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Preface

These lecture notes were written for the course ‘Bayesian Statistics’, taught at University

of Amsterdam in the spring of 2007. The course was aimed at first-year MSc.-students in

statistics, mathematics and related fields. The aim was for students to understand the basic

properties of Bayesian statistical methods; to be able to apply this knowledge to statistical

questions and to know the extent (and limitations) of conclusions based thereon. Considered

were the basic properties of the procedure, choice of the prior by objective and subjective

criteria, Bayesian inference, model selection and applications. In addition, non-parametric

Bayesian modelling and posterior asymptotic behaviour have received due attention and com-

putational methods were presented.

An attempt has been made to make these lecture notes as self-contained as possible.

Nevertheless the reader is expected to have been exposed to some statistics, preferably from

a mathematical perspective. It is not assumed that the reader is familiar with asymptotic

statistics; these lecture notes provide a general introduction to this topic. Where possible,

definitions, lemmas and theorems have been formulated such that they cover parametric and

nonparametric models alike. An index, references and an extensive bibliography are included.

Since Bayesian statistics is formulated in terms of probability theory, some background in

measure theory is prerequisite to understanding these notes in detail. However the reader is

not supposed to have all measure-theorical knowledge handy: appendix A provides an overview

of relevant measure-theoretic material. In the description and handling of nonparametric

statistical models, functional analysis and topology play a role. Of the latter two, however,

only the most basic notions are used and all necessary detail in this respect will be provided

during the course.

The author wishes to thank Aad van der Vaart for his contributions to this course and

these lecture notes, concerning primarily (but not exclusively) the chapter entitled ‘Numerical

methods in Bayesian statistics’. For corrections to the notes, the author thanks C. Muris, ...

Bas Kleijn, Amsterdam, January 2007
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Chapter 1

Introduction

The goal of inferential statistics is to understand, describe and estimate (aspects of) the ran-

domness of measured data. Quite naturally, this invites the assumption that the data repre-

sents a sample from an unknown but fixed probability distribution. Based on that assumption,

one may proceed to estimate this distribution directly, or to give estimates of certain char-

acteristic properties (like its mean, variance, etcetera). It is this straightforward assumption

that underlies frequentist statistics and markedly distinguishes it from the Bayesian approach.

1.1 Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, a model and

an estimation procedure. The data is a measurement or observation which we denote by Y ,

taking values in a corresponding samplespace.

Definition 1.1.1. The samplespace for an observation Y is a measurable space (Y ,B) (see

definition A.1.1) containing all values that Y can take upon measurement.

Measurements and data can take any form, ranging from categorical data (sometimes

referred to as nominal data where the samplespace is simply a (usually finite) set of points

or labels with no further mathematical structure), ordinal data (sometimes called ranked

data, where the samplespace is endowed with an total ordering), to interval data (where in

addition to having an ordering, the samplespace allows one to compare differences or distances

between points), to ratio data (where we have all the structure of the real line). Moreover Y

can collect the results of a number of measurements, so that it takes its values in the form of a

vector (think of an experiment involving repeated, stochastically independent measurements

of the same quantity, leading to a so-called independent and identically distributed (or i.i.d.)

sample). The data Y may even take its values in a space of functions or in other infinite-

dimensional spaces.

1



2 Introduction

The samplespace Y is assumed to be a measurable space to enable the consideration of

probability measures on Y , formalizing the uncertainty in measurement of Y . As was said in

the opening words of this chapter, frequentist statistics hinges on the assumption that there

exists a probability measure P0 : B → [0, 1] on the samplespace Y representing the “true

distribution of the data”:

Y ∼ P0 (1.1)

Hence from the frequentist perspective, inferential statistics revolves around the central ques-

tion: “What is P0?”, which may be considered in parts by questions like, “What is the mean

of P0?”, “What are the higher moments of P0?”, etcetera.

The second ingredient of a statistical procedure is a model, which contains all explanations

under consideration of the randomness in Y .

Definition 1.1.2. A statistical model P is a collection of probability measures P : B → [0, 1]

on the samplespace (Y ,B).

