
Chapter 3

Choice of the prior

Bayesian procedures have been the object of much criticism, often focusing on the choice of

the prior as an undesirable source of ambiguity. The answer of the subjectivist that the prior

represents the “belief” of the statistician or “expert knowledge” pertaining to the measure-

ment elevates this ambiguity to a matter of principle, thus setting the stage for a heated

debate between “pure” Bayesians and “pure” frequentists concerning the philosophical merits

of either school within statistics. As said, the issue is complicated further by the fact that

the Bayesian procedure does not refer to the “true” distribution P0 for the observation (see

section 2.1), providing another point of fundamental philosophical disagreement for the fa-

natically pure to lock horns over. Leaving the philosophical argumentation to others, we shall

try to discuss the choice of a prior at a more conventional, practical level.

In this chapter, we look at the choice of the prior from various points of view: in sec-

tion 3.1, we consider the priors that emphasize the subjectivist’s prior “belief”. In section 3.2

we construct priors with the express purpose not to emphasize any part of the model, as

advocated by objectivist Bayesians. Because it is often desirable to control properties of the

posterior distribution and be able to compare it to the prior, conjugate priors are considered

in section 3.3. As will become clear in the course of the chapter, the choice of a “good” prior

is also highly dependent on the model under consideration.

Since the Bayesian school has taken up an interest in non-parametric statistics only rel-

atively recently, most (if not all) of the material presented in the first three sections of this

chapter applies only to parametric models. To find a suitable prior for a non-parametric

model can be surprisingly complicated. Not only does the formulation involve topological

aspects that do not play a role in parametric models, but also the properties of the poste-

rior may be surprisingly different from those encountered in parametric models! Priors on

infinite-dimensional models are considered in section 3.4.
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3.1 Subjective and objective priors

As was explained in chapters 1 and 2, all statistical procedures require the statistician to

make certain choices, e.g. for model and method of inference. The subjectivist chooses the

model as a collection of stochastic explanations of the data that he finds “reasonable”, based

on criteria no different from those frequentists and objectivist Bayesians would use.

Bayesians then proceed to choose a prior, preferably such that the support of this prior

is not essentially smaller than the model itself. But even when the support of the prior is

fixed, there is a large collection of possible priors left to be considered, each leading to a

different posterior distribution. The objectivist Bayesian will choose from those possibilities a

prior that is “homogeneous” (in a suitable sense), in the hope of achieving unbiased inference.

The subjectivist, however, chooses his prior such as to emphasize parts of the model that

he believes in stronger than others, thereby introducing a bias in his inferential procedure

explicitly. Such a prior is called a subjective prior, or informative prior. The reason for this

approach is best explained by examples like 1.2.1, which demonstrate that intuitive statistical

reasoning is not free of bias either.

Subjectivity finds its mathematical expression when high prior “belief” is translated into

“relatively large” amounts of assigned prior mass to certain regions of the model. However,

there is no clear rule directing the exact fashion in which prior mass is to be distributed.

From a mathematical perspective, this is a rather serious shortcoming, because it leaves us

without a precise definition of the subjectivist approach. Often, the subjectivist will have a

reasonably precise idea about his “beliefs” at the roughest level (e.g. concerning partitions of

the model into a few subsets), but none at more detailed levels. When the parameter space

Θ is unbounded this lack of detail becomes acute, given that the tail of the prior is hard

to fix by subjective reasoning, yet highly influential for the inferential conclusions based on

it. In practice, a subjectivist will often choose his prior without mathematical precision. He

considers the problem, interprets the parameters in his model and chooses a prior to reflect

all the (background) information at his disposition, ultimately filling in remaining details in

an ad-hoc manner. It is worthwhile to mention that studies have been conducted focused on

the ability of people to make a realistic guess at a probability distribution: they have shown

that without specific training or practice, people tend to be overconfident in their assessment,

assigning too much mass to possibilities they deem most likely and too little to others [1]. A

tentative conclusion might be, that people tend to formulate their “beliefs” on a deterministic

basis and deviate from that point of view only slightly (or, too little) when asked to give a

realistic assessment of the probabilistic perspective. (For more concerning the intricacies of

chosing subjective prior distributions, see Berger (1985) [8].)

Remark 3.1.1. For this reason, it is imperative that a subjectivist prior is always reported

alongside inferential conclusions based upon it! Reporting methods is important in any statis-

tical setting, but if chosen methods lead to express bias, explanation is even more important.

Indeed, not only the prior but also the reasoning leading to its choice should be reported, be-
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cause in a subjectivist setting, the motivation for the choice of a certain prior (and not any

other) is part of the analysis rather than an external consideration.

If the model Θ is one-dimensional and the parameter θ has a clear interpretation, it is

often not exceedingly difficult to find a reasonable prior Π expressing the subjectivist’s “belief”

concerning the value of θ.

Example 3.1.1. If one measures the speed of light in vacuo c (a physical constant, approxi-

mately equal to 299792458 m/s), the experiment will be subject to random perturbations outside

the control of the experimenter. For example, imperfection of the vacuum in the experimental

equipment, small errors in timing devices, electronic noise and countless other factors may

influence the resulting measured speed Y . We model the perturbations collectively as a nor-

mally distributed error e ∼ N(0,σ2) where σ is known as a characteristic of the experimental

setup. The measured speed is modelled as Y = c+ e, i.e. the model P = {N(c,σ2) : c > 0} is

used to infer on c. Based on experiments in the past (most famous is the Michelson-Morley

experiment (1887)), the experimenter knows that c has a value close to 3 · 108 m/s, so he

chooses his prior to reflect this: a normal distribution located at 300000000 m/s with a stan-

dard deviation of (say) 1000000 m/s will do. The latter choice is arbitrary, just like the choice

for a normal location model over other families.

The situation changes when the parameter has a higher dimension, Θ ⊂ Rd: first of all,

interpretability of each of the d components of θ = (θ1, θ2, . . . , θd) can be from straightforward,

so that concepts like prior “belief” or “expert knowledge” become inadequate guidelines for

the choice of a prior. Additionally, the choice for a prior in higher-dimensional models also

involves choices concerning the dependence structure between parameters!

Remark 3.1.2. Often, subjectivist inference employs exceedingly simple, parametric models

for the sake of interpretability of the parameter (and to be able to choose a prior accordingly).

Most frequentists would object to such choices for their obvious lack of realism, since they

view the data as being generated by a “true, underlying distribution”, usually assumed to be

an element of the model. However, the subjectivist philosophy does not involve the ambition

to be strictly realistic and calls for interpretability instead: to the subjectivist, inference is

a personal rather than a universal matter. As such, the preference for simple parametric

models is a matter of subjective interpretation rather than an assumption concerning reality

or realistic distributions for the data.

When confronted with the question which subjective prior to use on a higher-dimensional

model, it is often of help to define the prior in several steps based on a choice for the dependence

structure between various components of the parameter. Suppose that the subjectivist can

imagine a reasonable distribution F for the first component θ1, if he has definite values for

all other components θ2, . . . , θd. This F is then none other than the (subjectivist prior)
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distribution of θ1, given θ2, . . . , θd,

F = Πθ1|θ2,...,θd .

Suppose, furthermore, that a reasonable subjective prior G for the second component may be

found, independent of θ1, but given θ3, . . . , θd. Then,

G = Πθ2|θ3,...,θd .

If we continue like this, eventually defining the marginal prior for the last component θd, we

have found a prior for the full parameter θ, because for all A1, . . . , Ad ∈ B,

Π(θ1 ∈ A1, . . . , θd ∈ Ad) = Π(θ1 ∈ A1|θ2 ∈ A2, . . . , θd ∈ Ad)Π(θ2 ∈ A2|θ3 ∈ A3, . . . , θd ∈ Ad)

× . . .×Π(θd−1 ∈ Ad−1|θd ∈ Ad)Π(θd ∈ Ad).

Because prior beliefs may be more easily expressed when imagining a situation where other

parameters have fixed values, one eventually succeeds in defining the prior for the high-

dimensional model. The construction indicated here is that of a so-called hyperprior, which we

shall revisit section 3.3. Note that when doing this, it is important to choose the parametriza-

tion of the model such that one may assume (with some plausibility), that θi is independent

of (θ1, . . . , θi−1), given (θi+1, . . . , θd), for all i ≥ 1.

In certain situations, the subjectivist has more factual information at his disposal when

defining the prior for his analysis. In particular, if a probability distribution on the model

reflecting the subjectivist’s “beliefs” can be found by other statistical means, it can be used

as a prior. Suppose the statistician is planning to measure a quantity Y and infer on a model

P; suppose also that this experiment repeats or extends an earlier analysis. From the earlier

analysis, the statistician may have obtained a posterior distribution on P. For the new

experiment, this posterior may serve as a prior.

Example 3.1.2. Let Θ → P : θ �→ Pθ be a parametrized model for an i.i.d. sample

X1, X2, . . . , Xn with prior measure Π1 : G → [0, 1]. Let the model be dominated (see def-

inition 1.1.3), so that the posterior Π1( · |X1, . . . , Xn) satisfies (2.8). Suppose that this ex-

periment has been conducted, with the sample realised as (X1, X2, . . . , Xn) = (x1, x2, . . . , xn).

Next, consider a new, independent experiment in which a quantity Xn+1 is measured (with

the same model). As a prior Π2 for the new experiment, we use the (realised) posterior of the

earlier experiment, i.e. for all G ∈ G ,

Π2(G) = Π1(G |X1 = x1, . . . , Xn = xn).
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The posterior for the second experiment then satisfies:

dΠ2(θ|Xn+1) =
pθ(Xn+1) dΠ2(θ|X1 = x1, . . . , Xn = xn)�

Θ
pθ(Xn+1) dΠ2(θ|X1 = x1, . . . , Xn = xn)

=

pθ(Xn+1)
n�

i=1

pθ(xi)dΠ1(θ)

�

Θ
pθ(Xn+1)

n�

j=1

pθ(xj) dΠ1(θ)

(3.1)

The latter form is comparable to the posterior that would have been obtained if we had con-

ducted a single experiment with an i.i.d. sample X1, X2, . . . , Xn+1 of size n+1 and prior Π1.

