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Chapter 1

A dynamic test for misspecification of a linear model

Michael P. McAssey

University of California, Davis

Fushing Hsieh

University of California, Davis

Various linear models may be specified when attempting to estimate
an apparent linear trend in real data sets, based on assumptions about
the possibly unknown mechanism for generating the data. However, in
many cases the best-fit line obtained from implementation of the speci-
fied model does not agree at all with the apparent trend in a scatterplot
of the data, based on the evident geometric structure. We use both real
and simulated data to illustrate the consequences of misspecifying a par-
ticular linear model for situations in which that model is inappropriate,
and propose a dynamic test which may be used to determine when its
specification is appropriate.

1.1. Introduction: Modeling the linear trend in real bivari-

ate data

The World Health Organization (WHO) established the Multinational

MONItoring of trends and determinants of CArdiovascular disease (MON-

ICA) during the 1980s to study the association between known risk factors,

like smoking and obesity, and trends in cardiovascular disease. The linear

association between data on the average annual change in the observed risk

score (X) and the average annual change in event rate (Y ), both given

as percentages, should be modeled using a measurement error structure,

with the sampling error in the statistics taken as the heteroscedastic mea-

surement error (Kulathinal, et al. (2002)). However, whether or not we

account for the measurement error, we obtain about the same estimate of

the slope of this linear trend when the specified model includes an addi-
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tive equation error component, as in the simple linear model. In this case,

the resulting best-fit line does not correspond with the perceived trend

based on the geometric structure of the data cloud. Figure 1.1 displays the

data scatterplots for males (N = 38) and for females (N = 36) separately,

along with the best-fit lines derived under the ordinary least squares (OLS)

method. The OLS method is based on the simple linear model (SLM), in

which the ith response Yi is associated with the covariate Xi by the relation

Yi = α+βXi+ εi, for i = 1, . . . , n. The additive equation error component

εi is a (usually Gaussian) random variable with mean zero and variance σ2,

with ε1, . . . , εn independent.

If one examines either data scatterplot and uses raw intuition—based

on the apparent geometry of the data scatter—to project the location of the

line which most suitably captures the linear association between the two

variables, rather than using mathematical rigor, he would likely conclude

that the slope of the plotted best-fit line based on the SLM is significantly

smaller than the projected slope. A similar best-fit line is obtained when the

measurement error is incorporated into the model using approaches whose

structures are akin to that of the SLM. This apparent underestimation of

the slope occurs because specification of the SLM for these data fails to

capture the underlying mechanism which generated the data.

Since the data-generation mechanism which produced the geometric

structure of the data cloud is often unknown, an investigator who wishes to

derive reliable estimates for a linear trend in the data requires simple but ef-

fective tools to determine the most appropriate model for that trend among

those available. In this paper, we propose such a tool and demonstrate its

implementation for identifying when a proposed linear model is inappro-

priate. While the examples presented here involve misspecification of the

SLM, this dynamic test is intended as a tool for identifying misspecification

of any linear model.

1.2. Illustration: Slope underestimation with the SLM

To further illustrate the necessity for such a tool, we generate a random

sample of 100 points scattered uniformly between −2 and 2 about the line

Y = 0 in a thick cloud, so that the trendline has a slope of zero. In

this case, the data-generation mechanism is inconsistent with the SLM.

We rotate the trendline and each point in the data cloud about the origin

through an angle greater than 45◦, say 51.3◦, so that the resulting data

cloud should properly be perceived to follow a linear trend whose slope is
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tan(51.3◦) = 1.25, based on the underlying data-generation mechanism we

have specified. However, if OLS is applied to estimate the slope of the trend,

the OLS slope estimate is only 0.98 — a significant underestimate. As we

increase the angle of rotation, the underestimation of the slope by OLS

becomes more pronounced. Figure 1.2 displays the data cloud along with

its actual trendline and the OLS best-fit line for six different progressively

steeper linear trends. Clearly, if a researcher attempted to estimate the

linear association between the two variables in any of the displayed scenarios

using OLS, the result would not guide the researcher to the truth about

that association. While subsequent diagnostic tools might pick up the lack-

of-fit in the most extreme cases, they may well miss it in more subtle cases.