The model P contains the candidate distributions for Y that the statistician finds “rea-

sonable” explanations of the uncertainty he observes (or expects to observe) in Y . As such,

it constitutes a choice of the statistician analyzing the data rather than a given. Often, we

describe the model in terms of probability densities rather than distributions.

Definition 1.1.3. If there exists a σ-finite measure µ : B → [0,∞] such that for all P ∈ P,

P � µ, we say that the model is dominated.

The Radon-Nikodym theorem (see theorem A.4.2) guarantees that we may represent a

dominated model P in terms of probability density functions p = dP/dµ : Y → R. Note

that the dominating measure may not be unique and hence, that the representation of P in

terms of densities depends on the particular choice of dominating measure µ. A common way

of representing a model is a description in terms of a parameterization.

Definition 1.1.4. A model P is parameterized with parameter space Θ, if there exists a

surjective map Θ → P : θ �→ Pθ, called the parameterization of P.

Surjectivity of the parameterization is imposed so that for all P ∈ P, there exists a θ ∈ Θ

such that Pθ = P : unless surjectivity is required the parameterization may describe P only

partially. Also of importance is the following property.

Definition 1.1.5. A parameterization of a statistical model P is said to be identifiable, if

the map Θ → P : θ �→ Pθ is injective.

Injectivity of the parameterization means that for all θ1, θ2 ∈ Θ, θ1 �= θ2 implies that

Pθ1 �= Pθ2 . In other words, no two different parameter values θ1 and θ2 give rise to the same

distribution. Clearly, in order for θ ∈ Θ to serve as a useful representation for the candidate

distributions Pθ, identifiability is a first requirement. Other common conditions on the map
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θ �→ Pθ are continuity (with respect to a suitable (often metric) topology on the model),

differentiability (which may involve technical subtleties in case Θ is infinite-dimensional) and

other smoothness conditions.

Remark 1.1.1. Although strictly speaking ambivalent, it is commonplace to refer to both P

and the parameterizing space Θ as “the model”. This practice is not unreasonable in view of

the fact that, in practice, almost all models are parameterized in an identifiable way, so that

there exists a bijective correspondence between Θ and P.

A customary assumption in frequentist statistics is that the model is well-specified.

Definition 1.1.6. A model P is said to be well-specified if it contains the true distribution

of the data P0, i.e.

P0 ∈ P. (1.2)

If (1.2) does not hold, the model is said to be mis-specified.

Clearly if P is parameterized by Θ, (1.2) implies the existence of a point θ0 ∈ Θ such that

Pθ0 = P0; if, in addition, the model is identifiable, the parameter value θ0 is unique.

Notwithstanding the fact that there may be inherent restrictions on the possible distri-

butions for Y (like guaranteed positivity of the measurement outcome, or symmetries in the

problem), the model we use in a statistical procedure constitutes a choice rather than a given:

presented with a particular statistical problem, different statisticians may choose to use dif-

ferent models. The only condition is that (1.2) is satisfied, which is why we have to choose

the model in a “reasonable way” given the nature of Y . However, since P0 is unknown, (1.2)

has the status of an assumption on the unknown quantity of interest P0 and may, as such,

be hard to justify depending on the comprehensiveness of P. When choosing the model,

two considerations compete: on the one hand, small models are easy to handle mathemati-

cally and parameters are usually clearly interpretable, on the other hand, for large models,

assumption (1.2) is more realistic since they have a better chance of containing P0 (or at least

approximate it more closely). In this respect the most important distinction is made in terms

of the dimension of the model.

Definition 1.1.7. A model P is said to be parametric of dimension d, if there exists an

identifiable parameterization Θ → P : θ �→ Pθ, where Θ ⊂ Rd with non-empty interior

Θ̊ �= Ø.

The requirement regarding the interior of Θ in definition 1.1.7 ensures that the dimension

d really concerns Θ and not just the dimension of the space Rd of which Θ forms a subset.

Example 1.1.1. The normal model for a single, real measurement Y , is the collection of all

normal distributions on R, i.e.

