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Abstract
We analyze the time-dependence of exchange rate correlations using a new

multivariate GARCH model. This model consists of two parts. First, we

transform the exchange rate changes into their principal components and

specify univariate GARCH models for all components. Second, we use the

inverse of the principal components construction to transform the condi-

tional component moments back into those of the exchange rate changes

themselves. The model is easy to estimate, as it requires only univariate

GARCH estimations. Nevertheless, we �nd it outperforms the popular con-

stant conditional correlations and factor GARCH models. We show that

the major U.S. dollar exchange rates have become more loosely instead of

closely tied since the eighties.

Key words: correlations, multivariate models, GARCH, factor models, exchange
rates.

JEL classi�cation: C32, C52, F31.

¤Department of Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, the
Netherlands; tel: +31-20-5254191; fax: +31-20-5254254; E-mail: Klaassen@fee.uva.nl.
I thank Frank de Jong, Harry Huizinga, Theo Nijman, Bertrand Melenberg, Siem Jan Koopman and
Bas Donkers for their helpful comments.
An earlier version of this paper has appeared as CentER for Economic Research Discussion Paper No.
9910.



1 Introduction

Correlations are a key determinant of many �nancial decisions. For instance, investors

in stocks need correlation assessments to reduce the riskiness of their portfolios, and

correlations between exchange rates are important for internationally trading corpora-

tions and banks, as they have to hedge open foreign exchange positions. Several pa-

pers examine the correlations between stock returns, for instance, Bertero and Mayer

(1990), Koch and Koch (1991), King, Sentana and Wadhwani (1994), Longin and Sol-

nik (1995) and Darbar and Deb (1997). Surprisingly few papers, however, focus on

exchange rate correlations. One notable example is Bollerslev (1990), who studies cor-

relations between several European Monetary System (EMS) - U.S. dollar exchange

rates. Therefore, in this paper we also focus on exchange rate correlations.

Unlike Bollerslev (1990), however, we do not restrict the correlations to be constant.

The reason is that exchange rate correlations are likely time-varying according to eco-

nomic intuition. For example, suppose the U.K. joins the Exchange Rate Mechanism

of the EMS. Then the correlation between the pound-dollar and, say, the mark-dollar

exchange rates will rise. Secondly, a change in U.S. monetary policy such as the 1979

Volcker experiment also raises that correlation, since both the pound and the mark will

change in the same way against the dollar. Therefore, we allow exchange rate correla-

tions to vary over time. We �nd that the correlations between eight main U.S. dollar

exchange rates have decreased since the eighties, so that exchange rates have become

more loosely instead of closely tied.

When modeling high-frequency exchange rates, one has to take account of the

well-known conditional heteroskedasticity in such data. The literature suggests var-

ious models for that, such as GARCH (see Bollerslev, Chou and Kroner (1992) for

an overview), stochastic volatility (see Ghysels, Harvey and Renault (1996)), regime-

switching GARCH (see Gray (1996) and Klaassen (1998)) and fractionally integrated

GARCH (see Baillie, Bollerslev andMikkelsen (1996)). For simplicity, we take GARCH,

although the approach we will develop also works for any other volatility model.

Since we want to analyze correlations, a univariate GARCH model is insu¢cient,

and a multivariate version is called for. In this paper, we introduce a new multivariate

GARCH model that is more suitable for a detailed correlation analysis than existing

multivariate GARCH models, as we will explain below. The basic idea of our model

stems from the fact that it is the correlations between exchange rates that make mul-

tivariate GARCH modeling more di¢cult than univariate GARCH. Therefore, in the

�rst step of our approach, we remove all unconditional correlations by taking principal

components of the exchange rate changes. The conditional mean and variance of each
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principal component are speci�ed by a univariate GARCH model. In the second step,

the inverse of the principal components construction is used to transform the condi-

tional moments of the principal components into the conditional mean and variance

of the exchange rate changes themselves. Since this step requires no further estima-

tion, our indirect approach makes multivariate GARCH estimation as easy as several

univariate GARCH estimations.

The remaining part of this introduction presents a brief overview of the literature

on multivariate GARCH and explains the contribution of this paper in more detail.

In the GARCH literature so far, extending univariate to multivariate GARCH has

been a main endeavour. The reason is that one has to model not only conditional

variances, but also all conditional covariances. This can easily lead to an enormous

number of parameters. Hence, multivariate GARCH modeling amounts to �nding a

parsimonious speci�cation of the conditional covariance matrix that does not imply an

unacceptable loss of generality.

In this respect, the diagonal model of Bollerslev, Engle and Wooldridge (1988)

and the BEKK model of Engle and Kroner (1995) are useful for low-variate systems.

However, estimation becomes di¢cult for higher-variate systems. For instance, in our

eight-variate empirical application, one would have to estimate more than a hundred

parameters. From a computational point of view, our model is more convenient, as it

requires only univariate GARCH estimations.

Another computationally attractive model is the popular Bollerslev (1990) constant

conditional correlations model. For our study, however, the model is not suitable, as

we want to focus on the dynamics in exchange rate correlations. As indicated above,

economic intuition shows that such dynamics are very likely present. This is clearly

supported by our data. In this sense, our model is preferable, as it can explain time

variation in correlations, leading to a better �t.

A fourth class of existing multivariate GARCHmodels is factor GARCH; see Diebold

and Nerlove (1989), Engle, Ng and Rothschild (1990), Ng, Engle and Rothschild (1992),

King, Sentana and Wadhwani (1994) and Fiorentini, Sentana and Shephard (1998).

Two reasons behind the success of factor GARCH are that such models are computa-

tionally tractable and that, in contrast to the Bollerslev (1990) model, they can capture

some time-variation in the conditional correlations. However, the �t of conditional vari-

ances and correlations is not as good as that of the model we propose. The explanation

will become clear in the next paragraph.

Although our model has practical advantages over existing models, it also has a

sound theoretical basis. This stems from the fact that the model is a factor GARCH
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model, although not in its traditional form as used above. Usual factor GARCH models

are based on the theory that only a few unobserved variables, the factors, govern all

exchange rates. Our model, on the other hand, uses as many factors as exchange rates.

We demonstrate that this is the reason for the empirical outperformance of our model

with respect to usual factor GARCH.

Taking the maximum number of factors in factor GARCH has two advantages.

First, this choice turns out to be signi�cantly optimal. Hence, our model solves a

major problem of factor GARCH, namely the choice of the number of factors.

The second advantage concerns estimation. To estimate usual factor GARCH mod-

els, one commonly takes a two-step estimation method to avoid a complicated simulta-

neous procedure (see Engle et al. (1990), among others). Correction of the second-step

standard errors for �rst-step estimation inaccuracy, however, is di¢cult and thus often

ignored, leading to biased inference. Since there is no estimation in the second step of

our method, we do not have this potentially serious problem.

Our model yields the following conclusions regarding the development of exchange

rate correlations over time. First, we �nd that correlations between the main U.S. dollar

exchange rates were decreasing in the years after the �rst oil shock, were increasing at

the end of the seventies, and that they were highest in the eighties.

Second, concerning the central question of the paper, we show that exchange rates

have become more loosely instead of closely tied since the eighties. This is caused by

the 1992 collapse of the exchange rate mechanism of the EMS, which made several

European exchange rates less correlated. Moreover, the EMS - yen correlations have

become lower because of the coexistence of more stable EMS - U.S. dollar rates and a

long swing in the yen - dollar rate in the nineties.

The plan for the rest of the paper is as follows. In the next section, we introduce

our multivariate GARCH model. Section 3 explains why that model is a special factor

GARCH model with the maximum number of factors. In section 4 we present the

empirical results and analyze the time-variation in the correlations. Section 5 concludes.