The data-generation mechanism which produces the geometric structure of

a data cloud must not be ignored, and any model which does not properly

capture the linear trend in light of that structure must be rejected.

In Figure 1.3, the slope of the data-generating trendline as it makes a

complete rotation through 2π radians is shown, along with the correspond-

ing estimated slope based on OLS regression on the generated data. The

larger the magnitude of the slope of the actual trend, the greater the un-

derestimation when OLS is applied. This illustrates a common outcome

of misspecifying the SLM: the slope estimate is pulled toward zero as the

trend becomes steeper. The behavior of the estimated slope under OLS

as the actual trendline rotates depends on the extent to which the data-

generation mechanism differes from the SLM. In a scenario in which the

data are indeed generated from a SLM (with a reasonably small error vari-

ance) and the OLS slope estimate is computed as the plane rotates, the

plot of the slope estimate follows that of the trendline slope very closely

even when it becomes quite steep, as displayed in Figure 1.4. This is how

the plot of slope estimates for rotating centered data should appear when

the model is specified correctly—like the plot of the tangent function. Of

course, as the error variance increases this ideal result will deteriorate even

when the model is properly specified.

1.3. A test for misspecification of a linear model for real data

This illustration suggests a dynamic hypothesis test for misspecification of

any linear model. Suppose we are presented with bivariate data, and we

hypothesize that the association between the variables might be adequately

explained by a particular linear model M0 among linear models in a class

M.
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• Center the data about zero for both variables, select one variable as

the covariate, apply an estimation procedure consistent with M0,

and obtain a slope estimate β̂ and an estimate σ̂2 for the error

variance.

• Rotate the plane completely about the origin in small increments

and compute a new slope estimate at each step. Plot the pro-

gression of the slope estimates against the angle of rotation, as in

Figures 1.3 and 1.4.

• Meanwhile, generate a test data set from M , using the same cen-

tered values of the covariate, and the initial estimates β̂ for the

slope and σ̂2 for the error variance.

• Apply the same estimation procedure to compute slope estimates

for the test data as the plane is rotated about the origin, and add

the progression of these slope estimates to the previous plot.

If the original data were generated in a manner consistent with M , the two

plots should be similar in amplitude, phase and shape.

Of course, variability is expected in the generated test data, especially

when σ̂2 is large. Thus we generate N test data sets in the same way,

and repeat the rotating slope estimation procedure on each set. At each

increment of the rotation we will have a distribution of N slope estimates.

We may select an upper and lower quantile for this distribution at each

angle and thereby obtain an empirical pointwise confidence band for the

path of the slope estimate if the original data may indeed be regarded as

having been generated from the M . If the path of slope estimates for the

original data does not lie entirely within this band, we may reject the null

hypothesis: that M is a suitable model for the generation mechanism of

the original data, and conclude at the corresponding significance level the

alternative hypothesis: that M is not a suitable model for the generation

of the data. Note that, in the event the null hypothesis is rejected, this

hypothesis test does not recommend an alternative model for consideration.

For instance, consider again the WHO MONICA data for males. When

we implement the procedure described above, hypothesizing that M is the

SLM, we obtain the results shown in the left panel of Figure 1.5. The

progression of OLS slope estimates as the centered real data rotate about

the origin is represented by the solid line. We generate N = 1000 data

sets under the SLM, using the OLS slope estimate for the unrotated real

data, and a robust estimate of the error variance based on the middle 50%

of the ordered residuals. The pair of dashed lines represents the middle
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50% of OLS slope estimates for the rotating generated data, and the pair

of dotted lines represents the middle 90%. Clearly, the path for the real

data does not fall within either band, since its amplitude and phase are

quite different, so that we may conclude at the 0.1 significance level that

the SLM would be a misspecification for these data. When we perform

the same experiment with the centered WHO MONICA data for females,

we find that the progression of OLS slope estimates also lies outside the

confidence bands, as shown in the right panel of Figure 1.5. Hence the null

hypothesis would also be rejected for the female data. We may therefore

further suspect the suitability to these data of any measurement error model

which involves an equation error component, as such models produce slope

estimates very close to those obtained using OLS (as in Kulathinal, et

al. 2002) and Patriota, et al. 2009).

