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An important goal in neuroscience is to identify instances when EEG signals are coupled. We employ a method to measure the
coupling strength between gamma signals (40–100 Hz) on a short time scale as the maximum cross-correlation over a range of
time lags within a sliding variable-width window. Instances of coupling states among several signals are also identified, using a
mixed multivariate beta distribution to model coupling strength across multiple gamma signals with reference to a common base
signal. We first apply our variable-window method to simulated signals and compare its performance to a fixed-window approach.
We then focus on gamma signals recorded in two regions of the rat hippocampus. Our results indicate that this may be a useful
method for mapping coupling patterns among signals in EEG datasets.

1. Introduction

Current neuroscience research is focused not only on
identification of brain regions associated with particular
cognitive tasks, but also on how those regions interact during
the execution of the these tasks on a short time scale [1–3].
In this paper, we investigate methods for identifying brief
instances in time when groups of gamma-band signals (40–
100 Hz) extracted from electroencephalogram (EEG) record-
ings become synchronized. Our methods are developed to
address the specific problem of analyzing EEG recordings
from the rat hippocampal formation. Recent studies [2] have
demonstrated dynamic coordination at these frequencies
between the dentate gyrus, CA1, and CA3 during tasks with
high cognitive demand and during REM sleep.

Typically in situations where a signal is suspected to
be changing with time, methods from signal analysis, such
as the short-time Fourier transform, can be applied quite
successfully. For pairs of signals, coherency, a measure of
signal coherence in the frequency domain, can be computed
with confidence bounds, using for example a multitaper
[4]. In both of these cases software has been developed to
compute these quantities. For example, the spectrogram

function in Matlab [5] computes the short-time Fourier
transform along segments of an individual signal, and the
coherence function in the Chronux package [6] computes
the windowed coherence between pairs of signals. However,
for signals with synchrony lasting just a few cycles at a time,
frequency-domain methods can be less sensitive and may
yield unrealistically large confidence bounds. Alternative
methods for detecting synchronization of neuroelectric
signals are based on transient phase locking [7, 8]. For the
case of many EEG signals, other approaches include Granger
causality [9], autoregressive modeling [10], and Bayesian
networks [11]. However, these may be limited in their ability
to detect only brief instances of synchrony.

One of the challenges in analysis of biological rhythms is
that the signal frequency can be quite variable. We develop
here a method that computes synchrony among multiple
signals on the time scale of milliseconds and which yields, not
just pairwise computations, but a joint result for all signals.
We do this by making use of a small time-varying sliding
window to compute pairwise cross-correlations, and then by
using the Expectation-Maximization (EM) algorithm [12]
applied to a mixed multivariate beta model to identify groups
of gamma signals that are highly synchronized at any instant.
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Our technique consists of two steps: first, we select one
of the available gamma signals as the basis for providing
the sliding measurement window and the temporal axis for
computation of the instantaneous coupling between that
dimension and each of the other dimensions and second,
we use the EM algorithm to classify the collection of
instantaneous coupling measurement vectors into a fixed
number of states representing different occasions of gamma-
band binding among brain regions.

The effectiveness and reliability of our methods are tested
on simulated data. Our technique is then applied to a nine-
channel EEG data set recorded from tetrodes implanted in
the Medial Entorhinal Cortex (MEC) and the CA1 cell layer
of the hippocampus in a rat’s brain.

2. Methods

We assume that subsets of gamma signals extracted from
EEG recordings using a band-pass filter are subject to instants
of synchrony on the order of a few cycles, after which
they become unsynchronized. We call this phenomenon
instantaneous coupling (IC) and develop a method for
quantifying it.

2.1. Computation of Instantaneous Coupling between Two
EEG Signals. Since we are looking for synchrony on very
short time scales and since biological signals are prone to
variability, we focus here on finding an appropriate time scale
for computing coupling between pairs of signals that adjusts
over time based on the changing frequency of the signals.

We would like to compute a sequence of IC estimates
between two bandpassed oscillating time signals in the
gamma range (40–100 Hz), say X = {xt}Tt=1 and Y = {yt}Tt=1,
throughout a given epoch consisting of T time points. Our
approach is similar to the procedure given in [13], but we
use a time-varying window. The amplitude, frequency, and
phase of each signal vary from one instant to the next, not
necessarily independently. We choose one of the signals, say
X , as the base signal. We then partition the entire epoch
based on the N � T zero crossings of X , which we denote
by Z1,Z2, . . . ,ZN . We regard each interval [Zi,Zi+2], i =
1, 2, . . . ,N − 2, as a full cycle, and thus [Zi,Zi+1] is a half-
cycle, i = 1, 2, . . . ,N − 1. The duration of a cycle may thus
vary significantly throughout the epoch.

Let the integer w indicate the window size, that is, the
number of half cycles of the base signal to be used in
determining the duration of an “instant” when estimating
the instantaneous coupling between X and Y . Choosing a
small value for w not only enables us to discuss the dynamics
of signal coupling among brain regions on a very short time
scale, but also provides us with approximate stationarity in
the signals. However, if w is chosen too small, the IC may
be overestimated due to the sparsity of information. If w is
chosen too large, the IC may be underestimated. This issue is
explored in the simulation study.

