x]; the

first argument ofD is the vector-valued function y to be differ-

entiated, and the second argument is the vector-valued variable

xwith respect to which differentation is carried out. Thus,

D½y; x� ¼ dy

dx|
: eqn 5

As in the scalar case, second derivatives are obtained by dif-

ferentiating first derivatives. If we consider a scalar-valued

function y(x) of a vector-valued argument x, the matrix of sec-

ond derivatives (theHessianmatrix) is given by the operator

H½y; x� ¼ d2y

dxidxj

� �
eqn 6

¼ d

dx|
dy

dx|

� �|� �
: eqn 7

The matrix of second derivatives of a vector-valued function

y(x), where y has dimensionsm91, is obtained by stacking the

Hessianmatrices for each of the elements of y; that is,

H½y; x� ¼

H½y1; x�
H½y2; x�

..

.

H½ym; x�

0
BBBB@

1
CCCCA eqn 8

¼ d

dx|
vec

dy

dx|

� �|� �
: eqn 9

These first and second derivative definitions are written in

terms of vector-valued functions and arguments. When matri-

ces appear, they are transformed into vectors using the vec
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operator, which stacks the columns of thematrix into a column

vector. Thus, the first and second derivatives of k with respect

to the entries of the matrixAwould be written, respectively, as

D[k;vecA] andH[k;vecA].

THE IDENTIF ICATION THEOREMS

Magnus &Neudecker (1985, 1999) showed how to obtain first

and second derivatives from the differentials of functions.

Their ’first identification theorem’ showed that

dy ¼ Qdx ¼) D½y; x� ¼ Q: eqn 10

That is, if an expression of the form dy=Qdx can be

obtained, then the Jacobian matrix of first derivatives is given

byQ.

The ’second identification theorem’ does the same for the

Hessianmatrix of second derivatives, showing that

d2y ¼ dx|Bdx ¼) H½y; x� ¼ 1

2
ðBþ B|Þ: eqn 11

Thus, our goal will be to find expressions of the form

d2y = dx|Bdx, where y is a measure of population growth rate

and x represents either matrix entries or lower-level parame-

ters; the matrix B will then provide the Hessian matrix using

(11). The key to our approach is to begin with the expression

(10) for the first differential, differentiate it to obtain the second

differential and manipulate the results to obtain a matrix B in

the form of (11).

Second derivatives of growth rates

We now apply the identification theorems to three measures of

population growth rate, the discrete-time growth rate k, the
continuous-time growth rate r = log k and the net reproduc-

tive rateR0.

SECOND DERIVATIVES OF THE DISCRETE-T IME

GROWTH RATE k

Second derivatives of kwith respect tomatrix entries:

H [k;vecA]

We assume a population projection matrix A of dimension

n9n. The discrete-time growth rate k is the dominant eigen-

value of A. To deriveH [k;vecA], we begin with an expression

of the form (10) for the first differential of k. As shown in

Caswell (2010),

dk ¼ ðw| � v|ÞdvecA eqn 12

where w and v are the right and left eigenvectors of A corre-

sponding to k, scaled so that

v|w ¼ 1 eqn 13

e|w ¼ 1 eqn 14

where e is a n91 vector of ones.

Differentiate (12) to obtain the second differential

d2k ¼ dðw| � v|ÞdvecAþ ðw| � v|Þd2vecA: eqn 15

Because we are calculating second derivatives with respect

to A, the second term will drop out because d2vecA = 0

(Magnus & Neudecker 1999). Apply the vec operator to

obtain

d2k ¼ dðvec|AÞdvecðw| � v|Þ: eqn 16

The differential of vecðw| � v|Þ is
dvecðw| � v|Þ ¼ ðIn � vÞdwþ ðw� InÞdv eqn 17

(Magnus&Neudecker 1999). Substituting (17) into (16) gives

d2k ¼ dðvec|AÞ ðIn � vÞdwþ ðw� InÞdv½ �: eqn 18

By the chain rule,

dw ¼ dw

dvec|A
dvecA eqn 19

dv ¼ dv

dvec|A
dvecA: eqn 20

The first derivatives of w and v, subject to (13) and (14), are

given in Caswell (2008) and H. Caswell and Y. Vindenes

(unpublished data), respectively, as:

