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=

∫
B∩S+

1 ∩S+

g(s)m+(ds) +

∫
B∩S+

1 ∩S−
g(s)m−(ds)

−
∫
B∩S−1 ∩S+

g(s)m+(ds)−
∫
B∩S−1 ∩S−

g(s)m−(ds)

=

∫
B∩S+

1 ∩S+

f(s)m+(ds)−
∫
B∩S+

1 ∩S−
f(s)m−(ds)

+

∫
B∩S−1 ∩S+

f(s)m+(ds)−
∫
B∩S−1 ∩S−

f(s)m−(ds)

=

∫
B∩S+

f(s)m+(ds)−
∫
B∩S−

f(s)m−(ds) = µ̂(B) ,

as required. �

4.4 Occupation measures and local times

Let
(
X(t), t ∈ Rd

)
be a measurable stochastic process. For a Borel set D ∈ Rd+1 =

Rd × R we de�ne

µX(D) = λd

({
t ∈ Rd :

(
t, X(t)

)
∈ D

})
. (4.4)

Clearly, µX is a σ-�nite measure on Rd+1; it is the occupation measure of the stochas-
tic process

(
X(t), t ∈ Rd

)
. For Borel sets A ∈ Rd and B ∈ R, the value of µX(A×B)

describes, informally, the amount of time in the set A the process spends in the set
B.

Fix a �time set� A ∈ Rd of a �nite positive Lebesgue measure and consider the
measure on R de�ned by

µX,A(B) = µX(A×B), B ∈ R, Borel.

By the de�nition of the occupation measure we have the following identity valid for
every measurable nonnegative function f on R:∫

A

f
(
X(t)

)
λd(dt) =

∫
R
f(x)µX,A(dx) . (4.5)

If on an event of probability 1 µX,A(B) is absolutely continuous with respect to
the Lebesgue measure λ, we say that the process has a local time over the set A.
The local time is a version of the Radon-Nykodim derivative

lX,A(x) =
dµX,A

dλ
(x), x ∈ R . (4.6)
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A local time is otherwise known as an occupation density. The basic property of the
local time follows from (4.5): for every measurable nonnegative function f on R,∫

A

f
(
X(t)

)
λd(dt) =

∫
R
f(x)lX,A(x) dx . (4.7)

If a process has a local time over a set A, the local time can also be computed
by

lX,A(x) = lim
ε↓0

1

2ε

∫
A

1[x−ε,x+ε](X(t))λd(dt) , (4.8)

and the limit exists for almost every x ∈ R. This useful representation of the local
time has also an attractive intuitive meaning. It implies, in particular, that one
can choose a version of a local time such that lX,A(x) = lX,A(ω;x) is a measurable
function Ω×R→ R. In particular, for every x ∈ R, lX,A(x) is a well de�ned random
variable.

An immediate conclusion from (4.8) is the following monotonicity property of
the local times: if a process

(
X(t), t ∈ Rd

)
has local times over sets A and B, then

A ⊂ B implies that lX,A(x) ≤ lX,B(x) a.s.. (4.9)

Let
(
X(t), t ∈ R

)
be a measurable stochastic process with a one-dimensional

time. If the process has a local time over each interval [0, t] in some range t ∈ [0, T ],
then it is common to use the two-variable notation

lX(x, t) = lX,[0,t](x), 0 ≤ t ≤ T, x ∈ R .

Using (4.8) shows that there is a version of
(
lX(x, t)

)
that is jointly measurable in

all 3 variables, ω, x, t.
As expected, existence and �nite dimensional distributions of a local time are

determined by the �nite dimensional distributions of the underlying process.

Proposition 4.4.1 (i) The �nite dimensional distributions of the local time are de-
termined by the �nite dimensional distributions of the process. That is, let

(
X(t), t ∈

Rd
)
and

(
Y (t), t ∈ Rd

)
be measurable stochastic processes with the same �nite di-

mensional distributions. If
(
X(t), t ∈ Rd

)
has a local time over a set A, then so

does the process
(
Y (t), t ∈ Rd

)
. Moreover, there a Borel set S ⊂ R of null Lebesgue

measure such that the �nite dimensional distributions of
(
lX,A(x), x ∈ Sc

)
coincide

with the �nite dimensional distributions of
(
lY,A(x), x ∈ Sc

)
.

