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Abstract

A defining feature of many physiological systems is their synchrony and reciprocal

influence. An important challenge, however, is how to measure such features. This paper

presents two new approaches for identifying synchrony between the physiological signals of

individuals in dyads. The approaches are adaptations of two recently-developed

techniques, depending on the nature of the physiological time series. For respiration and

thoracic impedance, signals that are measured continuously, we use Empirical Mode

Decomposition to extract the low-frequency components of a non-stationary signal, which

carry the signal’s trend. We then compute the maximum cross-correlation between the

trends of two signals within consecutive overlapping time windows of fixed width

throughout each of a number of experimental tasks, and identify the proportion of large

values of this measure occurring during each task. For heart rate, which is output

discretely, we use a structural linear model that takes into account heteroscedastic

measurement error on both series. The results of this study indicate that these methods

are effective in detecting synchrony between physiological measures and can be used to

examine emotional coherence in dyadic interactions.
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Methodological Advances for Detecting Physiological

Synchrony During Dyadic Interactions

The synchronization of oscillatory systems – or coupled oscillations – is widely

studied in the biological and physical sciences (e.g., Mirollo & Strogatz, 1990; Pikovsky et

al., 2001; Weishenbush et al., 1992), with also multiple applications in the social sciences,

economics, and medicine (e.g., Quian Quiroga et al., 2002). The synchrony of these

oscillations can provide information about the system not available from separate

univariate analyses. Consider, for example, the investigation of several

electroencephalographic (EEG) signals measured simultaneously from an individual’s

scalp during a particular task. Each signal could be analyzed separately, and those with

the most activity would indicate an area of relative activation. However, various signals

can show simultaneous activation, revealing communication between different areas of the

brain during the task (Engel & Singer, 2001; Fries, 2005). Furthermore, different types of

such coherence – or synchrony – may be evident for different mental processes, as is the

case with epileptic seizures (Quian Quiroga et al., 2002). Thus, the study of synchrony

and oscillatory systems can provide a value means of studying psychophysiological

processes, as well as possible changes in those processes as a function of different stimuli

and conditions.

In the current study we propose the application of two recently developed

methodologies for examining the relations between two time series. The first technique is

the Empirical Mode Decomposition (EMD), an algorithm for filtering continuous time

series data. The second method is the structural heteroscedastic measurement-error

(SHME) model, which is adapted here for detecting linear associations between two

discrete time series. We apply these techniques to physiological data from individuals in

couples that participated in a laboratory-based social interaction task.

The paper is organized as follows. First, we provide a brief review of some of the

common synchronization measures and their rationale in the context of emotional
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processes in dyadic interactions. Second, we describe the EMD and SHME methods, with

details about each of the required steps for their implementation. Third, we illustrate the

application of the proposed methods with an application. The paper ends with a

discussion of the potential of these models in psychophysiological research.

Synchronization Measures

Synchronization measures have become an important tool for exploring the

associations between time series. Multiple methods now exist to identify and characterize

synchronization, including indices of linear interdependence, such as cross-correlation,

coherence, and event-related coherence, as well as more recent measures of nonlinear

interdependence, such as mutual information (Kramer et al., 2004). In econometric

research, for example, one of the most common methods to assess whether two series share

a pattern in their long-term fluctuations is co-integration (Granger, 1981; Engle &

Granger, 1987). In psychological research, perhaps the most standard method to assess

synchronization consists of cross-correlations (e.g., Gottman, 1990; Mauss et al., 2005).

This method can be useful to examine concurrent and lagged relations between two time

series, either through the entire series or through windows of interest (e.g., Boker et al.,

2002).

Synchronization of Emotion in Dyadic Interactions

Human and animal research suggests that psychophysiological linkages between two

conspecifics are an inherent element of social bonding and attachment (Coan, 2008; Coan,

Schaefer, & Davidson, 2006; Feldman, 2007; Gottman, Swanson, & Swanson, 2002;

Guastello, Pincus, & Gunderson; Hofer, 1984, 1994; Sbarra & Hazan, 2008). The study of

dyadic interactions indicates that emotional exchanges between the two members of a

couple can be highly interdependent (Thompson & Bolger, 1999; Cowan & Cowan, 2000;

Ferrer & Nesselroade, 2003; Ferrer & Widaman, 2008; Song & Ferrer, 2009). This research

shows, for example, that the adoption of one individual’s emotion state by another

promotes relationship longevity (Hatfield, Cacioppo, & Rapson, 1994), that the length of
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the relationship between romantic and non-romantic partners corresponds to the level of

emotional coherence that the pair maintains (Anderson et al., 2003), and that the facial

expression and emotional tone exhibited by romantic partners is a strong predictor of

relationship dissolution (Levenson & Gottman, 1985).

