STATISTICS AND ITS INTERFACE Volume 3 (2010) 159-168

Optimal and robust design for efficient
system-wide synchronization in networks of

randomly-wired neuron-nodes

MICHAEL P. MCASSEY*, FusHING HsiEH! AND EMILIO FERRER

We describe a mode of signal transmission among neuron-
nodes in a finite deterministic network. In this mode, an ac-
tivated node passes a signal to its nearest neighbors and be-
comes deactivated, unless it concurrently receives the signal
from a nearest neighbor. By means of matrix representation,
we show that a connected network equipped with this mode
of signal transmission converges to one of two states: 1)
System-Wide Synchronization (SWS), wherein all nodes are
activated; and 2) Subgroup Alternation (SGA), wherein two
subsets of nodes alternate on and off. Conditions on wiring
configuration required for SWS are presented. We then focus
on finite random networks in which the presence of wiring
between any two nodes is stochastically determined. We con-
sider two optimal design problems: 1) How can we allocate
wiring probabilities subject to a budget constraint in order
to maximize the probability of achieving SWS? 2) What im-
pact does a robustness criterion have on the optimal wiring
structure? We implement the simulated annealing algorithm
to find such optimal probability allocations and present our
results. Under a robustness requirement, we show that ro-
bust random networks require a larger budget and signifi-
cantly more triangular-loop sub-structures.

KEYWORDS AND PHRASES: Random network, Simulated an-
nealing, System-wide synchronization.

1. INTRODUCTION

This study was motivated in part by a study of net-
work coherence of emotion variables [7] and a book on
brain rhythms [2]. In the emotion study, tight connections
with strong wiring potentials are found in several subgroups
among a collection of emotion variables. In contrast, sparse
connections and weak wiring are observed between sub-
groups. This result immediately leads to the following ques-
tion: Does this empirical network structure efficiently lead
to system-wide synchronization as a phenomenon of emo-
tion arousal? In addition, the system-wide synchronization
of neuron-firing is believed to be closely related to memory
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reactivation in the animal brain when it is sleeping. How-
ever, many memories must be relocated from one part of
the hippocampus to the other parts of the brain, and differ-
ent memories are believed to be stored in different locations
within the hippocampus. Thus a system of neurons respon-
sible for one memory needs to be activated as one whole in a
very efficient manner. Contemplating representations of the
signal transmission in network models of these phenomena
has led to the innovative approach presented here.

An artificial neural network (ANN) is an interconnected
group of artificial neurons that uses a mathematical or com-
putational model for information processing based on a con-
nectionistic approach to computation. The study of ANNs
is motivated by their comparability to biological neural net-
works. They are investigated in order to increase under-
standing about their biological counterparts, and to use the
functional power of biological neural networks to guide the
development of modern technology. In particular, techni-
cians seek to adapt the brain’s capacity for self-organization,
learning, generalization and fault-tolerance. Introductions
to ANNs and their applications may be found in [5, 6, 9, 10]
and [12]. The use of ANNs to study the dynamics of neuro-
logical networks in the brain of a behaving animal is ubiq-
uitous throughout the neuroscience literature, as in [4].

In this paper we consider a simple ANN consisting of a
fixed number of neuron-like hypothetical nodes (or “neu-
rodes”). We propose a novel approach to modeling signal
transmission among these nodes as follows: a node becomes
activated at a point in time when it receives a signal from
any of its nearest neighbors, in a manner similar to the accu-
mulation of action potential in a neuron. And, similar to the
discharge of that accumulated action potential, every acti-
vated node transmits its signal to all its immediate neighbors
at the next time point after activation and instantly becomes
deactivated, until reactivated by a neighboring node. In this
simulation of signal transmission in biological neural net-
works, nodes change activation states within a discrete time
resolution.

We call one particular phase of interest pertaining to the
network under consideration system-wide synchronization
(SWS), which we specifically define as that state in which
all nodes simultaneously activate all their nearest neighbors
and are activated by all their nearest neighbors. We make
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use of this SWS phase to represent the synchronization men-
tioned in the above two motivating examples. In regard to
this phase, we first study the kind of wiring configuration
on a deterministic network that produces an efficient SWS
phase. We then proceed to consider random networks. Here
we consider the wiring between any two nodes to be gov-
erned by an independent Bernoulli random variable. This
consideration reflects the fact that two emotion variables
or two neurons may not be invariantly wired together at
all times when responding to all stimuli. Furthermore, this
randomness is a valid approach because the true dynamics
underlying this wiring are still not yet understood, especially
in neuroscience.