P =
�
N(µ,σ2) : (µ,σ) ∈ Θ

�
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where the parameterizing space Θ equals R × (0,∞). The map (µ,σ) �→ N(µ,σ2) is surjec-

tive and injective, i.e. the normal model is a two-dimensional, identifiable parametric model.

Moreover, the normal model is dominated by the Lebesgue measure on the samplespace R and

can hence be described in terms of Lebesgue-densities:

pµ,σ(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 .

Definition 1.1.8. If an infinite-dimensional space Θ is needed to parameterize P, then P

is called a non-parametric model.

For instance, the model consisting of all probability measures on (Y ,B) (sometimes re-

ferred to as the full non-parametric model) is non-parametric unless the samplespace contains

a finite number of points. Note that if the full non-parametric model is used, (1.2) holds

trivially.

Example 1.1.2. Let Y be a finite set containing n ≥ 1 points y1, y2, . . . , yn and let B be

the power-set 2Y of Y . Any probability measure P : B → [0, 1] on (Y ,B) is absolutely

continuous with respect to the counting measure on Y (see example A.2.1). The density of P

with respect to the counting measure is a map p : Y → R such that p ≥ 0 and

n�

i=1

p(yi) = 1.

As such, P can be identified with an element of the so-called simplex Sn in Rn, defined as

follows

Sn =
�
p = (p1, . . . , pn) ∈ Rn : pi ≥ 0,

n�

i=1

pi = 1
�
.

This leads to an identifiable parameterization Sn → P : p �→ P of the full non-parametric

model on (Y ,B), of dimension n − 1. Note that Sn has empty interior in Rn, but can be

brought in one-to-one correspondence with a compact set in Rn−1 with non-empty interior by

the embedding:

�
(p1, . . . , pn−1) ∈ Rn−1 : pi ≥ 0,

n−1�

i=1

pi ≤ 1
�
→ Sn :

(p1, . . . , pn−1) �→
�
p1, . . . , pn−1, 1−

n−1�

i=1

pi
�
.

The third ingredient of a frequentist inferential procedure is an estimation method. Clearly

not all statistical problems involve an explicit estimation step and of those that do, not all

estimate the distribution P0 directly. Nevertheless, one may regard the problem of point-

estimation in the model P as prototypical.

Definition 1.1.9. A point-estimator (or estimator) is a map P̂ : Y → P, representing our

“best guess” P̂ (Y ) ∈ P for P0 based on the data Y (and other known quantities).
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Note that a point-estimator is a statistic, i.e. a quantity that depends only on the data

(and possibly on other known information): since a point-estimator must be calculable in

practice, it may depend only on information that is known to the statistician after he has

performed the measurement with outcome Y = y. Also note that a point-estimator is a

stochastic quantity: P̂ (Y ) depends on Y and is hence random with its own distribution on

P (as soon as a σ-algebra on P is established with respect to which P̂ is measurable). Upon

measurement of Y resulting in a realisation Y = y, the estimator P̂ (y) is a definite point in

P.

Remark 1.1.2. Obviously, many other quantities may be estimated as well and the defini-

tion of a point-estimator given above is too narrow in that sense. Firstly, if the model is

parameterized, one may define a point-estimator θ̂ : Y → Θ for θ0, from which we obtain

P̂ (Y ) = Pθ̂(Y ) as an estimator for P0. If the model is identifiable, estimation of θ0 in Θ is

equivalent to estimation of P0 in P. But if the dimension d of the model is greater than one,

we may choose to estimate only one component of θ (called the parameter of interest) and

disregard other components (called nuisance parameters). More generally, we may choose to

estimate certain properties of P0, for example its expectation, variance or quantiles, rather

than P0 itself. As an example, consider a model P consisting of distributions on R with finite

expectation and define the linear functional e : P → R by e(P ) = PX. Suppose that we

are interested in the expectation e0 = e(P0) of the true distribution. Obviously, based on an

estimator P̂ (Y ) for P0 we may define an estimator

�e(Y ) =

�

Y

y d[P̂ (Y )](y) (1.3)

to estimate e0. But in many cases, direct estimation of the property of interest of P0 can be

done more efficiently than through P̂ .

