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Current theories of human memory frequently assume that the probability of recall depends
on the similarity of the test context to the study context. A model for contextual fluctuation
is developed that is based on Stimulus Sampling Theory. The model assumes that “context”
can be represented by a set of so called contextual elements. Part of this set represents the
current context. There is a continuous fluctuation between the active contextual elements
(the current context) and the inactive contextual eiements. During study, part of the current
context is conditioned to (stored in) the memory trace. The model may be used to derive
predictions for the overlap between the study and test contexts. The model is developed in the
context of interference paradigms. It is shown that the model leads to a number of interesting
predictions. The incorporation of this model in the SAM theory (Raaijmakers & Shiffrin
(1981). Psychological Review 88, 93-134) enables that theory to predict such phenomena as
spontaneous recovery and proactive inhibition.  © 1989 Academic Press, Inc.

Recent theories of memory have placed considerable emphasis on the role of con-
textual factors in retrieval from long-term memory (e.g., Anderson, 1983; Glenberg,
1979; Raaijmakers & Shiffrin, 1981). In particular, it has been assumed that the
probability of recall depends on the similarity of the context at the time of retrieval
to the context at the time of encoding. This factor is often assumed to be (at least
partly) responsible for the gradual decrease in the probability of recall as a function
of the retention interval. That is, it is assumed that the similarity of two contexts
is determined by the distance in time: the context at time #(i) will be more similar
to the context at time #(i +j) than to the one at time #(i + k) where k > j. However,
with the exception of Estes (1955) and Bower (1972), no attempts have been made
to formally incorporate this notion in current mathematical models for learning and
memory.
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In this article, we will develop a model for contextual fluctuation that will be
incorporated in the SAM theory (Raaijmaker & Shiffrin, 1981). However, although
our presentation will be in the context of that theory, we believe that our results
have a wider applicability and might be incorporated in other models of memory.
Special attention will be given to interference phenomena. A full account of this
particular application is given in Mensink and Raaijmakers (1988). In the present
paper we will focus mainly on the quantitative aspects of contextual fluctuation
model.

The SAM theory is a cue-dependent probabilistic search theory that has been
shown to be able to account for a large range of phenomena in the memory
literature (see Raaijmakers & Shiffrin, 1980, 1981; Gillund & Shiffrin, 1984). The
SAM theory assumes that context acts as a search cue similar to other cues such
as item cues or category cues. In this theory, context has been used as the factor
that allows the memory search to be focused on the target list of items. Moreover,
Raaijmakers and Shiffrin (1981, p. 129-130) assume that contextual change is one
of the major factors determining forgetting. For example, it can be easily shown
that a decrease in the contextual retrieval strengths (as defined in this theory) leads
to a decrease in the probability of recall. However, in order to be able to extend
the SAM model to the explanation of time-dependent aspects of memory (e.g.,
simple forgetting), it is necessary to make at least one variable in the model time-
dependent. In accordance with Raaijmakers and Shiffrin (1981) a likely candidate
is the associative strength of the context cue to the stored memory images (or
traces). In the next section we will develop a context fluctuation model. This model
will then be incorporated in the SAM model and will be shown to be responsible
for the prediction of a number of interference phenomena.

DESCRIPTION OF THE MODEL

The model that we will discuss is an element-based context model in the tradition
of Stimulus Sampling Theory. We will present the model as it applies to the paired-
associate learning paradigm although it could undoubtedly be generalized to other
paradigms such as free recall.

Let us start with a verbal description of the model. Following Estes (1955) and
Bower (1972), context (internal as well as external) will be represented as a set of
contextual elements. At any given time only a part of this context is perceived by
the subject and this subset is denoted as the current context. Elements that are part
of the current context are said to be in the active state. All other elements are
inactive. We assume that at any moment only a fixed number # of the elements are
in the active state. The total number of elements is equal to N+n Hence, the
number of inactive elements equals N. With the passage of time, the current context
changes due to a fluctuation process: inactive elements may become active and
some active elements will become inactive. ‘

Before applying these ideas to the paired-associate paradigm, we will first discuss
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how they are related to the concept of contextual information as used in the SAM
theory. According to SAM, at the time of study both item and context information
is stored in long-term memory. It is assumed that both the S-R pair and the
contextual elements are encoded in the same image or episode (Mensink &
Raaijmakers, 1988). Both the associative strength between the two members of a
pair and the contextual associative strength are a function of the presentation time.
In order to relate this to the present context model, it seems natural to assume that
the number of active elements that will be encoded in the image, is a function of
presentation time.