In that case, the posterior would have been of the form:

Π( · |X1, . . . , Xn+1) =

n+1�

i=1

pθ(Xi) dΠ1(θ)

�

Θ

n+1�

j=1

pθ(Xj) dΠ1(θ)

, (3.2)

i.e. the only difference is the fact that the posterior Π1( · |X1 = x1, . . . , Xn = xn) is realised.

As such, we may interpret independent consecutive experiments as a single, interrupted ex-

periment and the posterior Π1( · |X1, . . . , Xn) can be viewed as an intermediate result.

Remark 3.1.3. Note that it is necessary to assume that the second experiment is stochastically

independent of the first, in order to enable comparison between (3.1) and (3.2).

Clearly, there are other ways to obtain a distribution on the model that can be used as

an informative prior. One example is the distribution that is obtained when a previously

obtained frequentist estimator θ̂ for θ is subject to a procedure called the bootstrap. Although

the bootstrap gives rise to a distribution that is interpreted (in the frequentist sense) as the

distribution of the estimator θ̂ rather than θ itself, a subjectivist may reason that the estimator

provides him with the “expert knowledge” on θ that he needs to define a prior on Θ. (For

more on bootstrap methods, see Efron and Tibshirani (1993) [32].)

3.2 Non-informative priors

Objectivist Bayesians argee with frequentists that the “beliefs” of the statistician analyzing

a given measurement should play a minimal role in the methodology. Obviously, the model

choice already introduces a bias, but rather than embrace this necessity and expand upon

it like subjectivists do, they seek to keep the remainder of the procedure unbiased. In par-

ticular, they aim to use priors that do not introduce additional information (in the form

of prior “belief”) in the procedure. Subjectivists introduce their “belief” by concentrating

prior mass in certain regions of the model; correspondingly, objectivists prefer priors that are

“homogeneous” in an appropriate sense.
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At first glance, one may be inclined to argue that a prior is objective (or non-informative)

if it is uniform over the parameter space: if we are inferring on parameter θ ∈ [−1, 1] and we

do not want to favour any part of the model over any other, we would choose a prior of the

form, (A ∈ B),

Π(A) = 1
2µ(A), (3.3)

where µ denotes the Lebesgue measure on [−1, 1]. Attempts to minimize the amount of

subjectivity introduced by the prior therefore focus on uniformity (argumentation that departs

from the Shannon entropy in discrete probability spaces reaches the same conclusion (see, for

example, Ghosh and Ramamoorthi (2003) [42], p. 47)). The original references on Bayesian

methods (e.g. Bayes (1763) [4], Laplace (1774) [57]) use uniform priors as well. But there

are several problems with this approach: first of all, one must wonder how to extend such

reasoning when θ ∈ R (or any other unbounded subset of R). In that case, µ(Θ) = ∞ and

we can not normalize Π to be a probability measure! Any attempt to extend Π to such

unbounded models as a probability measure (or even as a finite measure) would eventually

lead to inhomogeneity, i.e. go at the expense of the unbiasedness of the procedure.

The compromise some objectivists are willing to make, is to relinquish the interpretation

that subjectivists give to the prior: they do not express any prior “degree of belief” in A ∈ G

through the subjectivist statement that the (prior) probability of finding ϑ ∈ A equals Π(A).

Although they maintain the Bayesian interpretation of the posterior, they view the prior as

a mathematical definition rather than a philosophical concept. Then, the following definition

can be made without further reservations.

Definition 3.2.1. Given a model (Θ,G ), a prior measure Π : G → R̄ such that Π(Θ) = ∞
is called an improper prior.

Note that the normalization factor 1
2 in (3.3) cancels in the expression for the posterior,

c.f. (2.4): any finite multiple of a (finite) prior is equivalent to the original prior as far as

the posterior is concerned. However, this argument does not extend to the improper case:

integrability problems or other infinities may ruin the procedure, even to the point where the

posterior measure becomes infinite or ill-defined. So not just the philosophical foundation

of the Bayesian approach is lost, mathematical integrity of the procedure can no longer be

guaranteed either! When confronted with an improper prior, the entire procedure must be

checked for potential problems. In particular, one must verify that the posterior is a well-

defined probability measure.

Remark 3.2.1. Throughout these notes, whenever we refer to a prior measure, it is implied

that this measure is a probability measure unless stated otherwise.

But even if one is willing to accept that objectivity of the prior requires that we restrict

attention to models on which “uniform” probability measures exist (e.g. with Θ a bounded

subset of Rd), a more fundamental problem exists: the very notion of uniformity is dependent

on the parametrization of the model! To see this we look at a model that can be parametrized
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in two ways and we consider the way in which uniformity as seen in one parametrization man-

ifests itself in the other parametrization. Suppose that we have a d-dimensional parametric

model P with two different parametrizations, on Θ1 ⊂ Rd and Θ2 ⊂ Rd respectively,

φ1 : Θ1 → P, φ2 : Θ2 → P (3.4)

both of which are bijective. Assume that P has a topology and is endowed with the corre-

sponding Borel σ-algebra G ; let φ1 and φ2 be continuous and assume that their inverses φ−1
1

and φ−1
2 are continuous as well. Assuming that Θ1 is bounded, we consider the uniform prior

Π1 on Θ1, i.e. the normalized Lebesgue measure on Θ1, i.e. for all A ∈ B1,

Π1(A) = µ(Θ1)
−1µ(A),

This induces a prior Π�
1 on P: for all B ∈ G ,

Π�
1(B) = (Π1 ◦ φ−1

1 )(B). (3.5)

In turn, this induces a prior Π��
1 on Θ2: for all C ∈ B2,

Π��
1(C) = (Π�

1 ◦ (φ−1
2 )−1)(C) = (Π�

1 ◦ φ2)(C) =
�
Π1 ◦ (φ−1

1 ◦ φ2)
�
(C).

Even though Π1 is uniform, generically Π��
1 is not, because, effectively, we are mapping (a

subset of) Rd to Rd by φ−1
2 ◦φ1 : Θ1 → Θ2. (Such re-coordinatizations are used extensively in

differential geometry, where a manifold can be parametrized in various ways by sets of maps

called charts.)

Example 3.2.1. Consider the model P of all normal distributions centred on the origin with

unknown variance between 0 and 1. We may parametrize this model in many different ways,

but we consider only the following two:

φ1 : (0, 1) → P : τ �→ N(0, τ), φ2 : (0, 1) → P : σ �→ N(0,σ2). (3.6)

Although used more commonly than φ1, parametrization φ2 is not special in any sense: both

parametrizations describe exactly the same model. Now, suppose that we choose to endow the

first parametrization with a uniform prior Π1, equal to the Lebesgue measure µ on (0, 1). By

(3.5), this induces a prior on P. Let us now see what this prior looks like if we consider P

parametrized by σ: for any constant C ∈ (0, 1) the point N(0, C) in P is the image of τ = C

and σ =
√
C, so the relation between τ and corresponding σ is given by

τ(σ) = (φ−1
2 ◦ φ1)(σ) = σ2.

Since Π1 equals the Lebesgue measure, we find that the density of Π��
1 with respect to the

Lebesgue measure equals:

π��
1(σ) = π1(τ(σ))

dτ

dσ
(σ) = 2σ.

This density is non-constant and we see that Π��
1 is non-uniform. In a subjectivist sense, the

prior Π��
1 places higher prior “belief” on values of σ close to 1 than on values close to 0.
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From the above argument and example 3.2.1, we see that uniformity of the prior is en-

tirely dependent on the parametrization: what we call “uniform” in one parametrization,

may be highly non-uniform in another. Consequently, what is deemed “objective” in one

parametrization may turn out to be highly subjective in another.

What matters is the model P, not its parametrization in terms of one parameter or

another! The parametrization is a mere choice made by the statistician analyzing the problem.

Therefore, any statistical concept that depends on the parametrization is flawed from the

outset. Through P and only through P do the parameters σ and τ have any bearing on

(the law of) the observation in example 3.2.1. If we could define what is meant by uniformity

on the model P itself, instead of on its parametrizing spaces, one would obtain a viable way

to formalize objectivity. But spaces of probability measures do not have an intrinsic notion

of uniformity (like translation-invariance of Lebesgue measure on Rd, or more generally, left-

invariance of the Haar measure on locally compact topological groups).

Once it is clear that uniformity on any parametrizing space does not have intrinsic meaning

in the model P, the very definition of objectivity in terms of uniformity of the prior is void. A

subjectivist can use any parametrization to formulate his prejudice (note that the subjectivist

uses relative prior weights rather than deviations from uniformity to express his prior “belief”),

but an objectivist has to define his notion of “objectivity” regardless of the parametrization

used. Therefore, the emphasis is shifted: instead of looking for uniform priors, we look for

priors that are well-defined on P and declare them objective. For differentiable parametric

models, a construction from Riemannian geometry can be used to define a parameterisation-

independent prior (see Jeffreys (1946), (1961) [46, 47]) if we interpret the Fisher information

as a Riemannian metric on the model (as first proposed by Rao (1945) [71] and extended

by Efron (1975) [31]; for an overview, see Amari (1990) [2]) and use the square-root of its

determinant as a density with respect to the Lebesgue measure.