(ii) If
(
X(t), t ∈ R

)
and

(
Y (t), t ∈ R

)
are measurable stochastic processes with

the same �nite dimensional distributions, and if
(
X(t), t ∈ R

)
has a local time over

each interval [0, t] in some range t ∈ [0, T ], then so does the process
(
Y (t), t ∈ R

)
.

Moreover, for every t1, . . . , tk in [0, T ] there a Borel set S ⊂ R of null Lebesgue
measure such that the �nite dimensional distributions of

(
lX,A(x, tj), x ∈ Sc, j =

1, . . . , k
)
coincide with the �nite dimensional distributions of

(
lY,A(x, tj), x ∈ Sc, j =

1, . . . , k
)
.
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We �rst prove a useful lemma.

Lemma 4.4.2 Let
(
X(t), t ∈ Rd

)
and

(
Y (t), t ∈ Rd

)
be measurable stochastic

processes with the same �nite dimensional distributions. Let A ⊂ Rd be a measurable
set of a �nite positive Lebesgue measure, and f : A → R a bounded measurable
function. Then ∫

A

f
(
X(t)

)
λd(dt)

d
=

∫
A

f
(
Y (t)

)
λd(dt) .

Proof: Suppose that the process
(
X(t), t ∈ Rd

)
is de�ned on some probability

space
(
Ω1,F1, P1

)
, while the process

(
Y (t), t ∈ Rd

)
is de�ned on some other prob-

ability space
(
Ω2,F2, P2

)
. Let T1,T2, . . . be a sequence of i.i.d. random vectors in

Rd, whose common law is the normalized Lebesgue measure on A, and suppose that
the sequence is de�ned on yet another probability space

(
Ω3,F3, P3

)
. Note that for

every ω1 ∈ Ω1,
1

n

n∑
j=1

f
(
X(Tj)

)
→
∫
A

f
(
X(t)

)
λd(dt) (4.10)

as n→∞ P3-a.s. by the law of large numbers. By Fubini's theorem on the product
probability space

(
Ω1×Ω3,F1×F3, P1×P3

)
, we see that there is an event Ω

(1)
3 ∈ F3

of full P3-probability such that (4.10) holds P1-a.s. for every ω3 ∈ Ω
(1)
3 .

Repeating the argument, we see that there is an event Ω
(2)
3 ∈ F3 of full P3-

probability such that for every ω3 ∈ Ω
(2)
3 ,

1

n

n∑
j=1

f
(
Y (Tj)

)
→
∫
A

f
(
Y (t)

)
λd(dt) (4.11)

as n→∞ P2-a.s.. The event Ω
(1)
3 ∩Ω

(2)
3 has full P3-probability, so its must contain a

point ω3, which we �x. This gives us a �xed sequence
(
Tj

)
, and for this sequence the

expressions in the left hand sides of (4.10) and (4.11) have the same distributions.
Since we have convergence in both (4.10) and (4.11), the claim of the lemma follows.
�
Proof of Proposition 4.4.1 For part (i), let A ∈ Rd be a set of a �nite positive
Lebesgue measure. It follows from Lemma 4.4.2 applied to indicator functions of
Borel sets and linear combinations of such indicator functions that(

µX,A(B), B Borel
) d

=
(
µY,A(B), B Borel

)
(4.12)

in the sense of equality of the �nite dimensional distributions. Suppose that
(
X(t),

t ∈ Rd
)
has a local time over the set A. Then on an event of probability 1, the

probability measure µX,A is absolutely continuous with respect to the Lebesgue
measure on R. This implies that, on that event, for every m1 ≥ 1 there is m2 ≥ 1
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such that for all k = 1, 2, . . . and rational numbers τ1 < τ ′1 < τ2 < τ ′2 < . . . < τk < τ ′k
with

∑k
−=1(τ ′i − τi) < 1/m2 we have

k∑
i=1

µX,A

(
(τi, τ

′
i ]
)
< 1/m1 .

Then (4.12) implies that the same is true for the probability measure µY,A, and so
on an event of probability 1, the probability measure µY,A is absolutely continuous
with respect to the Lebesgue measure on R as well; see e.g. Royden (1968). This
means that the process

(
Y (t), t ∈ Rd

)
has a local time over the set A.

Next, suppose that that the process
(
X(t), t ∈ Rd

)
is de�ned on some proba-

bility space
(
Ω1,F1, P1

)
, while the process

(
Y (t), t ∈ Rd

)
is de�ned on some other

probability space
(
Ω2,F2, P2

)
, and let Ω

(1)
i ∈ F1, i = 1, 2 be events of full probabil-

ities on which
(
X(t), t ∈ Rd

)
and

(
Y (t), t ∈ Rd

)
have local times over the set A.