Now consider an alternative data-generating mechanism for these data.

Suppose we use orthogonal least squares to estimate the slopes for each

data set, based on the linear model which regards the observations as per-

pendicular deviations from the trendline. In this model, Yi = βXi + νi for

i = 1, . . . , n, with independent errors νi = εi
√

β2 + 1, where εi ∼ N (0, σ2).

The progression of these slope estimates as the centered real data for males

and for females rotate about the origin is represented by the solid line in

each plot of Figure 1.6. We also generate N = 1000 data sets under this

model, using the orthogonal least squares slope estimate for the unrotated

real data, and an estimate of the error variance based on the entire collec-

tion of residuals. The pairs of dashed lines represents the middle 50% and

90% of slope estimates for the rotating generated data. But since there

is almost no variability, both of these confidence bands are very narrow—

almost superimposed. In this scenario, the path for the real data comes

very close to falling within the bands, especially for the females, despite

the narrowness of the bands. Moreover, the paths of the estimates have the

tangent-function appearance that we expect when the model is specified

well. Hence the slope estimate is slightly biased in each case, so that a

bias correction of appropriate size should be added to the slope estimate

to bring it within the confidence bands. This would produce a model that

will pass the dynamic test proposed here.

Once we make the necessary bias corrections to the slope estimates, the

amended model passes our hypothesis test. Hence when the measurement

error for the observations on each variable is considered for these data, it

would be wise to implement a model whose structure is more akin to this

latter model, and less like the SLM, as presented in McAssey and Hsieh
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(2010). In Figure 1.7, the trendlines for males and females based on the

slope estimates derived using orthogonal least squares (OM) are added to

the scatterplots given in Figure 1.1. It is intuitively apparent that the

trajectories of these two trendlines correspond much more closely to the

geometric structure of the respective data clouds.

1.4. Discussion

In many data analyses one has limited knowledge about the underlying

data generation mechanism, so that the specification of a linear model may

become an arbitrary choice. The above examples demonstrate that the

cost of misspecification can be high. Hence researchers must be wary of

specifying a particular linear model in the analysis of the linear association

between two variables unless there is convincing evidence that the data

were generated in a manner consistent with that model. We present a

simple test that may be used to determine whether the specified model is

a plausible representation of the underlying data generating mechanism for

the observed data. A careful researcher may implement this simple test

as a tool to assist in discriminating among proposed linear models and

corresponding estimation procedures for analysis of real data.
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Fig. 1.1. Scatterplot of change in event rate versus change in risk score, from WHO
MONICA project, and best-fit lines based on OLS regression, for males and females
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Fig. 1.2. Rotating data cloud, with the underlying linear trend and the estimated trend
under OLS regression
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Fig. 1.3. Progression of the slope of the trendline for the rotating centered data cloud,
and the corresponding estimated slope using OLS regression for data which are not
generated from the SLM, as the plane rotates about the origin
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Fig. 1.4. Progression of the value of the slope estimate using OLS regression as the
plane rotates about the origin when the centered data are generated from the SLM with

a small error variance
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Fig. 1.5. Progression of the value of the slope estimate using OLS regression on the
centered WHO MONICA data for males (left) and for females (right) as the plane rotates
about the origin, along with 50% (dashed) and 90% (dotted) pointwise confidence bands
for a specified SLM based on 1000 generated data sets
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MONICA project, and best-fit lines based on both orthogonal least-squares (OM) and
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