We then define the estimated instantaneous coupling
between X and Y , with respect to the base signal X , during
the interval [Zi,Zi+w], where i = 1, 2, . . . ,N − w, as the

maximum of the cross-correlation between X and Y over this
interval across a range of lags h, that is,

ICX ,Y ([Zi,Zi+w])

= max
h
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for i = 1, 2, . . . ,N − w. In our data analysis, we use the
ccf() function in the R package [14] to compute each cross-
correlation over the function’s default lag range. In general,
this range should run a little more than one half-cycle of the
base signal in each direction, that is, ≈ ±(Zi+w − Zi)/w, for
each window [Zi,Zi+w]. This will translate a strong negative
correlation into a strong positive one and also ensures that
the maximum cross-correlation between the signals will be
positive, or very close to zero if negative.

Besides choosing a value for w, we also must decide
how much overlap between consecutive intervals to allow.
Different choices for the overlap parameter will affect the
degree of smoothness for the computed IC along the
temporal axis, but not its value. We could choose no overlap,
so that we compute ICX ,Y ([Zi,Zi+w]) on consecutive adjacent
windows [Z1,Z1+w], [Z1+w,Z1+2w], . . .. On the other hand, we
may choose overlapping windows by selecting some positive
integer m, with 1 ≤ m < w, so that ICX ,Y ([Zi,Zi+w]) is com-
puted on overlapping intervals [Z1,Z1+w], [Z1+m,Z1+m+w],
[Z1+2m,Z1+2m+w], . . .. In our real data analysis, we select
window size w = 6 and increment size m = 2, so that
each consecutive window pair overlaps by two cycles. This
choice is empirically made based on considering the apparent
duration of synchrony among the plotted signals.

Our method also requires the selection of a base signal.
When two gamma signals are synchronized, their time scales
are roughly the same, so that they are at about the same
frequency. Hence, the IC between X and Y should be
approximately symmetric, so that one will obtain roughly
the same IC estimate within each time window, irrespective
of which signal is chosen as the base. Any difference will
only be due to slightly different measurement windows.
The rationale for choosing the base signal depends on
whether or not one wishes to analyze the coupling between
one specific brain location and several additional locations.
If a neuroscientist is only interested in the evolution of
synchrony from the perspective of one brain location, then
the choice for the base is clear. But, knowing the IC between
base signal X and signal Y and the IC between X and a
third signal Y ′ does not provide any information about the
IC between Y and Y ′. To determine the latter using our
approach, one must choose either Y or Y ′ as the base signal
and proceed accordingly. To obtain a complete analysis of
the evolution of coupling among all pairs in a set of gamma
signals, one would have to repeat the computations with each
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gamma signal taking its turn as the base. We do not explore
this level of analysis in the present paper.

Confidence bounds for the true value of the IC cor-
responding to each estimated IC measurement may be
computed as follows. Let ρ∗ denote this true value, and
let r∗ denote its estimate. For simplicity let us assume that
both values occur at the same lag h. If we apply Fisher’s Z-
transformation

ζ = 1
2

log

[
1 + ρ∗

1− ρ∗

]

, z = 1
2

log
[

1 + r∗

1− r∗

]

, (3)

and use the established result that the distribution of√
n− 1(z − ζ) approaches that of the standard Gaussian

for large values of n, we may then compute approximate
confidence bounds for ζ , and hence for ρ∗. That is, an
approximate (1 − α)100% confidence interval for the true
value of the IC is

(
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, (4)
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and zα/2 is the 1 − α/2 quantile of the standard normal
distribution.

Potential problems with this method for obtaining
confidence bounds, and an alternative method using extreme
value theory that addresses these problems, are discussed in
[3].

2.2. Identification of Instantaneous Coupling States among
Multiple EEG Gamma Signals. We now consider the setting
in which we have obtained J+1 EEG gamma signals recorded
from tetrodes implanted in different brain regions. Once we
have obtained individual estimates of the IC between the
selected base signal X and each of the J signals Y1, . . . ,YJ

throughout an epoch, we then employ an algorithm to
identify neurological states in which particular subsets of
these signals are more synchronous with the base signal
at any given instant. Essentially, this approach assumes
that during each instant different subsets of gamma signals
are more synchronized with the base signal than are the
remaining signals, based on the interaction among the brain
regions in which the electrodes are implanted. The algorithm
is used to estimate which subsets of gamma signals are
most synchronous with the base signal in each instant, and
also to estimate parameters that describe the distribution
of the IC estimates among the signals pertaining to each
subset. We emphasize that this will provide a model of the
synchrony among signals from the perspective of the selected
base signal only. One may choose additional base signals to
obtain models from multiple perspectives and then combine
the results. We do not explore the multiple-perspective angle
in this paper.