Research in dyadic interactions using psychophysiological signals is scarcer. In a

classic study of couples, Levenson and Gottman (1983) found that, during a conversation

of disagreement, distressed couples showed significantly higher levels of synchrony between

the partners’ autonomic response signals than non-distressed couples. Moreover, this

synchrony was predictive of martial satisfaction in the same couples. This study

notwithstanding, the relative absence of research on psychophysiological synchrony in

couples is conspicuous, largely because most theories of human attachment and emotion

regulation suggest that the emotional experiences of one member of a couple are highly

related – if not dependent upon – the experiences of his or her partner (c.f., Sbarra &

Hazan, 2008). In our view, a large part of the discrepancy is methodological; theoretical

developments in this area greatly outpace methodological innovations. In order to fully

understand dyadic emotion regulation and psychophysiological synchrony in couples, the

field needs accessible methods that can capture and adequately represent the complexity

in interdependent emotional regulatory systems (Cole et al., 2004).

Synchrony between Continuous Variables: Trend Extraction using Empirical Mode

Decomposition

The Empirical Mode Decomposition (EMD; Huang et al., 1998) is an algorithm

developed to filter continuous data into any number of intrinsic mode functions (IMFs),

each representing a particular frequency component of the original data. EMD works so

that the highest-frequency components are separated out of the original time series until

either no further frequency components can be detected within the residual series or a

pre-set maximum number of IMFs has been extracted. These IMFs must satisfy two

conditions. First, in each IMF, the total number of extrema and the total number of zero

crossings must be the same or differ by one. Second, at every point in the IMF, the mean
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value of the envelopes defined by the local maxima and the local minima must equal zero.

These conditions are necessary for the purpose of defining the concept of instantaneous

frequency in a meaningful way. The IMFs are extracted from a time series one-by-one

beginning with the highest intrinsic frequency using an iterative process called sifting.

The goal of this process is the empirical identification of intrinsic oscillatory modes in the

data based on their instantaneous frequencies. The time lapse between successive extrema

defines this time scale.

In the sifting process, the local maxima of the original time series are identified and

connected by a cubic spline to form a curved upper envelope for the series. A lower

envelope for the time series is formed in a similar way. In forming the cubic spline,

adjustments at the signal boundaries must be implemented to eliminate boundary effects.

The mean of the upper and lower envelopes is then computed and subtracted from the

original time series to form a new series. If this new series satisfies the two IMF

conditions, it is taken as the first IMF. Otherwise, the process is repeated on the new

series, and so on, until the IMF conditions are satisfied. Once the first IMF is identified, it

is subtracted from the original data and the residual becomes the starting point for

finding the next IMF. The procedure stops when the residual signal fails to yield any

suitable IMF candidates, or a pre-set maximum number of IMFs is extracted.1

The input to the EMD is any continuous time series. A strong advantage of this

non-parametric method is that it does not require a stationary time series in order to

accomplish its task. The output from the EMD consists of a residual signal and a set of n

IMFs in decreasing-frequency order. The first few IMFs cumulatively carry high-frequency

components of the original time series, which are here considered to carry extraneous

information riding on the actual signal of interest, which oscillates at a lower frequency.

These components could be caused by associated processes, or by concurrent phenomena

in the environment, or by imperfections in the recording instruments. Summing the

residual and the last k IMFs together thus produces a time series that captures the

information in which we are interested, while discarding extraneous information. Hence
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we refer to the resulting time series as the signal of interest.

An important goal here is determining which value of k to use. The idea is to find a

sufficient number of low-frequency IMFs to capture the signal that we wish to study, with

some tolerance for capturing extraneous information embedded in medium-frequency

IMFs. A Fast-Fourier Transform (FFT) could be used to detect the most powerful

frequencies within each IMF. Then only those IMFs whose dominant frequencies are below

a desired threshold are selected. However, use of the FFT is contrary to the EMD

approach, since it assumes global frequencies in the signal, while EMD is devised to

identify local frequencies that are not necessarily global. A better approach uses the

Hilbert–Huang Transform (HHT) applied to the IMFs (Huang, 2005; Huang et al., 1998).

This transform provides the amplitude and instantaneous frequency at each time point for

each IMF. The energy contained in a single IMF is the sum of the squared amplitudes.