Let S ⊂ R be a Borel set of null Lebesgue measure such that for every x ∈ Sc, the
relation (4.8) holds for P1-almost every ω1 ∈ Ω

(1)
i , and the version of (4.8) written

for the process
(
Y (t), t ∈ Rd

)
holds for P2-almost every ω2 ∈ Ω

(2)
i . Then the fact

that the �nite dimensional distributions of
(
lX,A(x), x ∈ Sc

)
coincide with the �-

nite dimensional distributions of
(
lY,A(x), x ∈ Sc

)
follows from Lemma 4.4.2. This

proves part (i) of the proposition.
For part (ii) of the proposition, the fact that the process

(
Y (t), t ∈ R

)
has a

local time over each interval [0, t] in the range t ∈ [0, T ] follows from part (i), while
the equality of the �nite dimensional distributions follows from (4.8) in the same
way as the corresponding statement in part (i). �

The next, and basic, property of the local time follows from its de�nition.

Proposition 4.4.3 (i) Suppose that a process
(
X(t), t ∈ Rd

)
has a local time

over a set A. Let B ⊂ R be a Borel set. If Ω0 ∈ F is a event such that for every
ω ∈ Ω0, X(t) ∈ Bc for each t ∈ A, then for every ω ∈ Ω0, lX,A(x) = 0 for almost
every x ∈ B.

(ii) Let t > 0 and suppose that the local time lX(·, t) of the process
(
X(t), t ∈ R

)
over the interval [0, t] exists. Let y > 0. If Ω0 ∈ F is a event such that for every
ω ∈ Ω0, sups∈[0,t] |X(s)| < y, then for every ω ∈ Ω0, lX(x, t) = 0 for almost every x
with |x| ≥ y.

Proof: Letting f to be the indicator function of the set B and appealing to (4.7)
proves the �rst statement of the proposition. The second statement follows from
the �rst one with B = (−∞,−y] ∪ [y,∞). �

When do local times exist? An easy to check criterion for existence of a local time
is due to Berman (1969). It is based on the following classical result on characteristic
functions of random vectors.
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Lemma 4.4.4 (i) Let X be a random vector, and let ϕX(θ) = Eei(θ,X), θ ∈ Rd be
its characteristic function. Then X has a square integrable density if and only if∫

Rd
|ϕX(θ)|2 λd(dθ) <∞ .

(ii) If ∫
Rd
|ϕX(θ)|λd(dθ) <∞ ,

then X has a bounded uniformly continuous density.

Proof: The second part of the lemma appears in about every book in probability;
see e.g. Corollary 2, p. 149 in Laha and Rohatgi (1979)). The statement of the
�rst part of the lemma is less common in the probabilistic literature, so we include
a proof.

Suppose that ϕX is square integrable. The general theory of the L2 Fourier
transforms tells us that the function

f(x) = lim
h↑∞

1

(2π)d/2

∫
‖θ‖≤h

ei(θ,x)ϕX(θ)λd(dθ), x ∈ Rd

exists in L2(λd) and, moreover, the function

f1(x) =

∫ x1

0

. . .

∫ xd

0

f(y1, . . . , yd) dy1 . . . dyd, x = (x1, . . . , xd) ∈ (0,∞)d

satis�es the relation

f1(x) =
1

(2π)d/2

∫
Rd
ϕX(θ)

d∏
j=1

e−itjθj − 1

−itj
λd(dθ), x = (x1, . . . , xd) ∈ (0,∞)d ;

see Section VI.2 in Yosida (1965). On the other hand, by the inversion theorem for
the characteristic functions (see e.g. Theorem 3.3.3 in Laha and Rohatgi (1979))
we know that for every x = (x1, . . . , xd) ∈ (0,∞)d such that each xj is a continuity
point of the marginal distribution of the jth component of X,

1

πd

∫
Rd
ϕX(θ)

d∏
j=1

e−itjθj − 1

−itj
λd(dθ) = P

(
X ∈

d∏
j=1

(0, xj]
d
)
.

We conclude that

P
(
X ∈

d∏
j=1

(0, xj]
d
)

=
(π

2

)d/2 ∫ x1

0

. . .