Since the coupling measure we consider here is the maxi-
mum cross-correlation between a pair of signals over a range
of lags, and hence falls within a bounded interval, we may
model the distribution of these maxima with a univariate
beta distribution. It is natural to implement a multivariate
generalization of the beta distribution to model the joint
distribution of the IC among any collection of J gamma
signals with respect to any base gamma signal. Specifically,
we choose the multivariate beta (MVB) distribution, which
we derive in the appendix, with parameter vector θ =
(θ1, . . . , θJ , θJ+1), θj > 0 for j = 1, . . . , J + 1. Given the ith
observation Ui = (Ui1, . . . ,UiJ), with 0 < Uij < 1 for j =
1, . . . , J , the joint density of Ui under the MVB distribution is
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where Γ(x) = ∫∞
0 tx−1e−tdt, x > 0, is the gamma function.

To implement this model with our IC estimates for J
gamma signals with respect to a common base signal, we
first replace any nonpositive values of the estimated IC with
a very small positive value, for example, 0.00001, so that
Uj > 0 for each j. Likewise, if any estimated IC value equals
one, we replace it with 0.99999 so that Uj < 1 for each j.
In our analysis of real data we obtain very few nonpositive
values among the IC estimates, and those that are negative
are all very close to zero. To avoid computational errors in
the evaluation of (6), due to either large arguments to the
gamma function or to computation of the product of very
small values, we compute instead the logarithm of the density
in (6) then exponentiate the result.

To estimate the J + 1 components of the parameter vector
θ, given the N ′ = N − w computed IC vectors Ui =
(Ui1, . . . ,UiJ), i = 1, . . . ,N ′, we maximize the log-likelihood
function

�(θ | U1, . . . , UN ′)

= N ′
⎡

⎣logΓ

⎛

⎝
J+1∑

j=1

θj

⎞

⎠−
J+1∑

j=1

logΓ
(
θj
)
⎤

⎦

+
N ′
∑

i=1

J∑

j=1

[(
θj − 1

)
logUij −

(
θj + 1

)
log

(
1−Uij

)]

−
⎛

⎝
J+1∑

j=1

θj

⎞

⎠
N ′
∑

i=1

log

⎛

⎝1 +
J∑

j=1

Uij

1−Uij

⎞

⎠

(7)

over all θ ∈ (0,∞)J+1. This computation is carried out using
the Expectation Maximization (EM) algorithm [12].

Next, we postulate that the N ′ IC estimates may be
grouped into distinct IC states. By IC states we mean
occasions in which specific subsets of the J gamma signals
have an IC with the base signal which is relatively high,
perhaps above some threshold. If we think of each signal
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as being either coupled or not coupled with the base signal
during any instant, based on some threshold, there would be
2J possible IC states. However, we expect that tetrodes located
near each other should tend to exhibit relatively equivalent
IC levels with respect to any base, so that far fewer distinct
states actually occur.

We assume there are p ≥ 1 such IC states among the IC
estimates U1, . . . , UN ′ , and then use a clustering procedure
to estimate parameters that describe the distinct states and
to classify the individual Ui among them. One possible
clustering procedure is the k-means algorithm, in which the
vectors U1, . . . , UN ′ are randomly assigned among p clusters,
and the mean vector for each cluster is computed. The algo-
rithm then reassigns each vector, if necessary, to the cluster
whose mean is nearest, in terms of some distance measure.
Since the clusters are usually altered by the reassignments,
the algorithm recomputes the mean vector of each cluster
and then conducts any necessary reassignments of vectors
to nearer cluster means. This process continues iteratively
until no reassignments are necessary (or a maximum number
of iterations is reached). The R version of the k-means
algorithm implements by default the method described in
[15]. This method ensures that p clusters are returned.
Because the algorithm is sensitive to the initial allocation, it
should be run multiple times, and the best result should be
chosen in terms of minimum error sum of squares. However,
we choose a more sophisticated approach that takes into
account the apparent MVB distribution of the IC estimates.

Since we assume the representative IC vectors U1, . . . , UN ′

follow an MVB distribution, we implement a mixture model
which assumes that each Un arises independently from one of
p IC states, each of which follows its own MVB distribution
with its own parameter vector θk = (θk,1; θk,2; . . . ; θk,J+1)
for k = 1, . . . , p. This model uses the MVB density to
assign each Ui to that IC state for which the probability
that belongs to that state is largest. These probabilities are
latent parameters which must be estimated along with the
parameter vectors θ1, . . . , θp corresponding to the respective
IC states. The EM algorithm [12] is suited to this purpose.
The independence assumption is approximate here, but we
rely on the robustness of our estimation procedure when the
sample size N ′ is quite large.