dw

dvec|A
¼ ðkIn � Aþ we|AÞ�1

w| � ðIn � we|Þ½ � eqn 21

dv

dvec|A
¼ ðkIn � A| þ kvw|Þ�1

ðIn � vw|Þ � v|½ � � kðv� v|Þ dw

dvec|A

� �
:

eqn 22

Substituting (19) and (20) into (18) gives

d2k ¼ dvec|A ðIn � vÞ dw

dvec|A
þ ðw� InÞ dv

dvec|A

� �
dvecA:

eqn 23

This is of the form

d2k ¼ ðdvec|AÞBðdvecAÞ eqn 24

and hence

H k; vecA½ � ¼ 1

2
ðBþ B|Þ eqn 25a

where

B ¼ ðIn � vÞ dw

dvec|A
þ ðw� InÞ dv

dvec|A
eqn 25b

and the first derivatives ofw and v are given by (21) and (22).

Second derivatives of kwith respect to lower-level
parameters: H [k; h]

Because many life-history traits and environmental factors

affect multiple life cycle transitions, the entries of A are usually

functions of lower-level parameters. The first derivatives with

respect to lower-level parameters are calculated with the chain

rule. To calculate the second derivatives of k with respect to a
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s91 vector h of lower-level parameters, we must develop a

chain rule for theHessian.

To do so, we begin with the first differential of k in (12) and

differentiate to obtain the second differential (15). Because we

are calculating second derivatives with respect to h rather than

A, d2vecA is no longer zero. By the chain rule,

dvecA ¼ dvecA

dh|
dh: eqn 26

Differentiate (26) to obtain

d2vecA ¼ d
dvecA

dh|

� �
dhþ dvecA

dh|
d2h: eqn 27

Because d2h = 0, the second termdrops out.

Substituting (26) and (27) into the expression for the second

differential in (15) yields

d2k ¼ dðw| � v|Þ dvecA
dh|

dhþ ðw| � v|Þd dvecA

dh|

� �
dh:

eqn 28

To simplify this expression, define

S ¼ dvecA

dh|
eqn 29

T ¼ dk
dvec|A

¼ w| � v| eqn 30

in terms of which (28) can be rewritten as

d2k ¼ ðdTÞSþ TðdSÞ½ �dh: eqn 31

Then apply the vec operator and Roth’s theorem (3) to

obtain

d2k ¼ dh|vec TðdSÞ þ ðdTÞS½ � eqn 32

¼ dh| ðIs � TÞdvecSþ S|dvecT½ � eqn 33

¼ dh| ðIs � TÞdvecS
dh|

þ S| dvecT

dh|

� �
dh eqn 34

where, as shown by (A-10) and (A-13) inAppendix S1-A,

ðIs � TÞdvecS
dh|

¼ ðT� IsÞH ½vecA; h� eqn 35

dvecT

dh|
¼ H ½k; vecA�S: eqn 36

The expression (34) is of the form

d2k ¼ dh|Bdh eqn 37

and hence by the second identification theorem (11),

H½k; h� ¼ 1

2
ðBþ B|Þ eqn 38a

where

B¼ ðT� IsÞH ½vecA;h�þ ðS|ÞH ½k;vecA�S

¼ ðw|� v|� IsÞH ½vecA;h�þ dvecA

dh|

� �|
H ½k;vecA�dvecA

dh|
:

eqn 38b

The first and second derivatives ofAwith respect toθ, which
appear in dvecA

dh|
andH [vecA; h], respectively, can be evaluated

by hand or by using a symbolic math program. This result is in

agreement with the Hessian chain rule derived in a different

way byMagnus&Neudecker (1999, p. 125).

These results can be used to parameterize constraints or

covariation among traits. As a simple example, suppose that

survival and fertility are constrained to covary as Fi = cPi, and

one wants the total second derivative including this constraint.

This is obtained by defining a lower-level parameter h, setting
Fi = h andPi = ch and calculatingH [k;h].