2 A New Multivariate GARCH Model

In the �rst subsection, we develop the new multivariate GARCH model to be used for

our study on exchange rate correlations. In subsection 2.2 we explain how to estimate

the model. In the �nal subsection, we examine the implications of our model for the

conditional correlations.
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2.1 The Model

The basic idea behind the model is based on the fact that it is the correlations between

exchange rates that make multivariate GARCH models more complex than univariate

ones. Therefore, we �rst remove the (unconditional) correlations by transforming the

exchange rate changes into their principal components. We bring in the GARCH ef-

fects through these components instead of directly through the exchange rate changes

themselves. In the second step, we then transform the principal component moments

into the moments of the exchange rate changes, which we are interested in.

To describe the model, we need the following notation. Let St denote the vector

of logarithms of I nominal spot exchange rates at time t, where each exchange rate is

de�ned as the domestic currency price of one unit of foreign currency. We concentrate

on the I-vector st consisting of the (percentage) exchange rate changes sit=100(Sit¡
Sit¡1). Thus, sit is the depreciation of the domestic currency with respect to currency

i. All exchange rate changes up to and including time t¡1 form the information set

It¡1. Finally, we assume that st is conditionally normally distributed. Therefore, we

only concentrate on its conditional mean and variance.

In the �rst part of our model, we concentrate on the I-vector of principal components

de�ned by

ft =W
0st, (1)

where the weighting matrix W is the unique (apart from column exchanges) orthogo-

nal I£I eigenvector matrix of the unconditional variance V fstg. This transforms the
correlated exchange rate changes into their (unconditionally) uncorrelated principal

components.

To specify Et¡1fftg and Vt¡1fftg, the mean and variance of ft conditional on the
information set It¡1, we use a standard, univariate AR(1)-GARCH(1,1) model for each

principal component separately. We complete the matrix Vt¡1fftg by assuming that
the o¤-diagonal elements are zero; this assumption is quite common in the literature

(see Engle et al. (1990) and Ng et al. (1992), among others). In summary, we specify

the conditional moments of ft by

Et¡1ffktg = ¹k + µk(fkt¡1¡¹k)
Vt¡1ffktg = !k + ®k(fkt¡1¡Et¡2ffkt¡1g)2 + ¯kVt¡2ffkt¡1g

Covt¡1ffkt; fltg = 0, (2)

for principal components k; l = 1; : : : ; I, k 6= l. This completes the �rst part of the

model.
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In the second part of the model, we have to transform the conditional moments

of the principal components into the ones for the exchange rate changes themselves,

as it is the exchange rates that we are mainly interested in. This transformation is

straightforward, as (1) and the orthogonality of the weighting matrix W imply that

Et¡1fstg =WEt¡1fftg
Vt¡1fstg =WVt¡1fftgW 0. (3)

This completes the second and �nal part of our multivariate GARCH model. Hence,

the complete multivariate GARCH model is given by (1), (2) and (3).

2.2 Estimation

In this subsection we describe how to estimate our model. The �rst part of the model,

represented by (1) and (2), can be estimated by principal components analysis on

the sample covariance matrix of st, followed by maximum likelihood estimation of the

normal univariate GARCH models for each sample principal component separately.

Remarkably, this is all that is needed to estimate the model; the second part of the

model, the inverse transformation (3), requires no further estimation, as the weighting

matrix W has already been estimated in the �rst step. Hence, estimation of the full

multivariate GARCH system is essentially as simple as several univariate GARCH

estimations. This makes our model attractive from a practical point of view, as several

other multivariate GARCH models, such as the diagonal and BEKK models mentioned

in the introduction, are more di¢cult to estimate.

2.3 Implications for the Conditional Correlations

The focus of the paper is the development of exchange rate correlations over time. In

the introduction we have argued that our model improves over the Bollerslev (1990)

constant conditional correlations model in this respect, because our model allows for

time-variation in the conditional correlations. However, our model also imposes some

structure on the correlations. In this subsection, we examine whether this structure is

reasonable.

In our model, the time-variation in the conditional correlations is completely driven

by the time-variation in the conditional variances of the principal components. This

follows directly from the conditional variance formula in (3) and the diagonality of

Vt¡1fftg.
To see whether such a structure is reasonable, consider the following stylized exam-

ple. Suppose we have I=2 U.S. dollar exchange rate changes, namely the U.K. pound
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(s1t) and the German Mark (s2t). Assume that both have unit unconditional variance.

This implies that the principal components are

f1t =
p
1=2 ¢ s1t +

p
1=2 ¢ s2t

f2t =
p
1=2 ¢ s1t ¡

p
1=2 ¢ s2t =

p
2 ¢ s1t ¡ f1t, (4)

where the joint component f1t represents the EMS - U.S. dollar exchange rate and

the di¤erence component f2t represents the deviation of the U.K. pound from the

EMS. Using the variance formula in (3), straightforward calculations show that the

conditional correlation between the U.K. pound and the German mark exchange rate

changes equals

½t¡1fs1t; s2tg =
1
2Vt¡1ff1tg ¡ 1

2Vt¡1ff2tg
1
2Vt¡1ff1tg+ 1

2Vt¡1ff2tg
. (5)

To analyze whether this speci�cation is reasonable, we analyze the e¤ects of two

di¤erent policy changes. First, suppose the U.K. joins the Exchange Rate Mechanism

(ERM) of the EMS. Then the U.K.-EMS component f2t becomes more stable, so that

Vt¡1ff2tg falls and the correlation ½t¡1fs1t; s2tg rises, as expected.
The second policy change we consider is a change in U.S. monetary policy, which in-

creases the conditional variance of the U.S. dollar versus both EMS currencies. Accord-

ing to the model, the increase in Vt¡1ff1tg raises the intra-EMS correlation ½t¡1fs1t; s2tg.
This is realistic, as both the pound and the mark change in the same way against the

dollar after the policy shift.

Although we admit that the previous example is simple, it does show that the

restrictions our model imposes on the conditional correlations are quite reasonable. In

this sense, our model is preferable over the popular Bollerslev (1990) model. After all,

that model restricts the conditional correlations to stay constant, even after important

policy changes such as the ones discussed above.

3 Relation with Factor GARCH

In the previous section, we have seen that our model has some advantages over three

existing multivariate GARCHmodels, namely the diagonal, the BEKK and the constant

conditional correlations model. In this section we relate the model to the fourth class

of existing models, namely factor GARCH. It turns out that our model is a factor

GARCH model, albeit not in its traditional form. The usual factor GARCH model

assumes that there are only a few factors that govern all exchange rates. In contrast,

our model takes as many factors as there are exchange rates. This claim is proved in

subsection 3.1.
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Although our model uses many more factors than usual factor GARCH, this does

not necessarily mean that our model is substantially better. Maybe the inclusion of

extra factors does not lead to a much better �t and only complicates the model. In

subsection 3.2 we argue that this is not the case.

3.1 A Special Factor GARCH Model

In this subsection we demonstrate that our model of subsection 2.1 is a factor GARCH

model with as many factors as exchange rates. We only address the main points of this

derivation; the complete derivation is in the appendix.

The central idea of a K-factor GARCH model is that there are K underlying vari-

ables, the factors, that govern all I exchange rate changes. More formally, the exchange

rate innovation "t=st¡Et¡1fstg has a systematic and an unsystematic part, where the
systematic part is a linear combination of K unobserved factors 'kt:

"t = ¤'t + Àt, (6)

where 't=('1t; : : : ; 'Kt)
0 is the K-vector of common factors with a time-varying con-

ditional covariance matrix, ¤ is the I£K full-column-rank matrix of factor loadings, and

Àt denotes the vector of unsystematic, exchange rate speci�c changes with a covariance

matrix that is constant over time.