To implement the EM algorithm, we let Pθk (ui) denote
the value of the MVB density corresponding to the kth
state evaluated at IC estimate ui = (ui1, . . . ,uiJ), where
i = 1, . . . ,N ′, and we let πk denote the probability that a
randomly selected IC estimate belongs to IC state k. In the
E-step of the EM algorithm, we determine the responsibility
of the kth state for Ui at the qth iteration, q = 1, 2, . . ., by
computing

r
(q)
k,i =

π
(q−1)
k P

θ
(q−1)
k

(ui)
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l=1 π
(q−1)
l P

θ
(q−1)
l

(ui)
(8)

for i = 1, . . . ,N ′ and k = 1, . . . , p. Then in the M-step,
we estimate the mixing parameters and the distribution

parameters at the qth iteration by computing

π
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k = 1
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N ′
∑
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r
(q)
k,i ,

θ
(q)
k = argmax

θ∈Θ

N ′
∑
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r
(q)
k,i logPθ(ui),

(9)

for k = 1, . . . , p. We then continue to iterate between the E-
step and the M-step until the parameter estimates converge
within a prespecified tolerance. In our real data analysis, we
use the constrOptim() procedure in R with appropriate
settings in order to find the optimal value of θ in the M-step.

The success of the EM algorithm is sensitive to the

selection of the initial estimates π(0)
k and θ(0)

k . In our data
analysis, we use the k-means algorithm to obtain p clusters
of our IC estimates, then find maximum likelihood estimates
(MLEs) of the univariate beta parameters for each individual
dimension of the J-dimensional IC vector for each of the
p clusters. We combine these univariate estimates into
one parameter estimate θk for each cluster, and use the
constrOptim() procedure to determine the MLE of θk for
each cluster. Then, π(0)

k is the proportion of IC estimates

assigned to the kth cluster, and θ(0)
k is the computed MLE,

for k = 1, . . . , p. In general, we find that this approach
consistently provides us with initial estimates that lead to
eventual convergence to an optimal solution.

In order to implement the above procedure, it is neces-
sary to determine the number p of IC states that occur among
the gamma signals. We make use of the Bayes Information
Criterion (BIC) to estimate the true number of clusters p that
are represented in the data, if in fact the data are clustered.
That is, we perform the EM algorithm for p = 2, 3, . . ., and
for each value of p, we obtain optimal parameter estimates
π∗k and θ∗k for k = 1, . . . , p and compute the mixture log-
likelihood (see [16]) at these optimal parameter estimates as
follows:

�mix = �
(
θ∗1 , . . . , θ∗p ,π∗1 , . . . ,π∗p | u1, . . . , uN ′

)

=
N ′
∑

i=1

log

⎡

⎣
p∑

k=1

π∗k Pθ∗k (ui)

⎤

⎦.
(10)

The BIC for the model is then computed from

BICp = −2�mix +
[
p(J + 2)− 1

]
log(N ′), (11)

where J is the number of gamma signals. (Note that for
each of the p states we estimate a (J + 1)-dimensional
parameter vector θk and a mixing probability πk, for a total
of p(J + 2) estimated parameters. However, once π1, . . . ,πp−1

are estimated, the value of πp is then fixed, since the mixing
probabilities sum to one, resulting in p(J+2)−1 independent
estimated parameters). We would thus choose that mixture
model, over a suitable range of values for p, for which the
value of the BIC is minimized. That is, we conclude that
the IC with the base signal among the other J signals varies
among P∗ distinct states, where

p∗ = argmin
p

BICp.k (12)
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We may then form an IC state sequence corresponding to the
zero crossings of the base signal which estimates which sets
of EEG gamma signals are synchronized with the base signal
within each measurement window as time unfolds.

To summarize, our procedure is as follows.

(1) Choose one signal as the base among J + 1 gamma
signals recorded at tetrodes implanted in different
brain regions.

(2) Compute the estimated IC between the base signal
and the other J signals within a sliding variable-
length window throughout an epoch of activity. This
results in a time-ordered sequence of J-dimensional
IC estimates.

(3) For any block of the sequence, use the EM algorithm
to maximize the log-likelihood based on a mixed
multivariate beta model involving p distinct clusters,
where p ranges over a set of values.

(4) For each value of p, use the optimized log-likelihood
to assign each IC estimate to one of p IC states and
to obtain estimates for the model parameter vector
corresponding to each IC state.

(5) Select the model for which the BIC is minimized. This
model yields an IC state sequence which represents
the evolution in the coupling of the different brain
regions among the p IC states from moment to
moment from the perspective of the selected base
signal.

(6) Since the sequence of IC estimates, and the sub-
sequent IC state sequence, correspond to the zero
crossings of the base signal, we may map the IC states
back to the time scale of the EEG gamma signals.

3. Results

3.1. Simulation Studies. To demonstrate the benefits of
computing estimates of the instantaneous coupling between
two EEG gamma signals using a variable window, we
generate two signals

X(t) = sin{2π[70 + 10 sin(0.5πt)]t},
Y(t) = sin{2π[50 + 10 sin(0.5π(t − 2))]t},

(13)

where t varies from 0 to 20 seconds at a resolution of 1500
points per second. This resolution mimics that of the real
EEG data. A plot of the first two seconds of this signal
pair is shown in Figure 1. We intend to show that, using a
variable window, with the parameter w well-tuned, the IC
computation is close to one when the two signals are at about
the same frequency, plus or minus a small lag, and close to
zero otherwise.