It is also known that not all neurons are wired together
equally-well at all times, nor are the emotion variables. Thus
it is important to consider the efficiency of achieving SWS
upon a class of random networks subject to a budget of
total probabilities for all potential wirings. Furthermore,
sometimes a neuron or emotion variable in a network may
malfunction. Ideally, the remaining nodes in the network
should still perform and achieve the SWS phase. This leads
to the necessity of robustness with respect to a malfunction-
ing node in the network. Hence we study the following two
optimal design problems:

Q1: How can we allocate wiring probabilities subject to a
budget constraint in order to maximize the probability
of achieving SWS?

Q2: What impact would a robustness criterion have on this
wiring structure?

To resolve the above two problems, we employ the Sim-
ulated Annealing (SA) algorithm as an optimization tech-
nique. We envision no analytic solution, but obtain numer-
ical ones, since the number of potential wirings grows as
the square of the number of nodes in the network. For ex-
ample, 15 nodes will give rise to 105 potential wirings in
the network. Here the computations needed for optimizing
a 105-dimensional function are overwhelming. However, re-
sults we obtain in this paper as we pass from deterministic
networks to random networks, and then to random networks
with a robustness criterion, allow us to reduce the computa-
tional complexity to a rather manageable level. The energy
functions employed in the SA algorithm are developed ac-
cordingly.

This paper is organized as follows. We first describe a
mode of signal transmission in a connected deterministic
network in which the nodes change activation states as de-
scribed above, and show that one of two distinct phases will
occur: system-wide synchronization (SWS), or subgroup al-
ternation (SGA). We then obtain both geometric and al-
gebraic criteria by which we may determine which phase a
network will generate. Next, we consider random networks
under a constraint on the sum of the edge-probabilities, and
search for an optimal allocation of the edge-probabilities
such that SWS networks will occur with high probability,
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using the simulated annealing algorithm. Then we impose
a further goal of finding an optimal allocation that will fre-
quently generate SWS networks that are also robust against
loss of a node, and present our findings. We conclude with
remarks on potential applications of our findings.

2. DETERMINISTIC NETWORKS AND
SIGNAL TRANSMISSION

Consider a network N consisting of n nodes, arbitrarily
labeled 1,2, ...,n, and let the set of nodes be denoted {N}.
An edge (or wiring) between nodes i and j may be denoted
€i;, and the set of all edges in network A is thus denoted
&{N}. Note that the cardinality of £{N} is at most n(n —
1)/2. In a neural network, nodes represent neurons and edges
represent the connections between them. We will regard a
network as a system through which a signal travels from
node to node by means of available edges. The definitions
of all terms and notation used in the foregoing discussion,
when not provided, may be found in the literature, e.g., in
[1, 11] or [13].

Initially, we will regard every node in a network A to
be in an “off” state, that is, deactivated. Then at some mo-
ment, say, at step 0, node ¢ switches to an “on” state, i.e.,
is activated. It may be that a signal was applied to node
i from some external source, or some internal process ac-
tivated it. This signal will then be transmitted throughout
the network in discrete time steps, activating other nodes
as it reaches them. However, once the signal is transmitted
from any node to its immediate neighbors, that node de-
activates until the signal returns at a later step. The only
exception occurs if the node receives the signal back from
a neighbor during the same step in which it also transmits
the signal. Hence, at step 1 each neighbor of node i will be
activated, but node i will again become deactivated. At step
2, the neighbors of the neighbors of node ¢ (which include
node 1 itself) will be activated, while the neighbors of node
1 are deactivated. We will assume that the signal then con-
tinues to be transmitted indefinitely in this manner at steps
3,4,.... This mode of signal transmission, in which nodes
switch to an “off” state until turned “on” by neighboring
nodes, is intended to represent the behavior of neurons in
the brain.

Note that, if A/ is a connected network, then its diameter
with respect to node ¢ (i.e., the shortest path between node
¢ and the node most distant from it) cannot exceed n — 1
for each ¢ = 1,...,n, so that the overall diameter D(N)
of the network may not exceed n — 1 (a connected network
consisting of a string of n consecutive nodes, with n — 1
edges linking them, has the maximum possible diameter).
Clearly then, a signal which originates at any node in a
connected network A/ will have been propagated at least
once to every other node within n—1 steps. Our interest is in
network configurations which result in the simultaneous and
sustained activation of all nodes after finitely many steps.



Figure 1. Networks Ny and Ng.