There are two problems with a direct implementation of the factor idea. The �rst

problem is that the systematic and unsystematic innovations, 't and Àt, are not ob-

served separately, so that ¤ is, in general, not directly estimable. As shown by Engel

et al. (1990), this problem can be solved by substituting the vector of unobserved

factors 't by an expression based on an observed K-vector that is closely related to

the factors, in the sense that the conditional variance of the k-th component of this

factor representing vector is perfectly correlated with that of the k-th factor 'kt (see

the end of footnote 10 for a formalization of this). Similar to the existing literature

(see Ng et al. (1992), among others), we take K principal components of st to form

this factor representing vector, and we assume that they are conditionally uncorrelated

and that each of them follows a normal AR(1)-GARCH(1,1) model. Hence, the factor

representing vector is aK-dimensional subvector of ft, the vector of all I principal com-

ponents de�ned by (1) and modeled by (2). For simplicity of notation, let us denote

this subvector of ft also by ft, and let W also denote the I£K full-column-rank matrix

of component weights that de�nes the subvector by ft=W 0st.

The second problem with a direct implementation of the factor idea is caused by

a rotational indeterminacy in the factors 't in (6); this makes the matrix of factor
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loadings ¤ unidenti�ed. The appendix shows that this problem is also present after

the move to the factor representing vector. To solve the problem, we normalize ¤ by

W 0¤= IK , where IK is the K£K identity matrix. This normalization will appear to

be crucial for proving the claim that our model is a factor GARCH model with K=I

factors.

Having solved both problems, we can derive the commonly-used K-factor GARCH

formulas for the two conditional moments of interest:

Et¡1fstg = ° +¤Et¡1fftg
Vt¡1fstg = ­+¤Vt¡1fftg¤0, (7)

where ° and ­ are time-constant parts in the mean and variance, respectively. These

moment speci�cations hold for all K 2 f1; : : : ; Ig. Note, however, that for K= I the
constants ° and ­ are zero. After all, in that case ¤ft = ¤W 0st = st, because the

normalization W 0¤=IK then implies that ¤=(W 0)¡1.

Although some similarities with our model of section 2 have already become clear,

it may not yet be clear that our model exactly equals the I-factor GARCH model.

The �nal link is provided by our factor GARCH normalization W 0¤ = IK and the

orthogonality of W . They imply that ¤= (W 0)¡1=W . Hence, relation (7), where °

and ­ are zero due to K = I, is the same as the second part of our model given by

(3). Because the models for the I principal components are also the same, our model

is indeed a special factor GARCH model in which the number of factors equals the

number of exchange rates.

3.2 Advantages over the Usual Factor GARCH Model

From the previous subsection we know that our model uses many more factors than

usual factor GARCH. In this subsection, we demonstrate that including these extra

factors is useful by showing that our model overcomes two important problems with

the empirical implementation of usual factor GARCH models. These problems are the

choice of the number of factors and the di¢cult correction of standard errors in the

two-step method that is commonly used to estimate factor GARCH.

The �rst problem is the choice of the number of factors K, or, equivalently, the

number of principal components. This problem originates from a trade-o¤ between

generality and simplicity. On the one hand, increasing K leads to a more general

model, but, on the other hand, it makes the model more complicated.

To alleviate this problem, there are several ad hoc criteria for selecting K (see

Bartholomew (1987)). The most popular one is the Kaiser-Guttman rule, which states
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that one should select only those principal components that have a larger variance than

the average variance of the exchange rate changes. As all other rules, this one yields

very few components. For instance, in our eight-variate empirical application, it would

select only one.

To investigate whether the neglect of components is serious, we estimate the factor

GARCH model for all possible K, using the exchange rate data that we will describe

in subsection 4.1. The results, which are described in detail in subsection 4.5, show

that using less than I components is strongly rejected. Some components turn out to

be essential for a good description of the conditional variances, while other principal

components, which do not improve the variance �t much, turn out to be important for

the correlation �t. The usual factor GARCH model neglects many of these important

components. This demonstrates the dangers involved in the popular rules for choosing

the number of factors. According to our results, the correct rule is to use as many

factors as possible. Since our model does exactly that and is, nevertheless, easy to

estimate, it solves the problem of choosing K in usual factor GARCH.

The second problem with the empirical implementation of the usual factor GARCH

model is the di¢cult correction of standard errors in the two-step method that is

commonly used for estimation. To clarify this, we �rst describe this two-step method.

The �rst step is similar to the �rst step of our method as described in subsection

2.2. The only di¤erence is the number of univariate GARCH models for the principal

components that one has to estimate: I in our model and K for a K-factor GARCH

model, as follows from the previous subsection.

The second step in the estimation of usual factor GARCH, however, is essentially

di¤erent. After substitution of the �rst step estimates for Et¡1fftg and Vt¡1fftg in
(7), the usual factor GARCH model requires estimation of the parameters °, ­ and

¤ to obtain estimates for the moments of interest, Et¡1fstg and Vt¡1fstg.1 Because
one uses only estimates instead of the true values of Et¡1fftg and Vt¡1fftg, the second
step standard errors have to be corrected for the �rst step estimation inaccuracy. This

1Most researchers use univariate techniques for this second estimation step. That is, for each
exchange rate i, they use maximum likelihood based on conditional normality of st with mean and
variance implied by the corresponding elements of (7). As Ng et al. (1992) admit, such univariate
estimation sacri�ces e¢ciency. The reason for not doing multivariate maximum likelihood is that this
would lead to too many parameters to be estimated at once. After all, °, ­ and ¤ have I + I2 + I ¢K
unknown elements. This may indeed be too much, if one does not take account of all restrictions that
the factor GARCH model puts on °, ­ and ¤. These restrictions are our normalization W 0¤ = IK ,
which also implies W 0° = 0, and the de�nition of ­ (see below (14), with the additional assumption
of a diagonal V fÀtg that we use in the empirical section). They greatly reduce the number of free
parameters. For instance, for K = 7 and I = 8, they lead to 16 free parameters instead of 128!
Therefore, multivariate estimation is not that di¢cult, and we prefer it over the univariate techniques
used in the literature so far.
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is complicated, as Lin (1992) shows. Therefore, many authors do not correct them

and use the potentially seriously biased second step standard errors for inference. In

this respect, our model is preferable, because the second step is a linear transformation

without any estimation (see (3)). Hence, our model involves neither di¢cult standard

error correction, nor the use of biased standard errors.

In summary, the fact that our model employs many more factors than usual factor

GARCH is very useful. First, by using the optimal number of factors, the model yields

a better �t. Second, estimation is easier than for any other factor GARCH model, as

our approach does not require a second estimation step.

4 Empirical Results

In this section we use our multivariate GARCH model to analyze the development of

exchange rate correlations over time. First, we describe the data and motivate the

choice for our model empirically. Then we estimate the model. In subsection 4.3 we

addresses the central question of the paper, namely whether exchange rates have become

more closely tied. Then we check whether the model captures the main characteristics

of the data and in subsection 4.5 we compare the �t of our model with some benchmark

models, namely the Bollerslev (1990) model with constant conditional correlations and

factor GARCH models for all possible numbers of factors.

4.1 Data

We use U.S. dollar exchange rates of I = 8 currencies, namely, the Belgian franc,

Canadian dollar, French franc, German mark, Italian lira, Japanese yen, Dutch guilder

and the British pound. These include all major exchange rates. Moreover, some of

them are highly correlated (the EMS rates), while others are much less correlated; this

variety allows us to get a fairly complete picture of the behavior of the conditional

correlations. We have 1,216 weekly observations for the weekly changes st from April

1974 to July 1997. All rates have been obtained from Datastream.

