
Research Article

Received 14 January 2010, Accepted 25 June 2010 Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.4030

Slope estimation in structural line-segment
heteroscedastic measurement error models
Michael P. McAssey and Fushing Hsieh∗,†

This paper extends the line-segment parametrization of the structural measurement error (ME) model to situations in which the
error variance on both variables is not constant over all observations. Under these conditions, we develop a method-of-moments
estimate of the slope, and derive its asymptotic variance. We further derive an accurate estimator of the variability of the slope
estimate based on sample data in a rather general setting. We perform simulations that validate our results and demonstrate
that our estimates are more precise than estimates under a different model when the ME variance is not small. Finally, we
illustrate our estimation approach using real data involving heteroscedastic ME, and compare its performance with that of
earlier models. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

Consider an observational study in which information on two variables is collected from random samples of n distinct
groups within a population. Suppose that a researcher is given only a set of summary statistics on the observed variables
for each sample, along with the corresponding sampling errors. He wishes to determine whether there is a significant
linear association between the two variables and, if so, to model that association with an accurate slope estimate. The
sampling error involved with each variable eliminates the applicability of the simple linear regression approach and
calls for the implementation of a measurement error (ME) model. Moreover, the variability of the error on each observation
for each variable is likely to be different, due to different sample sizes and other influences, so that a model that accounts
for heteroscedastic ME is required.

Heteroscedastic ME models have been developed for estimating the slope in such scenarios. Kulathinal et al. apply
this approach in [1] to the data collected in the World Health Organization (WHO) Multinational MONItoring of trends
and determinants of CArdiovascular disease (MONICA) Project (2000) on cardiovascular disease and its risk factors.
Patriota et al. also examine these data in [2], as well as astronomical data obtained from the Chandra observatory,
accounting for the heteroscedastic ME that characterizes each data set. Under this approach, each observation (xi , yi ) is
modeled as

xi =�i +εi , yi =�i +�i with �i =�+��i +�i ,

where εi ∼N(0,�2i ) and �i ∼N(0,	2i ) are the independently distributed heteroscedastic MEs, �i ∼N(0,
2) is the
independently distributed equation error, and all three errors are mutually independent. To assure identifiability, it is
assumed that the ME variances (�i ,	i ), i =1, . . . ,n, are known or can be estimated independently. Under the structural
model the �i are independent and distributed as N(��,�

2
�), while the �i are also independent and distributed as

N(��,�2�). Both maximum-likelihood and method-of-moments estimators of the slope have been derived under the
structural heteroscedastic ME model, as presented in [1--3] using this conventional equation error model. However, as
will be demonstrated in an analysis of the WHO MONICA data, this model is not robust against misspecification, so that
the inclusion of the equation error component makes it susceptible to underestimation of the slope when the unknown
data-generation mechanism does not actually have the equation-error structure.
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Figure 1. Diagram of the equation-error and line-segment structural models with heteroscedastic measurement error.

In this paper, we present an extension of the structural line-segment model for homoscedastic ME, as introduced by
Davidov in [4], to this heteroscedastic ME scenario. This alternative approach omits the equation error component and
is symmetric in the two variables. These features make the line-segment model more robust against misspecification,
and thus preferable when the data-generation mechanism is completely unknown. We assume that the points (EXi ,EYi )
are randomly distributed on a line segment having latent endpoints at (�X ,�Y ) and (X ,Y ), with �X�X . Let �X =
X −�X�0 and �Y =Y −�Y . We then have the model

xi =�X +�i�X +εi and yi =�Y +�i�Y +�i , i =1, . . . ,n, (1)

where �1, . . . ,�n are independently drawn from a common distribution G and take values in the unit interval, and
εi ∼N(0,�2i ), while �i ∼N(0,	2i ) for each i . We also assume that �1, . . . ,�n are independently drawn from a common
distribution, and likewise for 	1, . . . ,	n . Again, to assure identifiability, we assume that these error variances are known
for both variables. In practice, the error variance is rarely known, but may be accurately estimated using repeated
measurements, or, when the observations are statistics based on samples, by using sampling errors. Let �� and �2� denote
the mean and variance of �i , respectively. Since �i is bounded, these and all higher moments must be finite. Finally,
assume that �i , �i and 	i are mutually independent for all i .

