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Chapter 2

Models of Memory

Jeroen G.W. Raaijmakers and Richard M. Shiffrin

Sciences tend to evolve in a direction that introduces
greater emphasis on formal theorizing. Psychology
generally, and the study of memory in particular,
have followed this prescription: The memory field
has seen a continuing introduction of mathematical
and formal computer simulation models, today
reaching the point where modeling is an integral part
of the field rather than an esoteric newcomer. Thus
anything resembling a comprehensive treatment of
memory models would in effect turn into a review of
the field of memory research, and considerably
exceed the scope of this chapter. We shall deal with
this problem by covering selected approaches that
introduce some of the main themes that have
characterized model development. This selective
coverage will emphasize our own work perhaps
somewhat more than would have been the case for
other authors, but we are far more familiar with our
models than some of the alternatives, and we believe
they provide good examples of the themes that we
wish to highlight.

The earliest attempts to apply mathematical
modeling to memory probably date back to the late
19th century when pioneers such as Ebbinghaus and
Thorndike started to collect empirical data on
learning and memory. Given the obvious regularities
of learning and forgetting curves, it is not surprising
that the question was asked whether these
regularities could be captured by mathematical
functions. Ebbinghaus (1885) for example applied
the following equation to his data on savings as a
function of the retention interval:
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whereS is the percentage saving,t is the retention
interval in minutes, andk andc are constants. Since
no mechanisms were described that would lead to
such an equation, these early attempts at
mathematical modeling can best be described by the
terms curve fitting or data descriptions. A major
drawback of such quantification lies in the

limitations upon generalization to other aspects of
the data or to data from different experimental
paradigms: Generalization is limited to predictions
that the new data should match the previously seen
function, perhaps with different parameter values.
Notwithstanding the many instances where this
approach provides reasonable accounts, theorists
generally prefer accounts that provide cognitive
mechanisms from which the pattern of results
emerge, mechanisms that allow better understanding
and the potential for different patterns of predictions
in new situations.

This difference between data fitting and
mechanism based models is illustrated by comparing
older approaches and current models for memory.
Models such as ACT (Anderson, 1976, 1983b, 1990),
SAM (Raaijmakers & Shiffrin, 1980, 1981; Gillund
& Shiffrin, 1984), CHARM (Metcalfe Eich, 1982,
1985), and TODAM (Murdock, 1982, 1993) are not
models for one particular experimental task (such as
the recall of paired associates) but are general
theoretical frameworks that can be applied to a
variety of paradigms (although any such application
does require quite a bit of additional work). In SAM
for example, the general framework or theory
specifies the type of memory representation assumed
and the way in which cues activate specific traces
from memory. In a particular application, say free
recall, task-specific assumptions have to made that
do not follow directly from the general framework,
such as assumptions about the rehearsal and retrieval
strategies. The general framework and the task-
specific assumptions together lead to a model for free

recall.1 This chapter of course focuses on such newer
modeling approaches. However, understanding the
present state of modeling is facilitated by a brief look
at the models' origins. Hence, in the next section we

1Although it might be preferable to make a distinction along
these lines between a theory and a model, we will use these terms
interchangeably, following current conventions.
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will review some key theoretical approaches of the
past 50 years.

BRIEF HISTORICAL BACKGROUND: FROM
LEARNING MODELS TO MEMORY MODELS

Modern memory models have their roots in the
models developed in the 1950's by mathematical
psychologists such as Estes, Bush, Mosteller, Restle,

and others.2 Initially these models were mainly
models of learning, describing the changes in the
probability of a particular response as a function of
the event that occurs on a certain trial. A typical
example is thelinear operator modelproposed by
Bush and Mosteller (1951). In this model, the
probability of a correct response on trialn+1 was
assumed to be equal to:

p Q p pn j n j n j+ = = +1 ( ) α β (2)

The "operator"Qj could depend on the outcome
of trial n (e.g. reward or punishment in a
conditioning experiment). Such a model describes
the gradual change in probability correct as learning
proceeds. Note that if the same operator applies on
every trial, this is a simple difference equation that
leads to a negatively accelerated learning curve.
Although this might seem to be a very general
model, it is in fact based on fairly strong
assumptions, the most important one being that the
probability of a particular response depends only on
its probability on the preceding trial and the event
that occurred on that trial (and so does not depend on
how it got there). Thus, the state of the organism is
completely determined by a single quantity, the
probability pn. Note that in comparison to more
modern models, such operator models have little to
say about what is learned, and how this is stored and
retrieved from memory. As with other, more verbal
theories of that era, they are behavioristic in that no
reference is made to anything other than the current
response probabilities.

A closely related theory was proposed by Estes
(1950, 1955). Estes however did make a number of
assumptions (albeit quite abstract ones) about the
nature of what was stored and the conditions under
which that would be retrieved. ThisStimulus-
Sampling Theoryassumed that the current stimulus
situation could be represented as a set of elements.
Each of these elements could either be conditioned
(associated) or not-conditioned to a particular
response. Conditioning of individual elements was

2 An excellent review of these early models is given in Sternberg
(1963) and Atkinson and Estes (1963).

considered to be all-or-none. On a given trial, a
subset of these elements is sampled and the
proportion of conditioned elements determines the
probability of that response. Following
reinforcement, the sampled not-yet-conditioned
elements have some probability of becoming
conditioned to the correct response. If the number of
elements is large and if the same reinforcement
applies on every trial, this Stimulus-Sampling model
leads to the same equation for the expected learning
curve as Bush and Mosteller's linear operator model.

One of the advantages of Estes' approach was that
it made it possible to generalize the model to a
number of different paradigms. For example, Estes
(1950) showed how the theory led to predictions for
the response times in simple operant conditioning
experiments and Estes (1955) generalized the theory
to phenomena such as spontaneous recovery and
regression. For the latter generalization, it was
assumed that there exists a process of random
environmental or contextual fluctuation in such a
way that on a given trial only a subset of the
elements is available for conditioning. Between
sessions, the environment will continue to fluctuate
and hence, after a given retention interval, the
current set of conditionable elements will be mix of
elements that were available during the previous
session and elements that were not available. Figure
1 shows an example of such a fluctuation process. In
this example, training takes place on Day 1 until all
available elements (those within the circle) have been
conditioned (left panel of Fig 1). However between
Day 1 and Day 2, there is fluctuation between the
sets of available and unavailable elements so that at
the start of Day 2 (right panel) some conditioned
elements in the set of available elements have been
replaced by unconditioned elements. It is easy to see
that this will lead to a decrease between sessions in

the probability of a conditioned response.3 In this
example, the probability of a response would
decrease from 1.0 (=16/16) at the end of Day 1 to
0.625 (=10/16) at the start of Day 2. In this way,
spontaneous regression could be explained.
Spontaneous recovery would be just the opposite,
such that the available elements would all be
unconditioned at the end of Day 1 but would be
replaced by conditioned elements due to fluctuation
during the retention interval; in this way the

3 This same model of contextual fluctuation was later
incorporated by Mensink and Raaijmakers (1988) in their application
of the SAM model to interference and forgetting.
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probability of a response on Day 2 would show a
recovery of the conditioned response.

The important point here is that such predictions
are possible because the theory provides a
mechanism (in this case a very simple one) that
determines how the system generates a response,
rather than just a function that transforms one
response probability into another. Although
Stimulus-Sampling Theory is rarely used these days,
the theory has been very influential and may be
viewed as the starting point of modern mathematical
modeling of learning and memory processes.