Definition 3.2.2. Let Θ ⊂ R be open and let Θ → P define a differentiable, parametric,

dominated model. Assume that for every θ ∈ Θ, the score-function �̇θ is twice integrable with

respect to Pθ. Then Jeffreys prior Π has the square root of the determinant of the Fisher

information Iθ = Pθ �̇θ �̇Tθ as its density with respect to the Lebesgue measure on Θ:

dΠ(θ) =
�

det(Iθ) dθ. (3.7)

Although the expression for Jeffreys prior has the appearance of being parametrization-

dependent, the form (3.7) of this prior is the same in any parametrization (a property referred

to sometimes as (coordinate-)covariance). In other words, no matter which parametrization

we use to calculate Π in (c.f. (3.7)), the induced measure Π� on P is always the same one.

As such, Jeffreys prior is a measure defined on P rather than a parametrization-dependent

measure.

Example 3.2.2. We calculate the density of Jeffreys prior in the normal model of exam-

ple 3.2.1. The score-function with respect to the parameter σ in parametrization φ2 of P is
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given by:

�̇σ(X) =
1

σ

�X2

σ2
− 1

�
.

The Fisher information (which is a 1× 1-maxtrix in this case), is then given by:

Iσ = Pσ �̇σ �̇σ =
1

σ2
Pσ

�X2

σ2
− 1

�2
=

2

σ2

Therefore, the density for Jeffries prior Π takes the form

dΠ(σ) =

√
2

σ
dσ,

for all σ ∈ Θ2 = (0, 1). A similar calculation using the parametrization φ1 shows that, in

terms of the parameter τ , Jeffries prior takes the form:

dΠ(τ) =
1√
2τ

dτ,

for all τ ∈ Θ1 = (0, 1). That both densities give rise to the same measure on P is the

assertion of the following lemma.

Lemma 3.2.1. (Parameterization-independence of Jeffreys prior)

Consider the situation of (3.4) and assume that the parametrizations φ1 and φ2 satisfy the

conditions of definition 3.2.2. In addition, we require that the map φ−1
1 ◦ φ2 : Θ2 → Θ1 is

differentiable. Then the densities (3.7), calculated in coordinates φ1 and φ2 induce the same

measure on P, Jeffreys prior.

Proof Since the Fisher information can be written as:

Iθ1 = Pθ1(�̇θ1 �̇
T
θ1),

and the score �̇θ1(X) is defined as the derivative of θ1 �→ log pθ1(X) with respect to θ1, a

change of parametrization θ1(θ2) = (φ−1
1 ◦ φ2)(θ2) induces a transformation of the form

Iθ2 = S1,2(θ2) Iθ1(θ2) S1,2(θ2)
T ,

on the Fisher information matrix, where S1,2(θ2) is the total derivative matrix of θ2 �→ θ1(θ2)

in the point θ2 of the model. Therefore,

�
det Iθ2 dθ2 =

�
det(S1,2(θ2) Iθ1(θ2) S1,2(θ2)T ) dθ2 =

�
det(S1,2(θ2))2

�
det(Iθ1(θ2)) dθ2

=
�

det(Iθ1(θ2))
��det(S1,2(θ2))

�� dθ2 =
�

det(Iθ1) dθ1

i.e. the form of the density is such that reparametrization leads exactly to the Jacobian for

the transformation of dθ2 to dθ1. �

Ultimately, the above construction derives from the fact that the Fisher information Iθ (or

in fact, any other positive-definite symmetric matrix-valued function on the model, e.g. the

Hessian of a twice-differentiable, convex function) can be viewed as a Riemann metric on the

“manifold” P. The construction of a measure with Lebesgue density (3.7) is then a standard

construction in differential geometry.
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Example 3.2.3. To continue with the normal model of examples 3.2.1 and 3.2.2, we note

that σ(τ) =
√
τ , so that dσ/dτ(τ) = 1/2

√
τ . As a result,

�
det Iθ2 dθ2 =

√
2

σ
dσ =

√
2

σ(τ)

dσ

dτ
(τ) dτ =

√
2√
τ

1

2
√
τ
dτ =

1√
2τ

dτ =
�

det(Iθ1) dθ1,

which verifies the assertion of lemma 3.2.1 explicitly.

Other constructions and criteria for the construction of non-informative priors exist: cur-

rently very popular is the use of so-called reference priors, as introduced in Lindley (1956)

[65] and rediscovered in Bernardo (1979) [12] (see also Berger and Bernardo (1992) [9]). By

defining principle, a reference prior is required to maximize the Kullback-Leibler divergence

between prior and posterior. To motivate this condition, we have to look at information the-

ory, from which the Kullback-Leibler divergence has emerged as one (popular but by no means

unique) way to quantify the notion of the “amount of information” contained in a probability

distribution. Sometimes called the Shannon entropy, the Kullback-Leibler divergence of a

distribution P with respect to the counting measure in discrete probability spaces,

S(P ) =
�

ω∈Ω
p(ω) log(p(ω)),

can be presented as such convincingly (see Bolzmann (1895, 1898) [22], Shannon (1948) [78]).

For lack of a default dominating measure, the argument does not extend formally to contin-

uous probability spaces but is generalized nevertheless. A reference prior Π on a dominated,

parametrized model Θ → P : θ �→ Pθ for an observation Y is to be chosen such that the

Lindley entropy,

SL =

� �
log

�π(θ|Y = y)

π(θ)

�
dΠ(θ|Y = y) dPΠ(y),

is maximized. Note that this definition does not depend on the specific parametrization, since

the defining property is parametrization independent. Usually, the derivation of a reference

prior [12] is performed in the limit where the posterior becomes asymptotically normal, c.f.

theorem 4.4.1. Jeffreys prior emerges as a special case of a reference prior.

For an overview of various objective methods of constructing priors, the reader is referred

to Kass and Wasserman (1995) [49]. When using non-informative priors, however, the follow-

ing general warning should be heeded

Remark 3.2.2. In many models, non-informative priors, including Jeffries prior and refer-

ence priors, are improper.

3.3 Conjugate families, hierarchical and empirical Bayes

Consider again the problem of estimating the mean of a single, normally distributed observa-

tion Y with known variance. The model consists of all normal distributions Pθ = N(θ,σ2),

where θ ∈ R is unknown and σ2 > 0 is known. Imposing a normal prior on the parameter θ,
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Π = N(0, τ2), for some choice of τ2 > 0, we easily calculate that posterior distribution is a

normal distribution,

Π(θ ∈ A|Y ) = N

�
τ2

σ2 + τ2
Y,

σ2τ2

σ2 + τ2

�
(A),

for every A ∈ B. The posterior mean, a point-estimator for θ, is then given by,

θ̂(Y ) =
τ2

σ2 + τ2
Y.

The frequentist’s critisism of Bayesian statistics focusses on the parameter τ2: the choice that

a subjectivist makes for τ2 may be motivated by expert knownledge or belief, but remains the

statistician’s personal touch in a context where the frequentist would prefer an answer of a

more universal nature. As long as some form of expert knowledge is available, the subjectivist’s

argument constitutes a tenable point of view (or may even be compelling, see examples 1.2.1

and 2.1.2). However, in situations where no prior belief or information on the parameter θ is

available, or if the parameter itself does not have a clear interpretation, the subjectivist has

no answer. Yet a choice for τ2 is required! Enter the objectivist’s approach: if we have no

prior information on θ, why not express our prior ignorance by choosing a “uniform” prior

for θ? As we have seen in section 3.2, uniformity is parametrization dependent (and, as such,

still dependent on the statistician’s personal choice for one parametrization and not another).

Moreover, uniform priors are improper if Θ is unbounded in Rk. In the above example of

estimation of a normal mean, where θ ∈ R is unbounded, insistance on uniformity leads to an

improper prior as well. Perhaps more true to the original interpretation of the prior, we might

express ignorance about τ2 (and eliminate τ2 from the point-estimator θ̂(Y )) by considering

more and more homogeneous (but still normal) priors by means of the limit τ → ∞, in which

case we recover the maximum-likelihood estimate: limτ2→∞ θ̂(Y ) = Y .

Remark 3.3.1. From a statistical perspective, however, there exists a better answer to the

question regarding τ2: if τ is not known, why not estimate its value from the data!

In this section, we consider this solution both from the Bayesian and from the frequentist’s

perspective, giving rise to procedures known as hierarchical Bayesian modelling and empirical

Bayesian estimation respectively.

Beforehand, we consider another type of choice of prior, which is motivated primarily by

mathematical convenience. Taking another look at the normal example with which we began

this section, we note that both the prior and the posterior are normal distributions. Since the

calculation of the posterior is tractable, any choice for the location and variance of the normal

prior can immediately be updated to values for location and variance of the normal posterior

upon observation of Y = y. Not only does this signify ease of manipulation in calculations

with the posterior, it also reduces the computational burden dramatically since simulation of

(or, sampling from) the posterior is no longer necessary.
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Definition 3.3.1. Let (P,A ) be a measurable model for an observation Y ∈ Y . Let M

denote a collection of probability distributions on (P,A ). The set M is called a conjugate

family for the model P, if the posterior based on a prior from M again lies in M :

Π ∈ M ⇒ Π( · |Y = y) ∈ M, (3.8)

for all y ∈ Y .

This structure was first proposed by Raiffa and Schlaifer (1961) [70]. Their method for the

prior choice is usually classified as objectivist because it does not rely on subjectivist notions

and is motivated without reference to outside factors.

Remark 3.3.2. Often in the literature, a prior is refered to as a conjugate prior if the

posterior is of the same form. This practice is somewhat misleading, since it is the family M

that is closed under conditioning on the data Y , a property that depends on the model and M ,

but not on the particular Π ∈ M .

Example 3.3.1. Consider an experiment in which we observe n independent Bernoulli trials

and consider the total number of successes, Y ∼ Bin(n, p) with unknown parameter p ∈ [0, 1],

Pp(Y = k) =

�
n

k

�
pk(1− p)n−k.