Figure 1 provides a diagram of these two structural models. In this diagram, (xi , yi ) is the observed data pair, while
the linear association between X and Y is represented by the dashed trendline Y =�+�X , upon which the line segment
having endpoints at (�X ,�Y ) and (X ,Y ) rests. The conditional expectation of (xi , yi ), given �i , onto the line/segment
is the point (�i ,�+��i ) under the equation error model. This point is equivalent to the point (�X +�X�i ,�Y +�Y �i ),
which is the conditional expectation of (xi , yi ), given �i , under the line-segment model. This point lies on the dotted
line between (xi , yi ) and the line segment from the perspective of the line-segment model. But under the equation error
model, it lies on the vertical dotted line through the unobserved point (�i ,�i ).

Trivially, the path from the observed pair (xi , yi ) to the line segment, corresponding to the line-segment model, is
always smaller than the path that goes from (xi , yi ) to (�i ,�i ), and then to the line, corresponding to the equation error
model. When there is a strong correlation between the two variables, this difference in path lengths is almost negligible
when using either model to compute an estimate of the slope, since the errors are small. In such cases, the dominating
influence on the variance of the slope estimate is the overall dispersion in X—the larger the spread, the smaller the

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010



M. P. MCASSEY AND F. HSIEH

variance. Since the equation error is a vertical displacement, its inclusion in the model attenuates the effect of the
dispersion in X , giving it an advantage over the line-segment model. However, when the errors become larger, the path
difference becomes the dominating influence on the variance of the slope estimate among the two models. Hence, in
any scenario where the variances of the MEs are not small, the line-segment model will provide a more precise estimate
of the slope. This improvement is demonstrated using simulation studies.

The line-segment model provides an additional benefit, whether or not there is ME or heteroscedasticity. The equation-
error model assumes a specific structure for the underlying data-generation mechanism, a structure that may not properly
explain the association between the two variables. In this case, points that lie far from the line and toward the horizontal
extremes exert an excessive influence on the slope estimate in equation-error models due to the effect of including the
equation errors. But in the line-segment model, no such effect occurs. Consequently the influence of such points on the
slope estimate is attenuated. Therefore, the line-segment model is more robust against outliers at the horizontal extremes,
and is better able to explain the association between the two variables in situations in which the unknown data-generation
mechanism does not have the equation-error structure. This benefit will be illustrated in the application of our model
to the same WHO MONICA data, which contain influential points that have caused incorrect slope estimates under the
equation-error models.

In the next section we derive a method-of-moments estimate of the slope under our extension of the line-segment
model, and obtain its asymptotic variance in Section 3 using the delta method. We derive a large-sample estimate of the
variance of our slope estimate in Section 4, which may be used in real data analysis. In Section 5 we perform simulation
studies which verify the accuracy and precision of our estimates when the data-generation mechanism conforms to
the line-segment model, and we show that the precision of our slope estimate is superior in this setting to that of a
method-of-moments estimate obtained through the equation-error model, using assorted ranges of the ME variances.
In Section 6 we illustrate the application of our slope estimation to real data, and compare our estimates with those
derived using several equation-error methods, and using the line-segment model when homoscedastic errors are naïvely
assumed. We summarize and discuss our results briefly in Section 7.

2. Point estimation of the slope

Given the structural line-segment model described above, we have

Var(Xi )=�2X�2
�+�2i , Var(Yi )=�2Y�2

�+	2i and Cov(Xi ,Yi )=�X�Y�2�,

so that

Var

(
Xi

�i

)
= �2X�2

�

�2i
+1 and Var

(
Yi
	i

)
= �2Y�2�

	2i
+1.

Hence

1

n

n∑
i=1

Var

(
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�i

)
=�2X�2��

�
n+1,

1

n

n∑
i=1

Var

(
Yi
	i

)
=�2Y�2�	

�
n+1

and

1

n

n∑
i=1

Cov(Xi ,Yi )=�X�Y�2�,

where

��
n = 1

n

n∑
i=1

1

�2i
and 	�

n = 1

n

n∑
i=1

1

	2i
.

We then solve for �X (which we take to be nonnegative) and �Y , and use the sign of the mean covariance to determine
the sign of �Y , to obtain

�X =�−1
�

√√√√[
1

n

n∑
i=1

Var

(
Xi

�i

)
−1

]
+

/
��
n
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and

�Y = sgn

(
1

n

n∑
i=1

Cov(Xi ,Yi )

)
�−1

�

√√√√[
1

n

n∑
i=1

Var

(
Yi
	i

)
−1

]
+

/
	�
n,

where [·]+ =max(0, ·). Then the slope of the line segment is �=�Y /�X , provided �X>0. Note that in the ratio �Y /�X
the common �−1

� factor drops out, so that knowing the moments of � is unnecessary for slope estimation. However,
estimates of

n∑
i=1

Var(Xi/�i )/n,
n∑

i=1
Var(Yi/	i )/n and

n∑
i=1

Cov(Xi ,Yi )/n

are required.
Following the approach described in [4, 5], we employ method-of-moments estimators, by equating sample moments

with theoretical moments:

1

n

n∑
i=1

Var

(
Xi

�i

)
set= 1

n

n∑
i=1

(
xi −x

�i

)2

= S∗
xx,

1

n

n∑
i=1

Var

(
Yi
	i

)
set= 1

n

n∑
i=1

(
yi − y

	i

)2

= S∗
yy and

1

n

n∑
i=1

Cov(Xi ,Yi )
set= 1

n

n∑
i=1

(xi −x)yi = Sxy.

