

**Amsterdam School of Economics** 

# Contagion

Prof. dr. Roger J. A. Laeven

September 6, 2012

# CONTAGION Challenges in Risk and Insurance

#### Inaugural Lecture


delivered upon appointment to the chair of Full Professor of Risk and Insurance at the University of Amsterdam on Thursday 6 September 2012

by

Prof. dr. Roger J. A. Laeven



## 1988



■ Roger "Urbanus" Laeven

# 2012



## 2012



Sit back, relax and enjoy your stay.

# **September 21, 2005**



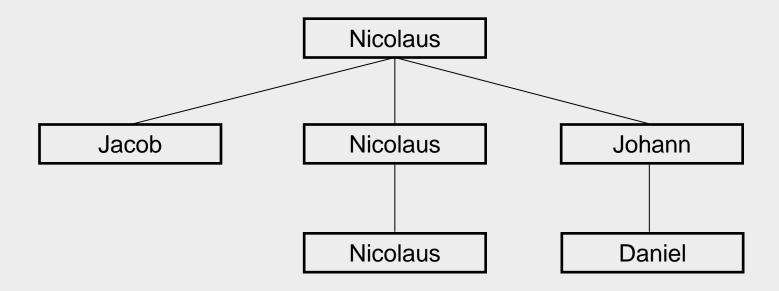
Essays on Risk Measures and Stochastic Dependence, with Applications to Insurance and Finance.

# September 6, 2012



 Contagion: Challenges in Risk and Insurance.

### **Outline**


- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

# Jacob (James) Bernoulli

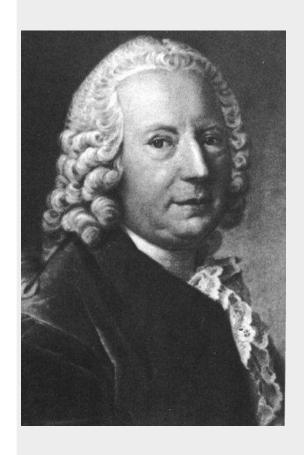


- **1691**
- Law of Large Numbers(Wet van de Grote Aantallen)

# **Excerpt of the Bernoulli Family Tree**



## **Jacob Bernoulli**


- Law of Large Numbers:
   "The average loss in an expanding pool of risks eventually becomes certain (or predictable)."
- Pooling risks can serve as a basic risk mitigation technique.

### **Jacob Bernoulli**

Acta Eruditorum

- Correspondences with Leibniz
- Monumentum aere perennius (Horace)
   (Een monument duurzamer dan brons)

## **Daniel Bernoulli**



- **1731**
- Risk Measurement and Utility

## **Daniel Bernoulli**

- Expectations are no proper descriptions of risk.
- St. Petersburg paradox.
- Subjective elements (utilities).

### **Outline**

- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

# Law of Large Numbers

- Implications poorly understood.
- "The average loss in an expanding pool of risks eventually becomes certain (or predictable)."
  - Average not aggregate
  - Pooling large numbers of risks

## Car



■ Frederike Laeven, 3 years



# Example I: 1 car

| Probability | 99%   | 1%         |
|-------------|-------|------------|
| Loss        | EUR 0 | EUR 10,000 |

## **Pool of Cars**



■ Matthijs Laeven, 5 years

# Example I: 1,000 cars

| Probability | 99%   | 1%         |
|-------------|-------|------------|
| Loss        | EUR 0 | EUR 10,000 |

| Probability  | 99.999%  | 0.001%   |
|--------------|----------|----------|
| Average Loss | ≤EUR 250 | >EUR 250 |

# **Example I: 1,000,000 cars**

| Probability | 99%   | 1%         |
|-------------|-------|------------|
| Loss        | EUR 0 | EUR 10,000 |

| Probability  | 99.999%     | 0.001%      |
|--------------|-------------|-------------|
| Average Loss | ≤EUR 104.26 | >EUR 104.26 |

### Lesson

"While the loss of a single individual may be highly unpredictable, the average loss, averaged over an expanding pool of risks, eventually becomes predictable: EUR 100."

## **Fallacies**

- Average versus Aggregate
- Independent versus Dependent
- Infinite versus Finite

# Example II: Average vs. Aggregate (1,000 cars)

| Probability  | 99.999%  | 0.001%   |
|--------------|----------|----------|
| Average Loss | ≤EUR 250 | >EUR 250 |

| Probability           | 95%          | 5%           |
|-----------------------|--------------|--------------|
| <b>Aggregate</b> Loss | ≤EUR 150,000 | >EUR 150,000 |

# **Vulcano**



■ Simon Laeven, 7 years

# Example III: Independent vs. Dependent

| Probability | 99%   | 0.9%               | 0.1%       |
|-------------|-------|--------------------|------------|
| Loss        | EUR 0 | EUR 10,000         | EUR 10,000 |
|             |       | γ                  |            |
|             |       | Similar to Example | l:         |
| Probability | 99%   | 1%                 |            |
| Loss        | EUR 0 | EUR 10,000         |            |

# Example III: Independent vs. Dependent

| Probability  | 0.1%       |
|--------------|------------|
| Average Loss | EUR 10,000 |
|              |            |

**Not** similar to Example I:

| Probability  | 99.999%     | 0.001%      |
|--------------|-------------|-------------|
| Average Loss | ≤EUR 104.26 | >EUR 104.26 |

# Independent vs. Dependent

Examples of Systematic Insurance Risks:

- Longevity
- Interest rate

## Infinite vs. Finite

"The expanding pool of risks, eventually pooling infinitely many risks, only exists in the mathematician's imagination."