For the parameter p we choose a prior p ∼ Beta(α,β) from the Beta-family, for some α,β > 0,

dΠ(p) = B(α,β) pα−1(1− p)β−1 dp,

where B(α,β) = Γ(α+ β)/(Γ(α)Γ(β)) normalizes Π. Then the posterior density with respect

to the Lebesgue measure on [0, 1] is proportional to:

dΠ(p|Y ) ∝ pY (1− p)n−Y pα−1(1− p)β−1 dp = pα+Y−1(1− p)β+n−Y−1 dp,

We conclude that the posterior again lies in the Beta-family, with parameters equal to a data-

amended version of those of the prior, as follows:

Π( · |Y ) = Beta(α+ Y,β + n− Y ).

So the family of Beta-distributions is a conjugate family for the binomial model. Depending

on the available amount of prior information on θ, the prior’s parameters may be chosen on

subjective grounds (see figure 2.1 for graphs of the densities of Beta-distributions for various

parameter values). However, in the absence thereof, the parameters α,β suffer from the same

ambiguity that plagues the parameter τ2 featuring in the example with which we opened this

section.

Example 3.3.1 indicates a strategy to find conjugate families for a given parametrized,

dominated model P = {Pθ : θ ∈ Θ}. We view densities y �→ pθ(y) as functions of the outcome
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Y = y foremost, but they are functions of the parameter θ as well and their dependence

θ �→ pθ(y) determines which prior densities θ �→ π(θ) preserve their functional form when

multiplied by the likelihood pθ(Y ) to yield the posterior density.

Although we shall encounter an example of a conjugate family for a non-parametric model

in the next section, conjugate families are, by and large, part of parametric statistics. Many

of these families are so-called exponential families, for which conjugate families of priors can

be found readily.

Definition 3.3.2. A dominated collection of probability measures P = {Pθ : θ ∈ Θ} is called

a k-parameter exponential family, if there exists a k ≥ 1 such that for all θ ∈ Θ,

pθ(x) = exp
� k�

i=1

ηi(θ)Ti(x)−B(θ)
�
h(x), (3.9)

where h and Ti, i = 1, . . . , k, are statistics and B, ηi, i = 1, . . . , k are real-valued functions

on Θ.

Any exponential family can be parametrized such that the exponent in (3.9) is linear in the

parameter. By the mapping Θ → H : ηi = ηi(θ) (a bijection if the original parametrization

is identifiable), taking Θ into H = η(Θ) and B into A(η) = B(θ(η)), any exponential family

can be rewritten in its so-called canonical form.

Definition 3.3.3. An exponential family P = {Pη : η ∈ H}, H ⊂ Rk is said to be in its

canonical representation, if

pη(x) = exp
� k�

i=1

ηi Ti(x)−A(η)
�
h(x). (3.10)

In addition, P is said to be of full rank if the interior of H ⊂ Rk is non-void, i.e. H̊ �= Ø.

Although parametric, exponential families are both versatile modelling tools and mathe-

matically tractable; many common models, like the Bernoulli-, normal-, binomial-, Gamma-,

Poisson-models, etcetera, can be rewritten in the form (3.9). One class of models that can

immediately be disqualified as possible exponential families is that of all models in which the

support depends on the parameter, like the family of all uniform distributions on R, or the

Pareto-model. Their statistical practicality stems primarily from the fact that for an expo-

nential family of full rank, the statistics Ti, i = 1, . . . , k are sufficient and complete, enabling

the use of the Lehmann-Scheffé theorem for minimal-variance unbiased estimation (see, for in-

stance, Lehmann and Casella (1998) [59]). Their versatility can be understood in many ways,

e.g. by the Pitman-Koopman-Darmois theorem (see, Jeffreys (1961) [47]), which says that a

family of distributions whose support does not depend on the parameter, is exponential, if

and only if in the models describing its i.i.d. samples, there exist sufficient statistics whose

dimension remains bounded asymptotically (i.e. as we let the sample size diverge to infinity).

Presently, however, our interest lies in the following theorem, which says that if a model

P constitutes an exponential family, there exists a conjugate family of priors for P.
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Theorem 3.3.1. Let P be a model that can be written as an exponential family, c.f. defi-

nition 3.3.2. Then there exists a parametrization of P of the form (3.10) and the family of

distributions Πµ,λ, defined by Lebesgue probability densities

πµ,λ(η) = K(µ,λ) exp
� k�

i=1

ηiµi − λA(η)
�
, (3.11)

(where µ ∈ Rk and λ ∈ R are such that 0 < K(µ,λ) < ∞), is a conjugate family for P.

Proof It follows from the argument preceding definition 3.3.3 that P can be parametrized

as in (3.10). Choosing a prior on H of the form (3.11), we find that the posterior again takes

the form (3.11),

π(η|X) ∝ exp
� k�

i=1

ηi(µi + Ti(X))− (λ+ 1)A(η)
�

(the factor h(X) arises both in numerator and denominator of (2.4) and is η-independent, so

that it cancels). The data-amended versions of the parameters µ and λ that emerge from the

posterior are therefore given by:

(µ+ T (X),λ+ 1),

and we conclude that the distributions Πµ,λ form a conjugate family for P. �

Remark 3.3.3. From a frequentist perspective, it is worth noting the import of the factoriza-

tion theorem, which says that the parameter-dependent factor in the likelihood is a function

of the data only through the sufficient statistic. Since the posterior is a function of the likeli-

hood, in which data-dependent factors that do not depend on the parameter can be cancelled

between numerator and denominator, the posterior is a function of the data X only through

the sufficient statistic T (X). Therefore, if the exponential family P is of full rank (so that

T (X) is also complete for P), any point-estimator we derive from this posterior (e.g. the

posterior mean, see definition 2.2.1) that is unbiased and quadratically integrable, is optimal

in the sense of Rao-Blackwell, c.f. the theorem of Lehmann-Scheffé (see Lehmann and Casella

(1998) [59], for explanation of the Rao-Blackwell and Lehmann-Scheffé theorems).

Next, we turn to the Bayesian answer to remark 3.3.2 which said that parameters of the

prior (e.g. τ2) are to be estimated themselves. Recall that the Bayesian views a parameter

to be estimated as just another random variable in the probability model. In case we want

to estimate the parameter for a family of priors, then that parameter is to be included in

the probability space from the start. Going back to the example with which we started

this section, this means that we still use normal distributions Pθ = N(θ,σ2) to model the

uncertainty in the data Y , supply θ ∈ R with a prior Π1 = N(0, τ2) and then proceed to

choose a another prior Π2 for τ2 ∈ (0,∞):

Y |θ, τ2 = Y |θ ∼ Pθ = N(θ,σ2), θ|τ2 ∼ Π1 = N(0, τ2), τ2 ∼ Π2,
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Note that the parameter τ2 has no direct bearing on the model distributions: conditional on θ,

Y is independent of τ2. In a sense, the hierarchical Bayesian approach to prior choice combines

subjective and objective philosophies: whereas the subjectivist will make a definite, informed

choice for τ2 and the objectivist will keep himself as uncommitted as possible by striving for

uniformity, the choice for a hierarchical prior expresses uncertainty about the value of τ2 to be

used in the form of a probability distribution Π2. As such, the hierarchical Bayesian approach

allows for intermediate prior choices: if Π2 is chosen highly concentrated around one point in

the model, resembling a degenerate measure, the procedure will be close to subjective; if Π2

is spread widely and is far from degenerate, the procedure will be less biased and closer to

objective. Besides interpolating between objective and subjective prior choices, the flexibility

gained through introduction of Π2 offers a much wider freedom of modelling. In particular, we

may add several levels of modelled parameter uncertainty to build up a hierarchy of priors for

parameters of priors. Such structures are used to express detailed subjectivist beliefs, much

in the way graphical models are used to build intricate dependency structures for observed

data (for a recent text on graphical models, see chapter 8 of Bishop (2006) [20]). The origins

of the hierarchical approach go back, at least, to Lindley and Smith (1972) [66].

Definition 3.3.4. Let the data Y be random in (Y ,B). A hierarchical Bayesian model for Y

consists of a collection of probability measures P = {Pθ : θ ∈ Θ0}, with (Θ0,G0) measurable

and endowed with a prior Π : G0 → [0, 1] built up in the following way: for some k ≥ 1, we

introduce measurable spaces (Θi,Gi), i = 1, 2, . . . , k and conditional priors

Gi ×Θi+1 → [0, 1] : (G, θi+1) �→ Πi(G|θi+1),

for i = 1, . . . , k − 1 and a marginal Πk : Gk → [0, 1] on Θk. The prior for the original

parameter θ is then defined by,

Π(θ ∈ G) =

�

Θ1×...×Θk

Π0(θ ∈ G|θ1) dΠ(θ1|θ2) . . . dΠ(θk−1|θk) dΠk(θk), (3.12)

for all G ∈ G0. The parameters θ1, . . . θk and the priors Π1, . . . ,Π2 are called hyperparameters

and their hyperpriors.

This definition elicits several remarks immediately.

Remark 3.3.4. Definition 3.3.4 of a hierarchical Bayesian model does not constitute a gener-

alization of the Bayesian procedure in any formal sense: after specification of the hyperpriors,

one may proceed to calculate the prior Π, c.f. (3.12), and use it to infer on θ in the ways

indicated in chapter 2 without ever having to revisit the hierachical background of Π. As such,

the significance of the definition lies entirely in its conceptual, subjective interpretation.

Remark 3.3.5. Definition 3.3.4 is very close to the general Bayesian model that incorporates

all parameters (θ, θ1, . . . , θk) as modelling parameters. What distinguishes hierarchical mod-

elling from the general situation is the dependence structure imposed on the parameters. The
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parameter θ is distinct from the hyperparameters by the fact that conditional on θ, the data

Y is independent of θ1, . . . , θk. This distinction is repreated at higher levels in the hierarchy,

i.e. levels are separate from one another through the conditional independence of θi|θi+1 from

θi+2, . . . , , θk.

