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We demonstrate that the geometry of a data cloud is computable on multiple scales without prior knowledge
about its structure. We show that the concepts of “time” and “temperature” are beneficial for constructing a
hierarchical geometry based on local information provided by a similarity measure. We design two devices for
construction of this hierarchy. Along the time axis, a regulated random walk incorporated with recurrence-time
dynamics detects information about the number of clusters and the corresponding cluster membership of
individual data nodes. Along the temperature axis we build the geometric hierarchy of a data cloud, which
consists of only a few phase transitions. The base level of the hierarchy especially exhibits the intrinsic data
structure. At each chosen temperature, we form an ensemble matrix that summarizes information extracted
from many regulated random walks. This device constitutes the basis for constructing one corresponding level
of the hierarchy by means of spectral clustering. We illustrate the construction of such geometric hierarchies
using simulated and real data.
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I. INTRODUCTION

Much of the impetus for exploratory data analysis in the
sciences, from astronomy to taxonomy, comes from the prob-
lem of objectively sorting individual data nodes into homog-
enous clusters, and then discovering the best arrangement of
these clusters into higher-level groups �1,2�. This task in
modern terms is equivalent to finding the data cloud geom-
etry and its topology �3,4�. Since our ability to visualize
high-dimensional data is limited, the computation of global
geometric information about a data cloud has attracted in-
tense research attention from mathematics, computer science,
neuroscience, physics, and statistics. By viewing a data cloud
as a sample from a manifold, many mathematicians try to
reconstruct its geometry by approximating the Laplace-
Beltrami operator and the Newmann heat kernel using the
discrete graph Laplacian, which is the matrix of pairwise
similarity �or affinity� measurements �5–7�. Machine learn-
ing researchers and applied mathematicians also devise spec-
tral clustering techniques based on the graph Laplacian
�8–10�. From information theory and statistical physics, neu-
roscientists and physicists formulate optimization problems
when encoding the data for transmission or modeling the
data with magnetic spin �11–13�. Some computer scientists
and statisticians tend to prefer modeling approaches by im-
posing distributional assumptions and resorting to the likeli-
hood principle for solutions �14,15�.

All of the aforementioned approaches commonly trans-
form the data cloud geometry into the solution of an optimi-
zation problem. Then scientists adapt analytic and numerical
techniques from probability theory and functional analysis in
mathematics as well as from statistical mechanics in physics
in order to provide algorithms and estimates for good ap-
proximate solutions to these hard optimization problems.

Among these approaches, some involve the time concept and
some the temperature concept, while likelihood-based ap-
proaches involve neither. Upon these observations, two ques-
tions naturally arise: �1� Is the transformation into an optimi-
zation problem absolutely necessary? �2� Is the involvement
of either the time or the temperature concepts coherent with
the task of finding the data cloud geometry?

This paper concludes that the answer to the first question
is negative. We propose an alternative approach for extract-
ing the data cloud geometry without involving the optimiza-
tion of some ad hoc choice of utility or energy functions.
This approach enjoys the benefit of avoiding consequential
artifacts such as resulting clusters consisting of just a single-
ton or a pair of data nodes. However, we argue that the
answer to the second question is positive. The temperature
concept is necessary in order to be coherent with the multi-
scale nature of data cloud geometry, while the time concept
is an effective apparatus for extracting clustering information
at a given temperature. In fact, we show that approaches that
make use of only one of the two concepts inherently miss
authentic features of the data cloud geometry. Meanwhile,
many existing popular clustering approaches, including sta-
tistical mixture analysis �16� and the hierarchical clustering
algorithm �17�, are found to be unable to provide realistic
information about the data cloud geometry; due to the omis-
sion of both concepts, especially when the dimension is high.
Specifically, we demonstrate that the often-asked
questions—how many clusters are there and how can we
devise a local-to-global approach to investigating a data
cloud?—are ill-posed. Coherent answers to these questions
ought to be threaded through time and temperature axes to
make meaningful sense.

In this paper, we postulate the global geometry of a data
cloud as a hierarchical composition which is constructed
based on a varying number of clusters or communities at
each of its levels. The base level of this hierarchy consists of
what we call core clusters �equivalent to a tightly connected
community in network theory �18��. Each core cluster has its
intrinsic intracluster scale, while there are also heterogeneous
intercluster scales among the collection of core clusters.
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These two types of unknown scales are bestowed by the
unknown data-generating mechanism. Due to the variation in
the “distances” between each pair of core clusters, a hierar-
chy is developed to represent the global geometry of the data
cloud. We devise an algorithm to compute this hierarchical
manifestation of a data cloud’s global geometry. This geom-
etry is essentially represented through an evolution of phase
transitions in clustering, computed by varying the tempera-
ture from a small to a large value. Related clustering results
also achieved by a sequence of phase transitions were de-
rived through superparamagnetic clustering, also called the
granular model �12,19�. However our approach is conceptu-
ally simple and computationally effective. It neither involves
the extra effort of embedding inhomogeneous Potts spins
onto each individual data node nor requires the tremendous
need for computing the most stable configuration of spin-
spin alignments under every given temperature. We demon-
strate and compare our method with existing popular alter-
natives using both simulated and real data.