# **Basic Principle?**

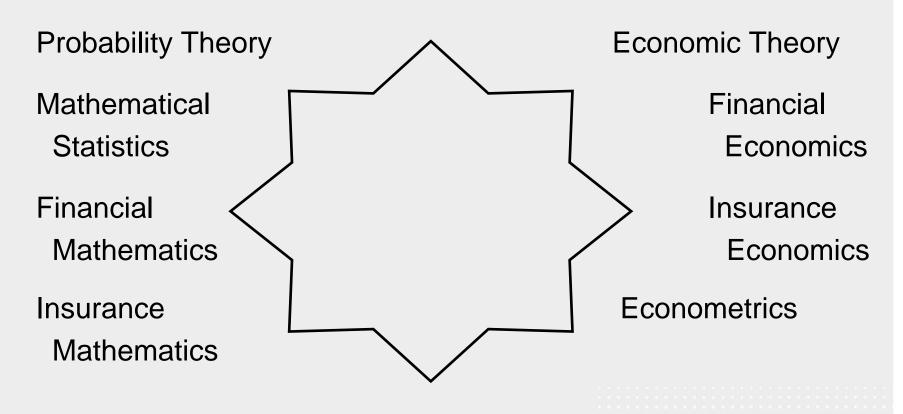
- Pooling of risks does not lead to risk reduction on the aggregate level of the pool.
- Why is the Law of Large Numbers is at the core of risk and insurance?

# ???

# Owners: Risk Pooling and Risk Spreading



■ Matthijs Laeven, 5 years


### **Outline**

- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

## **Fundamental Questions**

- How to measure risk?
- How to price risk?
- How to deal with dependences between risks?

# Risk and Stochastics: Idea and Language\*



### **Outline**

- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

### **Risk Measures**

Axiomatic characterization:

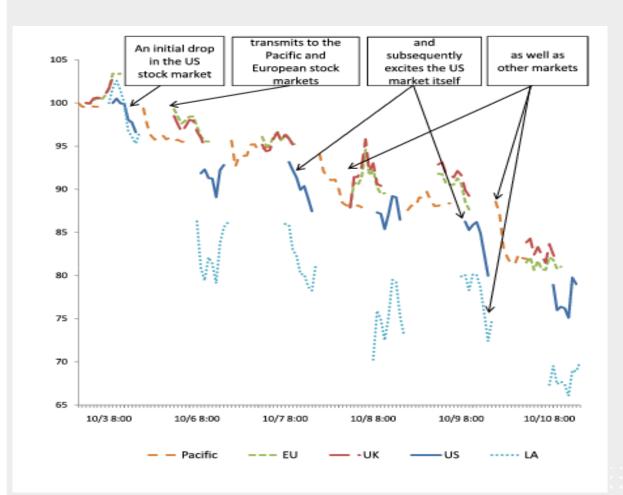
Economic properties of risk measures

Mathematical representation of risk measures

### **Risk Measures**

- Implications for
  - Risk management and capital requirements;
  - Pricing in incomplete markets; and
  - Portfolio choice and asset allocation.

■ Linguistically, contagion is synonymous with infection.


Main challenge in Risk and Insurance.

■ Transmission of shocks takes place:

in **space** (across countries or regions of the world)

and

in **time** (successive shocks in affected countries)



Shocks generated from our model

self-excite and cross-excite

mimicking the patterns in the data.

- Earthquake analogy.
- Non in cauda sed in caudis venenum (Laeven)
   (Niet in de staart maar in de staarten zit het venein)

- Implications for
  - Risk management and capital requirements;
  - Pricing; and
  - Portfolio choice and asset allocation.
- "This matters because the risk management technique of diversification fails to be rewarding when it is needed most urgently."

### **Outline**

- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

## **Insurers and Pensions**

"Against this backdrop, there are important opportunities for insurers to develop transparent and intelligent pension contracts, with unconditional promises and guarantees."

# **Insurer Solvency and Supervision**

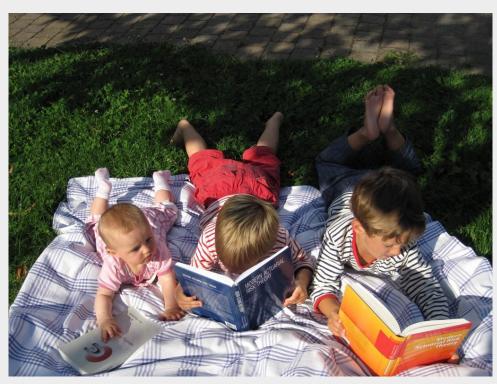
"The time dimension should be acknowledged and more explicitly incorporated in solvency supervision."

### **Education in Risk and Insurance**

- "Integrated approaches to Risk and Insurance, and specifically Integrated Risk Management, will become a central part of the education programs."
- Amsterdam Executive MSc Insurance Studies
- MSc Actuarial Science and Mathematical Finance
- Amsterdam Executive MSc Actuarial Science

## **Education in Risk and Insurance**

- Actuarial Society (AG-AI)
- Tinbergen Institute Graduate School


### **Outline**

- A Brief History of Risk and Insurance
- Basic Principles of Risk and Insurance
- Risk and Insurance: Stochastics and Economics
- Challenges in Risk and Insurance
- Future of Risk and Insurance
- Tot Slot

"Financial contagion: crucial challenge and exciting research."

("Besmettingsgevaar in financiële markten: cruciale uitdaging en aanstekelijke problematiek.")

# **Enjoying Modern Actuarial Risk Theory**



 Simon, Matthijs en Frederike Laeven.



### Full text

Full text of the inaugural lecture is available from:

http://www.rogerlaeven.com/

(then under Miscellaneous -> Inaugural Lecture)