Dividing this sum by the total energy of all IMFs enables us to compute the percentage of

the total energy contributed by each IMF. We then select the last k IMFs such that the

percentage of the total energy contributed by their combination exceeds some chosen

threshold, say 90%. Adding these to the residual produces the signal of interest. See Wu

and Huang (2004) and Kim et al (2008) for related applications of the HHT. Regardless of

the method employed, it is informative to compare the plot of the extracted signal with

that of the original signal in every case to determine whether the extracted signal appears

to capture the desired trend of the original while removing sufficient extraneaous

information. Such a comparison may convince one to include more or fewer IMFs. For a

simple example, Figure 1 shows (top panel) an obvious low-frequency sinusoidal signal

with high-frequency noise. The signal of interest (bottom panel) is completely captured by

adding the residual and the last three IMFs, whose combined energy is 99% of the total,

while the extraneous information (the noise) is completely removed.

Once the signals of interest are extracted, the synchrony between them can then be

assessed using cross-correlations. These steps are illustrated with empirical data in

subsequent sections.
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Synchrony between Discrete Variables: Slope Estimation using a Structural Heteroscedastic

Measurement-Error Model

The SHME model is a technique to detect linear associations between discrete time

series. This approach is particularly suited for capturing the relationship between two

time series when the variability within each time series is not constant. The first step in

the application of the SHME model consists of transforming the raw signal. For example,

if the observed time series consists of electrocardiogram (EKG) data (as in the current

empirical application), the raw signal is transformed into a heart rate in the form of, say,

beats per minute. This can be accomplished in various ways, as is illustrated in

subsequent sections.

Once the data are transformed, each of two time series are partitioned into n

segments of some specified width, where n depends on the duration of the task. The

choice of the segment width is a function of both detailed information and precision.

Denote these segments I1, . . . , In. Consider, for example, a selected time of five seconds

(5000 milliseconds) for the segments. Each segment Ii will consist of mi distinct heart rate

values xj,i, j = 1, . . . ,mi, for one of the series (e.g., one person’s signal), each of which

lasts for kj milliseconds, and pi distinct heart rate values yj,i, j = 1, . . . , pi for the other

series (e.g., the other person’s signal), each of which lasts for lj milliseconds. Hence

5000 = k1 + · · ·+ kmi = l1 + · · · lmi for i = 1, . . . , n. For each segment Ii, the weighted

mean heart rates are then computed as

ui =
1

5000

mi∑
j=1

kjxj,i and vi =
1

5000

pi∑
j=1

ljyj,i

for each series, respectively. Because the model requires the independence of u1, . . . , un,

v1, . . . , vn, we assume that the average heart rates in segments I1, . . . , In are mutually

independent for each subject.

Similarly, the weighted variance of the mean heart rate for each segment are

approximated as

σ2
i ≈ s2i

mi∑
j=1

(
kj

5000

)2

and τ2
i ≈ t2i

pi∑
j=1

(
lj

5000

)2

,
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where s2i and t2i are the sample variances for each time series over Ii, respectively. Since

these 2n variances are potentially different across the two series (e.g., as in two individuals

in a couple), any method for estimating the linear association between u = (u1, . . . , un)

and v = (v1, . . . , vn) must account for heteroscedastic measurement error on each variable.

The SHME model with equation error assumes that

ui = χi + εi , vi = µi + νi and µi = α+ βχi + γi ,

where the independent measurement errors are εi ∼ N (0, σ2
i ) and νi ∼ N (0, τ2

i ), and the

equation error is γi ∼ N (0, σ2). The normality of the model errors is well-justified, since

the observations ui and vi are defined as the weighted average of independent random

variables. Moreover, this model assumes that all error terms are mutually independent.

Under a structural model, both χi and µi are assumed to be random with

unspecified but finite first and second moments. Note that the symmetry of this model

would allow one to switch µi and χi in the latter model equation above, so that there is no

implication of directionality. Techniques for estimating the slope β in this setting are

available in the literature (e.g., Cheng & Riu, 2006; Kulathinal et al., 2002; Patriota et al.,

2009; McAssey & Fushing, 2010). When the measurement error variance is small, as in

the application here, the method-of-moments (Patriota et al., 2009) provides an efficient

estimate of the slope that is simple to compute. This approach will be used to estimate β

and test whether it is significantly nonzero in the empirical application.

To this end, let

Suu =
n∑
i=1

(ui − ū)2

n− 1
, Suv =

n∑
i=1

(ui − ū)(vi − v̄)
n− 1

, Svv =
n∑
i=1

(vi − v̄)2

n− 1
,

σ?n =
n∑
i=1

σ2
i

n
, τ?n =

n∑
i=1

τ2
i

n
, σ??n =

n∑
i=1

σ4
i

n
, and (στ)?n =

n∑
i=1

σ2
i τ

2
i

n
.