We will now apply these ideas to a paired-associate interference design (A4-38,
A-C). Imagine that a subject is given one study trial on a List-1 stimulus-response
pair (a-b) and the one study trial on the corresponding a—c pair, followed by a
retention test (4—B denotes a list of paired associates, whereas a—b symbolizes
an individual pair). Thus, both “lists” contain only a single pair. This particular
situation is illustrated in the following scheme:

a-b

131

7]
a—c — test

where ¢, and ¢, represent the interlist interval and the retention interval, respec-
tively.

Consider what happens when the a-b pair is presented for study. Any active con-
textual element may be encoded in the item’s image. Such an element is denoted by
x,. Elements that are not encoded, are denoted as y-elements. During the interlist
interval z, the fluctuation process causes a new sample of context elements to be
active when the a—c pair is presented. This active set will contain x, and y elements.
Some of the active y elements will be stored in the a—c image. These elements are
called x, elements. An x, element that is stored in the corresponding List-2 a—c
image now refers to two traces that belong to different lists and that involve the
same stimulus terms. Such an element is denoted by x, (overlap element). At the
end of the retention interval (r,) the active set will contain x;, x;, Xo, and y
elements. These elements constitute the context cue that is used to retricve images
from memory. Its associative strength to an image from List-i is assumed to be
proportional to the sum of active x; and x, elements, i.e., to the overlap of the set
of elements stored in the image and the set of elements active at the time of testing.

In summary, there are always two sets of contextual elements, the active elements
and the inactive elements. Active elements may be encoded during a study trial. The
probability of recall on a test trial is a function of the overlap between the context
elements active at test and the elements encoded in an image.

At this point we have to make some simplifying assumptions in order to keep the
model mathematically tractable. It will be assumed that during a learning trial the
contextual state remains fixed, i.e., active elements remain active and similarly for
inactive elements. If one would assume that the context fluctuates within as well as
between trials one would have to treat all items individually, which would make
computation of model predictions quite complicated and practically unfeasible. The
above assumption implies that we disregard an item’s position in the list.
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In addition, we will have to make some decisions concerning the relationship
between the elements encoded on a given trial in the images corresponding to
different items. It seems unlikely that the same subset of active elements is encoded
in all images, especially since it is also assumed that the number of elements
encoded depends on the presentation time. It will therefore be assumed that the
encoding of active elements in a memory image is governed by a stochastic process
and that the subsets of active elements that are encoded in the images of different
items are independent samples from the set of elements that constitutes the current
active context.

THE MATHEMATICAL MODEL

The heart of our model is the equation that gives the number of elements of a
given type v (v = x,, X,, Xy, or y) that are active following ¢ seconds of fluctuation,
given that the state at 1+ =0 is known. This equation is given by the solution of the
differential equation

dA() _
T_M (£)— BA(2)
AM=K—A@), —--

where A(t) denotes the number of elements that are conditioned (i.e., encoded in
the memory image) and active. A’(t) gives the number of elements that are condi-
tioned but inactive and K equals their sum: A(¢) + A'(t), ie., the total number of
conditioned elements. y is the rate at which an inactive element becomes active and
B gives the rate at which an active element becomes inactive. Note that during a
fluctuation period, K is constant but 4(¢) and A'(¢) are changing. Thus,

dA(r)

= 1K= (B+7)4(1)

The solution of this differential equation is

A =A@ exp{~(B+N1} + K= [T —exp{=(B+1)1})]. (1)

Thus, A(t) gives the number of elements from class v that are active following ¢
seconds of fluctuation. In this derivation we have implicitly assumed that the total
number of contextual elements is reasonably large (otherwise the use of the differen-
tial equation technique would not have been appropriate). Hence, 4(t) might be
considered as the expected number of active elements. ,

Next, we need a learning equation, i.e., a formula that gives the number of active
elements that are stored in an image during a study trial as a function of the study
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time. We will assume that the increase in the number of stored elements is propor-
tional to the number of active elements that are as yet not conditioned (not stored
in the image under consideration). This leads to the differential equation

dA(T)
dt

=a[n— A(1)]

where 1 gives the presentation time in seconds. The solution is
A(1) = A(0) exp(—at) +n[1 —exp(—ar)].