One of the significant modeling developments
that came out of the Stimulus Sampling approach
was the use of simple Markov models to describe
learning processes. The first (and indeed simplest of
these) was theone-element modelproposed by Bower
(1961). In this model it was assumed that there is
only a single element for each stimulus that is
present on each presentation of that item. On each
presentation there is a probabilityc that the item will
be conditioned (or learned). Since the element will be
either conditioned or unconditioned, learning of a
single item will be an all-or-none event, which is
why the model is also known as theall-or-none
model. The model still predicts a gradual learning
curve because such a curve will represent the average
of a number of items and subjects, each with a
different moment at which conditioning takes place.

The learning process in the all-or-none model may
be represented by a simple Markov chain with two
states, the conditioned or "learned" state in which the
probability correct is equal to 1, and the
unconditioned state in which the probability correct
is at chance level (denoted byg). The following
matrix gives the transition probabilities, the
probabilities of going from stateX (L or U) on trial n
to stateY on trial n+1.

state on trial n+1 P(Correct)
L U

state on trialn
L

U c c

1 0

1−










1

g









 (3)

Bower (1961) applied this model to a simple
learning experiment in which subjects were
presented lists of 10 paired associate items in which
the stimuli were pairs of consonants and the
responses were the integers 1 and 2 (hence this
experiment might perhaps be better described as a
classification learning experiment since the subjects
have to learn the correct category for each pair of
consonants). The interesting aspect of this
application was that Bower did not just look at the
learning curve (which would not be very informative
or discriminative) but derived a large number of
predictions for many statistics that may be computed
from the data of such a learning experiment,
including the distribution for the total number of

Figure 1: Example showing Estes' stimulus fluctuation model: Filled dots represent conditioned elements, open dots
represent unconditioned elements. At the end of learning on Day 1 all available elements (within the circle) have
been conditioned. Between Day 1 and Day2 there is fluctuation between the two sets of elements so that at the start
of Day 2 the set of available elements contains a number of unconditioned elements.

AFTER STUDY ON DAY 1 BEGINNING OF DAY 2
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errors, the distribution of the trial of last error, and
the frequencies of error runs. The model fitted
Bower's data remarkably well (see Figure 2 for an
example) and this set a new standard for
mathematical modelers.

One of the key predictions of the model was what
became known aspresolution stationarity: The
probability of responding correctly prior to learning
(or prior to the last error) was constant. One of way
of formulating this is in terms of the probability of an
error being followed by another error:

P e en n( )+1 = constant for alln (4)

It may be shown that this presolution stationarity
property coupled with one other assumption (such as
the distribution of the trial of last error) is a sufficient
condition for the all-or-none model. Thus, the crucial
property of the all-or-none model is that errors are
(uncertain) recurrent events (Feller, 1957).
Batchelder (1975) showed that for this stationarity
property to hold, it is necessary that there are no
subject differences in the learning parameterc. To
see this, note that if subjects do differ, it will be the
case that for largern, only the slower subjects will be
included in the data (the faster subjects will already
have learned and will not make an error). That is, the
probability

P e e c gn n( ) ( )( )+ = − −1 1 1 , (5)

will be based on a different, lower, mean value ofc
for later trials. Hence, the assumption of presolution
stationarity is not just crucial, but also quite
restrictive. One of the reasons why Bower's data

fitted the model so well (despite its restrictiveness)
may have been the relative simplicity of the
experimental task. In the years that followed it
became evident that more complicated designs would
not conform to the predictions of the simple all-or-
none model (Bjork, 1966; Rumelhart, 1967).

Notwithstanding the facts that the model was
quite simple, that it was rather sparse in its
assumptions concerning cognitive mechanisms, and
that it was eventually rejected, it did fulfill an
important function in the "coming of age" of
mathematical models for learning and memory: The
detailed level at which the data were analyzed, and
for which predictions were derived, set a standard for
future modeling efforts.

In the next ten years, various Markov models
were proposed that built upon the all-or-none model.
Greeno and Scandura (1966), Batchelder (1970) and
Polson (1972) generalized the all-or-none model to
transfer-of-training and the learning of conceptual
categories (several lists in which a stimulus item
from a specific category is always paired with same
response). The basic idea held that when consecutive
lists are conceptually related, there might be all-or-
none learning on two levels: the individual item level
and the category level. Atkinson and Crothers (1964)
extended the model to include the notion of a short-
term memory state, a rather important
conceptual/modeling advance as subsequent events
demonstrated. Various versions of such a model have
been proposed by a number of researchers, but the
basic notion always was that an item could move
from the unlearned state to the short-term state when
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Figure 2: Observed and predicted
distributions of the total number of
errors per subject-item sequence
(After Bower, 1961).
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that item was presented for study but could move
back to the unlearned state on trials in which other
items were studied. The learning process can then be
described using two transition matrices, one that
applies when the target item is presented (T1) and
one that applies when another item is presented (T2):

L S U

T1 =

L

S

U

d d

wc w c w

1 0 0

1 0

1 1

−
− −


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
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


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whereL is the state in which the item has been
learned,S is an intermediate or short-term state, and
U is the state in which the item is not learned.

Although these LS-models still assume that
learning eventually results in a state (L) from which
no forgetting would occur (obviously a simplifying
assumption), they also introduced a number of
elements that would become important in the
following years. For example, the models explicitly
deal with the events between successive study trials
and incorporate the notion that additional storage (as
well as forgetting) may occur on those intervening
trials (seeT2). Based on this general approach, Bjork
(1966), Rumelhart (1967) and Young (1971)
developed (increasingly complex) models to account
for spacing effects in paired-associate recall, leading
to a model that became known as theGeneral
Forgetting Theory. Thus, the Markov models shifted
from an emphasis on learning to an emphasis on
(intertrial) forgetting.

In 1968 Atkinson and Shiffrin produced a model
and a model framework that can be thought of as a
natural culmination of these various developments.
Their model became known as the 'modal model of
memory', partly because it used principles extracted
from the rapidly developing studies of short-term
memories to produce a model specifying the relations
of short-term to long-term memory. In modeling
circles, their theory broke new ground for a different
reason: It went much farther than previous theories
in quantifying assumed underlying processes of
cognition, including rehearsal strategies for short
term memory, and retrieval strategies for long-term
memory (Atkinson & Shiffrin, 1968). An important
advance was the shift of emphasis from an inexorable
march through a limited number of states of memory

to a final and permanent learned state (as in the
Markov models) to an emphasis upon search and
retrieval processes from long-term memory (see
Shiffrin, 1968, 1970; Shiffrin & Atkinson, 1969;
Atkinson & Juola, 1974). Although this model
retained an assumption that long-term memory was a
(relatively) permanent state, its addition of retrieval
failure as an explanatory mechanism allowed it to
handle a far wider range of phenomena. Another
distinguishing characteristic of the Atkinson-Shiffrin
theory was the fact that it provided both a general
framework for analyzing memory processes and also
a number of detailed mathematical models for
specific experimental tasks. In all these senses, the
Atkinson-Shiffrin model may indeed be said to be the
first modern model for human memory.