Moreover, let σ2
χ = Var(χ), σ? = limn→∞ σ?n, σ?? = limn→∞ σ??n , τ? = limn→∞ τ?n, and

(στ)? = limn→∞(στ)?n. Then, having established that the distribution of
√
n(β̂ − β)

converges to N (0, ω), the slope estimate β̂ and its asymptotic variance ω under this model
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are

β̂ =
Suv

(Suu − σ?n)
and ω =

2β2(σ?? − σ4
χ) + π

σ4
χ

,

where

π = β2σ2
χσ

? + σ2σ2
χ + (στ)? + σ2σ? + σ2

χτ
? + 2β2σ4

χ .

Thus Var(β̂) ≈ ω/n for n large. Substituting the parameter estimates given in Patriota et

al. (2009) and simplifying, the estimated variance of β̂ is

V̂ar(β̂) =
2S2

uv[σ
??
n − (Suu − σ?n)2]
n(Suu − σ?n)4

+
S2
uv + SuuSvv + (στ)?n − σ?nτ?n

n(Suu − σ?n)2
.

The hypothesis H0 : β = 0 will be rejected when the ratio β̂/
√

V̂ar(β̂) deviates

significantly from zero with respect to the standard normal. This procedure is illustrated

with empirical data in subsequent sections.

Empirical Illustration

Measures and Procedures

The data in this study are from four couples who completed psychophysiological

measurements as part of a study of dyadic interactions (see Ferrer & Widaman, 2008 for

details of the study). All four couples were heterosexual with ages across all participants

ranging from 26 to 32 years. The first three couples defined their relationship as

“exclusively dating” and the fourth coupled as “married.” Table 1 presents information

about characteristics of the individuals in the couples.

Physiological measures were collected through the MP150 physiological data

collection system (BIOPAC systems) and AcqKnowledge. Stimuli were administered in a

computer monitor using E-prime (Psychology Software Tools, Inc.). Three autonomic

response variables were recorded from each individual within the dyad simultaneously

throughout the experiment. Respiration was recorded using an elastic belt that was

attached to each of the participants. The belt was placed on each subject’s chest at the

point of highest extension during inhalation and exhalation. The center of the belt

contained a device that recorded the level of stretch within the belt at any moment, with
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greater stretch indicating inhalation and lower stretch indicating exhalation. Level of

stretch within the belt was measured continuously at a rate of 1000hz.

Thoracic impedance was measured using four spot electrodes placed at the well of

the neck, back of the neck,center of the chest, and center of the back. This configuration is

known formally as the Qu et al., configuration (Qu, Zhang, Webster, & Thompkins, 1986).

Each spot electrode came prepared with Ag/AgCl paste, and had an adhesive collar to

ensure both good conductivity as well as stationarity of the electrode during the

experiment. Level of impedance was measured continuously at a rate of 1000hz. An

electrocardiogram was recorded using a lead II configuration, with spot electrodes on the

left and right torso (bipolar leads), as well as the right collarbone (unipolar lead). All spot

electrodes came prepared with Ag/AgCl paste and also had an adhesive collar. The

electrocardiogram was measured continuously at a rate of 1000hz. All signals were

recorded via the BIOPAC 150 and sent online to an external computer for processing and

analyses. The raw signals were exported to text files and processed using the software

package R (R Development Core Team, 2009) for analysis.

Participants visited a laboratory for the physiological assessment in couples. They

were instructed about the experiment and completed three tasks. During the first task

(Baseline task) participants were seated in comfortable armchairs and instructed to relax

and refrain from making bodily movements or gestures for a period of five minutes. Sleep

masks were placed over the participants’ eyes and the overhead lights were turned off in

order to induce an environment of relaxation. The purpose of this first task was to gain a

baseline signal for each individual. During the second task (Gazing task), participants

were asked to gaze into one another’s eyes without talking or touching each other for three

minutes. The purpose of this task was to engage the participants into an interaction that

would elicit physiological arousal. During the third task (In-sync task), they were

instructed to try to become in-sync with each other for three minutes. The term in-sync

was described to the participants as being analogous to becoming one individual, and

therefore their goal would be to match their partner’s physiology. They were instructed
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not to speak nor attempt physical contact during this task, but no further clarification

was provided as to what constitutes being in-sync nor how to accomplish this. After the

completion of the three tasks, the participants were debriefed and paid for their

participation. To our knowledge, none of the couples knew any of the other couples. We

never had more than one couple in the lab at any time. All aspects of this project were

approved by the correspondent Institutional Review Board for the Protection of Human

Subjects.