Hence

�̂X =�−1
�

√[
S∗
xx−1

]
+ /��

n and �̂Y = sgn(Sxy)�
−1
�

√
[S∗

yy−1]+/	�
n, (2)

so that the estimated slope of the line segment is

�̂= �̂Y /̂�X = sgn(Sxy)

√
��
n[S∗

yy−1]+
	�
n[S

∗
xx−1]+

. (3)

When the MEs are homoscedastic, (3) agrees with (2.12) in [4].

3. Variance of the slope estimate

We continue to follow [4] in our derivation of the variance of our estimate. Since the slope estimate �̂ is location
invariant, we may set, without loss of generality, �X =�Y =0 in our derivation of Var(̂�). We define

Zi =
(
Xi ,

Xi

�2i
,
X2
i

�2i
,Yi ,

Yi
	2i

,
Y 2
i

	2i
, XiYi

)′
= (z1, z2, z3, z4, z5, z6, z7)

′

and let

Tn = 1

n

n∑
i=1

Zi =
(
X,

1

n

n∑
i=1

Xi

�2i
,
1

n

n∑
i=1

X2
i

�2
i

,Y ,
1

n

n∑
i=1

Yi
	2i

,
1

n

n∑
i=1

Yi
	2i

,
1

n

n∑
i=1

XiYi

)′

= (t1, t2, t3, t4, t5, t6, t7).

This structure on Tn is more complex than its five-dimensional counterpart in the homoscedastic case. Nevertheless,
with �� =E(�2i )=�2�+�2�, it is straightforward to show that

l=E(Tn)= (�X��,�X���
�,�2X���

�+1,�Y��,�Y��	
�,�2Y��	

�+1,�X�Y��)
′

based on the model assumptions in (1), and the assumed existence of �� =E(�−2
i )= limn→∞ ��

n and 	� =E(	−2
i )=

limn→∞ 	�
n . The central limit theorem then assures that the distribution of

√
n(Tn −l) converges to the N(0,�) distri-

bution as n→∞, where � is the 7×7 covariance matrix of Zi with entries �ij=Cov(zi , z j ), 1�i, j�7.
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Now define Sn = (S∗
xx, S

∗
yy, Sxy). Expanding each of these components and applying some algebraic manipulation, we

find that Sn may be expressed as a function H of Tn = (t1, t2, t3, t4, t5, t6, t7), namely,

Sn =H (Tn)= (t3−2t1t2+ t21��
n, t6−2t4t5+ t24 	�

n, t7− t1t4)
′,

so that, when H is applied to E(Tn)=l, we have

/=E(Sn)=H (l)= (�2X�2��
�+1,�2Y�2�	

�+1,�X�Y�2
�)

′.

Applying the delta method and Slutzky’s theorem to Sn , we have

√
n(Sn−/) L−→N(0,M�M ′),

where

M= �H (Tn)

�(Tn)

∣∣∣∣
Tn=l

=

⎡⎢⎣
0 −2���X 1 0 0 0 0

0 0 0 0 −2���Y 1 0

−���Y 0 0 −���X 0 0 1

⎤⎥⎦ .

The law of large numbers assures that Sn
P−→/, and the continuous mapping theorem then implies that �̂= �̂(Sn)

P−→
�̂(/)=�Y /�X =�, so that �̂ is a consistent estimator of �. A second application of the delta method then gives us

√
n(̂�−�)

L−→N(0, B ′M�M ′B)=N(0,�),

where

B= �̂�(Sn)
�(Sn)

∣∣∣∣∣
Sn=/

=
[

−�Y

2�3X�2
��

�
,

1

2�X�Y�2
�	

�
, 0

]′
.

Hence

� = �2Y
4�6X�4�(�

�)2
(4�2X�2

��22+�33−4�x���23)

+ 1

4�2x�
2
y�

4
�(	

�)2
(4�2Y�2��55+�66−4�Y���56)

− 1

2�4X�4
��

�	�
(4�X�Y�2��25−2�X���26−2�Y���35+�36)

is the desired asymptotic variance of
√
n(̂�−�).