∫ xd

0

f(y1, . . . , yd) dy1 . . . dyd
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a.e. on (0,∞)d. That means that the function f is real and nonnegative a.e. on
(0,∞)d, the law of X is absolutely continuous on this set, and its density is square
integrable. Since this argument can be repeated with only notational changes for
other quadrants of Rd, this proves the �if� part of the lemma. The other direction is
easy since the usual Fourier transform of a function in L1(λd)∩L2(λd) is in L2(λd);
see once again Section VI.2 in Yosida (1965). �

The following proposition, due to Berman (1969), is an easy consequence of the
lemma.

Proposition 4.4.5 Let
(
X(t), t ∈ Rd

)
be a measurable stochastic process. Let

A ∈ Rd be a measurable set of a �nite d-dimensional Lebesgue measure. A su�cient
condition for the process to have a local time over the set A satisfying∫

R
lX,A(x)2 dx <∞ with probability 1

is ∫
R

∫
A

∫
A

Eeiθ(X(t)−X(s)) λd(dt)λd(ds) dθ <∞ . (4.13)

A su�cient condition for the process to have a bounded and uniformly continuous
local time over the set A is∫

R

(∫
A

∫
A

Eeiθ(X(t)−X(s)) λd(dt)λd(ds)

)1/2

dθ <∞ . (4.14)

Proof: For a �xed ω ∈ Ω consider X = X(t), t ∈ A as a random variable on the
probability space A with the Borel σ-�eld restricted to A, and the probability mea-
sure Q = (λd(A))−1λd. Then the occupation measure µX,A(·) is, up to a constant,
the probability law of X, and existence of a square integrable local time over the
set A is equivalent to existence of a square integrable density of the probability law
of X. Since the characteristic function of X at a point θ ∈ R is given by

1

λd(A)

∫
A

eiθX(t) λd(dt) ,

by part (i) of Lemma 4.4.4 existence of such a square integrable density is equivalent
to �niteness of the expression∫

R

∣∣∣∣∫
A

eiθX(t) λd(dt)

∣∣∣∣2 dθ .
The expectation of this expression coincides with the left hand side of (4.13), and
if the expectation is �nite, then the expression itself is �nite on a set of probability
1. This proves the �rst statement.
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Similarly, existence of a bounded and uniformly continuous local time over the
set A is equivalent to existence of a bounded and uniformly continuous density of
the probability law of X above. By part (ii) of Lemma 4.4.4 existence of such a
density follows from a.s. �niteness of the integral∫

R

∣∣∣∣∫
A

eiθX(t) λd(dt)

∣∣∣∣ dθ .
Taking expectation and using the Cauchy-Scwartz inequality

E

∣∣∣∣∫
A

eiθX(t) λd(dt)

∣∣∣∣ ≤
(
E

∣∣∣∣∫
A

eiθX(t) λd(dt)

∣∣∣∣2
)1/2

proves the second statement. �
Even the simple tools of Proposition 4.4.5 already guarantee existence and reg-

ularity of the local times of certain self-similar SαS process with stationary incre-
ments; see Exercise 4.6.3. Stronger results have been obtained for certain Gaussian
processes using the theory of local nondeterminism introduced by Berman (1973),
and later extended to non-Gaussian stable processes by Nolan (1982). The following
proposition shows existence of jointly continuous local times for certain self-similar
processes with stationary increments.

Proposition 4.4.6 Let
(
X(t), t ∈ R

)
be a Fractional Brownian motion, or the real

Harmonizable SαS motion with exponent self-similarity 0 < H < 1, or a Linear
Fractional SαS motion with α > 1, 1/α < H < 1 and c2 = 0. Then the process has
a local time over every interval [0, t], t > 0 and, moreover, there is a version of the
local time that is jointly continuous in time and space. That is, there is a random
�eld

lX(x, t) = lX(x, t, ω), 0 ≤ t ≤ T, x ∈ R, ω ∈ Ω

such that every ω ∈ Ω, lX(x, t) is jointly continuous in x ∈ R and t ≥ 0 (with
lX(x, 0) = 0 for all x ∈ R), and for each t > 0, lX(x, t), x ∈ R is a version of the
local time lX,[0,t](x), x ∈ R.