Hence the probability that an active element that has not already been encoded in
the image, is stored during a study trial of 7 seconds is equal to

_A@-40)
————-——n_A(O) =1—exp(—ar). (2)

Equations (1) and (2) will be used to derive formulae for the number of elements
from class v that are active at the time of testing. Let us assume a multitrial list lear-
ning situation of the following kind where ¢, denotes the intertrial interval, ¢, the
interlist interval and ¢, the retention interval:

141 L3 41

A-B A-B A-B—2_4A-C A-C—2_TEST

In this analysis we will use the following notation:

A,(i, j,t) the number of contextual elements of type v that are active ¢
seconds after the jth trial on List-2 and following i trials on List-1;

K,(i,j)  the total number of elements of type v (active plus inactive) after i
trials on List-1 and j trials on List-2.

Let us start with List-1 trials (i=1, j=0). At the start of the first study trial, n y
elements will be active. Immediately after the first trial, nw of these elements are
conditioned and have become x, elements. During the intertrial interval fluctuation
occurs and on the second trial another subset of the remaining y elements is trans-
formed into x, elements. In general, we have the following difference equation for
the number of x, elements:

K(i,0)=K,(i—1,0})+wfn—A4,(i—1,0,¢,)].

In words: the total number of x, elements on trial i is equal to the number on trial
i—1 plus a proportion w of the unconditioned elements that are active at the end
of the intertrial interval between trial i and trial i — 1 (i.e., at the start of trial 7). For
the number of active x, elements we have

A,(,0,0)=A4,(i—1,0,t)+w[n—A4,(i—1,0,¢,)],
Al(ia Oa tl)=A1(i’ 0’ 0) exp{ '—(ﬁ +'}’)t1} + Kl(ia O)h(tl)9
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where A(t) is defined as

et (Bem
Wr) =22 1 ~exp{ ~ (F+7)1} ]

Due to the conditioning process the number of y elements decreases. This leads to

Ay(i’ 03 0)=n_,Al(i5 Os O)
=Ay(l_ 1’ 0’ tl)_w[Ay(i"" 19 09 tl)],

Ky(i’ 0) = Ky(l—ls 0)_ W[Ay(l"' '1a 0, tl)]
=K, (i—1,0)[1—wh(t,)] - 4,(i—1,0,0)wexp{ — (B + )¢, }.

With these equations and the initial conditions A4,(0,0,0)=X,(0,0)=0,
A,0,0,0)=n, and K (0, 0) = N + n, these quantities can be calculated for all times
during List-1 learning.

Suppose now that a second (interfering) list is presented ¢, seconds after the I'th
trial on List-1. At the end of the interlist interval the number of elements of each

type is given by

AI(I, 0, t2) = Al(ls Oa 0) cxp{ - (ﬂ + ‘)’)IZ} + KI(L O)h(tz)a
Az(I, 0, tz) = Ao([, 0, tz) = 0,
Ay(Ii 09 t2) =n - A!(I’ 0’ t2)’
KZ(Io 0) = KO(I} 0) =0. -
During List-2 learning some of the y elements will become x, elements and some

of the x, elements will become x, elements. The following set of difference equations
describes the changes in the number of elements of each type:

AL j,0)=(1—w) A, (L j—1,1,),

K(L) =KL j=1)=wAy(L, j—1,1,),
Al j,0) = Ax(L, j—1, 1) +wA (L j— 1, 1,),
Kl j) =Kol j— 1) + wA (L, j—1, 1,),
AL J, 0)= Ao, j~1, ) +wA, (1, j—1,1,)
KoL, )= KoL j— D)+ wdy(L, j—1, 1,),

AL j,0)=(1-w)A,(L j—1,1),
KL ) =KL j—1)=wA L j=1,1,).
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As in the case of List-1 learning, the composition of the active set of contextual
elements changes during the intertrial interval (of length ¢, seconds):

Av(l’ j’ tl) = Av(I’ j’ O)CXP{ _(B + y)tl} + Kv(I’ ])h(tl)

A similar equation describes the state of affairs at the end of the retention interval
(t, seconds), i.e., the interval between the last List-2 trial and the final testing:

AL T, t3)=A,(1, J,0) exp{ —(B+ 7)1} + K(L, J)h(23).