Signal X has an instantaneous frequency of 70 +
10 sin(0.5πt) that oscillates between 60 Hz and 80 Hz, while
the instantaneous frequency 50 + 10 sin(0.5π(t − 2)) of
signal Y oscillates between 40 Hz and 60 Hz. Both signals
achieve the instantaneous frequency of 60 Hz simultane-
ously. However, the observed frequency of each signal within

any time interval—that is, the number of cycles the signal
actually exhibits per discrete time unit—is not the same as its
instantaneous frequency when the instantaneous frequency
is nonconstant, as here. To compute an estimate of the
observed frequency of either signals at each time t, we count
the number of zero crossings in the interval [t−0.05, t+0.05].
Since every two zero crossings represents one cycle, we divide
this count by two. Dividing by 0.1 then gives us an estimate
of the observed frequency of the signal at time t. For our
purposes, we do not need this value for the first or last 0.05
seconds of the 20-second epoch. The observed frequency
for signal X thus ranges between 0 Hz and 375 Hz, with a
median of 95 Hz, while the observed frequency for Y ranges
between 0 Hz and 340 Hz, with a median of 85 Hz. While
these frequency ranges exceed the gamma band, the benefits
of the IC computation method that we intend to demonstrate
in this simulation study do not compel us to focus on any
particular frequency band.

We subtract the observed frequency of Y from that of
X , resulting in a difference which ranges in absolute value
between 0 Hz and 130 Hz, with a median of 120 Hz. Then,
so that we will be able to plot the computed IC alongside
the frequency difference and to make comparisons, we divide
the difference in observed frequencies by 130 in order to
place the difference on a scale of −1 to 1. A plot of this
normalized frequency difference is displayed in Figure 2. The
computed IC between X and Y should be equal to one at
points where this plot crosses the horizontal axis, as it is
around these points (plus or minus a small lag) that the
two simulated gamma signals become synchronized. The IC
should fall to zero elsewhere. We note that the duration of
the synchronization in this simulation does not necessarily
last for several cycles, as is assumed for the EEG gamma
signals. Again, the benefits that we intend to demonstrate in
this simulation study will be carried over to the EEG data
analysis without requiring us to mimic the lengthier duration
of synchrony.

We apply the variable window technique described in
Section 2.1 to estimate the IC between signals X and Y , with
X chosen as the base signal, using three different values for
w, where w is the number of half cycles of the base signal,
to determine each measurement window. In each case, we
choose m = w/3 as the increment size. The results are
mapped back to the time scale of the signals, and displayed
in Figure 3 along with the normalized frequency difference
from Figure 2. With w = 3, the estimated IC is close to one
whenever the frequency difference is near zero, as desired, but
it oscillates around 0.5 in several intervals where it should
be near zero (Figure 3, green curve). When w = 18, the
estimated IC is near zero when the signals are asynchronous,
but not close to one when they are synchronized (Figure 3,
blue curve). When w = 6, the result is most promising,
since the estimated IC is close to zero whenever the frequency
difference is large, and close to one when the two signals are
synchronized (Figure 3, red curve).

For comparison, we estimate the IC between X and Y
in the same manner, but using windows of fixed width
(Figure 4). When the window size is 18 time points, the esti-
mated IC is close to one when the signals are synchronized,
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Figure 1: Simulated EEG gamma signals X(t) (top) and Y(t) (first two seconds).
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Figure 2: Scaled difference in average frequency between X and Y
throughout the epoch.

but is not anywhere near zero in the first few intervals in
which the signals are asynchronous (Figure 4, green curve).
Also, when it does approach zero, it does not drop sharply,
but falls off gradually. When the window size is 210 time
points, the estimated IC is near zero when it should be, but
it is generally much too small when it should be close to
one (Figure 4, blue curve). When the window size is 90 time
points, we obtain the best IC estimate of the three (Figure 4,
red curve). But, we note that at several time points where it
should be close to one it is closer to 0.5.

This simulation demonstrates that whether a variable
window or a fixed window is used, estimation of the IC
between two signals is highly sensitive to the choice of the
parameter that affects the window width. But the variable
window approach has the advantage of adaptability to the

0 5 10 15 20

1

0.5

0

−0.5

−1

Time (s)

(N
or

m
al

is
ed

)
fr

eq
u

en
cy

di
ff

er
en

ce
(H

z)

Figure 3: Estimated IC when w = 3 (green), w = 6 (red), and w =
18 (blue), with the scaled difference in average frequency between
X and Y throughout the epoch.

local frequency, so that once a good choice is made for
the tuning parameter, the IC estimate will be consistently
reliable as the signal frequency varies throughout an epoch.
A choice for the fixed window width may work well for a
specific frequency range, but will not perform well outside
that range. In the simulated signals, the range for the average
effective frequency of the base signal X grows as the time
increases from 0 to 20 seconds. Hence, the performance
of the IC estimate when w = 18 improves as time passes
(Figure 4, green), while the performance of the IC estimates
when w = 90 and w = 210 diminishes (Figure 4, red and
blue, resp.). With the variable-window approach (Figure 3),
we see that the performance of each IC estimate remains
consistent throughout the epoch even though the range of
the average frequency changes. Hence, once we identify a
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Figure 4: Estimated IC with fixed windows of 18 (green), 90 (red),
and 210 (blue) time points, with the scaled difference in average
frequency between X and Y throughout the epoch.

good choice for w, we can employ it in the study of any
oscillating signal. Based on our analysis, it seems that w = 6
is a good choice.