Proof: For the Fractional Brownian motion the claim follows from Section 7 in Pitt
(1978) and Theorem 8.1 in Berman (1973). For the real Harmonizable SαS motion
the claim follows from Theorem 4.11 in Nolan (1989). For the Linear Fractional
SαS motion the claim follows from Ayache et al. (2008). �

Very precise estimates on the size of the time increments of the local of the
Fractional Brownian motion are due to Xiao (1997). Some of them are summarized
in the following proposition.
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Proposition 4.4.7 (i) Let
(
lX(x, t), x ∈ R, t ≥ 0

)
be the jointly continuous local

time of a Fractional Brownian motion with exponent 0 < H < 1 of self-similarity.
Then the supremum

sup
x∈R

0≤s<t≤1/2

l(x, t)− l(x, s)
(t− s)1−H

(
log 1

t−s

)H
is a.s. �nite, and has �nite moments of all orders.

(ii) For every t > 0 and p > 0

E sup
x∈R

l(x, t)p <∞ .

Proof: The �niteness of the supremum in �rst part of the proposition follows
from Corollary 1.1 in Xiao (1997). The �niteness of the moments is a very slight
modi�cation of the argument leading to the above corollary. The second part of the
proposition follows from the �rst part by breaking the interval [0, t] into parts of the
length less than 1/2. �

It is, perhaps, not surprising that certain properties of a stochastic process, such
as self-similarity, stationarity and stationarity of the increments, are re�ected in an
appropriate way in the properties of the local time, assuming that the latter exists.
In order to simplify the formulation of these relationships, we will assume that the
local time is continuous.

Proposition 4.4.8 Let
(
X(t), t ∈ R

)
be a measurable stochastic process, and as-

sume that it has local time
(
lX(x, t), x ∈ R, t ≥ 0

)
that is jointly continuous in time

and space.
(i) If the process is self-similar with exponent H is self-similarity, then for every

c > 0 (
lX(cHx, ct), x ∈ R, t ≥ 0

) d
=
(
c1−H lX(x, t), x ∈ R, t ≥ 0

)
. (4.15)

(ii) If the process is stationary, then for every h > 0,(
lX(x, t+ h)− lX(x, h), x ∈ R, t ≥ 0

) d
=
(
lX(x, t), x ∈ R, t ≥ 0

)
. (4.16)

(iii) Suppose that the process
(
X(t), t ∈ R

)
is de�ned on some probability space(

Ω,F , P
)
. Suppose that the process has stationary increments and sample paths that

are bounded on compact intervals, satisfying

E sup
0≤t≤T

|X(t)| <∞ .

Then for every h > 0, the in�nite �law� of(
lX(x+ u, t+ h)(ω)− lX(x+ u, h)(ω), x ∈ R, t ≥ 0

)
under the in�nite measure P × λ does not depend on the shift h.
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Proof: Note, �rst of all, that when the local times are continuous, the exceptional
set S in Proposition 4.4.1 may be taken to be the empty set, and we will do that
throughout this proof.

For part (i), let c > 0, and de�ne a new stochastic process by

Y (t) = c−HX(ct), t ∈ R .

By the self-similarity, the new process has the same �nite-dimensional distributions
as the original process

(
X(t), t ∈ R

)
. Let f be a nonnegative measurable function

on R. For a t > 0 we change the variable of integration twice, using in between (4.7)
for A = [0, ct], to write ∫ t

0

f(Y (s)) ds =

∫ t

0

f
(
c−HX(cs)

)
ds

= c−1

∫ ct

0

f
(
c−HX(s)

)
ds = c−1

∫
R
f
(
c−Hx

)
lX(x, ct) dx

= cH−1

∫
R
f
(
x
)
lX(cHx, ct) dx .

Therefore,
(
cH−1lX(cHx, ct), x ∈ R, t ≥ 0

)
is a version of the local time

(
lY(x, t), x ∈

R, t ≥ 0
)
. By Proposition 4.4.1 the latter has the same �nite-dimensional distribu-

tions as the local time
(
lX(x, t), x ∈ R, t ≥ 0

)
, and this proves (4.15).