II. TEMPERATURE AND TIME CONCEPTS

Why are temperature and time both essential concepts for
extracting the geometry of a data cloud? Suppose data xi
�Xn, i=1, . . . ,n are sampled from a manifold with unknown
characteristic feature V based on a distribution P� · � in Rp,
p�1. From the perspective of data compression, let the cost
of approximating datum x by xv be measured by some dis-
tortion function, d�x ,xv�. Lossy compression using the rate
distortion approach �13� or the statistical mechanics ap-
proach �11� is achieved by associating each x with a charac-
teristic v such that the mutual information of X and V is
minimized by subjecting it to a constraint on the expected
distortion. The optimal solution of such a variation problem
typically takes the form of a Boltzmann distribution:

P�x�v� � exp�− d�x,xv�/T� .

Note that the tuning parameter T plays the role of tempera-
ture in the heat kernel �7�. When T is sufficiently small, this
approach leads to mathematical artifacts by creating a large
range of values for v, corresponding to the one-nearest-
neighbor graph. In contrast, our approach drives the same T
toward zero—as in stochastic relaxation �21�—to extract the
base level of the data cloud geometry.

At a given temperature T, the heat kernel

K�xi,xj��T� = c

is a device for measuring the affinity between xi and xj in Xn.
Presumably, the collection �d�xi ,xj�� j=1

n contains the local
geometric information about Xn around each point xi. The
n�n symmetric similarity matrix W�T�= �wij�T�� summa-
rizes all available local geometric information about Xn
at the temperature T. Throughout this paper we set wii�T�
=0 for all i, and denote the degree of data point �or node�
xi at temperature T by di�T�=	 j=1

n wij�T�. A popular approach
for extracting geometric information from W�T� is to study
the Markov chain specified by the transition probability
matrix P�T�=D−1�T�W�T�, with the degree matrix D�T�
=diag�d1 , . . . ,dn�. This approach is especially appealing

from the point of view of graph theory: pij�T� represents the
probability of transition in one time step from node xi to xj
and is an increasing function of the edge-weight wij�T�. It is
argued through the development of the diffusion map that the
discrete time process �Pk�T��k=1

� integrates the local geometry
into global geometry �6,7�.

However, we do not use the time idea in the same fashion
as in the diffusion map, because the geometric information
contained in W�T� and thus in P�T� critically depends on the
choice of T. Consider the two extremes. On one hand, if T is
too high, then �Pk�T��k=1

� only provides information pertain-
ing to the whole data cloud as one single cluster at the top
hierarchical level of the global geometry of Xn. On the other
hand, if T is chosen too low, then �Pk�T��k=1

� becomes a ma-
trix corresponding to the one-nearest-neighbor graph, which
consists of many isolated closed loops. Therefore all Markov
random walks are easily trapped within a closed loop of sev-
eral data nodes. Consequently, for any T falling between the
two extremes, �Pk�T��k=1

� is not likely to reveal complete and
realistic geometric information about Xn, but runs the danger
of missing critical geometric information about the data
cloud. In this paper, we instead align the time component
with that of the designed mission-oriented regulated random
walk, which will be introduced below. Through this regu-
lated random walk, which is capable of exploring the entire
data cloud within a very reasonable temporal span, the time
concept becomes an effective apparatus for extracting clus-
tering information, including the number of clusters and
cluster membership at any given temperature.

In contrast, the popular hierarchical clustering algorithm
�17� and statistical mixture analysis do not make use of ei-
ther the time or temperature concepts. Very brief reviews of
both approaches can shed light on the important roles of
these concepts, especially temperature, when exploring data
cloud geometry. The hierarchical clustering algorithm works
by modifying the distance d�xi ,xj� into one “new metric”
which satisfies the ultrametric inequality condition for any
two disjoint sets of data nodes. Thus a pair of sets of nodes is
merged when they have the smallest ultrametric, and a new
level in the hierarchy is created. A full hierarchy derived in
this fashion is typically very complex with very many levels.
Different choices of the ultrametric, such as the complete
�pairwise maximum�, the single �pairwise minimum�, the
median, etc., can result in characteristically different hierar-
chies. These consequences are chiefly attributed to the fact
that the ultrametric poorly reflects the multiscale nature im-
bedded within the data cloud. Therefore this algorithm only
works when all involved clusters are convex and well sepa-
rated. It is thus prone to provide incoherent data cloud ge-
ometry when the clusters are not convex or they are convex
but relatively close to each other, as in the simulated data
sets used below.