For example, suppose a network consists of nine nodes, as
in Figure 1. Note that network A4 is fully connected, while
network ANp is connected, but not fully. Each network can
be represented by a symmetric 9 X 9 connectivity matrix,
with zeros on the main diagonal, and with m;; indicating
the presence of an edge between nodes i and j, as shown
below:

001 1111111
101111111
110111111
111011111

MWNa)=|1 11101111
111110111
111111011
111111101
111111110 |
(001100000 0]
101000000
110100100
001011100

MWNp)=[0 00101000
000110000
001100011
000000101
(0000001 10|

Signal transmission within a network N is modeled by a
variation of matrix multiplication. Define the state of node
i at step k, denoted sg(4), such that s;(¢) = 1 if node i is
activated at step k, and sx (i) = 0 if node ¢ is deactivated at
step k. Let the network state vector v = (v1,...,v,) at step
k be a vector of length n such that, at step k, v; = si(4)

for ¢ = 1,...,n. Thus at step 0 the network state vector
consists of a 1 in the position corresponding to one of the
nodes, and a 0 in every other position. At subsequent steps,
the elements of the vector will change to reflect the changes
in the state of the network. In this setting, the product [Mv]
of the matrix M = M(N') with v at step k produces the
network state vector v at step k + 1, where [Mv] is found
by computing the usual product of a matrix with a vector,
but with the restriction that all non-zero entries in the result
are set equal to one. Hence if v represents the state of the
network at step 0, then [M*v] represents the state of the
network at step k.

To illustrate, for both networks N4 and Ng we display
the evolution of the network state vector at steps 0 through
5 if the signal originates at node 1:

Network state vector for N4, steps 0 through 5
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Network state vector for Nz, steps 0 through 5

1 0 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 1 1 1
O] —-10]|—-]10(—-]1|—-1]1]|]—
0 0 0 1 1
0 0 1 1 1
0 0 0 1 1
| 0 | | 0 ] | 0] 1] | 1]

Notice that, by step 2, the network state vector for N4
consists of a 1 in each position, indicating that all nine
nodes are simultaneously activated, and remains in this state
thereafter. We describe this phenomenon as system-wide
synchronization (SWS). Hence network N4 has achieved
SWS after two steps. The same result occurs with the net-
work state vector for A/g, but not until step 3. For either
network, if we instead begin the signal at a different node,
the network still achieves SWS, but not necessarily after
the same number of steps, because the signal will eventually
reach node 1. In general, let us say that a connected net-
work is SWS if and only if there exists some step k at which
all of its nodes are concurrently activated. Let us define the
order of a SWS network AN with respect to node 7, denoted
O;(N), as the minimum number of steps from activation of
node 7 at step 0 until SWS occurs. Then the order of a SWS
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Figure 2. Network N¢.

network A having n nodes, denoted O(N), may be defined
as the maximum over i = 1,...,n of O;(N).

One may then inquire whether or not all connected net-
works are SWS. Consider network N in Figure 2, along
with the corresponding evolution of the network state vec-
tor when node 1 is activated at step 0. We observe that SWS
does not occur in this case:

Network state vector for Ng

1 0 1 0
0 0 1 0
0 1 0 1
0 0 1 0
O|—-(0]—-]10|—-|1]—
0 0 0 0
0 0 0 1
0 0 0 0
_0_ _0_ _O_ _0_
[ 1] [0 ] (1] [0 ]
1 0 1 0
0 1 0 1
1 0 1 0
1 0 1 0
0 1 0 1
1 0 1 0
_0_ _1_ _O_ _1_

This time, the network state vector eventually begins to
alternate indefinitely between two complementary states, so
that SWS never occurs. Instead, the network is partitioned
into two subgroups which are activated at alternating time
steps. Hence we may classify a network as a SWS network if
SWS occurs after finitely many steps, and as a Subgroup Al-
ternating (SGA) network if the above phenomenon occurs.

3. SYSTEM-WIDE SYNCHRONIZATION OF
DETERMINISTIC NETWORKS

We now consider whether there is some geometric feature
of a network that determines whether or not SWS occurs.
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To address this question, let us consider the following two
lemmas, whose proofs are supplied in the appendix. Here,
a node is periodic with period 2 if the node is activated at
even-numbered time steps and deactivated at odd-numbered
time steps, or vice versa, while a node is periodic with period
1 if it is activated at every time step. Also, D;(N') denotes
the diameter of network N with respect to node i.

Lemma 1. Fvery activated node in a connected network is
periodic with period p < 2.

Lemma 2. If an activated node i in a connected network
N becomes periodic with period p = 1 at some step k, then
SWS will occur within D;(N') additional steps.