SECOND DERIVATIVES OF THE INVASION EXPONENT r : H

[ r ;VECA ] AND H [ r ;h ]

The population growth rate in continuous time is the invasion

exponent r = log k. By the definition of the Hessian in (7), the

Hessian of rwith respect toA is

H½r; vecA� ¼ d

dvec|A
vec

dlogk
dvec|A

� �|� �
: eqn 39

We insert the first derivative of log k,

H½r; vecA� ¼ d

dvec|A

1

k
vec

dk
dvec|A

� �|� �
eqn 40

and then apply the product rule to obtain

H½r; vecA� ¼ dk
dvec|A

� �| d

dvec|A

1

k

þ 1

k
d

dvec|A
vec

dk
ovec|A

� �|� � eqn 41

which simplifies to

H½r; vecA� ¼ � 1

k2
dk

ovec|A

� �|
dk

ovec|A
þ 1

k
H½k; vecA�

eqn 42

¼ � 1

k2
ðww| � vv|Þ þ 1

k
H½k; vecA� eqn 43

whereH[k;vecA] is given by (25).
Replacing vecA in (42) with a parameter vector h gives the

Hessian

H½r;h� ¼� 1

k2
dk
dh|

� �|
dk
dh|

þ 1

k
H½k;h� eqn 44

¼ � 1

k2
dvecA

dh|

� �|
ðww| � vv|ÞdvecA

dh|
þ 1

k
H½k; h�:

eqn 45

The derivatives dvecAoh| can be calculated by hand or with a

symbolicmath program, andH [k;h] can be obtained from (38).

SECOND DERIVATIVES OF THE NET REPRODUCTIVE

RATE R 0

The net reproductive rate R0 measures the population growth

rate per generation and is used as an alternative fitnessmeasure

to r under some special conditions (P�asztor, Mesz�ena & Kidsi
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1996, Brommer 2000). If A is decomposed into transition and

fertilitymatrices,A = U+F, thenR0 is the dominant eigenvalue

of the next generationmatrixR = FN (Cushing &Zhou 1994),

whereN is the fundamentalmatrix:

N ¼ ðIn �UÞ�1 eqn 46

The (i,j) entry of N gives the expected number of visits to

stage i for an individual starting in stage j. The (i,j) entry of R

gives the expected lifetime production of stage i offspring by an

individual starting in stage j.

BecauseR0 is an eigenvalue, our results forH[k;vecA] andH
[k;θ] can be applied to find its second derivatives, but with R

taking the place of matrix A. The resulting expressions are

more complicated than the corresponding expressions for k,
because parameters can affect R0 through U, F or both. In the

important special case where only a single type of offspring is

produced (suppose it is numbered as stage 1), then R is an

upper triangular matrix and R0 is its (1,1) entry; in this case,

eigenvalue calculations are not necessary.

We defer the fully general calculation of H[R0;θ] to Appen-

dix S1-C and show results here for two useful special cases: the

second derivatives with respect to the entries of the transition

matrix U and with respect to the entries of the fertility matrix

F.We consider both single andmultiple types of offspring.

If we apply (38) to the case of R0, replacing vecA with vecR,

we obtain

H½R0; h� ¼ 1

2
ðBþ B|Þ eqn 47a

where

B ¼ðw|
R � v

|
R � IsÞH½vecR; h�

þ dvecR

dh|

� �|
H½R0; vecR� dvecR

dh|
eqn 47b

andwR and vR are the right and left eigenvectors ofR.

To evaluate (47), wemust calculate the second derivatives of

R0 with respect to R, and the first and second derivatives of R

with respect to h. For the former, the Hessian H[R0;vecR]

is given by (25), using the dominant eigenvalues and eigenvec-

tors ofR rather than those ofA. For the latter, we will consider

the derivatives ofRwith respect toU and F in turn. The deriva-

tives of R with respect to general parameters h are shown in

Appendix S1-B.