In table 1 we report some descriptive statistics; the notes below the table contain

the de�nitions. The substantial cross-currency correlations in the �rst panel motivate

the use of a multivariate model instead of univariate ones.

In the second panel of table 1, we test for autocorrelation in the exchange rate

changes. We �nd signi�cantly positive �rst-order autocorrelation in the core EMS

exchange rate changes (we always use a signi�cance level of 5%).2 For this reason, we

2Our evidence of �rst-order autocorrelation is in contrast with conclusions of many earlier studies.
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have allowed for a �rst-order autoregressive term in (2), the model for the principal

components. Estimates for higher-order autocorrelations are not reported separately,

but are combined in Box-Pierce type statistics eQ10; they indicate that higher-order
autoregressive terms are unnecessary.

The third panel of table 1 deals with the dynamics of the second moments. The

�rst two rows contain measures for the time-variation in the squared exchange rate

changes. Both measures point at conditional heteroskedasticity. The next two rows

of panel three contain similar autocorrelation measures, but now regarding the cross

products instead of the squares. Since there are seven cross products for each exchange

rate series, we have taken the average to save space. The results show clear evidence

of time-variation in the conditional covariances. Hence, the data motivate the use of a

multivariate GARCH model.

A popular multivariate GARCH model is the Bollerslev (1990) model, which as-

sumes that all conditional correlations for the exchange rate changes are constant over

time. In the last row of table 1, we test this restriction as follows. First, we estimate a

univariate GARCH model for each series of exchange rate changes and construct con-

ditional correlation estimates by taking the product of the normalized residuals. Then

we regress the estimated conditional correlations for time t on a the vector (1; t; t2)0 and

test whether the two slope parameters are zero (see the notes below table 1 for further

details). The results show that there is clear time-dependence in the conditional corre-

lations. This is not surprising. First, economic intuition tells us that correlations may

well be time-varying (see the policy examples in subsection 2.3). Second, Bollerslev

(1990) already shows that conditional correlations di¤er between the pre-EMS and the

EMS period. In addition, Andersen, Bollerslev, Diebold and Labys (1999) also �nd

strong empirical evidence of time-varying conditional correlations in exchange rates.

This motivates why we use our model instead of the Bollerslev (1990) model, since our

model can capture time-variation in the conditional correlations.

4.2 Estimation Results

In this subsection we estimate our multivariate GARCH model. As the second part

of this model involves no estimation (see subsection 2.2), we only concentrate on the

�rst part, that is, the principal components construction and the univariate GARCH

For instance, West and Cho (1995) conclude from heteroskedasticity corrected Ljung-Box statistics
of orders 10, 50 and 90 that �ve major U.S. dollar exchange rate changes are serially uncorrelated,
with the possible exception of the yen. Indeed, if we had only used the aggregate Box-Pierce type
measure eQ10 in table 1, we would have concluded the same, thereby overlooking the signi�cant �rst-
order autocorrelation in all core EMS exchange rate changes. Hence, our additional check for only
�rst-order autocorrelation is useful.
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estimations for each component.

To construct the principal components vector ft, we de�ne the weighting matrixW

in (1) by the matrix of eigenvectors of the sample covariance matrix of st. The upper

panel of table 2 presents the columns of W , which are the weighting vectors for the

principal components. Each of the eight components has a name that indicates the

dominating currencies in it. Hence, the components are called EMS, Jap, U.K.-EMS,

Ita-EMS, Can, Fra-EMS, Bel-(Ger+Neth) and Neth-Ger. These components have been

ordered according to their �explained variance�, that is, their sample variance divided

by the sum of the sample variances of the individual exchange rate changes (the �total

variance�). The explained variance is commonly used as a measure of importance of

the principal components. It shows that the component dominated by the European

currencies, the EMS component, is the most important one, explaining 77 percent of

the total variance.

The remaining part in the estimation of the model concerns the estimation of the

univariate GARCH models in (2) for each principal component. The results, as re-

ported in table 3, are standard. Most importantly, they strongly re�ect the presence

of conditional heteroskedasticity. According to our model, this is the source of time-

variation in the conditional variances as well as correlations of the individual exchange

rate changes (see subsection 2.3).

4.3 Have Exchange Rates Become More Closely Tied?

Having estimated our multivariate GARCH model, we can now analyze how exchange

rate correlations have evolved over the post-Bretton-Woods period. This is to answer

the central question of the paper, namely whether exchange rates have become more

closely tied. Note that the conclusions will be in terms of nominal exchange rates.

However, they are likely to hold for real exchange rates as well, because prices are �xed

in the short run.

In �gure 1 we plot the estimated correlations between several dollar exchange rates.3

For the sake of exposition, we have smoothed the actual estimates by an equally

weighted moving average using the estimates in the year before and the year after

the week under consideration. Despite this smoothing, we still see that the correlations

are not constant over time.

From �gure 1 one may distinguish three remarkable periods for exchange rate cor-

3The estimates are based on the estimation results for the principal components in subsection 4.2,
and the second relation in (3), which speci�es the conditional variance of the exchange rate changes as
a function of the conditional principal component variances.
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relations, roughly spanning the seventies, eighties and the nineties. The seventies are

characterized by a decrease in correlation followed by an increase. The decrease may

well be caused by the rather autonomous monetary and �scal responses of governments

to the 1974-1975 period of stag�ation (see Krugman and Obstfeld (1991)). This policy

imbalance, however, caused a steep depreciation of the U.S. dollar, so that Germany

and Japan intervened heavily in the foreign exchange market in 1977-1978. Together

with the inception of the EMS in 1979, this marks a period of greater coordination,

causing the correlations to rise.

The eighties characterize a period of high correlations. This is con�rmed by Boller-

slev (1990), who �nds that correlations between the European currencies were higher

during the EMS period than before. In addition, we �nd that also intercontinental

correlations were high. This is mainly caused by the huge swing in the dollar in the

eighties. First, the dollar strongly appreciated partly due to the Volcker monetary con-

traction starting in 1979. In the second half of the eighties, coordinated actions such as

the 1985 Plaza agreement brought the dollar down again. Moreover, the 1987 Louvre

target zones may also explain the high correlations in the eighties.

The third remarkable period in �gure 1 concerns the decrease in the correlations

in the nineties. Hence, the main exchange rates have become more loosely instead of

closely tied. At �rst sight, this may seem surprising, as it is often believed that the

greater integration of �nancial markets has increased �nancial correlations. However,

more integration also means that capital can move more freely, which can destabilize

exchange rates. This happened in 1992 when the EMS collapsed, leading to a drop in

several intra-EMS correlations, as shown by the middle graph of the �gure. Further-

more, although European and American markets have become more integrated, Japan

is still a relatively independent market. This may be the reason behind the fact that

swings in the EMS - U.S. dollar rates have become shorter in the nineties, while the

yen - dollar swings are still relatively long (see Klaassen (1999) for empirical evidence).

These di¤erences between the European currencies and the yen have also decreased the

correlations in the nineties.

With the advent of European monetary uni�cation (EMU), it is likely that the

correlations between the participating European currencies will increase again at the

end of the nineties. The upward tendency in the Germany - Italy conditional correla-

tions after 1996 may be an indication of this. It will be interesting to analyze whether

EMU also a¤ects the correlations between the world�s main currencies, namely, the

U.S. dollar, yen and euro.
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4.4 Diagnostics

The correlation analysis in the previous subsection was based on the multivariate

GARCH model of subsection 2.1. In the remaining part of this section, we check

empirically whether that model is appropriate for such an analysis. In the current

subsection we examine whether it captures the features of the data described in sub-

section 4.1. In subsection 4.5 we compare the performance of our model with that of

the Bollerslev (1990) and factor GARCH models.