Together, these lemmas infer that the key to the SWS of
a connected network is that one of the nodes must become
periodic with period 1 at some step in the signal transmis-
sion process. Note that this occurred in the evolution of the
network state vector for Np at step 1, since nodes 2 and
3 remained activated in going from the first to the second
step. The geometric feature which allowed this to happen is
the presence in the structure of the network of a loop con-
sisting of an odd number of edges. We will refer to such a
loop, in which we have a closed path consisting of an odd
number of edges, as an odd-length loop.

Note that in network Np there are four such loops of
length 3, while in network N4 there are numerous such loops
of lengths 3, 5, 7 or 9. But there are no odd-length loops
in network N¢. This leads to the following theorem and
corollary, whose proofs are in the appendix:

Theorem 1. System-wide synchronization occurs in a con-
nected network if and only if its structure includes a loop
consisting of an odd number of edges.

Now, suppose we have a SWS network. We can then de-
termine an upper bound on the order of the network, based
on its diameter:

Corollary 1. A SWS network N having n nodes has order
O(N) < 2D(N), regardless of the node at which the signal

originates.

Hence the most efficient SWS network, in terms of having
the smallest order, is one with the smallest diameter possi-
ble. For example, if n — 1 nodes are each connected by a
single edge to one hub node, the network will have a diam-
eter of 2. Thus if this same network also includes a loop of
length 3, it will be a SWS network of order at most 4. Net-
work N4 has a diameter of 1, since each node is a neighbor
to every other node. Thus N4 is a SWS network of order 2.

4. SUBGROUP ALTERNATION IN
DETERMINISTIC NETWORKS

Corollary 1 together with Lemmas 1 and 2 imply that if a
connected network N is not SWS, then after at most 2D (N)



steps every node will be periodic with period p = 2. More-
over, the network will itself have a period of 2 no later than
step 2D(N), with one subset of nodes activated simultane-
ously at only the odd-numbered steps, and the remaining
subset of nodes activated concurrently at only the even-
numbered steps, as noted in the example of network N¢.
Of course, which subset corresponds to the odd-numbered
steps depends on the choice of initial node. Hence if a net-
work is not SWS; it will begin subgroup alternation (SGA)
after finitely many steps.

We may then identify a feature of the matrix M(N) = M
corresponding to a connected network A that establishes the
network as SGA. This feature is the ability to partition M
into two sub-matrices M; and My such that M; consists of
m > 1 columns from M and Ms consists of the remaining
n —m > 1 columns, and such that each sub-matrix consists
of one or more rows of zeros, but in complementary rows.

As an example, consider the matrix corresponding to
SGA network N¢:

001 00O O0O0OO0OTD O
001 00O O0O0OTO0OTP O
1101 00 0 00
001 01 0100
MWNg)=10 0 0 1 01 0 0 0
0 00O 1T 0O0O0TUO
0001 0O0O0T1O0
0 00O0OO0OT1TU071
L0 0 00000 1 0]
We will take columns 1, 2, 4, 6 and 8 for M; and the re-
maining columns for Ms:
[0 0 0 0 0 1 0 0 0]
000 00O 1 0 0O
111 0 0 0 0 0 O
00000 11 10
Mi=|0 01 10|, Ma=|0 00O
000 00O 01 00
0 01 0 1 0 00O
000 00O 00 1 1
|0 0 0 0 1 | 1 0 0 0 0|

Note that M; has rows of zeros in rows 1, 2, 4, 6 and 8§,
which correspond to one of the two subsets of nodes which
are activated concurrently once the network achieves SGA.
Meanwhile M; has rows of zeros only in the other four rows,
i.e., in rows 3, 5, 7 and 9, corresponding to the other subset
of nodes.

Given this condition, we may simply relabel the nodes of
Nc in such a way that M (N¢) takes on a block off-diagonal
form. This is done by consecutively labeling the nodes cor-
responding to one of the two subsets, and then labeling the
remaining nodes corresponding to the other subset. For in-
stance, if in ¢ we relabel node 3 as node 6, node 4 as node

3, node 5 as node 7, node 6 as node 4, node 7 as node 8§,
and node 8 as node 5, the matrix for network N becomes

0000O0[1 00 0
0000O0/1 00O
0000O01 1 10
000000100

MWNe)=]10 00 0 0[0 0 1 1
1 1 100[0000
001 10/000 0
0010 1/0 00 0
0000 1/00 0 0|

The lower-left block is matrix M; with its zero-rows re-
moved, while the upper-right block is matrix M, with its
zero-rows removed. If we call the lower-left block A, then the
upper-right block is its transpose A’. In general, the matrix
of every SGA network can be represented in this manner.
This may be stated in a theorem:

Theorem 2. A connected network N consisting of n nodes
achieves subgroup alternation if and only if there is some
m € {1,...,n—1} and some permutation of the node labels
{1,...,n} such that its matric M = M(N) can be parti-
tioned into a block off-diagonal matriz of the form

0 A
v-[3 7]

where A is an (n —m) X m matriz.