Application of EMD to Respiration and Impedance

The EMD was applied to two continuous signals, respiration and thoracic

impedance. The respiration signal is a measurement of the expansion and contraction of

the rib cage as the subject breathes, and thus oscillates about a fairly constant value at a

varying frequency. The impedance measures the cyclical changes in cardiopulmonary

output and, thus is correlated with heartbeat and respiration. Figure 2 displays the raw

impedance signal for one individual (i.e., male) in Couple 3 during the first minute of the

gazing task. As depicted in the figure, this time series includes considerable

high-frequency oscillations riding on the underlying trend of interest.

The EMD of this impedance series produced 10 IMFs (displayed in Figure 3). Of

these, only the last two IMFs were selected and added to the residual, to obtain a

smoother signal. Figure 4 depicts this resulting smooth signal. Preceding IMFs could be

added to obtain more detail, but at the cost of including unnecessary information.

Figure 5 displays the resulting impedance signals of interest for both members of each

couple during the first minute of the baseline task.

After removing the lower-frequency IMFs from each individual’s time series across

the three tasks, time segments of synchrony were detected between the signals of interest

for the two individuals in each of the couples. For this, each pair of signals was examined

using a sliding window of a fixed six-second width, which moved in two-second increments

from the beginning to the end of each three- to five-minute task. This choice of the

window width and the increment size is arbitrary; other choices result in equivalent
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outputs but with different details. However, the six-second width was deemed reasonable

to capture two or three cycles of the signals, and thereby establish a basis for detecting an

occasion of synchrony between them. The two-second increments allow the detection of

changes in the synchrony on a moment-to-moment level.

At each point, the cross-correlation was then computed between the signals over a

range of lags, and the maximum computed value was selected as a measure of synchrony

during that moment. The default lag range in R was used, which is

±b10 log10(3000)c = ±34. This measure is referred to as the Instantaneous Coupling (IC)

strength. Figure 6 displays the IC series for the third couple during the baseline task with

respect to their respiration (solid line) and their impedance (dashed line). Note that the

two series are highly correlated, as one would expect. Moreover, there appear to be many

occasions during this task when the couple’s physiological responses appears to be highly

synchronized in both variables. The same phenomenon is found for the other couples.

For each of the three tasks in the experiment, the proportion π̂ of IC values that

exceeded a given threshhold was then computed. Threshholds of 0.6 for the respiration

and 0.5 for the impedance were chosen, as these values provided a reasonable baseline

proportion (i.e., not too small). Finally, the proportions above the threshhold for the

second and third tasks were compared with that from the baseline, and a routine

hypothesis test was conducted to determine whether any subsequent proportion was

significantly higher than the baseline proportion. If so, it was considered as evidence of

synchronization between the individuals’ physiological signals. Note that changing the

threshhold would alter the baseline proportion correspondingly, but it would also change

the proportion for the second and third tasks by the same amount, so that the comparison

of these proportions with the baseline proportion would not change. Table 2 displays the

results of these analyses for respiration and impedance, for each of the four couples.

For respiration, the results indicate a significant increase in synchrony from baseline

between the partners’ signals during the in-sync task, for all four couples. During the

gazing task, such increase in synchrony was only evident for the first couple. With regard



Physiological synchrony in dyadic interactions 14

to impedance, the significant increase in synchrony between the partners was perceptible

during the gazing task for three of the couples, and such amplification was also true for

two couples during the in-sync task.

Application of SHME to Heart Rate

In the first step, the raw EKG signal during each task was transformed into a heart

rate. For this, the duration of each peak-to-peak interval of the EKG waveform (in

milliseconds) was determined, and its reciprocal was used to compute the heart rate (in

beats per millisecond). Then the obtained values were multiplied by 60,000 to convert

them to beats per minute. Because the first recorded ventricular contraction usually does

not occur in the EKG signal until after a few milliseconds, the beginning of the time series

was padded with the first computed heart rate value. Similarly, because the last recorded

ventricular contraction usually occurs a few milliseconds prior to the end of the EKG

signal, the end of the heart rate time series was padded with the last computed value.

Figure 7 displays the resulting heart rate signals during the first 100 seconds of the

baseline task for both individuals in the four couples. Note that each heart rate oscillates

over a large range of values except for that of the male in the second couple, who has an

almost constant heartbeat. In every case, the female’s heart tends to beat faster. The

objective in these analyses was to identify linear associations between the two individuals’

heart rates across the experimental tasks.