We substitute

�22 = �2X�2��
��+��, �33 = �4X (��−�2

�)�
��+4�2X���

�+2,

�23 = �3X (��−����)�
��+2�X���

�, �55 = �2Y�2�	
��+	�,

�66 = �4Y (��−�2
�)	

��+4�2Y��	
�+2, �56 = �3Y (��−����)	

��+2�Y��	
�,

�25 = �X�Y�2
�(�	)�, �26 = �X�2Y (��−����)(�	)�,

�35 = �2X�Y (��−����)(�	)�, �36 = �2X�2Y (��−�2
�)(�	)�

into this expression, where �� =E(�3i ), �� =E(�4i ), and assuming the existence of each limit, we define

��� =E(�−4
i )= lim

n→∞
1

n

n∑
i=1

1

�4i
= lim

n→∞���
n , 	�� =E(	−4

i )= lim
n→∞

1

n

n∑
i=1

1

	4i
= lim

n→∞	��
n ,

and (�	)� =E(�−2
i 	−2

i ). Note that (�	)� =��	� by the independence of �i and 	i for all i .
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After much labor, we obtain

� = 1

4�6X�2Y�4�

{
2

�4X
(	�)2

+4�2X�2Y�2�

(
�2X
	�

+ �2Y
��

)
+2

�4Y
(��)2

+ �4X�4Y��

[
���

(��)2
+ 	��

(	�)2
−2

(�	)�

��	�

]}
, (4)

where �� =��−4�4�+8�2���−4����−�2
�. The Cauchy–Schwartz inequality guarantees that ����(��)2 and 	���(	�)2,

so that the expression ���/(��)2+	��/(	�)2−2(�	)�/��	� will be nonnegative, and will vanish in the case of homoscedas-
ticity. Although the ratio (�	)�/��	� equals one, we keep it in the form of (4) because it will need to be estimated
in the next section. Therefore, the variance of the estimated slope based on n independent observed pairs (xi , yi ) with
heteroscedastic ME is Var(̂�)=�/n.

We note that in the case of homoscedastic error variance, (4) reduces to (3.3) given in [4].

4. Estimating the variance of the slope estimate

To obtain an estimate of Var(̂�), we replace each occurrence of �X and �Y in (4) with the corresponding estimates given
in (2). We also replace ��, 	�, ���, 	�� and (�	)� with ��

n , 	�
n , ���

n , 	��
n and (�	)�n , respectively. After some simplification

we obtain

V̂ar(̂�)= ��
n/	

�
n

n(S∗
xx−1)

{
1+ 1

2(S∗
yy−1)

+ S∗
yy−1

S∗
xx−1

+ S∗
yy−1

2(S∗
xx−1)2

+ S∗
yy−1

4

[
���
n

(��
n)

2 + 	��
n

(	�
n)

2 −2
(�	)�n
��
n	

�
n

]
�−4

� �̂

}
. (5)

To derive the estimate �−4
� �̂, we first require an estimate of �i for i =1, . . . ,n. Suppose we observe (xi , yi ), while

E(Xi ,Yi )= (�X +�i�X ,�Y +�i�Y ). In our model, �i must be the unique value in [0,1] that minimizes the Euclidean
distance between (xi , yi ) and the line segment whose endpoints are at (�X ,�Y ) and (X ,Y ). Simple calculus gives us

�i = �X (xi −�X )+�Y (yi −�Y )

�2X +�2Y
,

so that

�̂i = �̂X (xi − �̂X )+ �̂Y (yi − �̂Y )

�̂
2
X + �̂

2
Y

=
⎡⎣ (xi − �̂X )

√
[S∗

xx−1]+/��
n+(yi − �̂Y ) sgn(Sxy)

√
S∗
yy−1]+/	�

n

(S∗
xx−1)/��

n+(S∗
yy−1)/	�

n

⎤⎦��

= �(xi , yi )�� =�i��.