We have not been able to derive a (closed) analytical solution for these difference
equations. However, after insertion of the appropriate values for ¢,, ¢,, and t;, these
equations can be easily used to compute the state of activation at the end of the last
List-2 trial. These results may then be used to calculate the number of active
elements of each type at the time of test.

IMPLEMENTATION IN SAM

In the original SAM model, the probability of recalling an item was a function
of, among other things, the “contextual retrieval strength,” the strength between the
context cue and the memory image (or memory trace) corresponding to that item.
The present notion of a fluctuating context may be incorporated in a natural way
in the SAM model. We assume that the contextual retrieval strength is proportional
to the overlap in the contextual elements that are active at the time of testing and
the contextual elements stored in the memory image.

For any List-i image, the overlap is equal to the sum of the number of active x;
and x, elements. Hence, the contextual retrieval strength (s;) between the context
cue at test and a particular List-i image is equal to

g, = [AI(I’ J7 t3)+ AO(L J’ t3)] a
[ n *

In this formula we divide by n in order to eliminate a non-identifiable parameter:
since all A, are proportional to n, we cannot estimate n and a separately. Put in
another way, the contextual retrieval strength is proportional to the proportion of
the elements active at the time of testing that are encoded in the memory image.
Since the value of n is arbitrary, we have scaled the 4, and K, in units of n. That
is, we have set n equal to 1 in all calculations.

The implementation of this contextual fluctuation model in SAM poses a number
of other problems that we will briefly discuss. In SAM, associative strengths are
incremented (increased) after a successful recall (a learning-during-retrieval
assumption). For paired associates this means that the interitem strength (the
strength of the stimulus item to the memory image) and the contextual strength will
be incremented after recall of the response. Within the fluctuation model, the



A MODEL FOR CONTEXTUAL FLUCTUATION 179

increment for the contextual strength should be proportional to the number of
active elements that are not encoded in the image. This process can be understood
as follows. The fact that the subject was able to recall a response means that the
subject was able to recover the image (the representation of this pair in memory).
This means that the content of such an image was activated at that moment. We
assume that during this period the active contextual elements that were not already
stored in this image, may now become associated to this memory image. That is,
they are stored together with the other elements from the recovered image. When
the subject is tested a second time on this item, the expected overlap between
context cue and image will be larger than before which leads to a higher probability
of recall. However, if one wants to work with this incrementing assumption, one
will have to resort to complicated Monte Carlo simulation methods, treating all
items individually. Since the data that we will consider do not seem to depend on
such an incrementing assumption, we will work with the simplified model without
the learning-during-retrieval assumption.

Finally, the present model assumes that when an item is presented on several
trials, new contextual elements are always added to the same (single) memory
image. This implies that an item is always “recognized,” i.c., the image that was
stored on the first presentation is always successfully recovered as it is presented on
later study trials. The present model could be generalized by assuming that on a
repeated presentation context elements are added to the memory image of a
previous presentation, if that image is retrieved on the second presentation. If it is
not recognized (i.e., not retrieved), then a new image would be formed. Such a more
complicated study-phase retrieval model might be useful for the explanation of
spacing effects, but does not seem to be necessary for the modeling of list learning
paradigms.

APPLICATIONS OF THE MODEL

In this section we will consider a number of predictions of the present contextual
fluctuation model. We will focus on the effects of varous experimental variables on
the contextual strengths. All calculations will be based on the following set of
parameter values: y =001, §=0.035, a=0.2, 1=40, 0 =062, tr,=10, and ¢, = 10.
In addition, we will show how this fluctuation model enables the SAM theory to
account for a number of interference and forgetting phenomena. A full account of
the application of SAM to interference and forgetting is presented elsewhere
(Mensink & Raaijmakers, 1988). In this paper, we limit the presentation to those
predictions of the new SAM model that are a more or less direct consequence of
the incorporation of the contextual fluctuation model. '

We will first examine the effects of the number of List-1 and List-2 trials. Figure 1
shows the total number of contextual elements of each type (K,) immediately after
each of five List-1 trials and three List-2 trials. Obviously, during List-1 study trials
the number of x, elements increases steadily. Furthermore, during List-2 trials, a
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Fig. 1. Total number of class v (v=1x, x,, or x,) elements immediately after each of five List-1
trials and three List-2 trials.