THE ATKINSON-SHIFFRIN MODEL

Although this theory is probably best known as
the major representative of what is often referred to
as the Modal Model for Memory (Murdock, 1967;
see also Izawa, 1999), the distinction between a
Short-Term Store (STS) and a Long-Term Store
(LTS) was perhaps not the most important or
original contribution made by Atkinson and
Shiffrin's model. The framework proposed by
Atkinson and Shiffrin was based on a distinction
between permanent structural features of the memory
system and control processes. The permanent
structural features include the various memory stores:
the sensory registers (e.g., iconic and echoic
memory), STS and LTS. The other aspect discussed
by Atkinson and Shiffrin were the control processes,
the operations that are carried out to operate on and
control memory, such as rehearsal, coding, and
retrieval strategies. Although this is often overlooked
in introductory textbooks (see also Raaijmakers,
1993) the concept of control processes and how these
relate to memory storage and retrieval, made it
possible for this Two-Store model to explain the
effects of the nature of the study activities and what
subsequently became known as "levels-of-processing"

effects (Craik & Lockhart, 1972).4

Atkinson and Shiffrin (see Shiffrin and Atkinson,
1969) assumed that LTS was permanent: once
information is stored in LTS is remains there, there
is no process that leads to a decay or a decrease in

4 Note that the original Atkinson and Shiffrin model already
included the notion that rehearsal processes in STS might be
conceptualized as lying on a continuum, with simple or maintenance
rehearsal (without the intention to remember) on one end and coding
rehearsal (where the intention to remember is most important) at the
other end (see Raaijmakers, 1993).



6 Raaijmakers and Shiffrin

the strengths of the traces in LTS. Although there are
exceptions (see e.g., Wickelgren, 1974) such an
assumption is quite common in current models of
models of memory. At first sight, this might seem to
be strange since one would expect theories of
memory to deal with the essentially universal
phenomenon of forgetting. Current theories of
memory, however, assume that most forgetting is the
result of retrieval failure, either because other
information in memory competes during retrieval
with the target information or because the available
retrieval cues have changed since the original
encoding (e.g., when the retrieval context has
changed). Although it is hardly possible to prove
such an assumption, it has proved useful and durable,
and most theorists have seen no compelling reason to
introduce additional and alternative long-term
forgetting assumptions.

In addition to presenting a general framework for
human memory, Atkinson and Shiffrin also showed
how specific models could be derived within that
framework for specific experimental tasks. In most of
these tasks, the situation was such that the usefulness
of using a simple maintenance rehearsal strategy was
maximized and more elaborative rehearsal strategies
were less likely to be useful. For example, in one task
the participants were presented long series of paired
associates consisting of a two-digit number and
letters from the alphabet (23-H, 47-K). During a
particular experimental session only a small set of
stimuli was used. The response term (the letter) for a
given stimulus term (the number) was varied. The
task was to remember which letter was last paired
with a particular 2-digit stimulus. Using such tasks
made it possible to investigate in detail the workings
of simple rehearsal processes in STS.

In sum, the Atkinson-Shiffrin theory may be seen
as a prime example of the 'modern' approach in this
area: the combination of a general theoretical
framework and detailed mathematical models for
specific experimental tasks. In the next sections we
will describe some of the seminal theoretical
frameworks that have been presented in the past 25
years.

SEARCH MODELS

SAM

The SAM theory (Raaijmakers & Shiffrin, 1980,
1981), based on earlier work by Shiffrin (1970), was
initially developed as a model for free recall
(Raaijmakers, 1979) but was quickly generalized to
other recall paradigms and to recognition (Gillund &
Shiffrin, 1984). The basic framework of SAM

assumes that during storage, information is
represented in "memory images", which contain
item, associative and contextual information. The
amount and type of information stored is determined
by coding processes in STS (elaborative rehearsal).
For the usual, intentional study procedures, the
amount of information stored in LTS was assumed to
be a function of the length of time that the item or
the pair of items is studied in STS.

According to SAM, retrieval from LTS is a cue-
dependent process. These cues may be words from
the studied list, category cues, contextual cues, or any
other type of information that the subject uses in
attempting to retrieve information from LTS (or that
happens to be present in STS at the time of retrieval).
Whether an image is retrieved or not, depends on the
associative strengths of the retrieval cues to that
image. SAM incorporates a rule to compute the
overall strength of a set of probe cues to a particular
image: let S(Qj,Ii) be the strength of association

between cueQj and imageIi. Then the combined

strength or activation of imageIi, A(i), for a probe set

consisting ofQ1, Q2, ...,Qm is given by5

A i S Q Ij i
j

m
( ) ( , )=

=
∏

1
(7)

The key feature of Eq. 7 is that the individual cue
strengths are combined multiplicatively into a single
activation measure. This multiplicative feature
focuses the search process on those images that are
strongly associated toall cues, the intersection of the
sets of images activated by each cue separately. For
episodic memory paradigms, the cue set will always
contain a context cue (representing the list context)
that enables the search process to focus on the
particular list that is being tested.

In recall tasks, the search process of the SAM
model is based on a series of elementary retrieval
attempts (see the flowchart in Figure 3). Each
attempt involves selecting or sampling one image
based on the activation strengthsAi. The probability

of sampling imageIi equals the relative strength of

that image compared to all images in LTS:

P I
A i

A kS i( )
( )

( )
=
∑

(8)

Sampling an image allows recovery of some of
the information from it. Note that the system does

5 For simplicity we ignore the assumptions regarding weighting
of cues (in effect we are assuming, as in many SAM applications, that
these weights are all equal to 1).
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not simply retrieve a copy of the item. Rather, it is
assumed that a set of features or fragments are
activated and that the system has to reconstruct the
item based on the activated features. Hence, there is a
constructive element in recall. For simple recall tasks
where a single word has to be recalled, the
probability of successfully recovering the name of the
encoded word after sampling the imageIi is assumed

to be an exponential function of the sum of the
strengths of the probe set to the sampled image:

P I S Q IR i j i
j

m
( ) exp ( , )= − −











=

∑1
1

(9)

In the simplest variant of this model, the
probability of recall, assumingLmax retrieval

attempts with the same set of cues, is given by the
probability that the item was sampled at least once,
times the probability that recovery was successful:

( )[ ]P I P I P Irecall i s i
L

R i( ) ( ) ( )max= − −1 1 (10)

Assuming that each cycle takes the same amount
of time T, the latency distribution for correct
responses is equal to:

P RT l T
P P

P

s
l

s

s
L

( )
( )

( ) max
= ⋅ = −

− −

−1

1 1

1
for l=1, .Lmax (11)

Special assumptions are necessary when an image
has previously been sampled using one or more of
the present cues but its recovery did not lead to
successful recall. In that case, recovery is based only
on the "new" components of the sum in Eq. (9),
corresponding to cues that were not involved in the
earlier unsuccessful retrieval attempts (see Gronlund
& Shiffrin, 1986).

The above equations apply directly to cued recall.
More complicated recall paradigm such as free recall
can be handled in a similar way, by making
assumptions about the retrieval strategy that is used.
In the standard SAM model for free recall, it was
assumed that the search starts using only the context
cue (the only information available). As the search
proceeds any item that is retrieved is used as an
additional cue (for a maximum ofLmax retrieval

attempts). If this item+context search is not
successful, the system will revert to using only the
context cue.

If the retrieval attempt is successful, the
associative connections between the probe cues and
the sampled image are strengthened. Thus, SAM

Start

Sample
image

Recovery
successful?

Correct
item?

Give
up?

Stop Output

Yes

No

No

No

Yes

Figure 3: Flowchart representing the SAM
retrieval process in a cued recall task.