We then have

�̂� =��

(
1

n

n∑
i=1

�i

)
, �̂� =�2�

(
1

n

n∑
i=1

�2
i

)
, �̂� =�3�

(
1

n

n∑
i=1

�3
i

)
,

and

�̂� =�4�

(
1

n

n∑
i=1

�4
i

)
.
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Thus

�̂� = �̂�− 4̂�4�+ 8̂�2��̂�− 4̂��̂��−�̂
2
�

= �4�

(
1

n

n∑
i=1

�4
i

)
−4�4�

(
1

n

n∑
i=1

�i

)4

+8�4�

(
1

n

n∑
i=1

�i

)2(1

n

n∑
i=1

�2
i

)

−4�4�

(
1

n

n∑
i=1

�i

)(
1

n

n∑
i=1

�3
i

)
−�4�

(
1

n

n∑
i=1

�2
i

)2

,

so

�−4
� �̂� =

(
1

n

n∑
i=1

�4
i

)
−4

(
1

n

n∑
i=1

�i

)4

+8

(
1

n

n∑
i=1

�i

)2(1

n

n∑
i=1

�2
i

)

−4

(
1

n

n∑
i=1

�i

)(
1

n

n∑
i=1

�3
i

)
−
(
1

n

n∑
i=1

�2
i

)2

. (6)

We may then substitute (6) into (5) to compute V̂ar(̂�).
However, we have sidestepped the issue of estimating (�X ,�Y ), which is necessary for computing �i , i =1, . . . ,n. One

remote possibility is that �X and �Y are known. Another approach, given in [5] under the assumption that �� and �2� are
known, uses the Method of Moments to obtain �̂X = x−��̂�X and �̂Y = y−��̂�Y . Third, one may construct consistent
estimators of �X and �Y using nonparametric estimation of G, as discussed in [5]. When information about G cannot
be determined, we suggest a heuristic alternative.

The line segment in our model rests on the line having slope � and passing through the point (�X +���X ,�Y +���Y ).
We estimate the location of this segment with a line having slope �̂ and passing through the point (x , y), whose equation
is thus y= �̂(x−x)+ y. Now, for i =1, . . . ,n, consider the perpendicular line having slope −1/̂� which passes through
the point (xi , yi ), whose equation is thus y=−1/̂�(x−xi )+ yi . Then both lines contain the orthogonal projection (x∗

i , y
∗
i )

of (xi , yi ) onto the estimated line segment. We substitute (x∗
i , y∗

i ) into each equation in place of (x, y), and set their
right-hand sides equal, to get �̂(x∗

i −x)+ y=−1/̂�(x∗
i −xi )+ yi . Solving for x∗

i and simplifying gives us

x∗
i = �̂(yi − y+ �̂x)+xi

�̂
2+1

.

This value can then be used to compute y∗
i =−1/̂�(x∗

i −xi )+ yi . If we let x∗
0 =min{x∗

1 , . . . , x
∗
n }, we have x∗

0 →�X as
n→∞. If �̂�0, we let y∗

0 =min{y∗
1 , . . . , y

∗
n }. Otherwise, we let y∗

0 =max{y∗
1 , . . . , y

∗
n }. In either case, y∗

0 →�Y as n→∞.
Hence, (x∗

0 , y
∗
0 ) is a biased but consistent estimator of (�X ,�Y ), hence, we propose the use of (̂�X , �̂Y )= (x∗

0 , y
∗
0 ) in the

computation of �i , i =1, . . . ,n when nothing is known about the distribution of �i .

5. Simulation study

To confirm the accuracy of these estimates, we generate 50 data pairs using (1) with �X =0, �Y =0, �X =9, and �Y =6,
so that �= 2

3 . For i =1, . . . ,n, �i is drawn from a beta distribution with both parameters equal to 2, �i is drawn from
a uniform distribution on (a,2a), and 	i is drawn from a uniform distribution on (b,2b), where a and b are fixed but
arbitrary positive numbers. Hence, �� can be computed from the known moments of a beta distribution, while ��, 	�,
��� and 	�� are derived from the known moments of a uniform distribution. We choose a range of values for a and b,
then use (3), (4), (5) and (6) to compute �̂, its variance Var(̂�), and the estimate V̂ar(̂�) of this variance. For this first
simulation we assume that �X and �Y are known. We repeat 500 times, and record the estimates at each iteration.

For each run of the simulation, Table I presents the selected values of a and b, which control the magnitude of the
error variances, in the first two columns. Column 3 gives the median value of �̂, computed using (3), over 500 iterations,
along with the sample variance of this estimate in column 4. Column 5 provides the expected value of Var(̂�), based on
(4) divided by n. Column 6 provides the median value of V̂ar(̂�), computed using (5), over 500 iterations. Ideally, the
value in column 3 matches the true value of the slope, i.e. 2

3 , and the values in columns 4 and 6 are both close to the
value in column 5 for each run. For all choices of a and b, our estimate of the line-segment slope is centered very near
the true value of 0.667. Moreover, the observed variance among 500 computed values of �̂ (in column 4) is consistently
close to the expected variance of �̂ (in column 5), and the median estimate of the variance of �̂ over 500 iterations (in
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Table I. Simulation results for several choices of a and b, based on 500 iterations, with (�X ,�Y ) known
and �= 2