To check the speci�cation of our model, we analyze the normalized residuals. They

are de�ned by b́t = bVt¡1f"tg¡1=2 ¢ b"t, where bVt¡1f"tg¡1=2 is the inverse of the lower
triangular Cholesky decomposition of bVt¡1f"tg and "t is the exchange rate innovation
st ¡ Et¡1fstg. Table 4 presents several test results for them. The i-th column in

this table concerns the i-th element of b́t. Unfortunately, we cannot attribute this
element to one country, because b́it is a linear combination of the country speci�c resid-
uals b"1t; :::;b"it. We conclude from the �rst-order autocorrelations and the Box-Pierce

statistics Q10 that there is no evidence of remaining autocorrelation in the normalized

residuals.

Secondly, the measures for remaining autocorrelation in the squared changes and

the cross products show no reason to extend the variance speci�cation of the model.

The �nal test in table 4 also concerns the variance speci�cation, as it checks whether

the normalized residuals are conditionally uncorrelated. This is done by regressing the

cross products of the normalized residuals at time t on the vector (1; t; t2)0 and testing

whether all three regression coe¢cients are zero. The di¤erence with the test for short-

run autocorrelation in the cross products, as discussed in the previous paragraph, is

that the current test has more power against long-run autocorrelation. Moreover, it

also tests whether the cross products have mean zero. The results in table 4 again show

no serious evidence of misspeci�cation.

It is interesting to observe that the test for zero conditional correlations of the

normalized residuals is similar to the test for constant conditional correlations of the

exchange rate changes in subsection 4.1. The latter test was clearly rejected, but the

test on the residuals of our model is not. Apparently, our model is able to describe the

time-varying pattern in the conditional exchange rate correlations quite well. This is the

main reason why we prefer our model over the Bollerslev (1990) constant conditional

correlations model, as our study is focused on the time-variation in exchange rate

correlations. In this respect, our model is also preferable over the usual factor GARCH

model, which would be 1-factor GARCH for our data, as argued below. Although that

model captures some time-variation in conditional correlations, it does not explain it
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completely, as six out of eight zero-conditional-correlation statistics are signi�cant.4

4.5 Goodness of Fit

In the introduction we have claimed that our multivariate GARCH model provides a

good �t for the conditional exchange rate variances and correlations, at least compared

to the Bollerslev (1990) and the usual factor GARCH models with much less than I=8

factors. In this subsection we provide evidence for that. We also examine the reasons

behind the outperformance by analyzing the variance and correlation �ts separately.

To measure the goodness of �t of the models, we use the multivariate normal log-

likelihood with conditional mean and variance as estimated by the di¤erent models.

The �total �t� column of table 5 contains the results. It shows that the log-likelihood

of our model, -8,817, is better than the one of the constant conditional correlations

model of Bollerslev (1990), which is -10,624.

To compare our model with the usual factor GARCH model, we �rst have to choose

the usual number of factors, or principal components, K. The commonly used Kaiser-

Guttman rule states that one should select only principal components that have a larger

variance than the average variance of the exchange rate changes (see Bartholomew

(1987)). For our data, this rule leads to K = 1, as only the variance of the EMS

component (11.60, see table 2) exceeds the average variance of 1.89. This is in line with

the choice of Diebold and Nerlove (1989), who use about the same exchange rates.

Table 5 demonstrates that our model is preferable over the 1-factor GARCH model,

which has a log-likelihood of -10,315, as the likelihood ratio is 2,996.5 Hence, we con-

clude that our model indeed provides a better �t than the popular constant conditional

correlations and 1-factor GARCH models. Note that our model also signi�cantly out-

performs the other factor GARCH models, as the likelihood ratios in table 5 show.

In the remaining part of this subsection, we investigate the reasons for this outper-

formance. We �rst analyze the variance �t and then the correlation �t.

To measure the variance �t, we remove the correlation e¤ects from the log-likelihood

by substituting the o¤-diagonal elements in the estimated conditional variance matrices

by zero. The �variance �t� column of table 5 gives these zero-correlation log-likelihoods.

Our model (-15,935) somewhat underperforms the constant conditional correlations

model (-15,864). This is not surprising. The variance �t of the latter model is entirely

4The zero-conditional correlation tests for 1-factor GARCH are 21.34 [with p-value 0.00], 10.36
[0.02], 10.77 [0.01], 19.85 [0.00], 26.26 [0.00], 5.83 [0.12], 4.84 [0.18] and 21.52 [0.00]; see the note below
table 4 for the de�nition of these test.

5The K-factor GARCH model is nested in our model, as it follows after restricting the last K¡I
columns of the matrix of factor loadings in (6), ¤, to zero.
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based on univariate GARCH estimations for each exchange rate change and the uni-

variate estimations only have to �t the conditional variance process, while our model

is mainly designed to give a good description of the correlation process.

Table 5 also shows that our model outperforms the usual 1-factor GARCH model in

terms of variance �t. The reason is that the �rst principal component is only a single

combination of exchange rate changes, and one cannot expect that this would lead to

good variance estimates for all exchange rate changes individually.6 A good variance

�t requires at least �ve principal components, as table 5 shows. The relevance of the

�fth component, the one dominated by Canada, is shown by �gure 2. For K=4, the

conditional variance estimates for the Canadian dollar are almost constant, while only

inclusion of the Can component leads to a time-variation pattern that one also �nds

for univariate AR(1)-GARCH(1,1) on the Canadian dollar.

The correlation �t is the second reason for the relatively good �t of our model. It

is measured by the di¤erence between the full and the zero-correlation log-likelihoods,

and it is reported in the �correlation �t� column of table 5. It is clear that our model

outperforms the constant conditional correlations model. This again supports the con-

clusion that the assumption of constant conditional correlations is too restrictive for

our data.

Table 5 also demonstrates that our model provides a better correlation �t than the

1-factor GARCH model. Moreover, it also outperforms the factor GARCH model with

�ve factors, the number of factors that is at least needed for an acceptable variance �t.

Although the �nal three components do not improve the variance �t, they do yield a

better correlation �t. In fact, adding the last component increases the log-likelihood

by 420, which is highly signi�cant.7 This can be attributed to a better �t of the

time-variation in the conditional correlation between the Netherlands and Germany,

as �gure 3 demonstrates. Only the inclusion of the last component allows the factor

6 It is interesting to observe that the lack of variance �t of the 1-factor GARCH model is hidden
by the full log-likelihood, that is, the quality measure including the conditional correlations, which we
have used at the beginning of this subsection. Recall that the full log-likelihood is -10,315, which is
much greater than the sum of the log-likelihoods obtained from eight independent univariate AR(1)-
GARCH(1,1) models for the exchange rate changes, which is -15,864. Hence, one is tempted to conclude
that the 1-factor GARCH model is to be preferred; this is also what Diebold and Nerlove (1989)
claim. However, the huge increase in the log-likelihood is entirely due to a better �t of the conditional
correlations, and the log-likelihood is very sensitive to that (see also footnote 7). Hence, the log-
likelihood of the factor model including the correlations can be a misleading indicator for the quality
of the variance �t.

7This huge signi�cance (likelihood ratio is 840) is due to the great sensitivity of the log-likelihood to
the correlation �t. This is also the reason why K=1 at �rst sight seems to be much better than eight
univariate AR(1)-GARCH(1,1) estimations on the individual exchange rates, as shown in footnote 6. It
also explains why Bollerslev (1990) gets a highly signi�cant likelihood ratio test of almost 2,000 when
testing for zero correlations in his multivariate GARCH model.
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GARCH model to capture that since the mid eighties the monetary policy of the Dutch

central bank is mainly attributed to keeping the guilder-mark rate stable, so that both

currencies move more closely together than before.