For instance, assume that X is integrable under P0 and Y = (X1, . . . , Xn) collects the

results of an i.i.d. experiment with Xi ∼ P0 marginally (for all 1 ≤ i ≤ n), then the empirical

expectation of X, defined simply as the sample-average of X,

PnX =
1

n

n�

i=1

Xi,

provides an estimator for e0. (Note that the sample-average is also of the form (1.3) if we

choose as our point-estimator for P0 the empirical distribution P̂ (Y ) = Pn and Pn ∈ P.)

The law of large numbers guarantees that PnX converges to e0 almost-surely as n → ∞, and

the central limit theorem asserts that this convergence proceeds at rate n−1/2 (and that the

limit distribution is zero-mean normal with P0(X − P0X)2 as its variance) if the variance of

X under P0 is finite. (More on the behaviour of estimators in the limit of large sample-size

n can be found in chapter 4.) Many parameterizations θ �→ Pθ are such that parameters

coincide with expectations: for instance in the normal model, the parameter µ coincides with
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the expectation, so that we may estimate

µ̂(Y ) =
1

n

n�

i=1

Xi,

Often, other properties of P0 can also be related to expectations: for example, if X ∈ R, the
probabilities F0(s) = P0(X ≤ s) = P01{X ≤ s} can be estimated by

F̂ (s) =
1

n

n�

i=1

1{Xi ≤ s}

i.e. as the empirical expectation of the function x �→ 1{x ≤ s}. This leads to a step-function

with n jumps of size 1/n at samplepoints, which estimates the distribution function F0. Gener-

alizing, any property of P0 that can be expressed in terms of an expectation of a P0-integrable

function of X, P0(g(X)), is estimable by the corresponding empirical expectation, Png(X).

(With regard to the estimator F̂ , the convergence F̂ (s) → F0(s) does not only hold for all

s ∈ R but even uniform in s, i.e. sups∈R |F̂ (s) − F0(s)| → 0, c.f. the Glivenko-Cantelli theo-

rem.)

To estimate a probability distribution (or any of its properties or parameters), many

different estimators may exist. Therefore, the use of any particular estimator constitutes

(another) choice made by the statistician analyzing the problem. Whether such a choice is a

good or a bad one depends on optimality criteria, which are either dictated by the particular

nature of the problem (see section 2.4 which extends the purely inferential point of view), or

based on more generically desirable properties of the estimator (note the use of the rather

ambiguous qualification “best guess” in definition 1.1.9).

Example 1.1.3. To illustrate what we mean by “desirable properties”, note the following.

When estimating P0 one may decide to use an estimator P̂ (Y ) because it has the property that

it is close to the true distribution of Y in total variation (see appendix A, definition A.2.1).

To make this statement more specific, the property that make such an estimator P̂ attractive

is that there exists a small constant � > 0 and a (small) significance level 0 < α < 1, such

that for all P ∈ P,

P
�
�P̂ (Y )− P� < �

�
> 1− α,

i.e. if Y ∼ P , then P̂ (Y ) lies close to P with high P -probability. Note that we formulate this

property “for all P in the model”: since P0 ∈ P is unknown, the only way to guarantee that

this property holds under P0, is to prove that it holds for all P ∈ P, provided that (1.2) holds.

A popular method of estimation that satisfies common optimality criteria in many (but

certainly not all!) problems is maximum-likelihood estimation.

Definition 1.1.10. Suppose that the model P is dominated by a σ-finite measure µ. The

likelihood principle says that one should pick P̂ ∈ P as an estimator for the distribution P0

of Y such that

p̂(Y ) = sup
P∈P

p(Y ).
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thus defining the maximum-likelihood estimator (or MLE) P̂ (Y ) for P0.

Remark 1.1.3. Note that P̂ does not depend on the particular dominating measure µ.

A word of caution is in order: mathematically, the above “definition” of the MLE begs

questions of existence and uniqueness: regarding P �→ p(Y ) as a (stochastic) map on the

model (called the likelihood), there may not be any point in P where the likelihood takes

on its supremal value nor is there any guarantee that such a maximal point is unique with

P0-probability equal to one.