The proof is supplied in the appendix.

Now suppose M takes this block off-diagonal form, and
suppose A is an eigenvalue of M with corresponding eigen-
vector v. = (V1,...,Um,Umt1,---,0,) . Since M is sym-
metric, A is real. Then the block off-diagonal form of M

and the relation Mv = Av implies A’ (Vimy1,...,0n) =
Avi, .o vm) and A(v, .. 0m) = A(Vmt1, - 0n)  EA#
0, then —\ must also be an eigenvector of M, with cor-
responding eigenvector v .= (—v1, ..., —Vm, Umt1,---,0n),
since the relations

A (it vn) = =A=v1,. .oy =vm) = Ao, ..o, om)
and

A(=v1, .o, =vm) = —A(v1, .. 0m) = =AVmats -+, 0n)

also hold. Hence, if n is even, the set of eigenvalues of M
must be representable as {£Ai,..., £\, /2}. If n is odd,
the requirement that nonzero eigenvalues appear in posi-
tive/negative pairs requires that at least one eigenvalue must
be zero, so that the sum of the eigenvalues equals the trace
of M, which is zero. Thus, if n is odd, the set of eigenvalues
of M must be representable as {0,+A1,...,+Ap_1)2}. In
general, the matrix corresponding to a SGA network must
have symmetry of its eigenvalues about zero. Therefore, if
a network N is SWS, the eigenvalues corresponding to its
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matrix will not be symmetric about zero, i.e., there will be
at least one nonzero eigenvalue whose additive inverse is not
an eigenvalue.

Hence we have obtained both a geometric criterion (odd-
length loops) and an algebraic criterion (asymmetry of
eigenvalues) which may be used to determine whether or
not a deterministic network is SWS.

5. OPTIMIZATION OF RANDOM
NETWORKS UNDER BUDGET
CONSTRAINTS

Armed with these criteria, we turn our attention to a
random network consisting of n nodes with N = n(n—1)/2
distinct potential edges. In a sequence of independent trials,
each edge may or may not occur, so that any particular re-
alization of the network may or may not be SWS (or even
connected). Moreover, even when a SWS network is realized,
it may not be relatively efficient, i.e., the average number of
steps required to achieve SWS over the n nodes may be
relatively large. Suppose that the probability that edge e; ;
occurs between nodes ¢ and j in any trial is some fixed num-
ber p; ; € [0,1]. We may then form a vector p of length N
consisting of these probabilities, such that

P = (p1,2:P13,- -

yP1,ny P23y 3P2my -+

Pn—2n—1,Pn—2,n, pnfl,n) .

Suppose further that there exists some fixed budget con-
straint B < N such that

B = Z Dij -

1<i<j<n

We then ask the question: Are there optimal allocations of
probabilities among the N components of p that conform
to the budget constraint and that maximize the probability
that a relatively efficient SWS network will be realized in
any trial?

Certainly, if B is large enough (at least n), we may as-
sign a probability of 1 to each of n edges chosen such that,
when present, the resulting network is SWS and as efficient
as possible. Thus we are interested in situations where B is
relatively small, so that we cannot assign high probabilities
very liberally. In nature, systems are configured so as to al-
locate limited resources in an optimal manner. By requiring
a low budget, we seek to model this tendency.

One exhaustive method would require an examination of
each of the 2%V possible networks to identify which of these
are SWS and have a desired level of efficiency. We would
then need to search for those vectors in [0, 1]% that conform
to the budget constraint while maximizing the probability
of producing one of these identified networks in any trial.
This is clearly impractical.

As an alternative, we first substitute [0,1]Y with the
lattice {0.0,0.1,...,0.9,1.0}¥ C [0,1]", and require B to
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be a positive multiple of 0.1. If we find optimal vectors
in the lattice, it may be assumed that the optimal vectors
in [0,1]" lie nearby. Thus we now consider the space con-
sisting of only those vectors p whose components p; ; lie
in the set {0.0,0.1,0.2,...,0.9,1.0} and sum to B. Never-
theless, an exhaustive exploration of this search space re-
mains intractable. Hence we turn to the simulated anneal-
ing (SA) search algorithm, as developed independently by
Kirkpatrick et al. [8], and by Cerny [3].