As for statistical mixture analysis, much prior knowledge
must be assumed, such as a range for the number of clusters,
and parametric data-generating distributions for modeling
and constructing its likelihood function. These assumptions
are likely to be either unrealistic or wrongly imposed when
the data cloud consists of a large number of high-
dimensional measurements. Nonetheless, its resulting single
layer of clusters hardly conveys any valuable global informa-
tion regarding the data cloud geometry.
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III. REGULATED RANDOM WALK

Given a p-dimensional data cloud Xn, we construct an n
�n similarity matrix W�T� whose elements wij�T�, i� j, de-
pend on a temperature T�0 through the relation wij�T�
=exp�−d�xi ,xj� /T�, where d�xi ,xj� represents a distance �or
distortion� measure between pairs of nodes in Xn. We set
wii�T�=0 for all i. In scientific applications, the choice of the
distance measure should be based on expert knowledge
about the relationship among the objects represented by the
nodes. In the absence of external knowledge, the Euclidean
distance may be used by default. A similarity matrix con-
structed in this manner may be regarded as an adjacency
matrix associated with a fully connected network with
weighted edges. Many alternative methods for identifying
network communities are based on the adjacency matrix cor-
responding to a network in which two nodes are connected
by an edge if and only if the distance between them falls
below some threshold �or equivalently, their similarity is
above some threshold�, or if and only if nodes i and j are
mutually among the k nearest neighbors of each other ��23��.
This discretizes the connectivity among nodes, often produc-
ing disconnected components, and discards essential infor-
mation about the intracluster and intercluster scales inherent
in the data cloud geometry. The similarity matrix W=W�T�
used here preserves this information.

The degree di of data node i, computed as the sum of the
ith row of W�T�, is a measure of the density of the data cloud
in the vicinity of node i with respect to the temperature T.
The degree matrix D�T� is then the diagonal matrix whose
diagonal elements Dii are the corresponding degrees di. If
desired, one may eliminate those nodes whose degrees fall
below some specified threshold, since such nodes may be
considered outliers or extreme points rather than integral
components of the data cloud hierarchy. In our examples we
do not implement this option.

Given W�T� and D�T�, we design a regulated Markov ran-
dom walk on Xn such that, once the walk enters a cluster, it
remains within that cluster with high probability until it has
been thoroughly explored before moving to another cluster.
The regulated steps and their functions are described as fol-
lows.

Algorithm of the regulated random walk:
�1� Select an initial node with a relatively large degree to

ensure that the random walk starts from a node that is likely
to be located within a dense region of a cluster. For our
algorithm we compute the sum V of the degrees of all n
nodes �i.e., the volume�, then select the smallest subset of
nodes such that the sum of their degrees exceeds 0.5V. We
choose the initial node at random from this subset, with the
probability of selection proportional to the degree.

�2� The random walk then moves from node to node
based on the Markov transition matrix P=D−1W, where W is
the similarity matrix and D is the corresponding degree ma-
trix. Hence element pij of P is the probability of moving
from node i to node j. Under this structure, the walk tends to
move from each node to one of its nearest neighbors but may
visit a distant neighbor with some small probability. How-
ever, we add a feature that will bias the walk toward remain-
ing in the vicinity of previously visited nodes: suppose node

j has been visited m times. If the walk is at node i, we
multiply the transition probability pij by the bias factor em/M,
where M is defined in the next step. This necessitates main-
taining a record of the number of times each node has been
visited during the random walk.

�3� Remove a node from the random walk once it has
been visited M times, where M is a predetermined threshold,
and modify the transition matrix P accordingly. This ensures
that, once the walk enters a cluster, it cannot remain there
indefinitely. Once most of the nodes in a cluster have been
visited M times, the walk is very likely to transition to an-
other cluster. The walk may return to an earlier cluster to
visit the remaining nodes without harming the effectiveness
of the algorithm.

�4� We regard each step of the random walk as a time unit.
Throughout the walk we maintain a record of the recurrence
time for node removal. The first entry in this record is the
time t1 until the first node is removed. Each subsequent entry
in the record is the time tj after the �j−1�st node removal
until occurrence of the jth node removal, j�2. This makes
T= �t1 , t2 , . . .� a random process of recurrence times for node
removal during the random walk.

�5� Terminate the random walk when every node has been
visited at least once. By this point almost all nodes have been
removed.

The node-removal threshold value M is empirically cho-
sen based on the size of the data set. For large sets, we find
values of 3–5 adequate, while smaller sets usually require a
higher threshold. This choice allows a regulated random
walk to thoroughly explore each individual cluster’s regional
geometry, while also traveling quickly among all the cluster
regions. It is noted that the unregulated random walk based
on P, i.e., our regulated walk with M =�, will take an ex-
tremely long time to visit all nodes, while the random walk
with M =1 will visit all nodes very swiftly, but without car-
rying out any exploration within a cluster. Neither extreme
case will provide insight about the geometry of Xn.

A sequence plot of the recurrence time process T produces
a profile consisting of a train of segments, with the beginning
of each segment marked by a significant spike in the recur-
rence time when the walk enters a previously unexplored
cluster. The idea behind the relationship between the spikes
in the recurrence time plot and the clusters in the data cloud
is simple. When the random walk enters a cluster for the first
time, as at the beginning of the walk, it will tend to remain
there for a long time, moving among most if not all the nodes
in that cluster. Thus many steps are required before any node
in that cluster is visited M times and consequently removed
from the walk, provided M is not too small. Thereafter the
remaining nodes in the cluster receive their Mth visit after
relatively few steps, since they have each already been vis-
ited several times. Eventually most of the nodes in the cluster
are removed from the walk, making it more likely for the
walk to move to another cluster. Once it enters the new clus-
ter, many steps will be required before the first node in that
cluster is removed. If at any point the walk returns to an
earlier cluster, the remaining nodes in that cluster will be
removed after only a few steps since they are likely to have
already been visited several times previously, and moreover
there are fewer nodes available for visitation. If the spikes
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are not sufficiently pronounced when it is known that the
data are clustered we can tune the parameter M by examin-
ing plots of T for several iterations of the regulated random
walk at increasing values of M until prominent spikes occur.