In summary, the conclusion from this subsection is that our model results in a better

�t than two popular multivariate GARCH models, namely the Bollerslev (1990) model

and the usual factor GARCH model. This holds especially for the correlations, which

we are particularly interested in.

5 Conclusion

In this paper we analyze exchange rate correlations over time. For that, we introduce

a new multivariate GARCH model. It describes the exchange rate changes indirectly

through their principal components and assumes that the conditional variances of the

components govern the conditional exchange rate correlations. We show that this is

quite realistic, both from an economic and empirical point of view. Moreover, the

indirect approach implies that the model is very easy to estimate, as it only requires

several univariate GARCH estimations to estimate the full multivariate model.

The empirical results show that the model provides a better �t than existing models.

First, it outperforms the popular constant conditional correlations model of Bollerslev

(1990) with respect to the correlation �t. This is not surprising, as the data show

clear evidence of time-variation in the conditional correlations and only our model can

capture that. Second, our model provides a better variance and correlation �t than

usual factor GARCH models. This is explained by the fact that our model can be

viewed as a factor GARCH model with the maximum number of factors and that the

factors neglected in usual factor GARCH contain important information for exchange

rate variances and correlations.

Given the outperformance qua �t, we use our model to analyze the correlations

between eight U.S. dollar exchange rates over the post-Bretton-Woods period. We �nd

that these correlations were highest in the eighties and then decreased in the nineties.

Hence, exchange rates have become more loosely instead of closely tied. This originates

from the EMS crash in 1992, making several European exchange rates less correlated.

Moreover, the EMS - yen correlations have decreased because of the combination of

more stable EMS - U.S. dollar rates and a long swing in the yen - dollar rate.

So far, we have concentrated on GARCH in a multivariate setting. However, it

is important to realize that our indirect approach via the principal components is not

restricted to GARCH. In fact, any univariate model for the principal components can be

used to derive a practical multivariate model. This o¤ers a wide range of applications of
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our approach. For instance, when analyzing stock or bond return correlations, one can

take account of asymmetric volatilities, GARCH-in-mean e¤ects and other deviations

from standard GARCH (see Bollerslev et al. (1992)). Furthermore, our approach can

form the basis for multivariate extensions of other volatility models, such as stochastic

volatility, regime-switching GARCH and fractionally integrated GARCH. This is left

for future research.
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Appendix: Our Model is a Special Factor GARCH Model

In this appendix we demonstrate that our model of subsection 2.1 is a factor GARCH

model with as many factors, K, as exchange rates, I. For that, we �rst de�ne what we

actually mean by the K-factor GARCH model. As in the main text, we concentrate on

the conditional mean and variance of exchange rate changes. The �nal factor GARCH

speci�cation of these moments is derived in two stages.

To obtain the �rst factor GARCH formulation, we split the vector of exchange rate

changes st into

st = ¹t + "t, (8)

where ¹t = Et¡1fstg and "t is the innovation. The central idea of the factor model
is that "t has a systematic and an unsystematic part, where the systematic part is a

linear combination of K unobserved factors 'kt:

"t = ¤'t + Àt, (9)

where 't = ('1t; : : : ; 'Kt)
0 is the K-vector of common factors, ¤ is the I£K full-

column-rank matrix of factor loadings, and Àt denotes the unsystematic, exchange rate

speci�c change. We assume that Et¡1f'tg=0 and Et¡1fÀtg=0 to ensure Et¡1f"tg=
0. Moreover, let Vt¡1f'tg denote the time-varying conditional variance of 't.8 Let

Vt¡1fÀtg be the variance of Àt, which we assume constant over time (Vt¡1fÀtg=V fÀtg),
as in Engel et al. (1990). Finally, we have Covt¡1f't; Àtg=0.

The main e¤ect of the factor model is that it puts structure onto the innovation

"t. However, as in Engle et al. (1990), the factor idea can also be used to specify the

expected exchange rate changes ¹t. This makes ¹t the sum of a systematic part, which

is attributed to the factors, and an unsystematic part. More formally,

¹t = ¤¹
'
t + ¹

À, (10)

where the systematic part is a linear combination of a K-vector of common sources of

expected depreciation, ¹'t , and the unsystematic part is an I-vector of exchange rate

speci�c expected depreciations, which we assume constant over time (¹Àt =¹
À).

Speci�cations (8), (9) and (10) lead to the �rst formulation of the factor GARCH

model in terms of the moments of interest:

Et¡1fstg=¤¹'t + ¹À

Vt¡1fstg=¤Vt¡1f'tg¤0 + V fÀtg. (11)

8Note that we do not impose diagonality of Vt¡1f'tg. Diagonality has been commonly used in the
literature to help identify ¤. Later on, we will introduce another, very convenient way to identify ¤.
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This holds for all K 2 f1; : : : ; Ig. Note that for K = I, the case we are particularly

interested in, the parameters ¹À and V fÀtg are zero, because in that case "t (¹t) is
one-to-one related to 't (¹

'
t ).

The factor model in its current format cannot be estimated because of two problems.

The �rst one is that the systematic and unsystematic innovations, 't and Àt, are not

observed separately, so that the parameters are, in general, not directly estimable. The

second problem is caused by a rotational indeterminacy in the de�nition of the factors,

which makes ¤ unidenti�ed. We now solve both problems in turn, so as to derive the

second factor GARCH moment speci�cation.

As shown by Engle et al. (1990), the �rst problem can be solved by substituting

the unobserved factors 't by an expression based on an observed K-vector that is

closely related (but not equal) to the factors in a sense that is explained at the end

of footnote 10. Similar to many other papers (for instance, see Ng et al. (1992)),

we take K principal components of st to form this factor representing vector, and

we assume that they are conditionally uncorrelated and that each of them follows an

AR(1)-GARCH(1,1) model. Hence, the factor representing vector is a K-dimensional

subvector of ft, the vector of all I principal components described by (1) and (2). For

simplicity of notation, let us denote this subvector of ft also by ft, and letW also denote

the I£K full-column-rank matrix of component weights that de�nes the subvector by

ft=W
0st. Using (11), this implies that

Et¡1fftg=W 0¤¹'t +W
0¹À

Vt¡1fftg=W 0¤Vt¡1f'tg¤0W +W 0V fÀtgW . (12)

Since W 0¤ is invertible, we can solve ¹'t and Vt¡1f'tg from these equations and

substitute the results in (11). This gives

Et¡1fstg=¤(W 0¤)¡1Et¡1fftg ¡ ¤(W 0¤)¡1W 0¹À + ¹À (13)

Vt¡1fstg=¤(W 0¤)¡1Vt¡1fftg(¤0W )¡1¤0 ¡ ¤(W 0¤)¡1W 0V fÀtgW (¤0W )¡1¤0 + V fÀtg.

The main di¤erence with (11) is that (13) contains only parameters related to the

unsystematic innovation Àt, not related to the factors 't, as the observable ft has taken

the role of 't. Therefore, using the principal components has solved the �rst problem.

The second problem with (11) is caused by a rotational indeterminacy in the un-

observed factors, so that ¤ is not identi�ed. That is, if a certain combination of ¤, ¹'t
and 't gives the true conditional moments of st, then, for any invertible K£K-matrix
Q, the oblique rotations¤Q, Q¡1¹'t and the oblique factors Q¡1't yield the same con-

ditional moments. Formula (13) shows this problem again. Since ¤ only occurs in the
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combination ¤(W 0¤)¡1, it is only identi�ed if we can derive its I¢K unknown elements

from a particular value of ¤(W 0¤)¡1, say A. However, this is impossible, since there

are only I ¢K¡K2 independent equations in ¤(W 0¤)¡1 = A.9 Therefore, we need K2

normalizing restrictions on ¤. Considering (13), it is very convenient to use W 0¤=IK ,

where IK is the K£K identity matrix.10 We will see below that this normalization is

crucial for proving that our model is an I-factor GARCH model.