In a similar manner, for part (ii) we take h > 0, de�ne a new stochastic process
by Y (t) = X(t+ h), t ∈ R, and write for a nonnegative measurable function f and
t > 0 ∫ t

0

f(Y (s)) ds =

∫ t

0

f
(
X(s+ h)

)
ds

=

∫ t+h

h

f
(
X(s)

)
ds =

∫ t+h

0

f
(
X(s)

)
ds−

∫ h

0

f
(
X(s)

)
ds

=

∫
R
f(x)lX(x, t+ h) dx−

∫
R
f(x)lX(x, h) dx

=

∫
R
f(x)

(
lX(x, t+ h)− lX(x, h)

)
dx ,

so that (
lX(x, t+ h)− lX(x, h), x ∈ R, t ≥ 0

)
is a version of the local time

(
lY(x, t), x ∈ R, t ≥ 0

)
. Now another appeal to

Proposition 4.4.1 proves (4.16).
The proof of part (iii) of the proposition, which we now commence, has the same

idea as the proof of part (ii), except that now we have to deal with in�nite measures.
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Fix h > 0. Let f be a nonnegative measurable function. As before, there is an event
of full probability such that, on this event, for every u ∈ R and t > 0,∫ t

0

f
(
u+X(s+ h)

)
ds =

∫
R
f(x)

(
lX(x− u, t+ h)− lX(x− u, h)

)
dx ,

Applying this to a function f = 1[x−ε,x+ε]/2ε for ε > 0 and using the continuity of
the local times gives us

lX(x− u, t+ h)− lX(x− u, h) = lim
ε→0

1

2ε

∫ t

0

1[x−ε,x+ε]

(
u+X(s+ h)

)
ds (4.17)

for every u ∈ R, t > 0 and x ∈ R.
Denote the expression in the left hand side of (4.17) by Ah(x, t;u, ω) and the

expession under the limit in the right hand side of (4.17) by Ah,ε(x, t;u, ω). Choose
pairs (xj, tj), j = 1, . . . , k. Fix ω, and note that by Fubini's theorem, there is a
measurable set F ∈ (0,∞)k of full Lebesgue measure such that for all (a1, . . . , ak) ∈
F we have

1
(
Ah,ε(xj, tj;u, ω) > aj, j = 1, . . . , k

)
→ 1

(
Ah(xj, tj;u, ω) > aj, j = 1, . . . , k

)
for almost every u ∈ R. Let now M > |x1| + 1 + suph≤s≤t1+h |X(s)|. We have, by
the dominated convergence theorem,

λ
{
u ∈ R : Ah,ε(xj, tj;u, ω) > aj, j = 1, . . . , k

}
= λ

{
u ∈ [−M,M ] : Ah,ε(xj, tj;u, ω) > aj, j = 1, . . . , k

}
→ λ

{
u ∈ [−M,M ] : Ah(xj, tj;u, ω) > aj, j = 1, . . . , k

}
for every (a1, . . . , ak) ∈ F .

Further, for every ε > 0

λ
{
u : Ah,ε(xj, tj;u, ω) > aj, j = 1, . . . , k

}
≤ λ

{
u : Ah,ε(x1, t1;u, ω) > a1

}
≤ 1

2a1ε

∫
R

∫ t1

0

1[x1−ε,x1+ε]

(
u+X(s+ h)

)
ds du =

t1
a1

,

where at the last step we used Fubini's theorem. Finally, using once again the
dominated convergence theorem, we conclude that

P × λ
{

(ω, u) ∈ Ω× R : Ah,ε(xj, tj;u, ω) > aj, j = 1, . . . , k
}

(4.18)

→ P × λ
{

(ω, u) ∈ Ω× R : Ah(xj, tj;u, ω) > aj, j = 1, . . . , k
}
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for every (a1, . . . , ak) ∈ F . In particular, the �law� of
(
Ah(xj, tj), j = 1, . . . , k

)
under P × λ is σ-�nite on (0,∞)k.

Suppose that we show that, for every ε > 0, the �law� of
(
Ah,ε(xj, tj), j =

1, . . . , k
)
under P × λ is independent of h > 0. Then for every h1, h2 > 0 we can

�nd a subset of (0,∞)k of full Lebesgue measure, such that (4.18) holds for h1, h2

and all (a1, . . . , ak) in that set. This means that for such (a1, . . . , ak)

P × λ
{

(ω, u) ∈ Ω× R : Ah1(xj, tj;u, ω) > aj, j = 1, . . . , k
}

= P × λ
{

(ω, u) ∈ Ω× R : Ah2(xj, tj;u, ω) > aj, j = 1, . . . , k
}

and, hence, the equality holds for all a1 > 0, . . . , ak > 0. This will establish the
claim of part (iii) of the proposition.