Remark 1.1.4. If P· : Θ → P parameterizes P, the above is extended to the maximum-

likelihood estimator θ̂(Y ) for θ0, when we note that supθ∈Θ pθ(Y ) = supP∈P p(Y ).

The above is only a very brief and rather abstract overview of the basic framework of

frequentist statistics, highlighting the central premise that a P0 for Y exists. It makes clear,

however, that frequentist inference concerns itself primarily with the stochastics of the random

variable Y and not with the context in which Y resides. Other than the fact that the model

has to be chosen “reasonably” based on the nature of Y , frequentist inference does not involve

any information regarding the background of the statistical problem in its procedures unless

one chooses to use such information explicitly (see, for example, remark 2.2.7 on penalized

maximum-likelihood estimation). In Bayesian statistics the use of background information is

an integral part of the procedure unless one chooses to disregard it: by the definition of a prior

measure, the statistician may express that he believes in certain points of the model more

strongly than others. This thought is elaborated on further in section 1.2 (e.g. example 1.2.1).

Similarly, results of estimation procedures are sensitive to the context in which they are

used: two statistical experiments may give rise to the same model formally, but the estimator

used in one experiment may be totally unfit for use in the other experiment.

Example 1.1.4. For example, if we interested in a statistic that predicts the rise or fall of a

certain share-price on the stockmarket based on its value over the past week, the estimator we

use does not have to be a very conservative one: we are interested primarily in its long-term

performance and not in the occasional mistaken prediction. However, if we wish to predict

the rise or fall of white-bloodcell counts in an HIV-patient based on last week’s counts, overly

optimistic predictions can have disastrous consequences.

Although in the above example, data and model are very similar in these statistical prob-

lems, the estimator used in the medical application should be much more conservative than

the estimator used in the stock-market problem. The inferential aspects of both questions are

the same, but the context in which such inference is made calls for adaptation. Such consider-

ations form the motivation for statistical decision theory, as explained further in section 2.4.
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1.2 Bayesian statistics

The subject of these lecture notes is an alternative approach to statistical questions known

as Bayesian statistics, after Rev. Thomas Bayes, the author of “An essay towards solving a

problem in the doctrine of chances”, (1763) [4]. Bayes considered a number of probabilistic

questions in which data and parameters are treated on equal footing. The Bayesian procedure

itself is explained in detail in chapter 2 and further chapters explore its properties. In this

section we have the more modest goal of illustrating the conceptual differences with frequentist

statistical analysis.

In Bayesian statistics, data and model form two factors of the same space, i.e. no formal

distinction is made between measured quantities Y and parameters θ. This point of view

may seem rather absurd in view of the definitions made in section 1.1, but in [4], Bayes gives

examples in which this perspective is perfectly reasonable (see example 2.1.2 in these lecture

notes). An element Pθ of the model is interpreted simply as the distribution of Y given the

parameter value θ, i.e. as the conditional distribution of Y |θ. The joint distribution of (Y, θ)

then follows upon specification of the marginal distribution of θ on Θ, which is called the

prior . Based on the joint distribution for the data Y and the parameters θ, straightforward

conditioning on Y gives rise to a distribution for the parameters θ|Y called the posterior

distribution on the model Θ. Hence, given the model, the data and a prior distribution,

the Bayesian procedure leads to a posterior distribution that incorporates the information

provided by the data.

Often in applications, the nature of the data and the background of the problem suggest

that certain values of θ are more “likely” than others, even before any measurements are done.

The model Θ describes possible probabilistic explanations of the data and, in a sense, the

statistician believes more strongly in certain explanations than in others. This is illustrated

by the following example, which is due to L. Savage [74].

Example 1.2.1. Consider the following three statistical experiments:

1. A lady who drinks milk in her tea claims to be able to tell which was poured first, the

tea or the milk. In ten trials, she determines correctly whether it was tea or milk that

entered the cups first.

2. A music expert claims to be able to tell whether a page of music was written by Haydn

or by Mozart. In ten trials conducted, he correctly determines the composer every time.

3. A drunken friend says that he can predict the outcome of a fair coin-flip. In ten trials,

he is right every time.