For each of the tasks, the five-minute heart rate time series for both the male and

female were partitioned into n = 60 five-second segments, following the procedure

described in previous sections. The SHME model was then applied to the EKG generated

data, separately for each of the four couples. The results from these analyses are presented

in Table 3. These results indicate that, during the gazing task, the first couple showed a

significant linear association between their heart rates. During the in-sync task, such

synchrony between the partners’ heart rates was evident for three couples. As expected,

no synchrony was perceptible during the baseline task for any couple. We also present in

Figure 8 a scatterplot of the heart rates for the first couple during each of the three tasks,
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along with the fitted line bearing the estimated slope. As can be seen, the lines accurately

convey the linear trajectory of each association when such an association exists.

Cross-Validation Analysis

To confirm that the discovery of synchrony in heart rate, respiration, and thoracic

impedance within each of the four couples in our analyses, we applied the same methods

to two mismatched couples. For this, the male from one randomly selected couple was

paired with the female from another randomly selected couple as one dyad, and this

process was repeated to form a second dyad. Then the analytic procedures used in the

empirical analyses were implemented to detect synchrony in heart rate, respiration, and

thoracic impedance of the two mismatched dyads, across the three tasks. Table 4 reports

the results from these cross-validation analyses. None of the coefficients in these analyses

reached significance for any measure or task (i.e., all P -values exceeding 0.1), indicating

no synchrony for any of the mistached dyads.

Discussion

Summary of Results

We presented in this paper two techniques for assessing synchrony between

psychophysiological time series. For respiration and thoracic impedance, which are

continuously oscillating signals, we used the EMD algorithm to filter the data and extract

smooth versions of the time series. We applied a moving window to measure the

maximum cross-correlation between the signals of the two individuals in the couple within

the window over a lag range, and to determine when this coupling exceeded a chosen

threshold. The relative frequency of high coupling values during the baseline was then

compared with those during the gazing and in-sync tasks. Synchronization in respiration

or impedance was inferred when the proportion of coupling occurrences increased

significantly from the baseline to the experimental tasks. Our findings indicate an increase

in synchrony in respiration between the partners of all four couples during the in-sync
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task, relative to the baseline. Such an increase was only perceptible for one couple during

the gazing task. The findings for thoracic impedance show an increase in synchrony, also

relative to the baseline, during the gazing (for three couples) and the in-sync (for two

couples) tasks.

For heart rate, which is measured at discrete intervals, we applied the SHME model

with equation error to identify synchrony between the partners’ signals. Using this

approach, we estimated the slope representing the linear association between the heart

rates of the two individuals in the couple during each of the three tasks. This slope was

taken as an indicator of synchronization between the two partners’ heart rate. Our

findings indicate the presence of synchrony between the signals of three couples during the

in-sync task, of one couple during the gazing task, and no synchrony at all during the

baseline task. Importantly, a cross-validation analyses provided no evidence for synchrony

when different members of a couple were randomly paired, thus providing evidence for the

discriminative validity of these synchrony detection approaches.

Synchronization of the physiological signals was regarded as a reflection of

emotional coherence between the two individuals in the couples. For example, during the

in-sync task, participants might have concentrated on matching each other’s breathing –

as a way to mirror their partners’ physiological state – thus resulting in an increase in

synchrony for respiration. This effect might have carried over to the impedance (e.g.,

Ernst et al., 1999). Similarly, matching each other’s breathing could have resulted in an

increase of the coupling between the partners’ heart rates. The synchrony during the

gazing task can also be regarded as emotional coherence between the partners. In

particular, this task was designed to elicit physiological arousal in the participants.

Synchrony between the signals can then be indicative of physiological coregulation

between both partners, perhaps as a way to cope with such arousal and provide ease or,

more generally, showing an activation of emotional interaction between two intimate

partners (e.g., Hatfield et al., 1994). Accordingly, the methods used in these analyses

appear to be useful to study emotional coregulation in dyadic interactions (c.f., Sbarra &
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Hazan, 2008). Finally, although we expect use individual- and dyad-level characteristics

(e.g., as reported in Table 1) to predict synchrony of physiological responses (e.g., higher

relationship satisfaction is related to lower physiological concordance (Levenson &

Gottman, 1983)), our sample size is not large enough to detect such associations reliably.