8 Raaijmakers and Shiffrin

assumes that learning occurs during retrieval as well
as during study. This assumption leads to a kind of
retrieval inhibition, because it decreases the
probability of sampling other images. If the retrieval
attempt is not successful, a decision is made about
whether to continue, either with the same set of cues
or with some other set of cues. The decision to
terminate the search process is usually based on the
number of unsuccessful searches, although other
types of stopping rules are also possible.

Although the SAM model assumes that the
process of activating information is basically the
same in recall and recognition, there are some
important differences between these two processes.
Search models are not generally proposed as a
primary basis for recognition because they have
difficulty predicting similar response times for 'old'
and new' recognition decisions. Thus Gillund and
Shiffrin (1984) proposed that recognition is based on
the overall activation induced by the probe cues. That
is, the overall activation,∑ A(k), defines a familiarity
value that is used in the manner of signal-detection
theory to determine the probability of recognition.
Gillund and Shiffrin used the termglobal familiarity
to capture the idea of adding activations across all
relevant memory traces, an idea that has become
standard in most current quantitative recognition
models (this idea had been used earlier in
composite/distributed models by Anderson, 1973,
Murdock, 1982, and Eich, 1982, among others). In
order to derive predictions, some assumption is also
needed about the variance of the strength
distributions. Typically, the standard deviation is
assumed to be proportional to the mean strength
value (Gillund & Shiffrin, 1984; Shiffrin, Ratcliff, &
Clark, 1990).

Of course, alternative and more complex models
for recognition might be constructed within the SAM
framework. One obvious approach (much explored in
recent years) assumes recall is used in tandem with
familiarity to determine recognition. An early form
of this approach was a two-stage model (as in
Atkinson & Juola, 1974): Two criteria are used such
that a fast 'new' response is given if the familiarity is
below the lower criterion and a fast 'old' response is
given if the familiarity is above theupper criterion. If
the familiarity lies between these two criteria, a more
extended search process (as in recall) is undertaken.
Alternatively, it might be assumed that there are two
parallel routes in which one route would be based on
familiarity and one on a recall-like process. In
general (especially when dealing only with accuracy
data), dual-route models make predictions similar to
those from single-route models to the degree that

familiarity is above criterion for items that are

successfully recalled.6

According to SAM, contextual information is
always encoded in the memory image, and for
episodic-memory tasks, context is one of the retrieval
cues. Changes of context between study and test play
an important role in the prediction of forgetting
phenomena. Such changes may be discrete or occur
in a more gradual way. Discrete changes are typical
for studies that explicitly manipulate the test context

(e.g., Godden & Baddeley, 1975; Smith, 1979).7 On
the other hand, gradual changes may occur when the
experimental paradigm is homogeneous (as in
continuous paired-associate learning). In such cases,
context similarity between study and test will be a
decreasing function of delay.

Mensink and Raaijmakers (1988, 1989) proposed
an extension of the SAM model to handle time-
dependent changes in context. The basic idea,
adapted from Stimulus Sampling Theory (Estes,
1955), is that a random fluctuation of elements
occurs between two sets, a set of available context
elements and a set of (temporarily) unavailable
context elements. The contextual strengths at test are
a function of the relationship between the sets of
available elements at study and test. Mensink and
Raaijmakers (1989) showed how some simple
assumptions concerning the fluctuation process yield
equations for computing the probability that any
given element is active both at the time of storage
and at the time of retrieval. A more elaborate
analysis of contextual fluctuation processes and its
application to free recall was recently proposed by
Howard and Kahana (1999, see also Kahana, 1996).
They showed how such a notion could be used within
a SAM-like model to explain a number of effects
(such as long-term recency) that would be difficult to
explain under the constant context assumption that
was used in Raaijmakers and Shiffrin (1980).

The SAM theory has been quite successful. The
SAM approach to recall and recognition has been
shown to provide relatively straightforward
explanations for a number of standard findings (such
as the effects of list length, presentation time, serial
position effects) as well as a number of findings that

6 This seems to be in conflict with the recognition failure of
recallable words phenomenon (Flexser & Tulving, 1978). However
this effect depends on the use of a specific paradigm and does not
necessarily generalize to a task in which recall is a subprocess within
a recognition task.

7 The effect upon memory of a discrete context change appears
to depend on the degree to which context information is integrated
with content information, as explicated in the ICE theory (e.g.
Murnane, Phelps, & Malmberg, 1999).
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previously were considered quite problematic (e.g.,
the part-list cuing effect [see Raaijmakers & Phaf,
1999], spacing effects [see Raaijmakers, 1993], the
differential effects of natural language frequency and
of context changes on recall and recognition [see
Gillund & Shiffrin, 1984] and the set of results that
had caused problems for the traditional Interference
Theory of Forgetting [see Mensink & Raaijmakers,
1989]).

Ratcliff, Clark and Shiffrin (1990), however,
discovered a phenomenon, called the "list-strength
effect", that could not be explained within SAM
without making additional assumptions. This refers
to the effects of strengthening some list items on
memory for the other list items. Ratcliff et al. (1990)
showed in a series of experiments that strengthening
some items on the list has a negative effect onfree
recall of the remaining list items (as one would
expect for any model based on relative strengths) but
has no effect oncued recallor even a positive effect
on recognitionperformance. This stands in contrast
to the list-length effect: adding items to a list
decreases both recall and recognition performance.

In a prototypical experiment on the list-strength
effect, three conditions are compared: a pure list of
weak items (e.g. brief presentation time, single
presentation), a pure list of strong items, and a mixed
list consisting of both weak and strong items. Of
course strong items do better than weak items, both
in pure and mixed lists, and for free recall, cued
recall, and recognition. However, the critical aspect
is that strong items in mixed lists are not recognized
better than in pure lists (in fact they are a little
worse). Similarly, weak items in mixed lists are not
recognized worse than on pure lists (in fact they are a
little better). Since the relative strength of a strong
item in a mixed list is larger than in a pure list (and
similarly for a weak item on a pure weak list
compared to a weak item in a mixed list), a model
like SAM would have predicted a difference in
recognition performance. Because adding items to a
list does harm performance, one might expect a
similar effect if one strengthens other items.

Shiffrin et al. (1990) showed that a variant of the
SAM model could handle the results if one makes a
differentiation assumption: The better an item is
encoded, the more clear are the differences between
the item information in its image and the item
information in the test item. Conversely, the better an
item is encoded, the stronger will be the match
between the context information encoded in its image
and the context information used in the test probe.
Because strength of activation in SAM is determined
by the product of context and item strength, the net

effect of these two opposing factors is to cancel,
approximately. Because both cued recall and
recognition use both item and context cues at test,
differentiation produces the observed null list-
strength effect for these paradigms. On the other
hand, because many test probes during free recall use
context cuing only, a list strength effect is predicted
for this case, as observed. Although this
differentiation assumption may have seemed a bit ad-
hoc when first introduced, the years since have
shown the difficulty of finding any alternative
account of the list-strength findings, and the
differentiation assumption is generally accepted,
whatever the model framework.