Figure 1 displays a simulated data cloud in R3 consisting
of 1000 data nodes in five equal-sized core clusters, with
different intercluster distances, along with a plot of the cor-
responding recurrence time process for a single regulated
random walk with M =5. In this case, the number of clusters
observable in the data plot exactly matches the number of
tall spikes evident in the recurrence time profile. Of course,
this level of accuracy is most likely when the intercluster
scale is large compared to the intracluster scale. Ideally, each
individual segment between spikes in the process results
from the exploration of a single cluster during the regulated
random walk. However, especially when clusters are near
each other, the walk may transition between clusters several
times within such a segment. This does not ultimately harm
the success of this procedure as long as the spikes truly mark
transitions between clusters. In fact, two of these five clusters
overlap to some extent, which is why two of the spikes are
close together. It is likely that the random walk returned from
exploring the second cluster to finish exploring the first clus-
ter before moving to the third cluster. Yet we still see five
and only five prominent spikes.

In our algorithm, we identify the locations of the spikes in
the recurrence time profile by locating the top � percent of
recurrence times �usually 1���5�. The larger M is, the
smaller � should be so that only the most prominent spikes
are identified. If several of these locations are consecutive,
we take only the first one. Then we partition the recurrence
time profile based on these spike locations into consecutive
segments, and assign node xi to segment k if node xi was
visited a full M times during the walk, and was visited at
least half of those times during segment k. Thus each indi-
vidual segment of the profile identifies nodes that probably
inhabit the same cluster, in as much as the nodes assigned to
the same segment were visited multiple times between prob-
able transitions from one cluster to another.

Finally, we construct an assignment matrix A, with ele-
ment aij =1 if nodes xi and xj are assigned to the same seg-
ment in the profile, and aij =0 otherwise. We set aii=0 for all
i. While the nonzero elements of this assignment matrix in-
dicate probable mutual cluster membership among pairs of
nodes, the likelihood of classification error is high. However,

by conducting a large ensemble of such regulated random
walks, the effect of these misclassifications can be attenu-
ated. This is explored in the next section.

IV. ENSEMBLE OF REGULATED RANDOM WALKS

To obtain an accurate estimate of mutual cluster member-
ship for each pair of nodes in the data cloud, we generate a
large ensemble of N regulated random walks using the algo-
rithm given in Sec. III, with the temperature T fixed. In prac-
tice, we set N=1000. We consolidate the information that
was extracted from each walk and stored in each correspond-
ing assignment matrix A by constructing an ensemble matrix
E=E�T� in which component eij is the proportion of occa-
sions among the N random walks in which nodes xi and xj
are assigned to the same segment in the recurrence time pro-
file. This is easily accomplished by adding the N assignment
matrices and dividing the sum by N. Hence element eij of E
may be regarded as the empirical probability that, if nodes xi
and xj are assigned to the same cluster, the assignment would
be correct.

Let E�=E��T� denote the unknown matrix that contains
the true mutual cluster membership, whose element eij

� =1 if
nodes xi and xj do, in fact, belong to the same cluster at the
scale corresponding to T, and eij

� =0 otherwise. The meaning
of “cluster” here depends on the temperature T since at
higher temperatures the clusters may be conglomerations of
the core clusters identified at lower temperatures. The en-
semble matrix E�T� can thus be taken as a perturbation of
E��T� at the level of the hierarchy of global geometry of Xn
corresponding to T. By employing appropriate permutations,
E� can be represented as a 0–1 block-diagonal matrix, with
each block indicating the members of one common cluster.
The eigenvalue corresponding to a block is equal to one less
than the cluster size. Thus the number of nonzero eigenval-
ues of E��T� is equal to the number of clusters in the data
cloud at the scale corresponding to T.

Hence the dominating eigenvalues of the ensemble matrix
E�T� resulting from N regulated random walks should pro-
vide evidence for the number of clusters perceptible at tem-
perature T. We first obtain a matrix B corresponding to E,
which is the diagonal matrix whose diagonal elements are
the sums of the corresponding rows in E. Then we normalize
E to produce a positive semidefinite matrix I−B−1/2EB−1/2,
whose eigenvalues must be nonnegative. To normalize these
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FIG. 1. Data cloud of points �x ,y ,z� in R3 consisting of five clusters, with corresponding recurrence time profile revealing a train of five
segments, with node removal parameter M =5.
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eigenvalues we divide each of them by the largest value
among them, then subtract the results from one. Finally, we
plot the normalized eigenvalues in decreasing order. From
this eigenplot we look for a significant spectral gap—a point
at which the normalized eigenvalues drop significantly from
values near one toward zero. We denote the location of the
spectral gap in the eigenplot, if any, by C�T�. The spectral
gap, or absence thereof, serves as the chief source of infor-
mation about the number of clusters in the data cloud at
temperature T and is most robust when the temperature is
low. If no gap is evident, and the eigenvalues gradually de-
crease from one toward zero, then we can infer that, at the
scale corresponding to the chosen temperature, any macro-
scopic clustering in the geometry of the data cloud is not
visible at that scale. This often occurs when the temperature
is very low so that only a large number of microscopic clus-
ters are identified. If the gap occurs immediately after the
first eigenvalue, then the data cloud may be viewed as a
single cluster at that scale. This eventually occurs when the
temperature climbs sufficiently high even when multiple
clusters are found at lower temperatures.