In the SA algorithm, we start at some initial vector in the
search space. Then we select a neighboring vector, which we
define to be a vector whose components match those of the
initial vector in all but two of the N positions, and which
differ from the initial vector in those two positions by £0.1.
For instance, if p = (0.2,0.1,0.3,0.4,0.0,0.8), the vector
(0.2,0.1,0.2,0.4,0.1,0.8) would be a neighbor. If the neigh-
boring vector is more likely to produce an efficient SWS net-
work, we move to that vector. Otherwise, we may still move
to it with a certain probability which gradually diminishes
from one to zero as the algorithm progresses. Then, at the
next iteration, we select a neighbor and repeat.

To implement the SA algorithm, we require a positive
real-valued energy function E(p) that estimates the “en-
ergy” of each point p in the search space. Here the energy
of p represents its likelihood to generate networks which are
not SWS, and networks which are SWS but relatively inef-
ficient. Hence the energy function is constructed such that
it decreases toward zero as we encounter optimal solutions.

Our energy function consists of I iterations. At each it-
eration the function uses the probabilities p; ; to create a
realization of the random network. The function then deter-
mines whether the realized network is SWS. If the network
is SWS, the energy function determines the geometric mean
order of the network starting at each of the n nodes, as a
measure of its efficiency. Upon completing I iterations, the
energy function computes the proportion ¢ of the I realized
networks which were not SWS, and, among those realized
networks which were SWS, the average v of the geometric
mean order. Note that we intend to minimize both ¢ and
1. We then form a weighted average W = ap + b, with a
and b chosen such that ¢ dominates until it becomes very
small, at which point ¥ begins to have greater influence. To
control the rate at which the energy function decreases as
W decreases, we input W into the sine function, ensuring
that 0 < W < x/2. In our implementation, we use

E(p) = sin(0.5¢ + 0.001%)).

As anyone would surmise, this energy function is highly
variable, no matter what value is chosen for I (we used
I =1,000), unless p consists almost exclusively of ones and
zeros. To reduce the variability, we take the average func-
tion value over 10 applications to any vector p. Nevertheless,
the variability remains. While this does not prove to be a
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Figure 3. Four realizations of an optimized random five-node
network.

critical problem when n is small (say, 4 or 5), it has a dele-
terious effect on the success of the algorithm when n = 10
or n = 15.

Throughout the SA algorithm, we maintain a record of
the best vector we have encountered, i.e., the vector whose
computed energy is lowest. Once the algorithm terminates,
the best vector is declared to be optimal in the sense of hav-
ing the lowest energy in the search space, and thus the great-
est likelihood of producing efficient SWS networks among
those having the same budget constraint. In practice, the
vector identified by the algorithm may not be optimal, but
it is usually quite good. Moreover, it is not unique, since
permuting the labels of the nodes would change the labels
of the potential edges among them, producing a different
vector of probabilities.

The SA algorithm also requires a temperature function
which decreases monotonically from one to zero as the algo-
rithm progresses from its first iteration to its last. We use
the function T'(z) = 1 —e°*~1) where z is the proportion of
iterations completed. The algorithm relies on the tempera-
ture at any iteration to determine the probability of moving
from a state whose energy is lower to a neighboring state
whose energy is higher, as mentioned above. This proba-
bility decreases as the temperature decreases, so that the
algorithm gradually narrows its focus to one convex region
of the search space.

For example, consider a random network consisting of five
nodes and thus 10 potential edges. Suppose B = 4, which is
low enough to ensure that a SWS network cannot be guaran-
teed in any realization. If we start with an initial vector con-
sisting of a probability of 0.4 for each potential edge (with
corresponding energy 0.3536), the SA algorithm returns as
the optimal result (0.8,0.8,0.8,0.8,0.0,0.0,0.0,0.0,0.0,0.8),
whose energy is found to be 0.3301. Four realizations of the
random network with this optimal allocation of probabili-
ties to the 10 potential edges are displayed in Figure 3. We
note that only three of the networks are connected, and of
these only two are SWS (having a loop of length 3). The
two SWS networks are identical, each of diameter 2. Given
the low budget, this is the best allocation of probabilities
we can find.

Figure 4. Four realizations of an optimized random
fifteen-node network.

As a second example, consider a random network con-
sisting of 15 nodes and 105 potential edges, with a relatively
high budget of B = 21. If we start with an initial vector con-
sisting of a probability of 0.2 for each potential edge (with
corresponding energy 0.2510), the SA algorithm returns an
optimal result whose energy is computed to be 0.0077, which
is remarkably low. Four realizations of this random network
are displayed in Figure 4. Note that all four networks are
SWS, as loops of length 3 may be easily identified among
each set of edges, and odd-length loops of higher dimension
are also evident.