Remark 3.3.6. The hierarchy indicated in definition 3.3.4 inherently loses interpretability

as we ascend in level. One may be able to give a viable interpretation to the parameter θ

and to the hyperparameter θ1, but higher-level parameters θ2, θ3, . . . become harder and harder

to understand heuristically. Since the interpretation of the hierarchy requires a subjective

motivation of the hyperpriors, interpretability of each level is imperative, or left as a non-

informative choice. In practice, Bayesian hierarchical models are rarely more than two levels

deep (k = 2) and the last hyperprior Πk is often chosen by objective criteria.

Example 3.3.2. We observe the number of surviving offspring from a bird’s litter and aim to

estimate the number of eggs the bird laid: the bird lays N ≥ 0 eggs, distributed according to a

Poisson distribution with parameter λ > 0. For the particular species of bird in question, the

Poisson rate λ is not known exactly: the uncertainty in λ can be modelled in many ways; here

we choose to model it by a Gamma-distribution Γ(α,β), where α and β are chosen to reflect

our imprecise knowledge of λ as well as possible. Each of the eggs then comes out, producing

a viable chick with known probability p ∈ [0, 1], independently. Hence, the total number Y of

surviving chicks from the litter is distributed according to a binomial distribution, conditional

on N ,

Y |N ∼ Bin(N, p), N |λ ∼ Poisson(λ), λ ∼ Γ(α,β).

The posterior distribution is now obtained as follows: conditional on N = n, the probability

of finding Y = k is binomial,

P (Y = k|N = n) =

�
n

k

�
pk(1− p)n−k,

so Bayes’ rule tells us that the posterior is given by:

P (N = n|Y = k) =
P (N = n)

P (Y = k)

�
n

k

�
pk(1− p)n−k.

Since
�

n≥0 P (N = n|Y = k) = 1 for every k, the marginal P (Y = k) (viz. the denominator

or normalization factor for the posterior given Y = k) can be read off once we have the

expression for the numerator. We therefore concentrate on the marginal for N = n, (n ≥ 0):

P (N = n) =

�

R
P (N = n|λ) pα,β(λ) dλ =

1

Γ(α)βα

� ∞

0

e−λ λn

n!
λα−1 e−λ/β dλ.

The integral is solved using the normalization constant of the Γ((α+n), (β/β+1))-distribution:

� ∞

0
e−λβ+1

β λα+n−1 dλ = Γ(α+ n)
� β

β + 1

�α+n
.
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Substituting and using the identity Γ(α+ 1) = αΓ(α), we find:

P (N = n) =
Γ(α+ n)

Γ(α)

1

n!

1

βα

� β

β + 1

�α+n
=

1

n!

� β

β + 1

�n 1

(β + 1)α

n�

l=1

�
α+ l − 1

�
(3.13)

Although not in keeping with the subjective argumentation we insist on in the introduction to

this example, for simplicity we consider α = β = 1 and find that in that case,

P (N = n) = (1/2)n.

The posterior for N = n given Y = k then takes the form:

P (N = n|Y = k) =
1

2n

�
n

k

�
pk(1− p)n−k

� �

m≥0

1

2m

�
m

k

�
pk(1− p)m−k.

The eventual form of the posterior illustrates remark 3.3.4: in case we choose α = β = 1, the

posterior we find from the hierarchical Bayesian model does not differ from the posterior that

we would have found if we had have started from the non-hierarchical model with a geometric

prior,

Y |N ∼ Bin(N, p), N ∼ Geo(1/2).

Indeed, even if we leave α and β free, the marginal distribution for N we found in (3.13) is

none other than the prior (3.12) for this problem.

The conclusion one should draw from remark 3.3.4 and example 3.3.2, is that the hierar-

chical Bayesian approach adds nothing new to the formal Bayesian procedure: eventually, it

amounts a choice for the prior just like in chapter 2. However, in a subjectivist sense, the

hierarchical approach allows for greater freedom and a more solid foundation to motivate the

choice for certain prior over other possibilities. This point is all the more significant in light

of remark 3.1.1: the motivation of a subjectivist choice for the prior is part of the statistical

analysis rather than an external aspect of the procedure. Hierarchical Bayesian modelling

helps to refine and justify motivations for subjectivist priors.

But the subjectivist answer is not the only one relevant to the statistical perspective

of remark 3.3.2 on the initial question of this section. The objectivist Bayesian may argue

that any hyperprior should be chosen in a non-informative fashion, either as a matter of

principle, or to reflect lack of interpretability or prior information on the parameter τ2. Such

a strategy amounts to the hierarchical Bayesian approach with one or more levels of objective

hyperpriors, a point of view that retains only the modelling freedom gained through the

hierarchical approach.

More unexpected is the frequentist perspective on remark 3.3.2: if τ2 is an unknown, point-

estimate it first and then perform the Bayesian analysis with this point-estimate as a “plug-in”

for the unknown τ2. Critical notes can be placed with the philosophical foundations for this

practice, since it appears to combine the methods of two contradictory schools of statistics.

Be that as it may, the method is used routinely based on its practicality: eventually, the
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justification comes from the subjectivist who does not reject frequentist methods to obtain

expert knowledge on his parameters, as required in his own paradigm.

Remark 3.3.7. Good statistical practice dictates that one may not “peek” at the data to

decide which statistical method to use for the analysis of the same data. The rationale behind

this dictum is that pre-knowledge of the data could bias the analysis. If we take this point

strictly, the choice for a prior (read, the point-estimate for τ2) should not be made on the

basis of the same data Y that is to be used later to derive the posterior for θ. If one has

two independent realisations of the data, one can be used to choose the prior, (here, by a

point-estimate for τ2) and the other to condition on, in the posterior.

Yet the above “rule” cannot be taken too strictly. Any statistician (and common sense)

will tell you that it is crucial for the statistical analysis that one first obtains a certain feeling

for the statistical problem by inspection of the data, before making decisions on how to analyse

it (to see this point driven to the extreme, read, e.g. Tukey (1977) [82]). Ideally, one would

make those decisions based on a sample of the data that is independent of the data used in

the analysis proper. This precaution is often omitted, however: for example, it is common

practice to use “plug-in” parameters based on the sample Y whenever the need arises, possibly

leading to a bias in the subsequent analysis of the same data Y (unless the “plug-in” estimator

is independent of all other estimators used, of course).

There are many different ways in which the idea of a prior chosen by frequentist methods

is applied, all of which go under the name empirical Bayes. Following Berger [8], we note two

types of statistical questions that are especially well suited for application. When we analyse

data pertaining to an individual from a larger population and it is reasonable to assume that

the prior can be inferred from the population, then one may estimate parameters like τ2 above

from population data and use the estimates in the prior for the individual.

Another situation where empirical Bayes is often used, is in model selection: suppose

that there are several models P1,P2, . . . with priors Π1,Π2, . . ., each of which may serve as

a reasonable explanation of the data, depending on an unknown parameter K ∈ {1, 2, . . .}.
The choice to use model-prior pair k in the determination of the posterior can only be made

after observation (or estimation) of K. If K is estimated by freqentist methods, the resulting

procedure belongs to the realm of the empirical Bayes methods.

Example 3.3.3. Consider the situation where we are provided with a specimen from a pop-

ulation that is divided into an unknown number of classes. Assume that all we know about

the classes is that they occur with equal probabilities in the population. The particular class

of our specimen remains unobserved. We perform a real-valued measurement Y on the spec-

imen, which is normally distributed with known variance σ2 and an unknown mean µk ∈ R
that depends on the class k. Then Y is distributed according to a discrete mixture of normal

distributions of the form

Y ∼ PK;µ1,...,µK =
1

K

K�

k=1

N(µk, 1)
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where µ = (µ1, . . . , µK) ∈ RK are unknown. For every K ≥ 1, we have a model of the form,

PK = {PK;µ1,...,µK : µ1, . . . , µK ∈ R}

Each of these models can be endowed with a prior ΠK on RK , for example, by declaring

µ1, . . . , µK independent and marginally distributed standard normal:

µ ∼ ΠK = N(0, IK).

At this point, a Bayesian would choose a hyperprior Π2 for the discrete hyperparameter K ≥ 1

and proceed to calculate the posterior on all models PK , weighed by the prior masses Π2(K =

k) for all k ≥ 1. Alternatively, the Bayesian can use Bayes’ factors to make a decision as to

which value of K to use, reducing the analysis to a selected, or estimated value for K.

Here, we concentrate on the frequentist approach. The frequentist also aims to select one

of the models PK : in the empirical Bayes approach, we “point-estimate” which model-prior

combination we shall be using to analyse the data, from the choices (PK ,ΠK), K ≥ 1. In

such a case, inspection of the data may reveal which number of classes is most appropriate, if

one observes clearly separated peaks in the observations, in accordance with the second point

made in remark 3.3.7. Otherwise, frequentist methods exist to estimate K, for instance from

a larger population of specimens. After we have an estimate K̂ for K, we are in a position to

calculate the posterior for µ based on (PK̂ ,ΠK̂).