Although the differentiation assumption was an
important and helpful addition to SAM, a number of
other problems remained. One of these concerned the
so-called "mirror effect" in recognition. This effect
refers to the finding that many factors that increase
the probability of a 'hit' (saying 'yes' to a target item)
also decrease the probability of a 'false alarm' (saying
'yes' to a distractor item), as documented extensively
by Glanzer and his colleagues (e.g., Glanzer &
Adams, 1985; Glanzer, Adams, Iverson, & Kim,
1993). Thus, the order of the conditions for the
probability of saying 'yes' to distractors is the mirror
image of the order for these same conditions for the
probability of saying 'yes' to target items. For
example, although low-frequency items are more
likely to be correctly rejected than high-frequency
items, LF target items are also more likely to be
correctly recognized than HF targets. Such mirror
effects are difficult to explain for any model that
bases the probability of saying 'yes' on a "strength"-
like measure. Although mirror effects might be
handled by assuming different criteria for HF and LF
items, such a solution is inelegant, and it has been
difficult to find coherent explanations for the posited
movement of the criteria across conditions.

Recently, Shiffrin and his co-workers have
developed a new model, REM, that retains many of
the best elements of SAM, but provides a principled
solution for the mirror effect, and for a number of
other previously unexplained memory phenomena.

REM

The REM (Retrieving Effectively from Memory)
model started out as a model for recognition memory
(Shiffrin & Steyvers, 1997). Because global
familiarity models faced problems explaining the
mirror effect, a solution had to be found that would
provide a more rational basis for criterion placement.
Shiffrin and Steyvers (1997) realized that the
assumption that the memory system behaves as an
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optimal decision making system might produce a
model capable of solving this problem.

In REM, memory images are represented as
vectors of feature values, e.g. <3,1,3,7,3,2,1,....>. The
numbers represent the frequency of a particular
feature value. The probability that a featureV has
value j is assumed to be given by the geometric

distribution8:

P V j g g jj( ) ( ) ,= = − = ∞−1 11
K (12)

That is, not all feature values are equally likely.
Now, suppose an item is studied. As a result of study,
an episodic image (of item and context features) is
stored in memory. This episodic image will be error
prone, i.e. some features will not be stored correctly,
and some will not be stored at all. The better or the
longer an item is studied, the higher the probability
that a given feature will be stored.

On a recognition test, old and new items are
presented and the subject is asked to indicate whether
the test item is old (from the list) or new. It is
assumed that the system compares the retrieval probe
features to those stored in episodic memory images,
noting the matches and mismatches to the features in
each image. The system then uses a rational basis for
generating a response: It chooses whichever response
has the higher probability given the observed feature
matches and mismatches in all the memory images.
Thus, if there is an episodic image in memory that is
quite similar to the test item, producing many
matching features, the probability that the test item is
old will be high. Mathematically, the decision
criterion is given by the posterior odds ratio which
according to Bayes' rule may be written as the
product of the prior odds and the likelihood ratio:
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(when the prior probabilities of old and new items
are equal, as is the case in most studies, the posterior
odds is simply the likelihood ratio itself). It can be
shown (see Shiffrin & Steyvers, 1997) that in REM,
the likelihood ratio is given by the average likelihood
ratio for the individual list traces (assume L episodic
images are compared to the test probe): :
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8 It should be noted that this assumption is not essential for the
REM model. Most predictions do not depend on the nature of this
distribution.

Hence, an "old" response would be given ifΦ >
1. This result is of course quite similar to the SAM
recognition model if one substitutes the likelihoods
in REM for the SAM activation values. A critical
difference concerns response criteria: In SAM the
familiarity values are on an arbitrary scale that
changes with conditions, and a response criterion
must be chosen differently for each condition. In
REM the odds have a natural criterion at 1.0.
Although the participant could choose a response
criterion different from 1.0 if conditions warrant, the
default criterion of 1.0 produces a mirror effect. This
prediction and others suggested that the REM model
for recognition was indeed qualitatively better than
SAM, despite the many similarities.

The similar role played by likelihood ratios in
REM and retrieval strengths in SAM suggested that
the SAM recall model could be ported to REM by
substituting likelihood ratios for strengths. Such an
approach has the desirable feature that most (if not
all) of the SAM recall predictions hold for REM as
well. In carrying out this procedure, it was
discovered that the distributions of the likelihood
ratios were much more severely skewed than the
retrieval strengths in SAM. One undesired result of
this fact was a tendency to sample the highest
strength image with too high a probability. For this
reason, sampling in recall in REM is assumed to be
based on a power function of the likelihoods (see
Diller, Nobel, & Shiffrin, 2001):
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γ
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Diller et al. (2001) show that such a model
accurately describes the response time distributions
in cued recall. More generally, these authors show
that an appropriately tailored REM model gives a
good simultaneous fit to the accuracy and response
time data in both cued recall and recognition.

It is worth highlighting one major difference
between the SAM activation values and the REM
likelihood ratios. In REM, the likelihood ratio for an
individual trace is a function of the numbers of both
matching features and mismatching features (see
Shiffrin & Steyvers, 1997):
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where α is the probability of a match given

storage for the correct trace,β is the probability of

match given storage for an incorrect trace (α must

obviously be larger thanβ), and mj and qj are the
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number of matches and mismatches respectively for
trace j. Thus, thehigher the number of matching
features, thehigher the likelihood,and thehigher the
number of mismatching features, thelower the
likelihood. Consider what this implies for the
likelihood ratio for a strengthened image when a
different item is tested. More features will be stored
in the 'stronger' image, but these will generally
mismatch the test probe (because the image and test
probe do not match). The likelihood ratio for the
stronger image therefore tends to be lower. This
mechanism may be seen as an implementation of the
differentiation hypothesis: Stronger traces are more
easily discriminated from the test item than weak
items. Shiffrin and Steyvers (1997) showed that the
REM model could indeed account for the list-
strength results.

The comparison of SAM to REM in the domain
of episodic recognition provides a most illuminating
look at two rather different approaches to modeling.
The SAM model was generated in much the way that
most psychology models have been developed over
the past 50 years: knowing the data patterns to be
predicted, plausible cognitive mechanisms were
hypothesized, and implemented with functional
forms that intuition suggested would produce the
observed data patterns. A certain period of tuning of
the model then ensued, as is usually the case, because
intuitive predictions are notoriously error prone. In
the case of SAM, the functional forms included, as
an example, the assumption that cues would combine
multiplicatively, enabling the system to converge
upon images in the intersection of the items similar
to each cue separately. The REM model was
developed somewhat differently: A few structural
limitations were assumed at the outset, chiefly the
assumption that images are stored incompletely and
with error. Then the model was derived rather than
assumed, under the assumption that the structure of
the task was known, and that all the information in
images was available for optimal decision making.
The functional form of the equations governing REM
were therefore derived rather than assumed. It should
be emphasized that there is no necessary reason why
this approach should be superior, or that the
cognitive system should necessarily be designed in
optimal fashion to carry out any given task. The fact
that it seemed to work well in the present instance
does point out the potential utility of the approach,
and gives the modeler another weapon in his or her
theoretical arsenal.

Although the REM model was developed initially
in the domain of episodic recognition memory, and

represented an improvement upon SAM in that
domain, its primary contributions lay in different
spheres: generic (or semantic) and implicit memory.
The model provided a mechanism through which
episodic images could be accumulated into
lexical/semantic images, over many repetitions
across developmental time, and enabled retrieval
from such memories with the same basic processes
that operate in episodic tasks. It is assumed (see
Schooler, Shiffrin & Raaijmakers, 2001) that when
an event is first stored, a noisy and incomplete
(episodic) image is stored in memory. When that
event is repeated, a new episodic image will be
stored. However, if the new image is sufficiently
similar to the previous stored image, information
may also be added to that previous image. Thus,
repetitions will gradually lead to an increasingly
complete image, that may be termed a
lexical/semantic image. This accumulated image will
contain perceptual, semantic, and contextual
features. However, since the contextual information
will come from many different contexts, the
activation of the lexical/semantic image will not
depend on any particular test context, and sampling
of such an image will not produce a sense of any one
episodic event. Tthe lexical/semantic images will in
effect become context-independent, not because they
fail to encode context, but because they encode too
many contexts. Thus, although REM incorporates a
distinction between episodic and semantic memory,
both have a common origin and follow the same
basic rules.