Second derivatives of R0 to the transitionmatrix:

H [R0; vecU]

The second derivatives of R0 with respect to the entries of the

transition matrix U require the first and second derivatives of

Rwith respect toU. The first derivatives are obtained by differ-

entiating R = FN, applying the vec operator and noting that

dvecN = (N|⊗N)dvecU (Caswell 2006, 2009), to obtain

dvecR

dvec|U
¼ ðN| � RÞ: eqn 48

The second derivatives ofR are obtained from the definition

of theHessianmatrix (9):

H ½vecR; vecU� ¼ d

dvec|U
vec

dvecR

dvec|U

� �|� �
eqn 49

¼ d

dvec|U
vec N� R|½ �: eqn 50

The derivative of vec (N⊗R|) is given by a result of Magnus

& Neudecker (1985, Theorem 11; 1999, p. 209); for a m9n

matrixX and a p9qmatrixY,

dvecðX� YÞ ¼ ðIn � Kqm � IpÞ ðImn � vecYÞdvecX½
þ vecX� IpqÞdvecY
� �

eqn 51

Thus, (50) can be rewritten as

As a result,

H½R0; vecU� ¼ 1

2
ðBþ B|Þ eqn 54a

where

B ¼ ðw|
R � v

|
R � In2ÞH½vecR; vecU�

þ dvecR

vec|U

� �|
H½R0; vecR� dvecR

vec|U

eqn 54b

where dvecR
dvec|U

is given by (48) and H [vecR; vecU] is given by

(53).

Second derivatives of R0 to the fertility matrix:H [R0; vecF]

Now consider the second derivatives of R0 with respect to the

entries of the fertility matrix F. Differentiating R = FN with

respect to F yields the first derivatives

dvecR

dvec|F
¼ ðN| � InÞ: eqn 55

The second derivatives ofR are given by theHessianmatrix

H½vecR; vecF� ¼ d

dvec|F
vec½N� In�: eqn 56

However, because N depends only on U, and not on F, this

is a zeromatrix.

Substituting (55) and (56) into (47) gives

H ½R0; vecF� ¼ 1

2
ðBþ B|Þ eqn 57a

H ½vecR; vecU� ¼ ðIn � Kn;n � InÞ In2 � vec½R|�ð Þ dvecN

dvec|U
þ ðvecN� In2 Þ

dvecR|

dvec|U

� �
eqn 52

¼ ðIn � Kn;n � InÞ In2 � vec½R|�ð Þ N| �Nð Þ½ þ vecN� In2ÞKn;nðN| � RÞ� �
: eqn 53
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where

B ¼ ðN� InÞH½R0; vecR�ðN| � InÞ: eqn 57b

Single type of offspring

In the common case where there is only one type of offspring

(Appendix S1-B),H[R0; h] simplifies to

H½R0; h� ¼ ðe|1 � e
|
1 � IsÞH½vecR; h� eqn 58

where e1 is the n 9 1 vector with 1 as its first entry and zeros

elsewhere.

Acase study:Calathea ovandensis

Calathea ovandensis is a neotropical perennial herb that inhab-

its forest understories. Horvitz & Schemske (1995) developed a

stage-structured matrix model for C. ovandensis that contains

eight stages distinguished by size and reproductive ability:

seeds, nonreproductive stages (seedlings, juveniles, pre-repro-

ductive), and reproductive stages (small, medium, large and

extra large). Plants may grow larger, remain in the same size

class, or shrink at each time step; larger adults are typically

more fecund.

Horvitz and Schemske summarized four years of population

dynamics from four plots of C. ovandensis with a series of 898

projection matrices. The average of these matrices, weighted

by the observed stage abundances and transition frequencies,

is given in Table 8 ofHorvitz & Schemske (1995) as

The dominant eigenvalue of this matrix is 0�9923, indicating
a near-steady state population.

To obtain the second derivatives of k to the entries of A, we

calculated the HessianH[k; vecA] using (25). It is a symmetric

64 9 64 matrix (Fig. 1). In this example, and in others with

large projection matrices, H[k; vecA] contains many entries

and may be difficult to interpret, even when entries that are

fixed at 0 are omitted. Most of the second derivatives here are

small inmagnitude (Fig. 1b) with the exception of a few entries,

including the highly negative o2k=oa23;1 ¼ �217�53 and

o2k/oa3,1oa4,2 =�75�64, where a3,1 is the transition probability

from seed to juvenile and a4,2 is the transition probability from

seedling to pre-reproductive.