It remains to show that for every ε > 0, the �law� of
(
Ah,ε(xj, tj), j = 1, . . . , k

)
under P × λ is independent of h > 0. It is, of course, enough to consider there laws
restricted to the �punctured� set [0,∞)d \ {0}. Assume without loss of generality
that t1 < t2 < . . . < td, and notice that only those pairs (ω, u) for which

u+ inf
0≤s≤td

X(s+ h) ≤ x+ ε and u+ sup
0≤s≤td

X(s+ h) ≥ x− ε

contribute to the values of
(
Ah,ε(xj, tj), j = 1, . . . , k

)
in the set [0,∞)d \ {0}. Call

this set Vh. It follows from the assumption that the supremum of the process
over compact intervals is integrable that the measure P × λ restricted to Vh is
�nite. Moreover, it follows from Proposition 2.1.11 that the total mass of this
restricted measure is independent of h > 0. Normalizing this restricted measure
to be a probability measure, the required independence of h > 0 of the �law� of(
Ah,ε(xj, tj), j = 1, . . . , k

)
follows from Proposition 2.1.11 and Lemma 4.4.2 applied

to the linear combinations of
(
Ah,ε(xj, tj), j = 1, . . . , k

)
. �

4.5 Comments on Chapter 4

Comments on Section 4.2

The name �Borell-TIS� of the inequality in Theorem 4.2.3 is due to the fact that
the version of (4.1) using the median of the supremum was proved at about the
same time by Borell (1975) and Tsirelson et al. (1976).

Comments on Section 4.4

In the one-dimensional case the statement of Lemma 4.4.4 is in Problem 11, page
147 in Chung (1968).
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Comments on Section 4.4

Theory of local times was originally developed for Markov processes, beginning
with Lévy (1939). Extending the idea of local times to non-Markov processes is due
to Berman (1969), who mostly considered Gaussian processes. Existence of �nice�
local times requires certain roughness of the sample paths of a stochastic process,
and the powerful idea of local nondeterminism introduced in Berman (1973) can
be viewed as exploting this observation in the case of Gaussian processes. This
approach was extended by Pitt (1978) to Gaussian random �elds (with values in
�nite-dimensional Euclidian spaces), and to stable processes by Nolan (1982). Many
details on local times of stochastic processed and random �elds can be found in
Geman and Horowitz (1980) and Kahane (1985).

Esimates similar to those in Proposition 4.4.7 (but with a slighly worse power of
the logarithm) were also obtained in Csörgo et al. (1995).

4.6 Exercises to Chapter 4

Exercise 4.6.1 Let ν and µ be two signed measure on
(
S,S

)
. Construct the signed

measure ν + µ on
(
S,S

)
. Is it true that the positive and negative parts of the new

measure are equal to the sums of the corresponding parts of the original measure?

Exercise 4.6.2 Prove that if ν and µ are two signed measure on
(
S,S

)
and fi :

S → R, i = 1, 2 measurable functions such that (4.2) holds both with f = f1 and
f = f2, then f1 = f2 a.e. with respect to the total variation measure ‖ν‖.

Exercise 4.6.3 Let
(
X(t), t ≥ 0

)
be an H-self-similar SαS process with stationary

increments, 0 < α ≤ 2 (a Fractional Brownian motion in the case α = 2). Use
Proposition 4.4.5 to show that over each compact interval the process has square
integrable local time if 0 < H < 1 and a bounded and uniformly continuous local
time if 0 < H < 1/2.



Bibliography

J. Aaronson (1997): An Introduction to In�nite Ergodic Theory , volume 50 of
Mathematical Surveys and Monographs . American Mathematical Society, Provi-
dence.

R. Adler and J. Taylor (2007): Random Fields and Geometry . Springer, New
York.

L. Ahlfors (1953): Complex Analysis . McGraw-Hill Book Co.

A. Ayache, F. Roueff and Y. Xiao (2008): Joint continuity of the local times
of linear fractional stable sheets. Comptes Rendus Mathématique, Académie des
Sciences, Paris 344:635�640.

S. Banach (1955): Théorie des Opérations Linéaires . PWN, Warsaw.

S. Berman (1969): Local times and sample function properties of stationary Gaus-
sian processes. Transactions of American Mathematical Society 137:277�299.

S. M. Berman (1973): Local nondeterminism and local times of Gaussian pro-
cesses. Indiana Univ. Math. J. 23:69�94.

P. Billingsley (1995): Probability and Measure. Wiley, New York, 3rd edition.

N. Bingham, C. Goldie and J. Teugels (1987): Regular Variation. Cambridge
University Press, Cambridge.

C. Borell (1975): The Brunn-Minkowski inequality in Gauss space. Invent. Math.
30:205�216.

K. Chung (1968): A Course in Probability Theory . Harcourt, Brace and World,
Inc., New York.

S. Cohen and G. Samorodnitsky (2006): Random rewards, Fractional Brow-
nian local times and stable self-similar processes. Annals of Applied Probability
16:1432�1461.