number of these x, elements transform into x, elements. At the same time the
number of x, elements starts to increase. T

Figure 2 gives the total number of elements of each type as a function of the
length of the intertrial interval (z,). These results show that the total number of
stored elements (of whatever kind) increases with larger intertrial intervals. This

can be easily understood: as the intertrial interval increases, the overlap between
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Fi6. 2. Total number of class v elements as a function of intertrial interval lengths at the end of five
List-1 trials and three List-2 trials.
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the elements present on successive trials decreases and, hence, the number of
clements that are already stored. In other words, there are more elements that can
be stored and each element has a fixed probability of being stored on any given
trial. This result implies that the model predicts that distributed learning should be
better than massed learning. This so-called distributed learning effect is of course a
well-known phenomenon (e.g., Robinson, 1921; Hovland, 1938).

The finding that the curves for K, and K, show a cross over is accidental and
depends on the parameter values that are used. The number of overlap elements
(K,) depends both on the number of x, elements that remain in the active set
during the intertrial interval and on the number of x, elements that fluctuate during
that interval from the inactive to the active set. For small values of ¢,, a relatively
large number of elements remain in the active set, whereas for large values of ¢,,
a large number of the elements migrate to the active set. -

In Fig. 3 it is shown that the distribution of the total numbers of elements over
the various types of elements is strongly influenced by the interlist interval (7,): an
increase in the interlist interval leads to less overlap elements. This might explain
why it is easier with larger interlist intervals to discriminate between items from the
two lists. That is, most models for list discrimination or list membership decisions
will assume that such decisions become easier when there is less overlap between
the list contexts.

Figure 4 presents the changes in the set of active elements as a function of the
retention interval. This figure shows a continuous growth in the number of active
y elements as the retention interval increases. With this property of the model
simple forgetting is easily explained since y elements are not connected to any of the
to be recalled items. Another interesting result concerns the increase in the number

20 LJ .I - ) J
% * Kq
< . A KO
o
H] .
2 1.2} /"0-———— i
© A
c
s | >
- ¢

~ S os8} —

5 . .
o]
§
c 0.4 4
S
[o]

0056 50 100

interlist interval

FiG. 3. The total number of overlap elements as a function of the interlist interval. Unique elements
are also depicted.
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FiG. 4. The number of active class v elements as a function of the retention interval.

of active x, elements, especially when contrasted with the decrease in the number
of active x, elements. This can be explained as follows: At the start of the retention
interval, most active x, elements have been transformed into oyglap clements. As
the retention interval increases, more and more of the x, elements in the inactive
set migrate into the active set.

This resuit has some very- interesting consequences for the dependence of
retroactive and proactive interference on the length of the retention interval. Let s,
and s, be the contextual strengths for a List-1 and a List-2 item, respectively. Then,
according to SAM, the probability of sampling a particular List-1 image is a
function of the relative strength of the List-1 image. Thus, the probability of
recalling response R, relative to R, depends on the ratio s,/s,. The behavior of this
ratio as a function of the retention interval is shown in Fig. 5. The ratio s,/s,
decreases as the retention interval increases. This implies a relative and possibly an
absolute increase in the probability of recalling List-1 responses, a phenomenon
known as spontaneous recovery. Whether or not an absolute increase is observed
depends in the SAM model not only on the relative value of s,, but also on its
absolute value. The latter is always a decreasing function of the retention interval.
Hence, there are two opposing processes in the model that determine the
probability of recall: the probability of sampling the List-1 image (a function of the
relative strength) and the probability of recovering the item given that the image
has been sampled (a function of the absolute strength). By the same mechanism, the
probability of recalling a List-2 response decreases relative to a control condition
(proactive interference) because this probability is also a function of s,/s,.

Thus far, we have examined the effects of some experimental variables on the
predicted number of contextual elements of the different types. Although this is
important, it does not follow that such predictions can be translated directly into
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FiG. 5. Ratio of List-2 and List-1 context strength (s,/5;) as a function of the retention interval.

predictions for recall. The latter also depend on other characteristics of the larger
model for recall of which the context fluctuation model is only a part. As we have
already mentioned, we have developed a model based on the SAM theory that
incorporates the present contextual fluctuation model. -~ .

Mensink and Raaijmakers (1988) present a full description of this new model and
its application to a large number of interference and forgetting phenomena. In this
paper, we present only a few examples in order to illustrate the increase in
explanatory power obtained by the incorporation of the contextual fluctuation
model.