3 . (S.V.= sample variance).

a b Median (̂�) (S.V.) Var(̂�) Median (V̂ar(̂�))

0.05 0.03 0.669 (0.00086) 0.00087 0.00083
0.35 0.25 0.662 (0.00224) 0.00204 0.00219
0.50 0.55 0.663 (0.00564) 0.00550 0.00610
0.75 0.70 0.666 (0.01077) 0.00982 0.01085
0.85 0.90 0.657 (0.02037) 0.01618 0.01801

Table II. Simulation results for several choices of a and b, based on 500 iterations, with (�X ,�Y )
unknown and �=− 2

3 . (S.V. = sample variance).

a b Median (̂�) (S.V.) Var(̂�) Median (V̂ar(̂�))

0.05 0.04 −0.667 (0.00086) 0.00087 0.00085
0.30 0.33 −0.665 (0.00228) 0.00239 0.00257
0.46 0.52 −0.660 (0.00581) 0.00490 0.00528
0.71 0.65 −0.673 (0.00976) 0.00849 0.00968
0.98 0.93 −0.664 (0.02160) 0.01871 0.02178

column 6) also proves to be quite accurate, with a gradual loss of accuracy as the error variances grow. To the extent
that our estimates of the variance are off-target, they are consistently a bit high, and hence give us more conservative
estimates. The precision of our estimates even as the error variance grows is remarkable given our need to estimate
many parameters. Hence, our first simulation confirms the reliability of our estimates when �X and �Y are known.

In our second simulation, we set �X =2, �Y =3, �X =9, and �Y =−6, so that �=− 2
3 . This time we assume that �X

and �Y are unknown and employ our heuristic estimates. All other conditions are the same as above. Table II, which
has the same structure as Table I, displays a summary of our results. Despite our need to use biased estimates of �X
and �Y to compute the values in column 6, these estimates of the variance of �̂ are centered at values only slightly
larger than the expected values listed in column 5. Our sample variance of �̂ over 500 iterations, given in column 4, also
corresponds well with the expected variance in every run given in column 5, although it becomes inflated as the error
variances grow. Moreover, the sample median of �̂ is consistently accurate even as the variance of the MEs increases.
Hence, our derivations are strongly validated by these simulations.

We then compare the performance of our slope estimate under the line-segment model to the performance of the
method-of-moments slope estimate proposed recently in [2], based on the equation-error structural heteroscedastic ME
model described in the Introduction. An EM algorithm to compute maximum-likelihood estimates for these model
parameters was proposed in [1], and additional estimation methods were presented in [3]. In [2], Patriota et al. derive
both method-of-moments and maximum-likelihood estimates for the parameters and provide performance comparisons
with the earlier approaches. We will focus on their method-of-moments estimate, which we designate here as MM-P, as
a contrast to ours, since that estimate is provided in closed form, and the authors found its performance to be superior
to that of alternate equation-error models when the Gaussian error assumption is valid.

Using our notational equivalents, the MM-P slope estimate is �̂= Sxy/(Sxx−��
n), where

Sxx=
n∑

i=1
(xi −x)2/(n−1), Sxy=

n∑
i=1

(xi −x)(yi − y)/(n−1),

and (needed below)

Syy=
n∑

i=1
(yi − y)2/(n−1).

The asymptotic variance corresponding to the MM-P slope estimate is [2�2(���−�4�)+�]/�4
�, where �=�2�2��

�+
2�2�+
(�	)�+
2��+�2�	

�+2�2�4�. For our line-segment model, �2
� =�2X�2� and the equation error 
2 equals zero. Hence, we

may compute the expected large-sample variance of �̂ under MM-P for our simulation scenario using the known moments
of the beta and uniform distributions, once a and b are specified. Moreover, using the proposed estimates of these
parameters, the MM-P estimate of Var(̂�) is
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Table III. Simulation variance estimates for several choices of a and b, based on 500 iterations, using
the MM-P model and our model, with �= 2

3 .

MM-P model Our model

a b Var(̂�) Median (V̂ar(̂�)) Var(̂�) Median (V̂ar(̂�))

0.05 0.03 0.00002 0.00002 0.00087 0.00083
0.35 0.25 0.00150 0.00151 0.00204 0.00219
0.50 0.55 0.00569 0.00555 0.00550 0.00610
0.75 0.70 0.01248 0.01259 0.00982 0.01085
0.85 0.90 0.02043 0.02003 0.01618 0.01801

Table IV. Simulation variance estimates for several choices of a and b, based on 500 iterations, using
the MM-P model and our model, with �=− 2

3 .