3.2. Experimental Data: EEG Gamma Signals from the Rat
Hippocampus. To demonstrate our method, we analyze EEG
data recorded from nine tetrodes located in the hippocampal
formation of rats before, during and after they perform
an exercise on a track. Tetrodes were placed in the medial
entorhinal cortex (MEC; four electrodes) and CA1 region
(five electrodes). For our analysis, we focus on the EEG
during a “rest” epoch, when the rat is in its cage (but not
necessarily inactive) after one exercise epoch and before the
next.

A typical data set consists of approximately 15 to 20
minutes of EEG data recorded at 1.5 kHz. Our investigation
focuses on the identification of instants when the gamma
rhythms in both regions become synchronized on a short
time scale. As an initial preprocessing step, the raw EEG
signals were filtered in the 40–100 Hz range using the
filtfilt.m routine in Matlab. This process was used to
extract the gamma signal from the raw EEG signal. Figure 5
shows nine raw and nine filtered signals, respectively, from
the first 2/3 second of a recording epoch. Note that the cycles
for the filtered signals do not always cross the horizontal
axis. Hence, for any gamma signal that we might select for
a base signal, its cycles are not necessarily identifiable by zero
crossings. However, the Hilbert transform is applied to each
filtered signal to obtain the Hilbert phase at each time point,
so that we may identify the cycles by locating the points
where the phase is approximately ±π/2.

For this analysis, we select the gamma signal extracted
from Tetrode 1, located in the MEC, as the base signal.
Figure 6 displays plots of the first 100 estimated IC values
between this base gamma signal and the gamma signals
at Tetrodes 6 and 26, respectively, at the beginning of a
recording epoch, using w = 6 and m = 2. Note that the
horizontal axis is not transformed back to the time scale, but
is given in terms of the sequence of measurement windows.
We observe that the estimated IC alternates between values
above 0.6 and values below 0.4 in each plot. Frequent
instants of high synchrony are expected in the left plot since

Tetrodes 1 and 6 are both located within the MEC, albeit
in different parts, while instants of high synchrony should
be less frequent in the right plot, since Tetrode 26 is not in
the MEC. For any given time span we may choose any of
the nine available gamma signals as the base signal and use
the remaining signals to compute an eight-dimensional time
series of IC estimates corresponding to that base signal, using
any appropriate values of w or m. In this section, we explore
whether the time series can be partitioned into specific IC
states.

Figure 7 shows eight histograms of the distributions of
the 74, 490 estimated IC values between Tetrode 1 and each of
the other eight tetrodes during a twenty-minute rest epoch.
Almost all of the estimated IC values are distributed between
zero and one, with a negligible remainder just slightly below
zero. Hence, the MVB distribution should be appropriate for
modeling these data, as discussed in Section 2.2.

Our goal is to reduce this eight-dimensional time series
to a single dimension by identifying distinct IC states
when different subsets of signals are coupled with the base.
This single dimension—the IC state—will take one of the
values in {1, . . . , p∗} in each measurement window, where
p∗ is defined in (12). The histograms in Figure 7 may
be considered superpositions of the histograms of the IC
estimates corresponding to these distinct states, each of
which is modeled by an MVB distribution. We implement
the EM algorithm as described in Section 2.2 to determine
the parameters of these distributions and to determine the
state membership of each IC estimate, using the R statistical
package. To illustrate our method, we consider only a ten-
second block from the full recorded time series, correspond-
ing to 746 consecutive and overlapping three-cycle windows
of the base signal. Moreover, we work with only four
dimensions rather than all eight, by choosing representatives
from each location in the brain in which multiple EEG
signals are recorded. Using the IC estimates between the
base signal at Tetrode 1 and the signals at Tetrodes 6, 11,
25, and 26, computed during an interval when the rat is in
its cage, we proceed with the EM algorithm. In Figure 8 we
note that the BIC decreases as p increments from 2 to 4, is
relatively constant for p in the range of 4 to 6 states, and
then increases thereafter. We conclude that the instantaneous
coupling between the base signal recorded in the MEC and
the signals from the four other selected locations transition
among four to six distinct IC states during the chosen ten-
second block. Since the simplest model is preferred, we adopt
a model consisting of four IC states.

We run the EM algorithm for values of p in the range
2 ≤ p ≤ 8. Once the algorithm converges, we use the
parameter estimates to compute the mixture log-likelihood
according to (10) and then obtain the BIC according to
(11). We implement the algorithm simultaneously for the
seven values of p, using several 3.06 GHz machines. Model
estimation required from one to eleven days as p increased
in value. The parameter estimates corresponding to each of
these four IC states, resulting from 108 iterations of the EM
algorithm are shown in Table 1.