Methodological Considerations and Future Directions

The two approaches for assessing synchrony described in this report present a

number of benefits. For example, the EMD algorithm, as a tool to parse out unwanted

high-frequency oscillations from continuous data, has two important advantages over other

standard methods. First, it does not rely on assumptions of stationarity, assumptions

required by methods such as the Fourier transform. Second, in the decomposition of the

original series via EMD, there is no leakage of energy, which is common in techniques such

as the wavelet transform. Moreover, in many situations, heart rate data are analyzed

using methods for continuous signals. The heart rate signal, however, constitutes a step

function, since it is constant on intervals between contractions. Hence, analyzing this

signal as a continuous measure is not appropriate. A smoothing method could be used to

transform the step function into a continuous signal, but making inferences using an

imputed signal is hard to justify statistically.

A fundamental hope for the proposed statistical methods is that they can be used

profitably to better understand dyadic emotion regulation and coregulation. Sbarra and

Hazan (2008) recently outlined a series of analyses that would be needed in order to

develop a more complete understanding of normative attachment in humans. In outlining

these analyses, they wrote, “One feasible and straightforward way of testing this

hypothesis would be to model the physiological functioning (e.g., indices of cardiovascular

responses) of each person in a relationship as a bivariate system in which changes in one

person’s physiology (in response to any task demands) are dependent on, not only their

own prior physiological state, but their partner’s prior physiological state as well.”

(Sbarra & Hazan, p. 157). The methods proposed here are ideally suited to answers these

kinds of questions. Furthermore, many psychophysiological studies rely on collapsing data
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across measurement and assessment periods. This is a reasonable approach in order to

create highly reliable, epoch-specific variables, but, at the same time, it is a fundamentally

limited way of studying process. When two individuals interact, it is assumed that

emotional synchronization is a continuous process that is best studied in a manner that is

as close to the raw data as possible. The EMD and SHME approaches allow for this type

of data analysis.

One obvious extension of these analyses is the use of covariates to assess the extent

to which psychophysiological synchronization is related to couple-level or individual

difference variables of interest. For example, when studying intact couples, the approaches

described here can be examined as a function of marital satisfaction or attachment styles,

with the degree of synchronization evidenced across a study paradigm serving as an

outcome variable (e.g., do more highly satisfied coupled evidence greater heart rate

synchronization?) as well as a predictor of future relationship outcomes. In dyadic

interaction tasks the approaches described here can be used to determine if different

experimental manipulations alter the physiological synchronization or linkage between

people. For instance, Butler, Wilhem, and Gross (2006) examined respiratory sinus

arrhythmia as an indicator of emotion regulation during a social interaction task. In

studies of this kind, the EMD and SHME approaches can be used to determine the extent

to which physiological synchronization might differ across the different instructed emotion

regulation tasks. These applications, of course, would require the inclusion of more

couples in the sample.

Finally, this paper focused on dyadic interactions and examined the synchronization

between two individuals with regard to a given physiological signal (i.e., respiration,

impedance, or heart rate). Thus, this study investigated associations between two time

series. An important extension of this work would involve the use of multivariate time

series. For example, a pertinent question here is how to identify synchronization among

multiple physiological signals, and then across the two members of a dyad. In particular,

emotion researchers would be interested in examining under which conditions, and to
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what extent, such multivariate coherence is most likely to emerge (e.g., Fushing et al.,

2011; McAssey et al., 2010). These possible extensions notwithstanding, we hope that the

methods proposed in this paper illustrate some new possibilities for studying physiological

synchrony during dyadic interactions.
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Appendix

R Code for obtaining the Empirical Mode Decomposition of a

time series and extracting its trend.

library(EMD) ## load EMD package previously installed

EMDResult <- emd(Series, boundary="wave", plot.imf=FALSE)

## choose "wave boundary condition; to plot IMFs, change to TRUE

Freq <- rep(0, EMDResult$nimf) ## Identify the frequency having the

## most power for each IMF

for(i in 1:EMDResult$nimf) {

Pgram <- spec.pgram(EMDResult$imf[,i], taper=0, plot=FALSE)

Freq[i] <- min(Pgram$freq[which(Pgram$spec == max(Pgram$spec))])

} ## Identify the last IMF whose strongest frequency is above a

## threshold of 0.002

M <- min(max(which(Freq > 0.002)), EMDResult$nimf-1)

Trend <- EMDResult$residue ## Add the latter IMFs to the residual

for(i in (M+1):EMDResult$nimf) Trend <- Trend + EMDResult$imf[,i]

## Trend contains the signal of interest
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Notes

1Kim and Oh (2009) have developed an R package called EMD that implements this

procedure very efficiently. The R code used in these analyses is provided in the appendix.
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Table 1