Figure 2 displays four eigenplots, each obtained from the
ensemble matrix resulting from 1000 regulated random
walks on the data cloud displayed in Fig. 1 at one of four
successive temperatures. At the lowest temperature �top left
panel�, the spectral gap occurs at the fifth normalized eigen-
value, thus correctly identifying the presence of five core
clusters in the data cloud. As the temperature increases, the
location of the gap gradually decreases to four �top right
panel� and then to two �bottom left panel�, signifying three
levels in the geometric hierarchy. The two clusters that are

closest together merge into a conglomerate cluster, resulting
in four clusters, and then this conglomerate merges with the
two clusters that are nearby to form a larger conglomerate,
resulting in two clusters. Finally, all clusters merge into one,
so that the eigengap occurs after the first eigenvalue �bottom
right panel�. Hence a hierarchy of clustering has been iden-
tified.

It is readily apparent that the ensemble matrix E is used
here in place of the similarity matrix W for the purposes of
spectral clustering, with the normalized graph Laplacian
I−D−1/2WD−1/2 replaced by the normalized ensemble matrix
I−B−1/2EB−1/2. Both the similarity matrix and the ensemble
matrix contain information about the local geometry of Xn,
but the latter matrix is much more informative about the
global geometry. The ensemble matrix contains clustering
information extracted from multiple regulated random walks,
which depends very little on the size, shape, or density of the
individual clusters. Meanwhile, clustering based on the simi-
larity matrix has been shown to be highly susceptible to such
features �24� since the information about the local geometry
is based solely on the relative proximity of nodes in the data
cloud and cannot take into account more general geometric
characteristics.

Once the number of clusters C�T� has been estimated at a
specified temperature, the spectral clustering algorithm of
Ng, et al. �9�, is applied to the ensemble matrix, using the
location C�T� of the spectral gap in the corresponding eigen-
plot for the number of clusters k. In this algorithm, the
k-means procedure is applied to the last k normalized eigen-
vectors �corresponding to the largest k normalized eigenval-
ues� of the normalized ensemble matrix I−B−1/2EB−1/2 to as-
sign the corresponding data points among k clusters. The
spectral clustering algorithm of Shi and Malik �8� may also
be implemented, with the last k eigenvectors of I−B−1E used
as the basis for discriminating among clusters. Once the clus-
ter assignments are made, we may then form an empirical
assignment matrix corresponding to that temperature, where
element �i , j�=1 if the spectral clustering algorithm assigns
nodes i and j to the same cluster, and �i , j�=0 otherwise. In
the ideal situation, this matrix will match the true cluster
assignment matrix E��T�.

V. UNVEILING HIERARCHICAL DATA CLOUD
GEOMETRY THROUGH MULTIPLE SCALES

To discover the complete hierarchy of the global geom-
etry of data cloud Xn, we run the algorithm over a wide
range of temperature values, from very low to very high. The
resulting collection of ensemble matrices typically crystal-
lizes into just a few different phases corresponding to the
hierarchical structure. See Blatt et al. �12�, Kushnir et al.
�10�, and Sharon et al. �20� for similar results involving the
use of multiscale approaches to detect hierarchical clustering
among data. A sufficiently high temperature gives rise to the
phase of one cluster—the entire cloud Xn. A sufficiently low
temperature, say T1, brings out the intrinsic intercluster scale
by identifying the collection of core clusters. We may iden-
tify a suitable value for T1 by reducing the temperature until
the average degree of the similarity matrix �normalized by its

FIG. 2. First ten normalized eigenvalues of the normalized en-
semble matrix resulting from 1000 regulated random walks on the
data cloud from Fig. 1, at four increasing temperatures, with spec-
tral gap evident at the fifth value �top left�, the fourth value �top
right�, the second value �bottom left� and the first �bottom right�.
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row-wise maximum� is nearly equal to 1. Under such a tem-
perature the regulated random walk will take the trajectory of
the one-nearest-neighbor path. Thus additional phases will
not arise when the temperature drops below T1. In contrast,
eigenvalues equal to zero for the corresponding normalized
graph Laplacian have very high multiplicity since it is asso-
ciated with the one-nearest-neighbor graph.