MM-P model Our model

a b Var(̂�) Median (V̂ar(̂�)) Var(̂�) Median (V̂ar(̂�))

0.05 0.04 0.00003 0.00003 0.00087 0.00085
0.30 0.33 0.00184 0.00179 0.00239 0.00257
0.46 0.52 0.00488 0.00472 0.00490 0.00528
0.71 0.65 0.01057 0.01102 0.00849 0.00968
0.98 0.93 0.02660 0.02685 0.01871 0.02178

V̂ar(̂�)= 2S2xy[�
��
n −(Sxx−��

n)
2]

n(Sxx−��
n)4

+ S2xy+SxxSyy+(�	)�n −��
n	

�
n

n(Sxx−��
n)2

. (7)

When we repeat the first simulation using the MM-P estimates, with the same choices for a and b, the median of
the 500 point estimates of � is consistently close to the true value of 2

3 . The first two columns of Table III show the
expected value of Var(̂�) under the MM-P model for each pair (a,b), along with the corresponding median of the 500
estimates of Var(̂�) computed using (7). As the magnitude of the error variance grows, the difference between these
two values grows, but remains within reason. But note that when we compare these values with those in the last two
columns, which are the corresponding columns imported from Table I, we find that the MM-P expected and estimated
variance of �̂ is much smaller than ours when a and b are small (first two rows), about the same when a and b are
close to 0.5 (middle row), and much larger when a and b are larger than 0.5 (last two rows). In other words, the MM-P
estimates are more precise when the error variances are quite small, but our estimates have greater precision when the
error variances become appreciable. Hence we have evidence that the line-segment model will provide a better estimate
of the slope when the ME variance is not small, as is frequently the case.

Of course, our estimates from Table I are based on the assumption that �X and �Y are known. However, even in the
second simulation scenario, in which we must estimate (�X ,�Y ), our estimate of Var(̂�) still returns a smaller value than
the MM-P version once the error variances become appreciable, as Table IV shows. In this scenario we observe that the
variance estimate is indeed smaller under the MM-P model when the �i and the 	i are restricted to small values, but
when the �i are drawn from the interval (0.46,0.92) and the 	i are drawn from (0.52,1.04), the estimates of the variance
of �̂ are approximately the same under both methods. Then, when the �i are drawn from the interval (0.71,1.42) and
the 	i are drawn from (0.65,1.30), the variance estimate under our method is significantly smaller, and when the �i are
drawn from the interval (0.98,1.96), while the 	i are drawn from (0.93,1.86), our estimate of the variance of �̂ is almost
half of the corresponding estimate under the MM-P model. Hence, we recommend our approach to slope estimation
when the heteroscedastic ME is not small, as our method will yield narrower confidence intervals for the slope.

It should be noted that in this simulation the data-generation mechanism was specified according to the line-segment
model, whereas the MM-P procedure is based on the equation-error model. Thus, our estimation procedure had a built-in
advantage. When the data-generation mechanism is unknown, one must take care in choosing a model, as the results
from disparate models can be quite different. The next section demonstrates this issue.

6. Data application

The WHO established the MONICA during the 1980s to study the association between known risk factors, such as
smoking and obesity, and trends in cardiovascular disease. The linear association between data on the average annual
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change in the observed risk score (X ) and the average annual change in event rate (Y ), both given as percentages, was
modeled in [1] and [2] using equation-error ME procedures, with the sampling error in the trend estimates taken as
the heteroscedastic ME. Figure 2 displays the data for males (N =38) and for females (N =36) separately, with the
magnitude of the MEs indicated by the crosshairs.

Table V displays the estimated slope and its estimated standard error for each gender computed under several different
models. The ordinary least-squares (OLS) method disregards ME. K-2000 and K-2002 represent maximum likelihood
estimates provided in [1], whereas MM-P andML-P represent the method-of-moments and maximum-likelihood estimates
reported in [2], using ME models. Finally, the MM-LS estimates are those obtained using our line-segment model.
We add the lines having the estimated slopes under our model and under the ML-P and MM-P models to the plots in
Figure 2. For the MM-LS results, we pass the lines through the means (X ,Y ) for each gender, whereas for the ML-P
and MM-P results we use the estimated intercepts provided in that paper.