The retrieval processes assumed to operate in
explicit memory can in turn be used to describe
retrieval from lexical-semantic memory: A probe
vector of features is compared to the set of lexical-
semantic images, and likelihood ratios calculated for
each. These likelihood ratios can then be summed,
for example to make a lexical decision
(word/nonword decision), or used as a basis for
sampling for a variety of recall-based tasks such as
naming or fragment completion.

It is only a minor extension to use these same
processes to model implicit memory effects. Implicit
memory refers to findings that recent study of a word
enhances (or at least alters) performance on a
subsequent generic memory test, where the
subsequent test may be accomplished without
reference to episodic memory (and even without
explicit realization that the previously studied words
are relevant). For example, a lexical decision given
to the word 'table' may be speeded by study of table in
a prior list. Such effects are often termed 'repetition
priming'. In order to explain repetition priming
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effects, REM borrows the previously stated idea that
study produces storage not only of an episodic image
but also additional storage in a previously stored
similar image, in this case, the lexical/semantic
image of the studied word. One refinement of this
idea is needed: The added information is restricted to
information not already stored in the lexical/semantic
image. Thus item information in the lexical/semantic
image such as its core meaning, which is already
stored, is unaffected by a recent study event.
However, perceptual (e.g. font) and context
information which is unique to the current study
episode is added to the lexical/semantic image.

These storage assumptions lead naturally to the
prediction of repetition priming, as long as the test
probe utilizes any of the information that had been
added to the lexical/semantic image. Thus if current
context is used as part of the test probe, which may
be inevitable even in tasks that do not require context
cuing, then the match of this information to that
stored in the lexical/semantic image of the studied
word will increase the likelihood ratio for that image,
and produce priming. One example is presented in
Schooler et al. (2001). They present a REM-based
model to account for priming effects in perceptual
identification and in particular the results obtained
by Ratcliff and McKoon (1997). Ratcliff and
McKoon had participants study a list of words.
Subsequently the participants saw a briefly flashed
and masked word, and then received two choice
words, one of which had been the one flashed (the
target) and one not (the foil). If a choice word had
been studied in the earlier list, it is said to have been
primed. The target, the foil, both, or neither choice
could have been primed, in different trials. For
example, during study the word LIED might be
presented. At test, the word LIED is briefly flashed
and then two alternatives, say LIED and DIED, are
presented for a choice. When the choices are
perceptually similar (such as LIED and DIED)
priming the target increases its choice probability,
but priming the foil does so as well. If the choices are
dissimilar (say LIED and SOFA), there is little effect

of priming.9

Ratcliff and McKoon (1997) argued that this
pattern of results poses a challenge for existing
models of word identification because these models
assume that "prior exposure to a word changes some
property of the representation of the word itself"

9 With slightly different instructions, Bowers (1999) was able to
obtain priming for dissimilar alternatives as well. The difference may
depend on differential tendencies for the subjects to use episodic
memory access to help carry out the identification task.

(Ratcliff & McKoon, 1997, p. 339). They proposed a
Counter Model in which the system assigns
perceptual evidence to each of the two choice words.
Prior study leads to bias in the system in such a way
that a counter corresponding a studied word tends to
"steal" counts from neighboring counters (for similar
words). Schooler et al. (2001) however showed that
this pattern of results can be also explained in REM
if one assumes that prior study leads to the storage of
a small amount of new contextual information (i.e.,
prior study does change "some property of the
representation"). The idea is simple: The extra
matching context features for the studied item
increase the likelihood ratio for choice of its
lexical/semantic image over that for the alternative
word. For similar alternatives, only a few visual
features are diagnostic since most letters areshared
between the choices (e.g. the IED part of the choices
are not relevant when choosing between LIED AND
DIED); in this case the extra likelihood due to prior
study has a large effect. For dissimilar alternatives
many or all visual features are diagnostic so the same
extra likelihood has a smaller relative effect.

At this moment, work on the application of REM
to other implicit and semantic memory paradigms
(such as lexical decision [Wagenmakers et al., 2001])
is still in progress. However, it seems likely that the
REM model will be able to use the mechanisms
outlined above to explain several of the most basic
findings in implicit memory. For example, the
finding that perceptual implicit memory tasks (word
identification, lexical decision) are usually unaffected
by levels-of-processing variations in the study task
that do have a clear effect on explicit memory, can be
explained by pointing out that such variations mostly
affect the number and nature of the semantic features
that are stored in episodic traces, and these features
are not the ones added to the lexical/semantic traces
since they will usually already be present in those
traces. In addition, since whatever semantic or
associative information is present in STS when the
target item is presented, will be unrelated to the
semantic/associative features of the lexical/semantic
trace, a prior semantic study task will not affect the
match between the presented item and the target
lexical trace. As another example, amnesic patients
that have a very deficient explicit memory often show
relatively normal implicit memory performance; in
REM the implicit benefit is based on altered
activation of lexical-semantic traces, and these
patients are known to exhibit few deficits in semantic
memory tasks requiring access to those traces (e.g.,
standard word identification tasks).
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Only time will tell whether REM, or alternative
models, will be successful in their attempt to
integrate explicit memory, semantic memory, and
implicit memory within a single theoretical
framework. However, this goal is a major goal of
current research , and in this respect, these models
have come a long way from the simple Markovian
models of the 1960s.

THE MINERVA 2 MODEL

Hintzman (1986, 1988) developed a memory
model that is based on global familiarity, somewhat
like the SAM and REM models for episodic
recognition. This model, MINERVA 2, has been
applied primarily to category learning and
recognition memory. A basic goal of the model is to
provide an explanation for memory for individual
experiences (episodic memory) and more generic or
semantic memory within a single system. The model
assumes that memory consists of a large set of
episodic traces. It is assumed that each experience
produces a separate memory trace. Memory traces
are represented as lists of features or vectors. When
an item is studied, a new memory vector for that item
is formed. Each feature is independently encoded
with probability L, a learning rate parameter.
Features are encoded as +1 or -1. If a feature is not
encoded it is set to 0. When a probe cue is presented,
it is compared in parallel to all memory traces. The
amount of activation of any particular trace is a
nonlinear function of the similarity to the probe cue,
where similarity is determined by numbers of
matching and mismatching features. Overall
activation is given by the summed similarity, and is
used to make a recognition decision.

In MINERVA 2, a generic or semantic memory
is produced by combining or summing a large
number of individual episodic traces. The basic
difference between such an approach to semantic
memory and the one represented, say, by the REM
model, is the representation of lexical/semantic
memory. REM assumes a separate set of
lexical/semantic images, but in MINERVA 2 the
semantic traces are computed at the time of retrieval
and not stored separately.