Figure 3 displays graphical representations of the en-
semble matrix E�T� based on 1000 regulated random walks
on the five-cluster data cloud shown in Fig. 1 at the four
different temperatures corresponding to the eigenplots in Fig.
2. The darkness of a pixel at point �i , j� in the grid reflects
the value of component ei,j on the unit interval. Since we
have organized the true cluster membership of the simulated
nodes in consecutive order, the resulting block-diagonal pat-
tern at the lower temperature, shown by the grid in the first
panel, makes the base level of the geometric hierarchy ap-
parent. As the temperature increases, the two nearest clusters
merge into a conglomerate cluster as is evident from the
merger of the two blocks at the bottom-right of the grid in
the second panel. When the temperature increases further, the
four nearest clusters become conglomerate, as seen in the
third panel. Eventually, as the temperature climbs, the entire
grid will become dark gray, as the fourth panel shows.

To illustrate that the resulting collection of empirical as-
signment matrices corresponding to levels of the geometric
hierarchy are indeed crystallized by means of gradual phase
transitions along the temperature axis, Fig. 4 displays repre-
sentations of the empirical assignment matrices resulting
from performing spectral clustering on the first three en-
semble matrices given in Fig. 3, but with k set to 5=C�T1� in
each case. Once again we note the progression through the

geometric hierarchy from five core clusters at the lowest
level �top left panel�, to three core clusters and one conglom-
erate cluster at the intermediate level �top right panel�, to one
core cluster and one big conglomerate cluster at the highest
level �bottom left panel�. Thus by varying the temperature
we can recover any hierarchy of clusters present in the data
cloud.

FIG. 3. Resulting phase transitions for the en-
semble matrix based on 1000 regulated random
walks on the data cloud from Fig. 1, at four tem-
peratures. The darker the shade of element �i , j�,
the closer the value of ei,j is to one.

FIG. 4. Resulting phase transitions for the empirical assignment
matrix based on performing spectral clustering on the first three
ensemble matrices of Fig. 3, with five clusters specified in each
case. If element �i , j� is shaded then nodes i and j are assigned to
the same cluster at the respective temperature.
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Based on the illustration given in Fig. 4, we now can
reliably depict the mechanism underlying the occurrence of
the sequential phase transitions as follows. At the lowest
temperature T1, the node removal device in our regulated
random walk permits it to break away from the closed loops
characterizing the one-nearest-neighbor graph, and the ran-
dom walk always travels to the nearest neighbor among the
remaining nodes. This is how the core clusters are identified.
As the temperature increases, the barrier among a small col-
lection of core clusters, which share the smallest intercluster
scale, becomes less prohibitive than at the lower tempera-
ture. Hence it is increasingly likely that their nodes are con-
secutively visited in an intercluster fashion by the regulated
random walk. The shadows seen in Fig. 4 are manifestations
of such a phenomenon. As the temperature sufficiently in-
creases, this small collection of core clusters will conse-
quently first merge into a conglomerate cluster. This process
occurs in a discrete fashion due to the discreteness involved
in the choice of the spectral gap in the eigenplot and the
k-means clustering involved in spectral clustering. This first
conglomerate cluster that emerges, together with the remain-
ing well-separated core clusters, then form the next level of
the hierarchy. This is how the first phase transition occurs.
When the temperature increases further, its interaction with
the current smallest intercluster scale will produce the phase
transition and thus determine the formation of the next level
of the hierarchical geometry. Finally, when the temperature is
high enough to break all the barriers set by all the intercluster
scales that previously constrained the regulated random
walk’s travel trajectory, there will be no distinct cluster mem-
berships but only one cluster of the entire data cloud.

With the above mechanistic reasoning, we conclude that
our computational algorithm is an effective approach for un-
veiling hierarchical data cloud geometry. It performs remark-
ably well in conjunction with the spectral clustering algo-
rithm to correctly identify the number of clusters and cluster
membership at each hierarchical level, and thus to reveal the
global geometry of a data cloud. Other multiscale approaches
may succeed in identifying features of hierarchical structure
in a convex data cloud but lack the flexibility to handle gen-
eral cases. Some such approaches are based on an adjacency
matrix obtained by establishing the presence of an edge by
the k-nearest-neighbor criterion, or by a threshold on the dis-
tance �or similarity� between nodes. The hierarchy is discov-
ered by varying the value of k or of the threshold in order to
determine critical values at which phase transitions occur. In

�22�, for example, network nodes are connected by an edge if
the similarity measure between them exceeds a threshold
Smin. The value of Smin is increased until it falls into a critical
range in which the network breaks into separate components.
The weakness of any clustering method that bases the con-
nectivity among nodes solely on the distance or similarity
measure is exposed when the cluster membership is not co-
herent with that measure, such as when the clusters are not
convex. The ensemble of regulated random walks transforms
the information contained in the similarity matrix into infor-
mation about mutual cluster membership regardless of the
geometric structure of the data cloud. This quality will be
demonstrated in Sec. VI.

VI. NUMERICAL ILLUSTRATIONS AND AN ANALYSIS
OF REAL DATA

Most clustering techniques work well when the clusters
are convex, but tend to fail when the clusters are not convex
because such techniques are limited by their dependence on
the distance measure. The regulated random walk, however,
is robust against nonconvexity of the clusters. To illustrate,
we generate 2000 data nodes in R2 configured in three con-
centric rings, with the outer ring broken into three pieces and
the gap between the middle and outer rings wider than the
gap between the middle and inner rings, as shown in Fig. 5.
Hence there are five distinct, nonconvex clusters.