Having solved both problems, we can present the second and �nal factor GARCH

formulation, which is commonly used in the literature:

Et¡1fstg = ° +¤Et¡1fftg
Vt¡1fstg = ­+¤Vt¡1fftg¤0, (14)

where °=(II ¡ ¤W 0)¹À and ­=V fÀtg ¡ ¤W 0V fÀtgW¤0 are the time-constant parts
in the mean and variance, respectively. Note that these parts are zero in case of K=I,

because then ¹À and V fÀtg are zero.
Although some similarities with our model of section 2 have already become clear, it

may not yet be clear that our model exactly equals the factor GARCH model for K=I.

The �nal link is provided by our factor GARCH normalization W 0¤= IK . In case of

K = I, this normalization and the orthogonality of W imply that ¤ = (W 0)¡1 =W .

Therefore, relation (14), where ° and ­ are zero because of K= I, is the same as the

second part of our model, that is, formula (3). Because the model for the I principal

components is also the same, our model is indeed a special factor GARCH model in

which the number of factors equals the number of exchange rates.

9The system ¤(W 0¤)¡1 = A is equivalent to (II ¡ AW 0)¤ = 0, where II is the identity matrix of
dimension I. To compute the rank of II¡AW 0, we �rst note that AW 0 is idempotent, since W 0A=IK .
Hence, the rank of II ¡AW 0 is r(II ¡AW 0) = I¡r(AW 0). Moreover, r(AW 0)=K, since both A and
W 0 have rank K. Therefore, the rank of II ¡ AW 0 is I ¡ K, so that the system (II ¡ AW 0)¤ = 0
contains exactly (I ¡K) ¢K independent equations.
10This normalization has three interesting characteristics. First, it directly reduces the number of

free parameters, which makes estimation simpler. For instance, for K = 7 and I = 8, it implies that
only seven factor loadings have to be estimated instead of 56.
The second characteristic of our normalization is that it is necessary and su¢cient. This is in contrast
with the su¢cient identifying restrictions employed by Sentana (1992) and King, Sentana and Wad-
hwani (1994), who impose V f'tg=IK for the conditional variance of the factors to identify ¤ (except
for column sign).
Finally, our normalization explains in what sense the principal components are �closely related� to the
factors. Using W 0¤= IK in the conditional variance of ft, which is Vt¡1fftg=W 0¤Vt¡1f'tg¤0W +
W 0V fÀtgW , shows that the conditional variance of each component fkt is perfectly correlated with
that of the k-th factor 'kt. This is why the fkt are called �factor representing portfolios� in Engle et
al. (1990).
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Table 1: Moments of exchange rate changes and autocorrelation tests

Bel Can Fra Ger Ita Jap Neth U.K.

Mean 0:00 -0:03 -0:02 0:03 -0:08 0:07 0:02 -0:03

Variance 2:11 0:38 2:06 2:14 2:06 2:11 2:09 2:13

Skewness -0:26 -0:57 -0:25 -0:14 -0:59 0:53 -0:14 -0:40

Excess kurtosis 1:92 6:78 2:34 1:70 6:38 2:01 1:90 3:00

Cross-currency corr. ½ 0:71 0:13 0:71 0:72 0:64 0:47 0:73 0:59

Autocorr. sit: ½1 0:07¤ 0:01 0:06¤ 0:07¤ 0:02 0:05 0:07¤ 0:04

(0:03) (0:04) (0:03) (0:03) (0:04) (0:04) (0:03) (0:04)

Autocorr. sit: eQ10 14:82 7:35 14:63 14:07 11:78 22:57¤ 13:31 6:05

[0:14] [0:69] [0:15] [0:17] [0:30] [0:01] [0:21] [0:81]

Autocorr. s2it: ½
s
1 0:09¤ 0:15¤ 0:05 0:04 0:10¤ 0:20¤ 0:07¤ 0:21¤

(0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03)

Autocorr. s2it: Q
s
10 48:66¤ 36:53¤ 52:49¤ 57:60¤ 134:20¤ 92:03¤ 56:24¤ 151:82¤

[0:00] [0:00] [0:00] [0:00] [0:00] [0:00] [0:00] [0:00]

Autocorr. sit ¢sjt: ½c1 0:07¤ 0:07¤ 0:07¤ 0:05 0:08¤ 0:05 0:06¤ 0:06¤
(0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03)

Autocorr. sit ¢sjt: Qc10 57:01¤ 18:46¤ 61:79¤ 57:76¤ 61:95¤ 34:64¤ 55:81¤ 82:21¤
[0:00] [0:05] [0:00] [0:00] [0:00] [0:00] [0:00] [0:00]

Constancy of 19:76¤ 21:70¤ 22:34¤ 20:30¤ 21:38¤ 17:94¤ 20:38¤ 22:61¤
conditional corr. [0:00] [0:00] [0:00] [0:00] [0:00] [0:00] [0:00] [0:00]

Standard errors in parentheses and p-values in square brackets; * is signi�cant at 5% level.
The correlation measure ½ is the average of the sample correlation coe¢cients of the series under con-
sideration with all seven other series.
The �rst-order autocorrelation, ½1, is estimated as the slope coe¢cient in a regression of the change in
exchange rate i, sit, on the �rst lagged change, sit¡1, and a constant. The standard errors are based
on White�s (1980) heteroskedasticity-consistent asymptotic covariance matrix.eQ10 denotes a modi�ed Box-Pierce type statistic that combines the �rst ten autocorrelations. Following
Pagan and Schwert (1990), it is de�ned as the sum of the �rst ten squared normalized autocorrelation
estimates, where the normalizing factors are the heteroskedasticity-consistent standard errors of the
autocorrelation estimates. eQ10 is asymptotically Â210 distributed.
The �rst-order autocorrelation in the squared changes, ½s1, and the Box-Pierce type statistic for the
squared changes, Qs10, are similarly de�ned as ½1 and eQ10, respectively, although without the het-
eroskedasticity correction.
The seven �rst-order autocorrelations of the cross products sit ¢sjt (j 6= i) are averaged to save space;
this average is denoted by ½c1. The number in parentheses is also the average standard error. Similarly,
Qc10 denotes the mean of the seven Box-Pierce type statistics of the cross products; its p-value is based
on a Â210 distribution.
We test for constancy of the conditional correlations ½t¡1fsit; sjtg by testing the constancy
of Covt¡1f"it; "jtg=(Vt¡1f"itgVt¡1f"jtg)1=2, where "it is the innovation in a univariate normal-
AR(1)-GARCH(1,1) model for sit. The test amounts to regressing the estimated correlation,b"itb"jt=(bVt¡1f"itgbVt¡1f"jtg)1=2, on a constant, t and t2, and then computing the Wald statistic for
no e¤ect of t and t2. For space considerations, we only report the average over the seven possible Wald
statistics for each i. The critical values are based on a Â22 distribution.
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Table 2: Principal component weights