95



96 BIBLIOGRAPHY

M. Csörgo, Z.-Y. Lin and Q.-M. Shao (1995): On moduli of continuity for local
times of Gaussian processes. Stochastic Processes and Their Applications 58:1�21.

L. Decreusefond and A. Üstünel (1999): Stochastic analysis of the Fractional
Brownian motion. Potential Analysis 10:177�214.

C. Dombry and N. Guillotin-Plantard (2009): Discrete approximation of a
stable self-similar stationary increments process. Bernoulli 15:195�222.

R. Dudley (1989): Real Analysis and Probability . Wadsworth and Brook/Cole.

G. Folland (1999): Real Analysis: Modern Techniques and Their Applications .
Wiley, New York, 2nd edition.

D. Geman and J. Horowitz (1980): Occupation densities. The Annals of Prob-
ability 8:1�67.

A. Gut (2005): Probability: A Graduate Course. Springer, New York.

E. Hewitt and K. Ross (1979): Abstract Harmonic Analysis I . Springer-Verlag,
New York.

K. Itô and N. Nisio (1968): On the oscillation functions of Gaussian processes.
Math. Scand. 22:209�223.

J. P. Kahane (1985): Some random series of functions.. Cambridge University
Press, 2nd edition.

O. Kallenberg (2002): Foundations of Modern Probability . Springer, New York,
2nd edition.

A. Kolmogorov (1940): Wienersche Spiralen und einige andere interessante kur-
ven in Hilbertschen raum. C.R. (Doklady) Acad. Sci. USSR (N.S.) 26:115�118.

U. Krengel (1985): Ergodic Theorems . De Gruyter, Berlin, New York.

S. Kwapie« and N. Woyczy«ski (1992): Random Series and Stochastic Integrals:
Single and Multiple. Birkhäuser, Boston.

R. Laha and V. Rohatgi (1979): Probability Theory . Wiley & Sons, New York.

P. Lévy (1939): Sur certains processus stochastiques homogénes. Compositio Math-
ematica 7:283�339.

M. Maejima (1983): A self-similar process with nowhere bounded sample paths.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 65:115�119.



BIBLIOGRAPHY 97

B. Mandelbrot and J. Van Ness (1968): Fractional Brownian motions, frac-
tional noises and applications. SIAM Review 10:422�437.

K. Neeb (1997): On a theorem of S. Banach. Journal of Lie Theory 8:293�300.

J. Nolan (1982): Local times for stable processes . Ph.D. thesis, University of
Virginia.

J. Nolan (1989): Local nondeterminism and local times for stable processes. Prob-
ability Theory and Related Fields 82:387�410.

L. Pitt (1978): Local times for Gaussian vector �elds. Indiana Univ. Math. Journal
27:309�330.

J. Rosi«ski (2007): Lévy and Related Jump-type In�nitely Divisinle Processes.
Lecture Notes, Cornell University.

H. Royden (1968): Real Analysis . Macmillan, 2nd edition.

W. Rudin (1962): Fourier Analysis on Groups . Interscience Publishers, New York.

G. Samorodnitsky and M. Taqqu (1994): Stable Non-Gaussian Random Pro-
cesses . Chapman and Hall, New York.

K. Sato (1999): Lévy Processes and In�nitely Divisible Distributions . Cambridge
University Press, Cambridge.

B. Tsirelson, I. Ibragimov and V. Sudakov (1976): Norms of Gaussian sam-
ple functions. In Proceedings of the 3d Japan-USSR Symposium on Probability
Theory , volume 550 of Lecture Notes in Mathematics . Springer-Verlag, Berlin,
pp. 20�41.

Y. Xiao (1997): Hölder conditions for the local times and the Hausdor� measure of
the level sets of Gaussian random �elds. Probab. Theory Related Fields 109:129�
157.

A. Yaglom (1955): Correlation theory of processes with stationary random incre-
ments of order n. Mat. Sbornik 37:141�196. English translation in Am. Math.
Soc. Translations Ser. 2 8(1958), 87-141.

K. Yosida (1965): Functional Analysis . Springer-Verlag, Berlin.