Using (38), we calculated the Hessian H[k; h] for a set of

lower-level parameters h. For example, the stage-specific sur-

vival probabilities are lower-level parameters that affect multi-

ple matrix entries. To analyse these using (38), write the

survival probabilities in a vector r, which is given by the

column sums ofU, so that

U ¼ GdiagðrÞ eqn 60

where G describes stage transitions conditional on survival

(Caswell 2011). The Hessian of k with respect to r is given by

(38), with the parameter vector h given by r. Calculating this

Hessian requires the first and second derivatives of A with

respect to r. The first derivatives, assuming that F does not

depend on r (i.e. prebreeding census), are

dvecA

dr|
¼ ðIn �GÞ diag ðvecInÞðe� InÞ eqn 61

(see Caswell and Salguero-G�omez 2013, AppendixA).

The second derivatives of A are given by H[vecA; r], the

derivative of (61) with respect to r. However, none of the terms

in (61) depend on r, so H[vecA;r] is a zero matrix. Thus, the

matrixB in (38) reduces to

B ¼ dvecA

dr|

� �|
H½k; vecA� dvecA

dr|
eqn 62

where dvecA
dr| is given by (61) andH[k;vecA] is given by (25).

The resulting Hessian matrix with respect to the lower-level

survival probabilities,H[k;r], is shown in Fig. 2. These second

derivatives are generally of smaller magnitude than those of

H[k;vecA] (Fig. 1). The largest second derivatives in H[k;r]
appear in rows 1 and 2 (equivalently, columns 1 and 2). Figure

3 highlights the mixed second derivatives o2k/or1ori and

o2k/or2ori, along with the pure second derivatives o
2k=or2i .

C. ovandensis has several large second derivatives involving

r1 and r2 (the first two rows or columns of Fig. 2, which are

shown separately in Fig. 3b,c). As discussed in the section

‘Second-order sensitivity analysis and growth rate estimation,’

this indicates that the sensitivity of k to stage 1 (seed) and stage

2 (seedling) survival will be especially responsive to changes in

later survival. Similarly, the sensitivity of k to later survival is

especially responsive to changes in seed and seedling survival.

When interpreted in terms of selection gradients, recall from

the section, ‘Characterizing nonlinear selection processes’ that

selection on a single trait is concave, linear or convex if o2k/oh2

is negative, zero or positive. Selection on two traits is negatively

or positively correlational if o2k/oh1oh2 is negative or positive.
C. ovandensis is experiencing nearly linear selection on survival

A ¼

0�4983 0 0�5935 7�139 14�2715 24�6953 34�9027 40�5437
0�0973 0�0110 0�0191 0 0 0 0 0
0�0041 0�0442 0�3378 0�0698 0�0251 0�0065 0�0085 0

0 0�0014 0�1355 0�4286 0�1736 0�0968 0�0427 0�0435
0 0 0�0363 0�3841 0�6025 0�4258 0�2991 0�2174
0 0 0�0019 0�0254 0�113 0�2387 0�1709 0�2826
0 0 0 0�0095 0�0272 0�1548 0�3248 0�1957
0 0 0 0�0032 0�0063 0�0452 0�1282 0�2391

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: eqn 59
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in stage 8 (o2k/or8 � 0), concave selection on survival in stage

2, and convex selection on survival in stages 1, 3, 4 and 5. There

is negative correlational selection between survival in stage 1

(seeds) or 2 (seedlings) and survival in stages 4-8 (adults), and

positive correlational selection between seed or seedling sur-

vival and survival in stages 1–3 (pre-adults). This indicates that

seed and seedling survival are being selected to decrease their

correlation with adult survival, but to increase their correlation

with pre-adult survival.

Because the Hessian matrices include second derivatives

with respect to all possible pairs of characters (matrix entries

or lower-level parameters), they contain a great deal of infor-

mation, and there are no established standards for displaying

the results. We have shown several possibilities that may be

useful: colour plots, plots that removematrix entries that are of

no interest because they are structural zeros, and plots display-

ing the range of magnitudes of the second derivatives. Others

will no doubt be developed. TheMATLAB code used to generate

the analysis is included in the Supporting Information.