It is quite surprising that the estimated slopes under the line-segment model are dramatically steeper than those
obtained under all the other models—more than three times the size—while the standard errors on the estimates are
about the same for all models. While this initially makes the MM-LS results appear to be in error, inspection of the
data scatter in each plot of Figure 2 reveals that these results are more consistent with the observable trend. Indeed, the
steeper slopes send an even stronger message to the public about the urgency of maintaining cardiovascular health. While
it is difficult to ascertain which model is most appropriate for the latent WHO MONICA data-generation mechanism,
many tools are available for assessing model fitness.

For example, when we apply diagnostic tools designed for identification of influential points under the OLS framework,
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Figure 2. Scatterplot of change in event rate versus change in risk score, with standard errors, from WHO MONICA project,
and lines having estimated slopes under three models, for males and females.

Table V. Estimates of the slope and standard errors of the estimates for the WHO MONICA data on
males and females, based on seven models.

Males Females

Model �̂
√
V̂ar(̂�) �̂

√
V̂ar(̂�)

OLS 0.31 0.20 0.51 0.33
K-2000 0.43 0.22 0.57 0.33
K-2002 0.47 0.23 0.68 0.24
MM-P 0.35 0.22 0.58 0.38
ML-P 0.47 0.23 0.68 0.41
MM-LS 1.76 0.23 2.10 0.38
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Table VI. Estimates of the slope and standard errors of the estimates for the WHO MONICA data on
males and females, based on two models, when no points are deleted, and when individual influential
points are deleted.

Model Full data Point 1 Point 2 Point 3 Point 4

Males
MM-P 0.35(0.22) 0.45(0.24) 0.31(0.25) 0.23(0.25)
MM-LS 1.76(0.23) 1.85(0.25) 1.86(0.26) 2.01(0.27)

Females
MM-P 0.58(0.38) 0.72(0.35) 0.65(0.41) 0.63(0.35) 0.44(0.44)
MM-LS 2.10(0.38) 1.93(0.38) 2.22(0.41) 2.10(0.37) 2.39(0.50)

such as Cook’s distance, DFFITS, DFBETA and the covariance ratio, we discover that three points are designated as
influential among the male data, and four points among the female data. While these diagnostic tools are not intended
for ME models, they imply that methods based on models which incorporate equation error are very vulnerable to the
influence of outliers at the horizontal extremes. Under models that rely on such methods, the combined effect of these
influential points is to rotate the line in the clockwise direction, resulting in a flatter slope. In contrast, the line-segment
model does not involve equation error and is thus robust against such influences. This illustrates the effect of using
equation error in ME models when support for this assumption is lacking, as discussed in the introduction. In a case
such as that considered here, when the latent mechanism which has generated the data is unknown, it is safer to rely on
a model which, like the line-segment model, is symmetric and less rigid.

We may demonstrate the robustness of the line-segment model by deleting each of the identified influential points one
at a time and computing the slope estimate on each subset of the data. We do likewise for the MM-P model, and display
the results in Table VI. Deletion of influential points alters the slope under our line-segment model by 5 to 14 per cent
for males and by −8 to 14 per cent for females. But under the MM-P model the slope is altered by −34 to 29 per cent
for males and by −24 to 24 per cent for females. This illustrates the robustness of the line-segment model to influential
points and helps explain the disparity between the slope estimates from the two models. Given that the precision of the
slope estimates is equivalent between the two models, this robustness property recommends the line-segment ME model
over the others considered.

7. Discussion

Many scientific investigations involve assessing the association between the two variables when measurements recorded
on both variables are subject to random error. When the variance of this error differs from one subject to another, a
heteroscedastic ME model is appropriate. Conventional ME models incorporate an equation error component, which
involves making potentially insupportable assumptions about the unknown data-generation mechanism. Misspecification
of the chosen model can lead to significant underestimation of the slope, regardless of the estimation procedure used.

In this paper, we have provided an alternate heteroscedastic ME model based on a line-segment parameterization.
This model does not incorporate equation error and is symmetric in both variables. For any setting in which this model
corresponds well with the underlying data-generation mechanism, we have provided an accurate estimate of the linear
association between the two variables, signified by the slope of the line segment, along with a reliable estimate of its
precision. We have demonstrated through simulations that, under conditions when the line-segment model is properly
specified, the corresponding variance estimate will yield smaller confidence intervals than will equation-error models
when the error variances are not small. This novel estimation procedure enables an investigator to make precise inferences
about the slope when heteroscedastic ME models are applied to scientific data, and thereby draw conclusions that
will generally be more trustworthy than those derived using other ME models. Moreover, because the line-segment
parameterization is robust against influential points which may plague equation-error models when their implementation
is misspecified, the advantages of our model are further reinforced.
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