For recognition, a test item's vector is compared
with each vector in memory and a similarity value is
computed using the following equation:
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wherePj is the value of featurej of the probe,Tij

is the value of the corresponding feature in tracei
and Nr is equal to the number of relevant features

(i.e., those that are encoded is both the probe and the
trace). Thus, the similarity is based on the inner
product of the two vectors (also termed the dot
product). The inner product is just the sum across
vector positions of the product of the corresponding
entries, and is a single real number. The activation
value for tracei is given by

A Si i= 3 . (18)

Thus, the activation rapidly declines as the
similarity to the probe decreases. Next, all activation
values are summed to provide an overall measure of
match called "echo intensity". If this value is greater
than a criterion value, an "old" response is produced;
if it is less, a "new" response is produced. Hence,
MINERVA 2 is another example of a global
familiarity model. MINERVA 2 has also been
successfully applied to confidence data, and
frequency judgment data, by assuming that such
judgments are determined by the value of summed
activation obtained on a trial: Appropriate criteria
are set that determine the desired responses.

In order to allow recall to be carried out, the
model assumes that a specific vector is constructed
from the activated traces. To be precise, the retrieved
vector (called theecho) is the sum of all trace
vectors, each weighted by its activation value:
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where Cj is the value for featurej in the echo.
Because Ai rapidly declines as the similarity
decreases, the echo will be mostly determined by
those traces that are similar to the probe cue. How is
this echo used to carry out recall? Consider cued
recall as an example. Suppose the two words studied
together (say, A and B) are stored in a single
concatenated vector, back to back (A,B). MINERVA
2 has a property that might be called pattern
completion: Whenever part of a trace is used as a
probe (say the test word, A), the echo will also
contain retrieved values for the features that are
missing in the probe. These filled in features will
tend to be determined by the traces with the highest
activation, i.e. those similar to the test word, A.
Chief among these will of course be the trace
encoding the test word (A,B). Hence the echo will
tend to have features similar to the response word in
the test word's trace (i.e. B). This is a standard
mechanism for recall that also figures prominently in
several connectionist models for memory (see below).
Of course, the retrieved trace is actually a composite
of many traces, so some mechanism is needed to
extract some particular item from the composite.
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That is, some way is needed to 'clean up' the
composite. This might be done in several ways (see
Hintzman, 1986, 1988). Under some circumstances,
the retrieved vector can be recycled as a new retrieval
cue, and a series of such cycles can produce a cleaned
up and interpretable response word. In other cases, it
would probably be necessary to compare the response
vector to words in a separately stored lexicon.

For recognition, the model makes many of the
same predictions as other global familiarity models.
It predicts many of the standard experimental results
such as the effects of repetition and study time.
However, as is the case for most of the other global
familiarity models, it does not account for the list-
strength results and mirror effects that were the
primary motivation behind the replacement of the
SAM model for recognition by the REM model. To
handle list-strength what would be needed is some
kind of mechanism similar to the differentiation
assumption. Also, the model has not been tested in a
thorough way in recall paradigms. On the other
hand, the model was the first explicit mathematical
model that incorporated the assumption that
semantic memory traces might not be stored
separately from episodic traces, but instead computed
at the time of retrieval. This is in many ways an
attractive proposal whose power in explaining
semantic/implicit memory findings should be
explored further.

It should be mentioned that the first application
of MINERVA 2 was to categorization (1986), rather
than recognition (1988). It is noteworthy that this
model can handle significant findings in both
domains, and indeed a good deal of recent effort by a
number of investigators has been devoted to linking
memory and categorization models in a common
framework (e.g. Nosofsky, 1988). It is natural to link
the two because summing activation across the
exemplar traces from a given category can be viewed
as providing evidence for that category.
Unfortunately, any discussion of categorization
models takes us well beyond the coverage of this
chapter.

ASSOCIATIVE NETWORK MODELS

The idea that activation in memory is based on
spreading of activation over a network of
interconnected nodes and that this is the principal
mechanism of associative memory, became popular
in the 1970s when it was introduced as a framework
for semantic memory. Collins and Loftus (1975) and
Anderson and Bower (1973) used this idea to explain
findings in sentence verification tasks. Following
these initial proposals, the spreading activation

notion became widely used by researchers in
semantic memory to explain findings such as
associative or semantic priming (i.e., the finding that
performance on a target item is faster or more
accurate when that item is preceded by an

associatively or semantically related item).10

However, in most of these uses of the spreading
activation concept, predictions were derived only
very loosely. In order to enable exact predictions the
general notion of spreading activation has to be
incorporated in a quantitative framework. Several of
these frameworks have been developed over the past
30 years. In this section we will focus on one well-
known example of a spreading activation model,
Anderson's ACT model (Anderson, 1976, 1983b,
1993). The ACT theory (Adaptive Control of
Thought) is really a very general cognitive
architecture that is not just a framework for memory
but a system in which models may be constructed for
all cognitive tasks, including problem solving,
acquisition of cognitive skills (including the
acquisition of skills in physics, geometry, computer
programming, etc.), learning, language and semantic
memory. The architecture consists of a working
memory, a declarative memory system and a
procedural memory system. The latter is modeled as
a production system, consisting of a large set of both
generic as well as specific production rules that act
on the contents of the working memory. However, in
this section we will restrict our discussion to the
models that have been derived within ACT for (long-
term) memory.

The ACT model (1976-1983)

In the original ACT model (Anderson, 1976),
long-term memory was assumed to consist of a large
set of nodes and links connecting these nodes. The
nodes represented basic concepts or cognitive units
and the links represent semantic or episodic
relations. Whenever two items are studied together in
a memory task, a link between the corresponding
nodes may be formed. In such a model, retrieval of a
target item B from a cue item A is accomplished if
the activation from the node representing A spreads
to item B and activates the node representing B (or
sends enough activation to B to pass an activation
threshold). In such a model, nodes are either active
or inactive.

In the 1976 version of ACT, the spreading of
activation is determined by the (relative) strength of
the links. For example, suppose that after study of A-

10 Recent years have also seen the introduction of the related
concept of spreading inhibition (e.g. Anderson & Spellman,1995).
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B a link connecting these is formed with strengths.
If A is later presented as cue, the probability of
activating B in the next unit of time is a function of
s/S, the relative strength of the A-B link compared to
all other links emanating from A. Once any node
(say, B) does become active, it begins in turn to
activate nodes to which it is linked. Of course, some
decay of activation has to occur in such a model to
prevent eventual activation of all nodes in memory.
In the present model this is prevented by assuming
that after D units of time, all activated nodes are
deactivated (unless they are placed in a kind of buffer
or short-term store).

Because nodes and links are activated in an all-
or-none manner, the response latency is determined
by the time it takes to activate the target node. The
larger the distance between the cue and the target (in
terms of the number of links in the path from cue to
target) the longer the response time will be.
However, Ratcliff and McKoon (1981) showed in a
primed lexical decision task that this is not the case.
They demonstrated that the semantic distance
between the prime and the target does not affect the
time at which the facilitation due to priming begins
to have its effect although it does affect the
magnitude of the facilitation. In response to such
findings, Anderson (1983a,b) developed a continuous
activation model as an alternative to the all-or-none
model.

In the continuous model, the activation values for
the nodes vary continuously. Further, the level of
activation is used to determine whether a memory
trace has been successfully retrieved. That is, the
amount of activation that spreads from A to B is
determined by the relative strength of node B
(compared to all other nodes connected to A), and
the probability and latency of retrieving trace B are a
function of B's activation. To explain the Ratcliff and
McKoon (1981) data (and other data), the spread of
initial activation occurs extremely rapidly, even to
distant nodes. Thus, the notion of spreading
activation changed from gradually activating
connected nodes (i.e., distant nodes take longer to
activate) to a dynamic model in which the activation
spreads rapidly over the network but in varying
degrees (i.e., distant nodes have a lower level of
activation).