We apply an ensemble of 1000 regulated random walks
on this data cloud at a sufficiently low temperature. The first
ten normalized eigenvalues of the resulting normalized en-
semble matrix at the lowest temperature are also displayed in
Fig. 5. A discernible spectral gap occurs after the fifth nor-
malized eigenvalue. Thus we are justified in concluding that
our method recognizes five clusters among the data.

We then apply the spectral clustering algorithm, with five
clusters specified, to the resulting ensemble matrix at this
and two higher temperatures. We use five different colors to
signify the five different cluster assignments of the nodes at
each temperature and display the results in Fig. 6. For the
lowest temperature all data points are correctly assigned
among the five core clusters, while for the middle tempera-
ture the two inner rings become one conglomerate cluster
and the three pieces of the outer ring begin to merge into
another conglomerate cluster. At the highest temperature all
three rings begin to merge into one whole cluster.

FIG. 5. Simulated data cloud consisting of
2000 points �x ,y� in R2 among five nonconvex
clusters, and the first 10 normalized eigenvalues
of the normalized ensemble matrix based on 1000
regulated random walks on this cloud at a suffi-
ciently low temperature.

TIME, TEMPERATURE, AND DATA CLOUD GEOMETRY PHYSICAL REVIEW E 82, 061110 �2010�

061110-7



This simulation study demonstrates the effectiveness of
the ensemble matrix derived from the regulated random
walks in identifying the correct number of clusters and in
assigning data points to the correct clusters, even when the
clusters are not convex. At the lowest temperature, the regu-
lated random walk tends to remain within a core cluster,
regardless of its shape, until the majority of its points have
been deleted, and then moves to the next cluster. This feature
makes the method robust against nonconvexity of clusters
and gives it the advantage over other approaches. For in-
stance, when the hierarchical clustering algorithm is applied
to this simulated data, we find that for most choices of ul-
trametic, except for the single one, the clustering results con-
sist of splitting the middle ring into pieces which are bound
with the three outer pieces.

We also apply our approach to another simulated data set,
which is the example presented by �24� involving a long
narrow strip and a Gaussian ball in R2, as shown in Fig. 7,

but using 700 points instead of 1400 points. They show that
spectral clustering based on the second eigenvector of the
normalized graph Laplacian merely splits the data cloud
down the middle so that the entire left half of the strip is
clustered with the ball. We find that the hierarchical cluster-
ing algorithm also works very poorly on this simulated data
even with the single ultrametric.

We apply our approach over a range of temperatures and
find that the eigenplots pertaining to the range from low to
medium temperatures indicate more than two clusters are
present. However, making use of the prior knowledge that
there are two clusters, we gradually increase the temperature
and perform our ensemble of regulated random walks at each
step until the eigenplot indicates two clusters. When we per-
form spectral clustering on the resulting ensemble matrix, we
find that the misclassification rate is an amazingly low 4.4%.
The cluster assignments are indicated in Fig. 7 by the differ-
ent shades, demonstrating the remarkable performance of our
method.

For a practical application, we also analyze electroen-
cephalogram �EEG� recordings taken from nine tetrodes dis-
tributed on three regions of a rat’s brain while it is within a
cage. We select blocks of recordings from each of three ve-
locity periods and partition each block into intervals of 150
EEG recordings �equivalent to 0.1 s� each. For each tetrode
we compute the proportion of EEG measurements within
each interval which fall into the top 5% and into the bottom
5% of all measurements at that tetrode over the entire record-
ing epoch. This gives us 2590 data points of 18 dimensions
�nine upper extreme proportions, and nine lower extreme
proportions�. The first 990 points pertain to the high velocity
block, the second 600 points pertain to the medium velocity
block, and the remaining 1000 points pertain to the low ve-
locity block. We apply our clustering method to determine
whether extreme EEG recordings on the centisecond level
are influenced by the rat’s locomotion. If there is no influ-
ence, the nodes in the three blocks should be distributed
among the resulting clusters in about the same proportion as
the relative sizes of the blocks.

We identify a sufficiently low temperature and then obtain
the normalized eigenvalues of the normalized ensemble ma-
trix from 1000 regulated random walks on the data cloud. We
discern that the spectral gap appears to occur between the
third and sixth eigenvalue, so we apply spectral clustering
with both k=3 and k=6 to the ensemble matrix. When k=3,
582 of the 864 points �or 67%� assigned to the first cluster
belong to the low-velocity block, while 687 of the 1317
points �or 52%� assigned to the third cluster belong to the
high-velocity block. Yet the low-velocity block comprises
only 39% of the data, while the high-velocity block com-
prises only 38%. This provides evidence that the occurrence
of extreme values in the EEG is influenced by the rat’s
movement. More significantly, for k=6, 79% of the nodes
assigned to the first cluster belong to the low-velocity block.
This analysis using our clustering method brings out a sig-
nificant relationship between an animal’s locomotion and its
neurological activity. That is, when extreme values of the
EEG occur it is much more likely that the animal is relatively
still, perhaps asleep.