To assign each IC estimate to its appropriate state, we
inspect the corresponding vector of responsibilities returned
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Figure 5: Raw EEG signals and filtered gamma signals from MEC (1,6,7,11) and CA1 (16,19,22,25,26) of rat during the first 2/3 second of a
rest epoch.
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Figure 6: First 100 instantaneous coupling estimates between gamma signals at Tetrodes 1 (base signal) and 6 (a), and Tetrodes 1 (base
signal) and 26 (b), at the beginning of an epoch.

Table 1

State π θ1 θ2 θ3 θ4 θ5

1 0.16 8.4 4.7 3.1 2.9 2.9

2 0.40 3.2 13.6 2.8 2.8 2.7

3 0.07 2.8 39.2 2.6 2.2 2.8

4 0.38 2.1 3.8 3.2 3.2 1.9

by the EM algorithm after its convergence (see (8) with p =
4) and note the position of the largest value, that is, we assign

the ith IC estimate to state k, where

k = argmax
j

{
r j,i | j = 1, 2, 3, 4

}
, (14)

for i = 1, . . . , 746. We then obtain the mean vector of the
subsets of IC estimates assigned to each of the four states,
along with their corresponding standard deviations as shown
in Table 2.

We plot the group means in Figure 9.
If we use 0.6 as the threshold for distinguishing coupling

from noncoupling, then State 1, which comprises 16.2%
of the block of IC estimates, represents instants when the
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Figure 7: Distributions of estimated instantaneous coupling between gamma rhythms at Tetrode 1 and each of the other eight tetrodes
during a rest epoch.
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base signal is coupled with the other two MEC signals, but
not with the CA1 signals. State 4, comprising 37.6% of the
IC estimates, represents occasions when the base signal is
coupled with the signal at nearby Tetrode 11 in the MEC
and with the signals at Tetrodes 25 and 26 in the CA1, but
not with the signal at Tetrode 6 in another part of the MEC.

Table 2

State
Mean (standard deviation)

Tetrode 6 Tetrode 11 Tetrode 25 Tetrode 26

1
0.77 0.64 0.52 0.50

(0.08) (0.16) (0.16) (0.15)

2
0.54 0.84 0.51 0.50

(0.17) (0.07) (0.17) (0.16)

3
0.48 0.94 0.46 0.43

(0.17) (0.03) (0.16) (0.19)

4
0.52 0.66 0.63 0.64

(0.17) (0.16) (0.17) (0.17)

Hence, State 4 indicates synchronization between the MEC
and the CA1 cell layer in the rat’s brain. States 2 and 3,
comprising 39.6% and 6.6% of the IC estimates, respectively,
represent instants when the base signal is only coupled with
the gamma signal at neighboring Tetrode 11, although at
different levels. Since the mean vectors for the subsets of IC
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optimized mixed MVB model.

estimates corresponding to these two states appear to be very
similar, and less than 7% of the estimates are assigned to
State 3, we may consider combining them. However, what
distinguishes the two states is not the mean vectors of the
corresponding subsets of IC estimates, but the parameter
estimates for the two states. The estimates of the parameter θ2

for States 2 and 3 are very different, which implies that the IC
estimates for these two states are distributed quite differently.
Moreover, the BIC criterion clearly guides us to a minimum
of four distinct IC states.

Since we have performed this analysis only on one block
of IC estimates taken from a rest epoch, we cannot assume
that our results apply to the entire epoch or to any other time
period. We may repeat the estimation using a block of similar
size from an interval during which the rat is motionless in
its cage, and may be asleep, or when the rat is performing
tasks on the track. Moreover, these procedures may be
applied when the EEG signal at any tetrode is selected as the
base signal, so that occasions of coupling between any two
brain regions can be identified. This approach thus enables
a neuroscientist to identify instants when different brain
regions are synchronized, and investigate the correspondence
between the frequency of such instants and behavioral
covariates. Figure 10 shows the gamma signals extracted
from the EEG recordings at Tetrodes 1, 6, 11, 25, and 26 at
the beginning of the sample block on which our method
was applied, along with a colored bar above each window
associated with three cycles of the base signal at Tetrode 1.
The colored bars indicate to which of the four IC states the
signals are assigned by our method at each instant. The colors
and their corresponding states match those designated in
Figure 9, that is, black bars indicate coupling between the
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Figure 10: Gamma signals during a 2/3-second block of a recording
epoch, with IC state designation indicated for each window when
the base signal is at Tetrode 1 and four IC states are modeled.
Vertical dotted lines correspond to computed cycles of the base
signal.

Tetrode 1 signal and the signals at Tetrodes 6 and 11 in the
MEC; blue bars and red bars denote coupling between the
Tetrode 1 signal and the nearby signal at Tetrode 11; green
bars denote coupling between the Tetrode 1 signal and the
signals at Tetrodes 11, 25, and 26. Both the sequence and
frequency of IC states within any interval may be meaningful
in future investigations.