Hence the SA algorithm proves quite effective in finding
an allocation of probabilities among potential edges that
maximizes the likelihood that any realization of a random
network will be SWS.

6. ROBUST NETWORKS

A desirable feature of a SWS network is that it be ro-
bust. One way of defining robustness is in terms of the loss
of wirings between nodes. An alternative definition of ro-
bustness involves the preservation of a SWS network if one
node “malfunctions.” We focus on networks which are ro-
bust under the latter definition, i.e., robust against the loss
of a node. Observe that network N4 is robust against loss of
a node, whereas if nodes 3, 4 or 7 were to be removed from
network Ng, the remaining sub-network would not even be
connected.

We may modify the energy function F(p) implemented in
the SA algorithm so that we also check each SWS network
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Figure 5. Four realizations of a robust optimized random
ten-node network.

N among the I realized networks for robustness. We achieve
this by successively removing the ith row and column from
M(N),i=1,...,n, and determining whether the resulting
submatrix corresponds to a SWS network. This obviously
slows down the algorithm considerably. Let x denote the
proportion of SWS networks which are not robust among [
realized networks. This time we form the weighted average
W = a¢ + by 4+ cx, with the constants a, b and ¢ chosen
to balance the influences of system-wide synchronization,
robustness, and efficiency as the algorithm progresses. In
our implementation, we use

E(p) = sin(0.5¢ + 0.001¢ + 0.1x).

To make the problem more realistic, and hence more in-
teresting, we further restrict the probabilities p; ; comprising
the probability vector p to the set {0.0,0.1,...,0.9}, so that
no edge in the network can ever be guaranteed. This reduces
the search space slightly.

We implement the SA algorithm with these modifica-
tions, using a network of 10 nodes and a budget of B = 22.5,
beginning with an equidistribution of p; ; = 0.5 among the
45 potential edges, yielding an energy of 0.100. The optimal
probability vector returned by the procedure has a com-
puted energy of 0.046, which is quite good given the addi-
tional restrictions. Then we repeat using a 15-node network
with a budget of 31.5, starting with an equidistribution of
p;i,; = 0.3 among the 105 potential edges, and an energy of
0.292. The SA algorithm returns an optimal result whose
energy is 0.180. Four realizations of random networks based
on this optimal result are displayed in Figures 5 and 6.
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Figure 6. Four realizations of a robust optimized random
fifteen-node network.

In Figure 5, the lower-right network is SWS, but not ro-
bust, since the loss of nodes 7 or 9 would render the remain-
ing network unconnected. But the other three networks are
both SWS and robust. Coincidentally, the lower-right net-
work in Figure 6 is also SWS, but not robust, while the
other three are both. We observe that in the robust net-
works, odd-length loops (particularly, triangles) occur at
multiple distinct locations in the network. Hence optimal
robust configurations of random networks are those which
connect smaller subnetworks which are themselves SWS net-
works. This of course requires a sufficient budget to permit
such a configuration.

7. CONCLUSION

We have defined system-wide synchronization in networks
based on the premise that, once a signal leaves a node, the
node becomes inactive, and remains so until the signal re-
turns to it, as is known of neurons. Working with this defi-
nition, we discover that a system which can be modeled by
such a network either achieves a state of system-wide syn-
chronization after an initial start-up period, or wavers in-
definitely between two complementary states. This outcome
ultimately depends only on the geometry of the network.
Hence the functionality of such a system would require at-
tention to whether or not its structure contains loops with
an odd number of edges.

In a system where the connectivity among nodes is ran-
dom, perhaps dependent on the correlations between them,



we may further determine an optimal allocation of proba-
bilities among the potential edges, subject to certain bud-
get constraints, such that the functionality of the system
is most likely. In application to such a system which is not
functioning optimally, one might determine how to reallo-
cate resources in order to improve performance. Moreover,
to promote robustness of such a system, one should ensure
that its subsystems are independently designed to function
optimally.

The results obtained in this paper may be summarized
as follows:

SO [Deterministic network:] A SWS phase can only be
achieved in a connected network containing at least one
substructure consisting of a closed loop comprised of an
odd-number of edges.

S1 [Random network:] Any wiring probability allocation
scheme achieves a high potential of producing an effi-
cient SWS phase when it frequently gives rise to several
heavily-connected hubs.

S2 [Random network with robustness:] The robustness con-
straint requires a higher budget, and at the same time
replaces the potential hubs with many well-scattered
potential triangular substructures.