EMS Jap U.K. Ita Can Fra Bel Neth
� � � � �

EMS EMS EMS G+N Ger

Belgium 0:41 -0:09 -0:23 -0:22 0:03 -0:40 0:75 0:03

Canada 0:03 -0:05 0:12 0:10 0:99 -0:02 -0:01 -0:01

France 0:40 -0:07 -0:15 -0:05 0:03 0:88 0:19 -0:03

Germany 0:42 -0:06 -0:23 -0:23 0:02 -0:18 -0:44 -0:70

Italy 0:36 -0:19 -0:02 0:89 -0:11 -0:13 -0:02 -0:01

Japan 0:28 0:94 0:14 0:09 0:01 -0:03 0:02 0:01

Netherlands 0:41 -0:07 -0:22 -0:20 0:03 -0:12 -0:46 0:71

U.K. 0:34 -0:22 0:89 -0:19 -0:11 -0:03 -0:00 -0:00

Variance 11:60 1:31 0:85 0:58 0:36 0:22 0:13 0:04

Expl. variance 76:87 8:70 5:65 3:83 2:41 1:43 0:83 0:27

Each column contains the weights of the individual exchange rates changes in the sample principal
components. The eight weighting vectors, named according to the dominating currencies, form the
weighting matrix W in (1). Hence, W is the matrix of eigenvectors of the sample covariance matrix of
the exchange rate changes (normalized at length one, so that the �weights� do not sum to one).
�Variance� denotes the sample variance of a principal component, which is equal to the corresponding
eigenvalue.
�Expl. variance� denotes the percentage of the total variance explained by a principal component, that
is, the sample variance of the component divided by the sum of the sample variances of the individual
exchange rate changes (called the �total variance�).
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Table 3: Estimation results for the principal components

EMS Jap U.K. Ita Can Fra Bel Neth
� � � � �

EMS EMS EMS G+N Ger

Mean ¹ -0:01 0:10¤ -0:03 -0:04¤ -0:01 -0:02¤ -0:00 -0:00
(0:08) (0:03) (0:03) (0:02) (0:02) (0:01) (0:00) (0:00)

Autocorr. µ 0:06 0:07¤ 0:09¤ -0:00 0:02 -0:15¤ -0:30¤ -0:25¤
(0:03) (0:03) (0:03) (0:04) (0:03) (0:04) (0:03) (0:03)

Cond. var. ! 0:15 0:08¤ 0:16¤ 0:09¤ 0:04¤ 0:00¤ 0:00¤ 0:00

intercept (0:08) (0:03) (0:05) (0:01) (0:01) (0:00) (0:00) (0:00)

ARCH ® 0:16¤ 0:13¤ 0:10¤ 0:38¤ 0:16¤ 0:33¤ 0:26¤ 0:02¤
(0:03) (0:03) (0:03) (0:06) (0:03) (0:05) (0:03) (0:00)

GARCH ¯ 0:85¤ 0:82¤ 0:72¤ 0:51¤ 0:74¤ 0:80¤ 0:81¤ 0:98¤
(0:03) (0:05) (0:08) (0:05) (0:05) (0:02) (0:01) (0:00)

Log-likelihood -3131 -1836 -1597 -1128 -1070 -596 -112 652

Standard errors in parentheses; * is signi�cant at 5% level.
The estimated model is (2) without the conditional covariance equation. To start-up the conditional
variance, we use a separate parameter, which is not reported. Standard errors are not corrected for the
fact that we use only an estimate of the weighting matrix W , because our focus is on the conditional
moments of the exchange rate changes, not the intermediate GARCH estimation results for the principal
components.
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Table 4: Diagnostic statistics for normalized residuals

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8

Autocorr. b́it: ½1 0:06¤ 0:02 -0:04 0:05 0:00 -0:00 -0:02 -0:04
(0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03)

Autocorr. b́it: Q10 19:83 9:16 10:69 5:42 8:29 18:19 13:33 17:24

[0:03] [0:52] [0:38] [0:86] [0:60] [0:05] [0:21] [0:07]

Autocorr. b́2it: ½s1 0:01 0:02 -0:00 0:03 0:01 0:06¤ 0:14¤ 0:03

(0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03)

Autocorr. b́2it: Qs10 11:65 4:05 1:37 2:88 6:52 13:04 26:81 3:71

[0:31] [0:95] [0:99] [0:98] [0:77] [0:22] [0:00] [0:96]

Autocorr. b́it ¢b́jt: ½c1 0:03 0:03 0:02 0:02 0:02 0:01 0:03 -0:01
(0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03) (0:03)

Autocorr. b́it ¢b́jt: Qc10 17:00 10:67 6:09 7:77 9:84 11:06 7:41 14:91

[0:07] [0:38] [0:81] [0:65] [0:45] [0:35] [0:69] [0:14]

Zero conditional 10:77¤ 2:76 3:07 4:26 7:05 3:64 5:65 4:94

correlation [0:01] [0:43] [0:38] [0:23] [0:07] [0:30] [0:13] [0:18]

Standard errors in parentheses and p-values in square brackets; * is signi�cant at 5% level.
The vector of normalized residuals is b́t= bVt¡1f"tg¡1=2 ¢b"t, where bVt¡1f"tg¡1=2 is the inverse of the lower
triangular Cholesky decomposition of bVt¡1f"tg and "t is the exchange rate innovation st ¡ Et¡1fstg.
Hence, b́it is a linear combination of b"1t; :::;b"it, so that, in contrast to b"it, b́it does not directly correspond
to one country.
All autocorrelation statistics have been de�ned below table 1, although the standard error of ½1 and
the value of Q10 are no longer corrected for heteroskedasticity.
The test for zero conditional correlation between b́it and the other seven b́jt is similar to the constant
correlation test of table 1. However, now we also test for a zero intercept in the regressions involved.
Hence, the critical value is based on a Â23 instead of Â

2
2 distribution.
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Table 5: Quality of various multivariate GARCH models

Model TOTAL FIT VARIANCE FIT CORREL. FIT
log-lik. change LR log-lik. change log-lik. change

Univar. GARCH ¡15; 864 0 ¡ ¡15; 864 0 0 0

Const. cond. corr. ¡10; 624 5420 10; 840¤ ¡15; 864 0 5240 5240

1-factor GARCH ¡10; 315 309 ¡ ¡16; 078 ¡214 5763 523

2-factor GARCH ¡10; 248 67 134¤ ¡16; 037 41 5789 67

3-factor GARCH ¡10; 145 103 206¤ ¡16; 013 24 5867 103

4-factor GARCH ¡9; 836 309 618¤ ¡15; 958 55 6122 309

5-factor GARCH ¡9; 796 40 80¤ ¡15; 916 42 6120 40

6-factor GARCH ¡9; 579 217 434¤ ¡15; 937 ¡19 6358 217

7-factor GARCH ¡9; 237 342 684¤ ¡15; 936 1 6699 342

Our model ¡8; 817 420 840¤ ¡15; 935 1 7118 420

A * denotes signi�cance at the 5% level.
The quality measure we use is the log-likelihood based on a normally distributed vector of exchange
rate changes with conditional mean and variance as estimated by the di¤erent models. In the �total
�t� column, the full estimated conditional variance matrix is used to compute this log-likelihood. For
the �variance �t� column, the conditional correlations have been substituted by zero. The �correlation
�t� column is the di¤erence between the �total �t� and �variance �t� columns.
The �total �t� column also contains the likelihood ratio (LR) for the model against the previous one,
if the model includes the previous one as a special case.
�Univar. GARCH� is the model that imposes diagonality of the conditional variance matrix, so that
the moments can be estimated by eight univariate GARCH procedures.
�Const. cond. corr.� denotes the Bollerslev (1990) model with constant conditional correlations. It
is estimated in two steps. First, we estimate eight univariate GARCH models, and then we derive the
conditional correlation estimates.
For the K-factor GARCH models, the conditional mean and variance follow from the multivariate
second estimation step (see section 3.2 and footnote 1). For parsimony, we assume that the covariance
matrix of the exchange rate speci�c changes Àt in (6), V fÀtg, is diagonal, as in Diebold and Nerlove
(1989).
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Figure 1: Smoothed estimated conditional correlations between dollar exchange rates
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Figure 2: E¤ect of Can principal component on the estimated conditional variance of

Canada
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Figure 3: E¤ect of Neth-Ger principal component on the estimated conditional corre-

lation between the Netherlands and Germany
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