Individual- and Dyad-Level Characteristics of the Four Couples

Variable Couple Male Female

Attachment-related avoidance 1 2.33 3.67

(1-7 Likert scale) 2 2.61 1.39

3 3.56 2.06

4 1.56 1.06

Attachment-related anxiety 1 2.78 3.72

(1-7 Likert scale) 2 3.22 1.94

3 2.78 4.39

4 2.61 2.06

Relationship satisfaction 1 6.17 6.67

(1-7 Likert scale) 2 6.00 6.83

3 6.83 6.17

4 6.50 6.83

Relationship status 1 Exclusively dating

2 Exclusively dating

3 Exclusively dating

4 Married

Relationship length 1 41

(months) 2 53

3 08

4 71
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Table 2

Significant Increase in Relative Frequency of Strong Instantaneous Coupling Across Tasks

Couple Task Respiration π̂ P -value Impedance π̂ P -value

1 baseline 0.149 — 0.020 —

gazing 0.239 0.048 * 0.102 0.008 **

in-sync 0.886 0.000 *** 0.011 0.709

2 baseline 0.068 — 0.007 —

gazing 0.125 0.080 0.045 0.048 *

in-sync 0.659 0.000 *** 0.364 0.000 ***

3 baseline 0.236 — 0.122 —

gazing 0.125 0.988 0.045 0.986

in-sync 0.818 0.000 *** 0.375 0.000 ***

4 baseline 0.216 — 0.027 —

gazing 0.114 0.984 0.148 0.001 ***

in-sync 0.841 0.000 *** 0.000 0.979

0.05 < ∗ < 0.01 < ∗∗ < 0.001 < ∗∗∗
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Table 3

Slope Estimates for Association between Heart Rates Using the SHME Model Across Tasks

Couple Task β̂

√
V̂ar(β̂) P -value

1 baseline 0.003 0.274 0.993

gazing 1.071 0.212 0.000 ***

in-sync 1.344 0.626 0.032 *

2 baseline 0.358 0.703 0.610

gazing 0.504 0.436 0.248

in-sync 0.579 0.473 0.221

3 baseline −0.089 0.079 0.254

gazing 0.171 0.099 0.083

in-sync 0.369 0.149 0.013 **

4 baseline −0.142 0.185 0.445

gazing −0.227 0.961 0.813

in-sync 0.497 0.239 0.037 *

0.05 < ∗ < 0.01 < ∗∗ < 0.001 < ∗∗∗
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Table 4

Measures of Synchrony between Heart Rates, Respiration and Thoracic Impedance for

Mismatched Couples Across Tasks

Mismatched Couple Task β̂

√
V̂ar(β̂) P -value

1 baseline -11.525 12.356 0.823

gazing 0.250 0.206 0.117

in-sync -54.825 482.732 0.545

2 baseline 0.000 0.001 0.500

gazing 0.023 0.022 0.151

in-sync 0.000 0.021 0.500

Mismatched Couple Task Respiration π̂ P -value Impedance π̂ P -value

1 baseline 0.095 — 0.041 —

gazing 0.091 0.538 0.011 0.930

in-sync 0.148 0.118 0.080 0.119

2 baseline 0.230 — 0.108 —

gazing 0.091 0.999 0.045 0.968

in-sync 0.216 0.598 0.114 0.448
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Figure Captions

Figure 1. Original signal (top) consisting of high-frequency oscillations riding on a

low-frequency signal of interest, and the low-frequency signal of interest (bottom) created

by summing the last 3 IMFs and the residual.

Figure 2. Male’s impedance signal during gazing task, for Couple 3.

Figure 3. IMFs produced by EMD of male’s impedance signal during gazing task.

Figure 4. Male’s impedance signal during gazing task, after higher-frequency IMFs are

removed.

Figure 5. Impedance for the male (dark) and the female (light) during the baseline task

for each couple, after higher-frequency IMFs are removed.

Figure 6. IC strength for Couple 3 during baseline task, with respect to respiration (solid

line) and impedance (dashed line).

Figure 7. Heart Rate for the male (dark) and the female (light) during the baseline task

for each couple.

Figure 8. Scatterplots of the heart rates for the first couple during each task, with the

corresponding best-fit lines.



O
rig

in
al

E
xt

ra
ct

ed











Baseline Task
Window

IC
 S

tr
en

gt
h

0 50 100 150

−
0.

5
0.

0
0.

5
1.

0





●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●

70 72 74 76 78 80

75
80

85
90

95

Baseline task

Male heart rate (bpm)

F
em

al
e 

he
ar

t r
at

e 
(b

pm
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

65 70 75 80 85
75

80
85

90
95

10
0

Gazing task

Male heart rate (bpm)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

70 72 74 76 78 80

75
80

85
90

In−sync task

Male heart rate (bpm)