Result [SO] regarding deterministic networks affords a
huge reduction in computations for Result [S1], which in
turn partly anticipates Result [S2]. However the appearance
of abundant triangular substructures in a robust random
network is somewhat surprising.

At the end we postulate immediate implications of these
results on the study of emotion and memory reactivation as
follows:

I1: An emotion arousal can be effectively triggered when
subgroups of emotion variables, such as behavioral, ex-
periential and physiological variables, are well-wired,
even though the subgroups themselves are sparsely con-
nected with redundant wiring.

Even in the absence of an inhibiting mechanism, the
feed-forward and feed-back mechanisms of signal trans-
mission are sufficient to efficiently and robustly gener-
ate SWS phases among a designated group of neurons
with strong local connections and sparse global wiring.

12:

APPENDIX A. PROOFS

Proof of Lemma 1. Assume node i is activated at step k. At
step k+ 1, each neighbor of i is activated, while ¢ may either
be deactivated or reactivated by a neighbor. At step k + 2,
each neighbor of node i reactivates node . This cycle then
repeats indefinitely, so that node i is never deactivated for
more than one consecutive step. Hence node i is periodic
with period at most two. O

Proof of Lemma 2. Assume activated node i is periodic
with period p = 1 at step k. At step k+ 1, every neighbor of

node i is activated, and node ¢ remains activated since node
1 has period 1. Now the neighbors of node 7 have period 1
since their neighbor, node i, is activated at every step. At
step k + 2, every neighbor of the neighbors of node 7 is acti-
vated, node i remains activated, and every neighbor of node
7 remains activated. Now the neighbors of the neighbors of
node 4 have period 1. By step k + D;(N), this effect will
have been transferred to the nodes which are at the greatest
distance from node 4, so that every node in N is activated.
Hence all nodes of N are simultaneously activated within
D;(N) additional steps. O

Proof of Theorem 1. 1t is evident from the proof of Lemma
2 that an activated node ¢ becomes periodic with period 1
if and only if the signal reaches both ¢ and some neighbor
of 7 in the same step. This requires the presence of a closed
path in the network structure comprised of an odd number
of nodes, i.e., an odd-length loop. Then, and only then, the
signal will follow two branches which reach two neighboring
nodes at the same step. By Lemma 2, such a network is

SWS. O

Proof of Corollary. Assume N is a SWS network with n
nodes. If node ¢ is activated at step 0, the signal will prop-
agate to every node of N within D;(N) < D(N) steps.
Since N is SWS, A must have at least one odd-length
loop in its structure. Thus the signal must enter the loop
and reach two neighboring nodes h and j at the same
step while propagating throughout the network, so that h
and j each become periodic with period 1. By Lemma 2,
N will then achieve simultaneous activation of all nodes
within Dp,(N) < D(N) steps. Therefore SWS occurs within
Di(N) + Dp(N) < 2D(N) steps. Hence O;(N) < 2D(N).
Since i is arbitrary, O(N) < 2D(N). O

Proof of Theorem 2. Assume N is a connected network
which is SGA, with corresponding n X n matrix M. Then
after finitely many steps every node of A is periodic with
period 2. This implies that the network state vector v =
(v1,...,v,) eventually begins to alternate indefinitely be-
tween two states, call them « and 3, in which each v; alter-
nates between one and zero for ¢ = 1,...,n (at each step,
v consists of at least one zero component and at least one
nonzero component). Since each successive state results from
the product [Mv], the inner product of the ith row of M
with v must be zero whenever v; = 1 and be nonzero oth-
erwise. Hence the ith row of M must have zeros in those
columns corresponding to the positions of the nonzero com-
ponents in v in one of the two alternating states, and a one
in at least one of the remaining columns. We may thus let
M be the matrix consisting of the m > 1 columns of M
which have zeros in the rows corresponding to all the po-
sitions of the nonzero components in v when it is in state
a, and let M; be the matrix consisting of the remaining
n —m > 1 columns of M which have zeros in the rows cor-
responding to all the positions of the nonzero components
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in v when it is in state 3. Then M; has one or more rows
consisting only of zeros, while each corresponding row of My
contains at least one nonzero entry. Likewise, M5 has one or
more rows consisting only of zeros, while each corresponding
row of M; contains at least one nonzero entry. By relabel-
ing the nodes so that those which are activated in state a
are consecutively numbered 1,...,m, and those which are
activated in state § are consecutively numbered m+1,...n,

the matrix M will thus take the form
0 A
u=[4 0]

where A is an (n —m) X m matrix.

Moreover, if M may be partitioned in this way, then after
finitely many steps every node of A" must be periodic with
period 2. Hence N is SGA. |
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