There are two remarks to be made with regard to the estimation of K from a larger pop-

ulation of specimens: first of all, maximization of the likelihood will always lead to a number

of classes in the order of the samplesize, simply because the largest number of classes offers

the most freedom and hence always provides the best fit to the data. A similar phenomenon

arises in regression, where it is called over-fitting, if we allow regression polynomials of ar-

bitrary degree: the MLE will fit the data perfectly by choosing a polynomial of degree in the

order of the samplesize. Therefore in such questions of model selection, penalized likelihood

criteria are employed which favour low-dimensional models over high-dimensional ones, i.e.

smaller choices for K over larger ones. Note that it is not clear, neither intuitively nor math-

ematically, how the penalty should depend on K, nor which proportionality between penalty

and likelihood is appropriate (see, however, the AIC and BIC criteria for model selection

[77]). The Bayesian faces the same problem when he chooses a prior for K: if he assigns

too much prior weight to the higher-dimensional models, his estimators (or, equivalently, the

bulk of the resulting posterior’s mass) will get the chance to “run off” to infinity with growing

samplesize, indicating inconsistency from over-fitting. Indeed, the correspondence between the

frequentist’s necessity for a penalty in maximum-likelihood methods on the one hand, and the

Bayesian’s need for a prior expressing sufficient bias for the lower-dimensional model choices

on the other, is explained in remark 2.2.7.

On another sidenote: it is crucial in the example above that all classes are represented

in equal proportions. Otherwise identifiability and testability problems arise and persist even

after we decide to exclude from the model the vectors µ which have µi = µj for some i �= j.
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If one imagines the situation where the number of observations is of the same order as the

number of classes, this should come as no surprise.

A less ambitious application of empirical Bayesian methods is the estimation of hyper-

parameters by maximum-likelihood estimation through the prior predictive distribution (see

definition 2.1.4). Recall that the marginal distribution of the data in the subjectivist Bayesian

formulation (c.f. section 2.1) predicts how the data is distributed. This prediction may be

reversed to decide which value for the hyperparameter leads to the best explanation of the

observed data, where our notion of “best” is based on the likelihood principle.

Denote the data by Y and assume that it takes its values in a measurable space (Y ,B).

Denote the model by P = {Pθ : θ ∈ Θ0}. Consider a family of priors parametrized by a

hyperparameter η ∈ H, {Πη : η ∈ H}. For every η, the prior predictive distribution Pη is

given by:

Pη(A) =

�

Θ
Pθ(A) dΠη(θ),

for all A ∈ B, i.e. we obtain a new model for the observation Y , given by P � = {Pη : η ∈ H},
contained in the convex hull of the original model co(P). Note that this new model is

parametrized by the hyperparameter; hence if we close our eyes to the rest of the problem

and we follow the maximum-likelihood procedure for estimation of η in this new model, we

find the value of the hyperparameter that best explains the observation Y . Assuming that

the model P � is dominated, with densities {pη : η ∈ H}, the maximum-likelihood estimate is

found as the point η̂(Y ) ∈ H such that

pη̂(Y ) = sup
η∈H

pη(Y ).

by the usual methods, analytically or numerically.

Definition 3.3.5. The estimator η̂(Y ) is called the ML-II estimator, provided it exists and

is unique.

Remark 3.3.8. There is one caveat that applies to the ML-II approach: in case the data Y

consists of an i.i.d.-distributed sample, the prior predictive distribution describes the sample

as exchangeable, but not i.i.d.! Hence, comparison of prior predictive distributions with the

data suffer from the objection raised in remark 2.1.4. The frequentist who assumes that the

true, underlying distribution Pn
0 of the sample is i.i.d., therefore has to keep in mind that the

ML-II model is misspecified. By the law of large numbers, the maximum-likelihood estimator

η̂n(X1, . . . , Xn) will converge asymptotically to the set of points S in H that minimize the

Kullback-Leibler divergence, i.e. those η∗ ∈ H such that:

−P0 log
pη∗

p0
= inf

η∈H
−P0 log

pη
p0

,

provided that such points exist. (What happens otherwise is left as an exercise to the reader.)

Example 3.3.4. Consider the example with which we began this section: the data Y is nor-

mally distributed with unknown mean θ and known variance σ2. The prior for θ is chosen

normal with mean 0 and variance τ2.
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3.4 Dirichlet process priors

The construction of priors on non-parametric models is far from trivial. Broadly, there are

two mathematical reasons for this: whereas the usual norm topology on Rk is unique (in

the sense that all other norm topologies are equivalent, see [67]), infinite-dimensional vector

spaces support many different norm topologies and various other topologies besides. Similarly,

whereas on Rk the (unique shift-invariant) Lebesgue measure provides a solid foundation for

the definition of models in terms of densities, no such default uniform dominating measure

exists in infinite-dimensional spaces.

Nevertheless, there are constructions of probability measures on infinite-dimensional spaces,

for example so-called Gaussian measures on Banach and Hilbert spaces. Some of these con-

structions and the properties of the measures they result in, are discussed in great detail in

Ghosh and Ramamoorthi (2003) [42]. In this section, we look at a class of priors first proposed

by Ferguson (1973) [34], which have become known as Dirichlet process priors.

The Dirichlet process prior arises as the non-parametric analog of the Dirichlet distribution

on finite-dimensional spaces of probability distributions, which we consider in some detail

first. Let X = {1, 2, . . . , k} (with its powerset 2X as a σ-algebra) and consider the collection

M(X ) of all probability measures on X . Every P ∈ M(X ) has a density p : X → [0, 1]

(with respect to the counting measure on X ) and we denote pi = p(i) = P ({i}), so that for

every A ∈ 2X ,

P (A) =
�

l∈A
pl.

Therefore, the space M(X ) can be parametrized as follows,

M(X ) =
�
P : 2X → [0, 1] :

k�

i=1

pi = 1, pi ≥ 0, (1 ≤ i ≤ k)
�
,

and is in bijective correspondence with the simplex in Rk. For reasons to be discussed shortly,

we consider the following family of distributions on M(X ).

Definition 3.4.1. (Finite-dimensional Dirichlet distribution)

Let α = (α1, . . . ,αk) with αi > 0 for all 1 ≤ i ≤ k. A stochastic vector p = (p1, . . . , pk) is said

to have Dirichlet distribution Dα with parameter α, if the density π for p satisfies:

π(p) =
Γ
��k

i=1 αi
�

Γ(α1) . . .Γ(αk)
pα1−1
1 pα2−1

2 . . . p
αk−1−1
k−1

�
1−

k−1�

i=1

pi
�αk−1

If αi = 0 for some i, 1 ≤ αi ≤ k, then we set Dα(pi = 0) = 1 marginally and we treat the

remaining components of p as (k − 1)-dimensional.

As an example, consider the case where k = 2 (so that p2 = 1 − p1): in that case, the

density of the Dirichlet distribution takes the form:

π(p1, p2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
pα1−1
1 (1− p1)

α2−1,
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i.e. p1 has a Beta distribution B(α1,α2). Examples of graphs of Beta densities with α1 = k+1,

α2 = n − k + 1 for various integer values of k are depicted in figure 2.1). We also note the

following two well-known facts on the Dirichlet distribution (proofs can be found in [42]).

Lemma 3.4.1. (Gamma-representation of Dα)

If Z1, . . . , Zk are independent and each marginally distributed according to a Γ-distribution

with parameter αi, i.e.

Zi ∼ Γ(αi),

for all 1 ≤ i ≤ k, then the normalized vector

�Z1

S
, . . . ,

Zk

S

�
∼ Dα, (3.14)

with S =
�k

i=1 Zi.

Lemma 3.4.1 shows that we may think of a Dα-distributed vector as being composed

of k independent, Γ-distributed components, normalized to form a probability distribution,

through division by S in (3.14). This division should be viewed as an L1-projection from

the positive cone in Rk onto the k − 1-dimensional simplex. The following property can also

be viewed as a statement on the effect of a projection on a distribution, this time from the

simplex in Rk to lower-dimensional simplices. It is this property (related to a property called

infinite divisibility of the Dirichlet distribution) that motivates the choice for the Dirichlet

distribution made by definition 3.4.1.

Lemma 3.4.2. Let X be a finite pointset. If the density p : X → [0, 1] of a distribution P

is itself distributed according to a Dirichlet distribution with parameter α, p ∼ Dα, then for

any partition {A1, . . . , Am} of X , the vector of probabilities (P (A1), P (A2), . . . , P (Am)) has

a Dirichlet distribution again,

�
P (A1), P (A2), . . . , P (Am)

�
∼ Dα� ,

where the parameter α� is given by:

(α�
1, . . . ,α

�
m) =

�
�

l∈A1

αl, . . . ,
�

l∈Am

αl

�
. (3.15)

The identification (3.15) in lemma 3.4.2 suggests that we adopt a slightly different per-

spective on the definition of the Dirichlet distribution: we view α as a finite measure on X ,

so that P ∼ Dα, if and only if, for every partition (A1, . . . , Am),

�
P (A1), . . . , P (Am)

�
∼ D(α(A1),...,α(Am)). (3.16)

Property (3.16) serves as the point of departure of the generalization to the non-parametric

model, because it does not depend on the finite nature of X .
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Definition 3.4.2. Let X be a finite pointset; denote the collection of all probability measures

on X by M(X ). The Dirichlet family D(X ) is defined to be the collection of all Dirichlet

distributions on M(X ), i.e. D(X ) consists of all Dα with α a finite measure on X .

The following property of the Dirichlet distribution describes two independent Dirichlet-

distributed quantities in convex combination, which form a new Dirichlet-distributed quantity

if mixed by means of an (independent) Beta-distributed parameter.

Lemma 3.4.3. Let X be a finite pointset and let α1, α2 be two measures on (X , 2X ). Let

(P1, P2) be independent and marginally distributed as

P1 ∼ Dα1 , P2 ∼ Dα2 .

Furthermore, let λ be independent of P1, P2 and marginally distributed according to λ ∼
B(α1(X ),α2(X )). Then the convex combination λP1 + (1 − λ)P2 again has a Dirichlet

distribution with base measure α1 + α2:

λP1 + (1− λ)P2 ∼ Dα1+α2 .