Let us analyse these three experiments in a frequentist fashion, e.g. we assume that the trials

are independent and possess a definite Bernoulli distribution, c.f. (1.1). In all three experi-

ments, θ0 ∈ Θ = [0, 1] is the per-trial probability that the person gives the right answer. We
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test their respective claims posing the hypotheses:

H0 : θ0 =
1
2 , H1 : θ0 >

1
2 .

The total number of successes out of ten trials is a sufficient statistic for θ and we use it

as our test-statistics, noting that its distribution is binomial with n = 10, θ = θ0 under H0.

Given the data Y with realization y of ten correct answers, applicable in all three examples,

we reject H0 at p-value 2−10 ≈ 0.1%. So there is strong evidence to support the claims made

in all three cases. Note that there is no difference in the frequentist analyses: formally, all

three cases are treated exactly the same.

Yet intuitively (and also in every-day practice), one would be inclined to treat the three

claims on different footing: in the second experiment, we have no reason to doubt the expert’s

claim, whereas in the third case, the friend’s condition makes his claim less than plausible. In

the first experiment, the validity of the lady’s claim is hard to guess beforehand. The outcome

of the experiments would be as expected in the second case and remarkable in the first. In the

third case, one would either consider the friend extremely lucky, or begin to doubt the fairness

of the coin being flipped.

The above example convincingly makes the point that in our intuitive approach to statis-

tical issues, we include all knowledge we have, even resorting to strongly biased estimators

if the model does not permit a non-biased way to incorporate it. The Bayesian approach to

statistics allows us to choose the prior such as to reflect this subjectivity: from the outset, we

attach more prior mass to parameter-values that we deem more likely, or that we believe in

more strongly. In the above example, we would choose a prior that concentrates more mass

at high values of θ in the second case and at low values in the third case. In the first case, the

absence of prior knowledge would lead us to remain objective, attaching equal prior weights

to high and low values of θ. Although the frequentist’s testing procedure can be adapted to

reflect subjectivity, the Bayesian procedure incorporates it rather more naturally through the

choice of a prior.

Subjectivist Bayesians view the above as an advantage; objectivist Bayesians and fre-

quentists view it as a disadvantage. Subjectivist Bayesians argue that personal beliefs are an

essential part of statistical reasoning, deserving of a explicit role in the formalism and interpre-

tation of results. Objectivist Bayesians and frequentists reject this thought because scientific

reasoning should be devoid of any personal beliefs or interpretation. So the above freedom in

the choice of the prior is also the Achilles’ heel of Bayesian statistics: fervent frequentists and

objectivist Bayesians take the point of view that the choice of prior is an undesirable source of

ambiguity, rather than a welcome way to incorporate “expert knowledge” as in example 1.2.1.

After all, if the subjectivist Bayesian does not like the outcome of his analysis, he can just

go back and change the prior to obtain a different outcome. Similarly, if two subjectivist

Bayesians analyze the same data they may reach completely different conclusions, depending

on the extent to which their respective priors differ.
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To a certain extent, such ambiguity is also present in frequentist statistics, since frequen-

tists make a choice for a certain point-estimator. For example, the use of either a maximum-

likelihood or penalized maximum-likelihood estimator leads to differences, the size of which

depends on the relative sizes of likelihood and penalty. (Indeed, through the maximum-a-

posteriori Bayesian point-estimator (see definition 2.2.5), one can demonstrate that the log-

prior-density can be viewed as a penalty term in a penalized maximum-likelihood procedure,

c.f. remark 2.2.7.) Yet the natural way in which subjectivity is expressed in the Bayesian

setting is more explicit. Hence the frequentist or objectivist Bayesian sees in this a clear

sign that subjective Bayesian statistics lacks universal value unless one imposes that the prior

should not express any bias (see section 3.2).

A second difference in philosophy between frequentist and Bayesian statisticians arises as a

result of the fact that the Bayesian procedure does not require that we presume the existence

of a “true, underlying distribution” P0 of Y (compare with (1.1)). The subjectivist Bayesian

views the model with (prior or posterior) distribution as his own, subjective explanation of

the uncertainty in the data. For that reason, subjectivists prefer to talk about their (prior or

posterior) “belief” concerning parameter values rather than implying objective validity of their

assertions. On the one hand, such a point of view makes intrinsic ambiguities surrounding

statistical procedures explicit; on the other hand, one may wonder about the relevance of

strictly personal belief in a scientific tradition that emphasizes universality of reported results.