Sensitivity analysis of stochastic growth rates

An application in which second derivatives are not the objec-

tive, but in which the Hessian matrix plays a role, is the sensi-

tivity of Tuljapurkar’s small-noise approximation to the

stochastic growth rate log ks (‘Section Sensitivity of the sto-

chastic growth rate’). Tuljapurkar’s approximation can be

written in terms of the Jacobian matrixD of first derivatives of

the dominant eigenvalue of the mean projection matrix,

D ¼ D k; vec�A
� �

. Assuming that environments are uncorrelat-

ed in time,

logks � logk�DCD|

2k2
eqn 63

(a) (b)

Fig. 1. (a) TheHessianmatrixH[k; vecA], giv-
ing the second derivatives of k with respect to

the entries of the projection matrix A, for C.

ovandensis. Entries corresponding to fixed

zeros (unobserved transitions) in the matrix

(59) are omitted. (b) The entries of the Hessian

matrix in 1a, sorted in ascending order.

The derivatives o2k=oa23;1 ¼ �217�53 and

o2k/oa3,1oa4,2 = �75�64 are omitted due to

their magnitude.

(a) (b)

Fig. 2. (a) The Hessian H[k;r], giving the sec-
ond derivatives of k with respect to stage-spe-

cific survival probabilities ri, forC. ovandensis.
(b) TheHessian entries in 2a, sorted in ascend-

ing order.

(a) (b) (c)

Fig. 3. Three sets of second derivatives from H[k; r] (Figure 2). (a) The pure second derivatives o2k=or2i . (b) The mixed second derivatives

o2k/or1ori. (c) Themixed second derivatives o2k/or2ori.
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where C is the covariance matrix of the entries of the popula-

tion projectionmatrix

C ¼ E ðvecAt � vec�AÞðvecAt � vec�AÞ|� �
: eqn 64

The sensitivity of the stochastic growth rate can be obtained

by differentiating (63) with respect to the entries of �A. The sen-

sitivity of the stochastic growth rate to �A, leaving the variances

and covariances fixed, depends on the second derivatives of k
as

dlogks
dvec| �A

¼ D

k
1� CH

k
þDCD|

k2

� �
eqn 65

whereH ¼ H½k; vec�A� is the Hessian matrix of second deriva-

tives. A derivation of (65) is provided in Appendix S1-C.Much

more powerful and general approaches to sensitivity analysis

of the stochastic growth rate are available in recent develop-

ments of the Monte Carlo method (e.g. Caswell, 2005, 2010,

Tuljapurkar, Horvitz & Pascarella 2003, Haridas & Tuljapur-

kar 2005, Horvitz, Tuljapurkar & Pascarella 2005). This

approximate result may, however, be useful in situations where

the stochastic environment is defined directly in terms of the

covariancematrixC of the vital rates.

Discussion

Although the first derivatives of population growth rates are

commonly used in ecology and demography, tools for calculat-

ing the second derivatives are not nearly as well-established,

even though second derivatives also have a variety of potential

applications. To this end, we have derived new, more easily

computable formulae for the second derivatives of three popu-

lation growth rate measures – the discrete-time growth rate k,
the continuous-time growth rate r, and the per-generation

growth rate R0 – both with respect to projection matrix entries

and to lower-level parameters. Table 2 provides an overview of

the results, with directions to the equations defining the

Hessianmatrix, containing all second-order partial derivatives,

for each type of growth rate and each type of independent

variable.

The matrix calculus approach is comprehensive, and even

though the formulae may appear complicated, they are easy to

apply with any matrix-oriented software. Other methods for

finding second derivatives are either more limited or require

more difficult and error-prone calculations. Cohen (1978), for

instance, derives the second pure derivatives of k with respect

to the diagonal elements of the projection matrix (o2k=oa2ii)
only. The approaches of Deutsch & Neumann (1984) and

Kirkland & Neumann (1994) rely on the calculation of group

inverses, while those of Caswell (1996) require all the eigen-

values and eigenvectors of the projection matrix. McCarthy

et al.’s method (2008) uses transfer functions rather than eigen-

vectors and is more complicated when handling lower-level

parameters.

Population growth rate, no matter how it is measured, is

important in many ecological and evolutionary problems. It is

hoped that themethods presented here will contribute to a dee-

per understanding of the response of growth rates to changes

in parameters.
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