Many other properties of the Dirichlet distribution could be considered here, most notably

the so-called tail-free property and neurality to the right (see [42]). We do not provide details

because both are rather technical and we do not use them in following chapters, but the reader

should be aware of their existence because some authors use them extensively.

A most important property of the family of Dirichlet distributions is its conjugacy for the

full non-parametric model.

Theorem 3.4.1. Let X be a finite pointset; let X1, . . . , Xn denote an i.i.d. sample of obser-

vations taking values in X . The Dirichlet family D(X ) is a conjugate family: if the prior

equals Dα, the posterior equals Dα+nPn.

Proof Since X is finite (#(X ) = k), M(X ) is dominated (by the counting measure), so

the posterior can be written as in (2.8). The likelihood takes the form:

P �→
n�

i=1

p(Xi) =
k�

l=1

pnl
l ,

where nl = #{Xi = l : 1 ≤ i ≤ n}. Multiplying by the prior density for Π = Dα, we find that

the posterior density is proportional to,

π(p1, . . . , pk|X1, . . . , Xn) ∝ π(p1, . . . , pk)
n�

i=1

pXi

∝
k�

l=1

pnl
l

k−1�

l=1

pαl−1
l

�
1−

k−1�

i=1

pi
�αk−1

=
k−1�

l=1

pαl+nl−1
l

�
1−

k−1�

i=1

pi
�αk+nk−1

,
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which is again a Dirichlet density, but with changed base measure α. Since the posterior is a

probability distribution, we know that the normalization factor follows suit. Noting that we

may view nl as the density of the measure nPn since

nl =
n�

i=1

1{Xi = l} = nPn1{X = l},

we complete the argument. �

Next we consider the Dirichlet process prior, a probability measure on the full non-

parametric model for a measurable space (X ,B). For the sake of simplicity, we assume that

X = R and B is the Borel σ-algebra on R. We denote the collection of all probability measures

on (R,B) by M(R,B). We consider the collection of random quantities {P (A) : A ∈ B} and

impose two straightforward conditions on its finite-dimensional marginals. The Kolmogorov

existence theorem (see theorem A.5.1) then guarantees existence of a stochastic process with

finitely additive sample path P : B → [0, 1]. Said straightforward conditions are satisfied

if we choose the finite-dimensional marginal distributions to be (finite-dimensional) Dirichlet

distributions (3.16). Also by this choice, σ-additivity of P can be guaranteed. The resulting

process on the space of all probability measures on (X ,B) is called the called the Dirichlet

process and the associated probability measure Π is called the Dirichlet process prior.

Theorem 3.4.2. (Existence of the Dirichlet process)

Given a finite measure α on (R,B), there exists a probability measure Dα on M(R,B) (called

the Dirichlet process prior with parameter α) such that for P ∼ Dα and every B-measurable

partition (B1, . . . , Bk) of R,
�
P (B1), . . . , P (Bk)

�
∼ D(α(B1),...,α(Bk)). (3.17)

Proof Let k ≥ 1 and A1, . . . , Ak ∈ B be given. Through the indicators 1Ai for these sets,

we define 2k new sets

1Bν1...νk
=

k�

i=1

1νiAi
(1− 1Ai)

1−νi ,

where ν1, . . . , νk ∈ {0, 1}. Then the collection {Bν1...νk : νi ∈ {0, 1}, 1 ≤ i ≤ k} forms a

partition of R. For the P -probabilities corresponding to this partition, we assume finite-

dimensional marginals

�
P (Bν1...νk) : νi ∈ {0, 1}, 1 ≤ i ≤ k

�
∼ ΠBν1...νk :νi∈{0,1},1≤i≤k,

The distribution of the vector (P (A1), . . . , P (Ak)) then follows from the definition:

P (Ai) =
�

{i:νi=1}

P (Bν1...νk),

for all 1 ≤ i ≤ k. This defines marginal distributions for all finite subsets of B, as needed

in theorem A.5.1. To define the underlying probability space (Ω,F ,Π) we now impose two

conditions.
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(F1) With Π-probability one, the empty set has P -measure zero:

Π
�
P (Ø) = 0

�
= 1.

(F2) Let k, k� ≥ 1 be given. If (B1, . . . , Bk) is a partition and (B�
1, . . . , B

�
k�) a refinement

thereof, with

B1 =
r1�

i=1

B�
i, . . . , Bk =

k��

i=rk−1+1

B�
i,

(for certain r1 < . . . < rk−1), then we have the following equality in distribution:

L

� r1�

i=1

P (B�
i), . . . ,

k��

i=rk−1+1

P (B�
i)
�
= L

�
P (B1), . . . , P (Bk)

�
.

Condition (F1) ensures that if (A1, . . . , Ak) is itself a partition of R, the above construction

does not lead to a contradiction. Condition (F2) ensures finite additivity of P with prior

probability one, i.e. for any A,B,C ∈ B such that A ∩B = Ø and A ∪B = C,

Π
�
P (A) + P (B) = P (C)

�
= 1. (3.18)

Ferguson (1973,1974) [34, 35] has shown that conditions (F1) and (F2) imply that Kol-

mogorov’s consistency conditions (K1) and (K2) (see section A.5) are satisfied. As we have

seen in the first part of this section, if we impose the Dirichlet distribution:

�
P (Bν1...νk) : νi ∈ {0, 1}, 1 ≤ i ≤ k

�
∼ D{α(Bν1...νk ):νi∈{0,1},1≤i≤k}. (3.19)

and α is a measure on B, condition (F2) is satisfied. Combining all of this, we conclude that

there exists a probability space (Ω,F ,Π) on which the stochastic process {P (A) : A ∈ B}
can be represented with finite dimensional marginals c.f. (3.19). Lemma 3.4.4 shows that

Π(P ∈ M(R,B)) = 1, completing the proof. �

The last line in the above proof may require some further explanation: P is merely the

sample-path of our stochastic process. The notation P (A) suggests that P is a probability

measure, but all we have shown up to that point, is that (F1) and (F2) imply that P is a

finitely additive set-function such that:

Π
�
P (B) ∈ [0, 1]

�
= 1,

with Π-probability equal to one. What remains to be demonstrated is Π-almost-sure σ-

additivity of P .

Lemma 3.4.4. If Π is a Dirichlet process prior Dα on M(X ,B),

Π
�
P is σ-additive

�
= 1.
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Proof Let (An)n≥1 be a sequence in B that decreases to Ø. Since α is σ-additive, α(An) →
α(Ø) = 0. Therefore, there exists a subsequence (Anj )j≥1 such that

�
j α(Anj ) < ∞. For

fixed � > 0, using Markov’s inequality first,

�

j≥1

Π
�
P (Anj ) > �

�
≤

�

j≥1

1

�

�
P (Anj ) dΠ(P ) =

1

�

�

j≥1

α(Anj )

α(R) < ∞,

according to lemma 3.4.5. From the Borel-Cantelli lemma (see lemma A.2.1), we see that

Π
�
lim sup
j→∞

{P (Anj ) > �}
�
= Π

��

J≥1

�

j≥J

{P (Anj ) > �}
�
= 0,

which shows that limj P (Anj ) = 0, Π-almost-surely. Since, by Π-almost-sure finite additivity

of P ,

Π
�
P (An) ≥ P (An+1) ≥ . . .

�
= 1,

we conclude that limn P (An) = 0, Π-almost-surely. By the continuity theorem for measures

(see theorem A.2.1 and the proof in [52], theorem 3.2), P is σ-additive Π-almost-surely. �

The proof of lemma 3.4.4 makes use of the following lemma, which establishes the basic

properties of the Dirichlet process prior.

Lemma 3.4.5. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let B ∈ B be given.

(i) If α(B) = 0, then P (B) = 0, Π− a.s.

(ii) If α(B) > 0, then P (B) > 0, Π− a.s.

(iii) The expectation of P under Dα is given by
�

P (B) dDα(P ) =
α(B)

α(R) .

Proof Let B ∈ B be given. Consider the partition (B1, B2) of R, where B1 = B, B2 = R\B.

According to (3.17),
�
P (B1), P (B2)

�
∼ D(α(B),α(R)−α(B)),

so that P (B) ∼ B(α(B),α(R)− α(B)). Stated properties then follow from the properties of

the Beta-distribution. �

This concludes the proof for the existence of Dirichlet processes and the associated priors.

One may then wonder what is the nature of the prior we have constructed. As it turns out,

the Dirichlet process prior has some remarkable properties.

Lemma 3.4.6. (Support of the Dirichlet process prior)

Consider M(R,B), endowed with the topology of weak convergence. Let α be a finite measure

on (R,B). The support of Dα is given by

Mα(R,B) =
�
P ∈ M(R,B) : supp(P ) ⊂ supp(α)

�
.



Non-parametric priors 77

In fact, we can be more precise, as shown in the following lemma.

Lemma 3.4.7. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let Q ∈ M(R,B) be such that Q � α. Then, for any

m ≥ 1 and A1, . . . , Am ∈ B and � > 0,

Dα
�
P ∈ M(R,B) : |P (Ai)−Q(Ai)| < �, 1 ≤ i ≤ m

�
> 0.

Proof The proof of this lemma can be found in [42], theorem 3.2.4. �

So if we endow M(R,B) with the (slightly stronger) topology of pointwise onvergence (see

definition A.7.2), the support of Dα remains large, consisting of all P ∈ M(R,B) that are

dominated by α.

The following property reveals a most remarkable characterization of Dirichlet process

priors: the subset D(R,B) of all finite convex combinations of Dirac measures (see exam-

ple A.2.2) receives prior mass equal to one.

Lemma 3.4.8. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Then,

Dα
�
P ∈ D(R,B)

�
= 1.