The philosophical debate between Bayesians and frequentist has raged with varying inten-

sity for decades, but remains undecided to this date. In practice, the choice for a Bayesian

or frequentist estimation procedure is usually not motivated by philosophical considerations,

but by far more practical issues, such as ease of computation and implementation, common

custom in the relevant field of application, specific expertise of the researcher or other forms

of simple convenience. Recent developments [3] suggest that the philosophical debate will be

put to rest in favour of more practical considerations as well.

1.3 The frequentist analysis of Bayesian methods

Since this point has the potential to cause great confusion, we emphasize the following: this

course presents Bayesian statistics from a hybrid perspective, i.e. we consider Bayesian tech-

niques but analyze them with frequentist methods.

We take the frequentist point of view with regard to the data, e.g. assumption (1.1); we

distinguish between samplespace and model and we do not adhere to subjectivist interpre-

tations of results (although their perspective is discussed in the main text). On the other

hand, we endow the model with a prior probability measure and calculate the posterior dis-

tribution, i.e. we use concepts and definitions from Bayesian statistics. This enables us to

assess Bayesian methods on equal footing with frequentist statistical methods and extends

the range of interesting questions. Moreover, it dissolves the inherent ambiguity haunting the

subjectivist interpretation of statistical results.
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Note, however, that the derivation of expression (2.7) (for example), is the result of sub-

jectivist Bayesian assumptions on data and model. Since these assumptions are at odds with

the frequentist perspective, we shall take (2.7) as a definition rather than a derived form.

This has the consequence that some basic properties implicit by derivation in the Bayesian

framework, have to be imposed as conditions in the hybrid perspective (see remark 2.1.4).

Much of the material covered in these lecture notes does not depend on any particular

philosophical point of view, especially when the subject matter is purely mathematical. Nev-

ertheless, it is important to realize when philosophical issues may come into play and there

will be points where this is the case. In particular when discussing asymptotic properties of

Bayesian procedures (see chapter 4), adoption of assumption (1.1) is instrumental, basically

because discussing convergence requires a limit-point.

Notation and conventions

Throughout these notes, we make use of notation that is common in the mathematical-

statistics literature. In addition, the following notational conventions are used. The ex-

pectation of a random variable Z distributed according to a probability distribution P is

denoted PZ. Samples are denoted Y with realization y, or in the case of n i.i.d.-P0 obser-

vations, X1, . . . , Xn. The sample-average (or empirical expectation) for a sample X1, . . . , Xn,

denoted PnX, is defined PnX = n−1�n
i=1Xi (where it is assumed that X is P0-integrable);

the empirical process Gn is defined as GnX = n1/2(Pn − P0)X (where it is assumed that

P0(X − P0X)2 < ∞). The distribution function of the standard normal distribution is de-

noted Φ : R → [0, 1]. The transpose of a vector � ∈ Rd is denoted �T ; the transpose of a

matrix I is denoted IT . The formulation “A(n) holds for large enough n” should be read as

“there exists an N ≥ 1 such that for all n ≥ N , A(n) holds”.

1.4 Exercises

Exercise 1.1. Let Y ∈ Y be a random variable with unknown distribution P0. Let P be

a model for Y , dominated by a σ-finite measure µ. Assume that the maximum-likelihood

estimator P̂ (Y ) (see definition 1.1.10) is well-defined, P0-almost-surely.

Show that if ν is a σ-finite measure dominating µ and we calculate the likelihood using ν-

densities, then the associated MLE is equal to P̂ (Y ). Conclude that the MLE does not depend

on the dominating measure used, c.f. remark 1.1.3.

Exercise 1.2. In the three experiments of example 1.2.1, give the Neyman-Person test for

hypotheses H0 and H1 at level α ∈ (0, 1). Calculate the p-value of the realization of 10

successes and 0 failures (in 10 Bernoulli trials according to H0).