The first phenomenon that we will discuss is proactive interference (PI). It has
been shown in many experiments that the amount of PI depends on the length of
the retention interval. As described above, this result follows quite naturally from
the contextual fluctuation model. As the retention interval increases, the contextual
strength for List-1 items increases relative to the contextual strength for List-2
items.

In order to investigate this further we simulated an experiment of Koppenaal
(1963). In this simulation the two lists (AB-AC paradigm) consisted of 10 pairs
each. List 1 was given 10 study trials and List 2 five study trials (of 2 seconds
each). For the final recall test the MMFR method was used, that is the subject was
asked to give both responses. The predicted results are shown in Fig. 6 for various
retention interval lengths (arbitrary time units). Mensink and Raaijmakers (1988)
present the equations that were used to generate these predictions.

The model predicts that recall decreases in both the control condition (C) and
the PI condition (L2). However, recall decreases faster in the PI condition as shown
by the standard difference measure for PI (C-L2). Hence, the model predicts an
increase in PI as a function of the retention interval. This is due to the decrease in

the ratio s,/s,.



184 . - MENSINK AND. RAAIJMAKERS

mean recall/Pl

W o

-

i X e X " 11
i L4

| 550 100 306 1000
reteption interval

FiG. 6. Predicted patterns of recall for Koppenaal's (1963) study. Control group recall as well as
MMFR List 2 recall are depicted . The difference is given by the PI curve.

Our second demonstration concerns spontaneous recovery. There has been much
controversy concerning this phenomenon and its occurrence seems to depend on
many procedural details of the experiment (see Brown, 1976). For example, with
MMFR testing absolute spontanecus recovery is seldom observed. Briggs (1954)
demonstrated spontancous recovery using the MFR recall method. In such a test,
subjects.are asked to produce the first response that comes to mind. Briggs’ subjects
were interrupted at certain recall levels during learning. Immediately after such an
! interruption they were given a MFR recali test. Figure 7 shows the results predicted
by our model. In this analysis, a MFR test was simulated- whenever the “subject”

1.00

0.80

060

0.40

0.20

probability of recalling R; first

5 50 100 300 1000

list1 © list2
cr:tenon levels retention interval

FiG. 7. Recall predictions for the Briggs’ (1954) study. R, gives the List-1 MFR .response curves. R,
gives the second list MFR response curves. Criterion level / corresponds to the MFR test given dunng
list learning when the 24 = {% correct criterion was reached.
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reached a score of at least 24, 48, 72, or 96% correct. In addition, MFR tests were
given after various retention intervals. MFR testing was simulated by calculating
the probability that a particular response is recalled before the competing response
is produced. For present purposes the most interesting aspect of the predictions is
the increase in the List-1 responses produced as a function of the length of the
retention interval. Again, this is due to the ratio s,/s,.

From these results it is evident that the present contextual fluctuation model
greatly increases the scope of the SAM theory. We believe, however, that its
relevance is not limited to the SAM theory. Many other models for recall
incorporate the notion that the overlap between study and test contexts affects the
probability of recall. Any such model might profit from the present contextual
fluctuation model.

CONCLUSION

We have presented a model for contextual fluctuation and its implications for
two-list or interference designs. We have shown that the combination of such a
model with a more general memory theory (i.e., the SAM theory) leads to a power-
ful model that is able to predict a large number of well known phenomena. For a
more complete account of this latter model we refer to Menstak and Raaijmakers
(1988).

Although we have emphasized the relation to SAM, this does not mean that this
is the only theory that might profit from the incorporation of such a fluctuation
model. The idea that the probability of recall is a function of the overlap between
test and encoding conditions (or retrieval and trace information, see Tulving
(1983)) is much more general. The present contextual fluctuation model might be
incorporated in any such model. For example, distributed memory models assume
a vector representation for stimulus events. Part of these vectors might correspond
to contextual information. The relation of the stimulus vectors at storage and test
might be described by the present fluctuation model.

The notion of contextual fluctuation has obviously implications that go beyond
the phenomena of interference and forgetting. For example, one of us (J.R.) is
currently involved in a project on the application of SAM to spacing and repetition
phenomena. In that project, the present contextual fluctuation model plays a
prominent part.
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