4. Discussion

We have developed a computational method for estimating
the short time-scale coupling between gamma signals filtered
from two EEG recordings, along with confidence bounds
on the estimate. This computation requires the selection of
one signal as the base and partitioning the recording epoch
based on the cycles of that base. We define the instantaneous
coupling (IC) on any measurement window as the maximum
over all lags of the cross-correlation between the base and
the other signal during that window. This value is computed
throughout the epoch on a sliding window consisting of three
cycles of the base, incrementing one cycle at a time so that
consecutive measurements come from overlapping windows.
At instants when the coupling between signals is strong, our
IC estimate should be in the 0.6 to 1.0 range. A simulation
study confirms that this procedure is sufficiently accurate in
identifying instants of low and high synchronization.

When we choose one gamma signal as the base and
compute the IC between that signal and the other gamma
signals at each of the other tetrodes, we obtain a distribution
of IC estimates which may be jointly modeled using the
multivariate beta (MVB) distribution. The parameters of
this distribution may be estimated using the EM algorithm.
We can examine the structure of the set of IC estimates by
implementing a mixture model with a preselected number
of clusters representing IC states among the estimates. If the
estimates naturally fall into a particular number of clusters,
the Bayes Information Criterion will guide us to that number.
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This enables us to identify instants in which subsets of the
gamma signals are synchronized with the chosen base signal.

The method we outline allows neuroscientists to detect
the evolution of IC on a short time scale among multi-
dimensional EEG gamma waves. This evolution reveals the
trajectory of local synchronous patterns and could be used
to identify binding between separate parts of the brain.
These evolving patterns of local and global synchrony may
provide a platform for scientists to map out moment-by-
moment progression of signal transmission pathways among
distinct regions of the brain. Our methodology addresses
several algorithmic challenges. First, the chosen measure-
ment window of three cycles of a base gamma signal seems
to reasonably capture such instantaneous synchronization,
which typically lasts for fewer than five cycles. We believe
that this is a natural timescale for such synchronization
manifested through gamma rhythms. Secondly, the mixed
MVB model with parameters estimated by the EM algorithm
provides an effective and reliable tool for identifying IC
states that signify the occurrence of synchronization among
different regions of the brain.

One outstanding issue is the computational burden of the
EM algorithm, which is known to converge slowly. In our
EEG example we limited our analysis to a ten-second block
and only four of the eight dimensions, and it took eleven
days to converge. However, the computational efficiency
would be greatly improved by using custom code, so that
the method could be applied effectively to more dimensions
and a much longer time span. Alternate methods for model
fitting, including Markov chain Monte Carlo techniques or
the simulated annealing algorithm, may also be developed.
Our focus in this paper is the illustration of our method,
rather than optimizing the computational efficiency. This
task will be undertaken in future work.

Appendix

Our derivation of the multivariate beta (MVB) density
follows the approach of Olkin and Liu [17]. We include here
a full derivation due to typographical errors found in the
formula for the multivariate case presented in their original
publication. Let X1 ∼ Γ(θ1, 1), . . . ,XJ ∼ Γ(θJ , 1) and Y ∼
Γ(θJ+1, 1) be independent gamma random variables, where
Γ(θj , 1) denotes the standard gamma distribution with shape
parameter θj . Hence the joint density of X1, . . . ,XJ ,Y is

f
(
x1, . . . , xj , y

)
=
∏J

j=1x
θj−1
j yθJ+1−1 exp

{
−
(∑J

j=1 xj+y
)}

∏J+1
j=1Γ

(
θj
) ,

(A.1)

where Γ(·) denotes the gamma function and x1, . . . , xJ , y are
all positive. Define

U1 = X1

X1 + Y
, . . . ,UJ = XJ

XJ + Y
, (A.2)

so that 0 < Uj < 1 for j = 1, . . . , J , and correlation among
U1, . . . ,Uj is established by the common dependence on Y .
Through simple algebra, we have

Xj =
YUj

1−Uj
for j = 1, . . . , J. (A.3)

Hence

∂xj
∂uj

= y
(

1− uj

)2 ,
∂xj
∂y

= uj

1− uj
for j = 1, . . . , J ,

∂xj
∂uk

= 0 for j /= k,

(A.4)

while

∂y

∂uj
= 0 for j = 1, . . . J ,

∂y

∂y
= 1, (A.5)

giving us the Jacobian matrix
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whose determinant is just the product of the diagonal entries,

yJ

∏J
j=1

(
1− uj

)2 . (A.7)

Therefore the joint density of U1, . . . ,UJ ,Y is

f
(
u1, . . . ,uJ , y
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(A.8)

Let

q = 1 +
J∑

j=1

uj

1− uj
, θ =

J+1∑

j=1

θj . (A.9)
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We obtain the joint density of U1, . . . ,UJ , which is our
objective, by integrating out y as follows:

f
(
u1, . . . ,uJ

)

=
∏J

j=1u
θj−1
j

∏J
j=1

(
1− uj

)θj+1∏J+1
j=1Γ

(
θj
)
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0
yθ−1e−qydy

= Γ(θ)
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(
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)

1
qθ
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)
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j=1Γ

(
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)
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,

(A.10)

where 0 < uj < 1 for j = 1, . . . , J . This is the multivariate beta
density given in (6).
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