Proof The proof of this lemma can be found in [42], theorem 3.2.3. �

The above phenomenon leads to problems with support or convergence in stronger topolo-

gies (like total variation or Hellinger topologies) and with regard to the Kullback-Leibler

criteria mentioned in the asymptotic theorems of chapter 4. Generalizing this statement some-

what, we may infer from the above that the Dirichlet process prior is not suited to (direct)

estimation of densities. Although clearly dense enough in M(R,B) in the toplogy of weak

convergence, the set D(R,B) may be rather sparse in stronger topologies! (Notwithstanding

the fact that mixture models with a Dirichlet process prior for the mixing distribution can be

(minimax) optimal for the estimation of mixture densities [41].)

Lemma 3.4.9. Let α be a finite measure on (R,B) and let {P (A) : A ∈ B} be the associated

Dirichlet process with distribution Dα. Let g : R → R be non-negative and Borel-measurable.

Then, �

R
g(x) dα(x) < ∞ ⇔

�

R
g(x) dP (x) < ∞, (Dα − a.s.).

Proof Add proof! �

Perhaps the most important result of this section is the fact that the family of Dirichlet

process priors on M(R,B) is a conjugate family for the full, non-parametric model on (R,B),

as stated in the following theorem.
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Theorem 3.4.3. Let X1, X2, . . . be an i.i.d. sample of observations in R. Let α be a finite

measure on (R,B) with associated Dirichlet process prior Π = Dα. For any measurable

C ⊂ M(R,B),

Π
�
P ∈ C

�� X1, . . . , Xn
�
= Dα+nPn(C),

i.e. the posterior is again a Dirichlet process distribution, with base measure α+ nPn

Proof The proof is a direct consequence of theorem 3.4.1 and the fact that equality of two

measures on a generating ring implies equality on the whole σ-algebra. (Cylindersets generate

the relevant σ-algebra and for cylindersets, theorem 3.4.1 asserts equality.) �

Example 3.4.1. Let X1, X2, . . . be an i.i.d. sample of observations in R. Let α be a finite

measure on (R,B) with associated Dirichlet process prior Π = Dα. Let B ∈ B be given. The

expectation of P (B) under the prior distribution equals,

�
P (B) dDα(P ) =

α(B)

α(R) , (3.20)

the measure of B under α normalized to be a probability measure (which we denote by Pα(B)).

The posterior mean (see definition 2.2.1), is then given by:

�
P (B) dΠ

�
P

�� X1, . . . , Xn
�
=

�
P (B) dDα+nPn(P ) =

(α+ nPn)(B)

(α+ nPn)(B)

=
α(R)

α(R) + n
Pα(B) +

n

α(R) + n
Pn(B),

Pn
0 -almost-surely. Defining λn = α(R)/(α(R) + n), we see that the posterior mean P̂n can be

viewed as a convex combination of the prior mean distribution and the empirical distributions,

P̂n = λn Pα + (1− λn)Pn,

Pn
0 -almost-surely. As a result, we see that

�P̂n − Pn�TV = λn�Pα − Pn� ≤ λn,

Pn
0 -almost-surely. Since λn → 0 as n → ∞, the difference between the sequence of posterior

means (P̂n)n≥1 and the sequence of empirical measures (Pn)n≥1 converges to zero in total

variation as we let the samplesize grow to infinity. Generalizing likelihood methods to non-

dominated models, Dvoretzky, Kiefer and Wolfowitz (1956) [30] have shown that the empirical

distribution Pn can be viewed as the non-parametric maximum-likelihood estimator (usually

abbreviated NPMLE). This establishes (an almost-sure form of) consistency for the posterior

mean, in the sense that it has the same point of convergence as the NPMLE. In chapter 4,

convergence of the posterior distribution (and in particular its mean) to the MLE will manifest

itself as a central connection between frequentist and Bayesian statistics.
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Remark 3.4.1. The above example provides the subjectivist with a guideline for the choice

of the base measure α. More particularly, equality (3.20) says that the prior predictive distri-

bution equals the (normalized) base measure α. In view of the fact that subjectivists should

choose the prior to reflect their prior “beliefs”, α should therefore be chosen such that it assigns

relatively high mass to sets B ∈ B that are believed to be probable.

3.5 Exercises

Exercise 3.1. A proper Jeffreys prior

Let X be a random variable, distributed Bin(n; p) for known n and unknown p ∈ (0, 1).

Calculate Jeffreys prior for this model, identify the standard family of probability distributions

it belongs to and conclude that this Jeffreys prior is proper.

Exercise 3.2. Jeffreys and uniform priors

Let P be a model parametrized according to some mapping Θ → P : θ �→ Pθ. Assuming

differentiability of this map, Jeffreys prior Π takes the form (3.7). In other parametrizations,

the form of this expression remains the same, but the actual dependence on the parameter

changes. This makes it possible that there exists another parametrization of P such that

Jeffreys prior is equal to the uniform prior. We shall explore this possibility in three exercises

below.

For each of the following models in their ’standard’ parametrizations θ �→ Pθ, find a parameter

η ∈ H, η = η(θ), such that the Fisher information Iη, expressed in terms of η, is constant.

a. Find η for P the model of all Poission distributions.

b. In the cases α = 1, 2, 3, find η for the model P consisting of all Γ(α, θ)-distributions,

with θ ∈ (0,∞).

c. Find η for the model P of all Bin(n; θ) distributions, where n is known and θ ∈ (0, 1).

Note that if the Fisher information Iη is constant, Jeffries prior is uniform. Therefore,

if H is unbounded, Jeffries prior is improper.

Exercise 3.3. Optimality of unbiased Bayesian point estimators

Let P be a dominated, parametric model, parametrized identifiably by Θ → P : θ �→ Pθ, for

some Θ ⊂ Rk. Assume that (X1, . . . , Xn) ∈ X n form an i.i.d. sample from a distribution

P0 = Pθ0 ∈ P, for some θ0 ∈ Θ. Let Π be a prior on Θ and denote the posterior by

Π(·|X1, . . . , Xn). Assume that T : X n → Rm is a sufficient statistic for the model P.

a. Use the factorization theorem to show that the posterior depends on the data only through

the sufficient statistic T (X1, . . . , Xn).

b. Let θ̂n : X n → Θ denote a point-estimator derived from the posterior. Use a. above to

argue that there exists a function θ̃n : Rm → Θ, such that,

θ̂n(X1, . . . , Xn) = θ̃n(T (X1, . . . , Xn)).
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Bayesian point-estimators share this property with other point-estimators that are derived from

the likelihood function, like the maximum-likelihood estimator and penalized versions thereof.

Next, assume that Pn
0 (θ̂n)

2 < ∞ and that θ̂n is unbiased, i.e. Pn
0 θ̂n = θ0.

c. Apply the Lehmann-Scheffé theorem to prove that, for any other unbiased estimator

θ̂�n : X n �→ Θ,

Pn
0 (θ̂n − θ0)

2 ≤ Pn
0 (θ̂

�
n − θ0)

2.

The message of this exercise is, that Bayesian point-estimators that happen to be unbiased and

quadratically integrable, are automatically L2-optimal in the class of all unbiased estimators

for θ. They share this remarkable property with maximum-likelihood estimators.

Exercise 3.4. Conjugate model-prior pairs

In this exercise, conjugate model-prior pairs (P,Π) are provided. In each case, we denote the

parameter we wish to estimate by θ and assume that other parameters have known values. Let

X denote a single observation.

In each case, derive the posterior distribution to prove conjugacy and identify the X-dependent

transformation of parameters that takes prior into posterior.

a. X|θ ∼ N(θ,σ2) and θ ∼ N(µ, τ2).

b. X|θ ∼ Poisson(θ) and θ ∼ Γ(α,β).

c. X|θ ∼ Γ(ν, θ) and θ ∼ Γ(α,β).

d. X|θ ∼ Bin(n; θ) and θ ∼ β(α,β).

e. X|θ ∼ N(µ, θ−1) and θ ∼ Γ(α,β).

f. X|θ1, . . . , θk ∼ M(n; θ1, . . . , θk) and θ ∼ Dα, where M denotes the multinomial distri-

bution for n observations drawn from k classes with probabilities θ1, . . . , θk and Dα is a

Dirichlet distribution on the simplex in Rk (see definition 3.4.1).

Exercise 3.5. In this exercise, we generalize the setup of example 3.3.2 to multinomial rather

than binomial context. Let k ≥ 1 be known. Consider an observed random variable Y and an

unobserved N = 1, 2, . . ., such that, conditionally on N , Y is distributed multinomially over

k classes, while N has a Poisson distribution with hyperparameter λ > 0,

Y |N ∼ Mk(N ; p1, p2, . . . , pk), N ∼ Poisson(λ).

Determine the prior predictive distribution of Y , as a function of the hyperparameter λ.

Exercise 3.6. Let X1, . . . , Xn form an i.i.d. sample from a Poisson distribution Poisson(θ)

with unknown θ > 0. As a family of possible priors for the Bayesian analysis of this data,

consider exponential distributions θ ∼ Πλ = Exp(λ), where λ > 0 is a hyperparameter.

Calculate the prior predictive distribution for X and the ML-II estimate λ̂. With this estimated

hyperparameter, give the posterior distribution θ|X1, . . . , Xn. Calculate the resulting posterior

mean and comment on its data-dependence.
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Exercise 3.7. Let X1, . . . , Xn form an i.i.d. sample from a binomial distribution Bin(n; p),

given p ∈ [0, 1]. For the parameter p we impose a prior p ∼ β(α,β) with hyperparameters

α,β > 0.

Show that the family of β-distributions is conjugate for binomial data. Using (standard ex-

pressions for) the expectation and variance of β-distributions, give the posterior mean and

variance in terms of the original α and β chosen for the prior and the data. Calculate the

prior predictive distribution and give frequentist estimates for α and β. Substitute the result

in the posterior mean and comment on (asymptotic) data dependence of the eventual point

estimator.