Next we apply our procedure to the iris data set �25�,
which has become somewhat of a benchmark for clustering

FIG. 6. �Color� Cluster assignments of data nodes from the data
cloud given in Fig. 5 based on the spectral clustering algorithm,
with five clusters specified each time, applied to the ensemble ma-
trices obtained from 1000 regulated random walks on simulated
nonconvex clusters for increasing sequence of three temperatures.

FIG. 7. Clustering of a data cloud consisting of a Gaussian ball
and a long narrow strip of points �x ,y� in R2, based on the second
eigenvector of the normalized ensemble matrix after 1000 regulated
random walks at a moderately high temperature.
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procedures. These data include measurements on the length
and width of both sepal and petal for 150 iris blooms split
evenly among three species �setosa, versicolor, and vir-
ginica�. The measurements for the versicolor and virginica
clusters overlap considerably, making accurate classification
difficult. We gradually increase the temperature and run an
ensemble of regulated random walks until the eigenplot in-
dicates two or three clusters. We apply spectral clustering to
the resulting ensemble matrix with three clusters specified to
assign the data among them. We find that all 50 setosa irises
and all 50 virginica irises are correctly classified. But 25 of
the 50 versicolor irises are misclassified as virginica, and two
as setosa. Nevertheless, the overall misclassification rate is a
low 18%. This is comparable, for example, to the result of
the superparamagnetic clustering procedure of Blatt et al.
�12�, in which 125 irises were correctly classified and 25
were left unclassified. Hence the effectiveness of our ap-
proach is strongly confirmed, given that the versicolor and
virginica species are difficult to distinguish by any method.

To test the performance of our method on clusters that
cross each other in space, we apply it to the two intersecting
rings shown in Fig. 8, which were successfully distinguished
by the method in �10�. In this case, the eigenvalue plots
resulting from ensembles of regulated random walks from
low to high temperatures do not reveal a spectral gap until
the highest temperatures are reached, at which point the gap
occurs at the first eigenvalue. That is, our procedure fails to
detect the two rings as separate clusters, but only detects the
entire cloud as a single cluster. One might reasonably con-
tend that the perception of two clusters here requires prior
knowledge that the clusters are circular in shape, and that
without such prior knowledge there is no legitimate basis for
claiming that there are two clusters. Further investigation is
needed to determine whether the regulated random walk can
be enhanced to be able to distinguish intersecting clusters of
this type if it is known a priori that the clusters are circular.

Finally, we test our method on clusters of different densi-
ties. We consider the three clusters in R2 shown in Fig. 9,
which were each generated from a bivariate normal with a
distinct mean and covariance. At the lowest temperature, our
ensemble of regulated random walks results in a matrix with
three strong eigenvalues followed by a large gap. Hence the
presence of three clusters is correctly identified. When spec-

tral clustering is then performed on this ensemble matrix
with three clusters specified, we obtain a very low misclas-
sification rate of 2.17%. As the temperature increases the two
clusters on the left merge, and then the entire cloud merges
so that the hierarchy of the geometry is accurately discov-
ered. Hence different cluster densities are not an obstacle to
our approach at all.

VII. DISCUSSION

We perceive the global geometry of a data cloud as a
hierarchy composed of core clusters within conglomerate
clusters. An algorithm is devised to construct this hierarchy
of global information by incorporating both temperature and
time concepts and without causing mathematical artifacts. As
we thread through the hierarchy by varying the temperature,
the regulated random walk incorporates the time concept
through the recurrence times of node removal. Consequently,
through an ensemble of such walks, this algorithm reveals
realistic information about the number of clusters and the
cluster membership. The composition of clusters constituting
the base level of the hierarchy is especially important in real-
world applications. This geometric point of view of a data
cloud and the idea of using the ensemble of regulated ran-
dom walks on its structure is similarly applicable for discov-
ering the hierarchy of communities in a complex network.

Since the point of view of global geometry for a data
cloud is intrinsically genuine, and our technique cleverly ad-
dresses the most fundamental questions, we anticipate that
the ideas and the algorithm presented here will be recognized
as a major improvement in the exploration of data clouds and
complex network structures. For instance, this hierarchical
global structural information can be taken as the basis for the
study of system dynamics in biology and in social network-
ing. We anticipate that this approach will provide researchers
with a valuable tool for analyzing clustered data clouds when
the intrinsic clusters vary in size, shape, and density.

We find that for n�2000, the computational demand of
performing a large ensemble of random walks on a set of n
nodes over a range of temperatures is manageable, since the
task is easily run in parallel on multiple processors. As n
increases, however, the memory allocation for multiple
n�n data structures eventually bogs down the processing.

FIG. 8. Data cloud consisting of two intersecting rings of points
�x ,y� in R2.

FIG. 9. Data cloud consisting of points �x ,y� in R2 among three
clusters of different densities.
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Our R code, which is available upon request, may be opti-
mized in the hands of skilled programmers using either R or
other platforms. Nevertheless, techniques for very large n are
required. We are currently developing one such technique
which involves partitioning the data among blocks of man-
ageable size such that each node has an equal probability of
assignment to any block, then performing our clustering
method to each block separately. The combination of the
blockwise results into a final result presents some challenges
that are yet to be resolved. The idea of a multi-grid approach

as used in �20� is another potential methodology for handling
very large data sets.
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