Anderson (1981, 1983a) applied this model (also
referred to as ACT*) to a number of memory
phenomena. It is assumed that during storage
memory traces are formed in an all-or-none manner.
In addition, each trace (once formed) has a strength
associated to it. The strength of these traces is
determined by such factors as the number of

presentations and the retention interval. More
specifically, the trace strength (S) for a trace that has
been strengthenedn times is given by

S ti
b

i

n
= −

=
∑

1
(20)

where ti is the time since thei-th strengthening
and b is a decay parameter (between 0 and 1). This
assumption agrees with the power law of forgetting
(for n=1).

These strengths determine the amount of
activation that converges on the trace from associated
nodes. Thus, in a paired-associate recall situation,
where the subject learns a list of pairs A-B, it is
assumed that the trace encodes the information that
this pair was presented in this context. At test, the
response will be retrieved if (a) such a trace has
indeed been formed, and (b) it can be retrieved
within a particular cutoff time. Retrieval time is
assumed to follow an exponential distribution with a
rate parameter that depends on the activation of the
target trace. This activation is assumed to be equal to
the sum of the relative strength of the target trace
(relative to other traces associated to the cue item)
and the relative strength of the association between
the current context and the target trace (this strength
is a function of the number of study trials on the list).

One prediction of ACT that has received a lot of
attention is the so-calledfan-effect. This effect refers
to the prediction that the amount of activation that
spreads from A to B is a function of the number of
links emanating from A (or the fan of A). Similarly,
in order to verify a sentence such as "The hippie is in
the park" (i.e., to decide whether this sentence is
'true', is one of the sentences studied previously), the
response latency is a function of the "fans" of
"hippie" and "park": the more sentences have been
studied with "hippie" as the subject, the more time it
takes to recognize such a sentence. Similarly, the
more sentences have been studied with "park" as the
location, the more time it takes to recognize such the
sentence. These predictions were verified in several
experiments (see e.g. Anderson, 1974). Note that this
fan effect is similar to the list length effect that has
been tested extensively in cued recall and
recognition.

Anderson (1981, 1983a) also showed that the
ACT* model accurately explains a number of
interference results. One interesting result that
follows from the ACT* model is that probability of
correct recall and latency are differentially affected
by interference manipulations. Probability of correct
recall is determined by two factors, the probability
that a link has been formed between the cue item and
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the target trace (basically a function of the number of
study trials, i.e. the absolute strength of the trace),
and the number of other traces associated with the
cue item (i.e., the relative strength of the trace). The
latency of correct responses, however, does not
depend on the absolute strength but only on the
relative strength. Anderson (1981) showed that this
implies that even if the probabilities of correct recall
are matched between an interference condition and
the control condition, there will still be an
interference effect on the latency. This prediction
was indeed verified. Using similar reasoning it may
be shown that the ACT* model makes the
counterintuitive prediction that in an unpaced
proactive interference paradigm (A-B, A-D
compared to an C-B, A-D control condition) in
which the second list is learned to a fixed criterion,
proactive facilitation should be observed. This
prediction follows from the fact that at the end of
second-list learning the absolute strength for the
interference condition should behigher if both lists
are learned to the same criterion (in order to
compensate for the lower relative strength). It can be
shown (see Anderson, 1983a, p. 269) that this
implies that after a delay, the total activation for the
target trace will be higher in the interference
condition than in the control condition. Anderson
(1983a) reports results from his laboratory that
confirm this counterintuitive prediction.

Despite its successes, there are still a number of
problems in ACT* that have yet to be resolved. One
of the most important ones is that the model does not
really have a mechanism to predict the latencies of
negative responses. For example, in the sentence
verification experiment, the latency to determine that
a sentence of the form "the A is in the B" wasnot
presented on the study list, seems to be equally
affected by the fans of A and B even though there
obviously is no path that links A and B (after all, A
and B were not presented together). Anderson makes
the ad hoc assumption that the latency of a negative
response is given by the latency of a positive
response for the same experimental condition plus
some constant. Although this fits the pattern of the
results, such an assumption is hard to defend within
ACT*.

As mentioned previously, the notion of spreading
activation has been very popular in explanations of
associative priming. McNamara (1992a,b, 1994) has
made a detailed investigation of the application of
ACT* to a variety of results from associative priming
tasks including the prediction ofmediatedpriming:
the finding that there is also a priming effect from
LION to STRIPES. Such a result can be explained as

being due to the activation spreading from LION to
TIGER and from TIGER to STRIPES. Such a result
seems to be strong evidence for the notion of
spreading activation. However, McKoon and Ratcliff
(1992) showed that this result might also be
explained within their compound cue model for
lexical decision (see Ratcliff & McKoon, 1988), a
model that is based on the global familiarity
mechanism used in the SAM model for recognition.
In the 1990s, the issue of whether associative
priming is best explained by spreading activation or
by compound cue mechanisms was heavily debated
in a large number of papers by McNamara and
Ratcliff and McKoon. However, there does not seem
to have been a clear resolution.

The ACT-R model

In the early 1990s, Anderson (1993) developed a
new version of ACT, called ACT-R (ACT-Rational).
In many ways, the ACT-R model is similar in spirit
to the previous ACT models. As in the previous
version, the cognitive architecture consists of a
declarative and a procedural memory system.
Information is stored in chunks and retrieval of
information from memory is a function of the
activation level of a chunk. The major difference is
that the ACT-R model is based on the assumption
that the cognitive system is based on rational
principles, i.e., the activation of information is
determined by rules that optimize the fit to the
environmental demands. Anderson and Schooler
(1991) showed that many of the functional relations
that characterize learning and memory (such as the
power law of learning, spacing and retention
functions) can also be observed in the outside
environment. For example, they showed that the
probability of particular words appearing in
newspaper headlines has many of the same properties
as the recall of words from a memorized list. Thus,
the basic idea of ACT-R is that the cognitive system
has developed in such a way as to provide an optimal
or rational response to the information demands of
the environment.

In the application of ACT-R to memory (see
Anderson, Bothell, Lebiere, & Matessa, 1998) it is
assumed that the activation of a chunki depends both
on its base-level activation (Bi) a function of its
previous use) and on the activation that it receives
from the elements currently in the focus of attention:

A B W Si i j ji
j

= +∑ (21)

whereSji is the strength of the association from
elementj to chunk i andWj is the source activation
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(salience) of elementj. One important difference
between ACT-R and previous versions of ACT is that
ACT-R no longer assumes that activation spreads
over a network of links: activation of a chunk is
directly related to its association to the source
elements. In this respect the ACT-R model is more
similar to the SAM model than to earlier spreading
activation models.

The activation of a chunk may be seen as a
representation of the odds that the information will
be needed in the current context. That is, following
Bayes' rule, the posterior probability of a particular
chunk being needed is determined by its prior
probability (the base-level activation) and the
available evidence (the activation it receives from
current cognitive context). Each time a chunk is
retrieved, its activation value is increased. However,
activation is subject to decay so that the longer ago
the chunk was activated, the less the contribution of
that activation to the current base-level activation.
The equation for the base-level activation is thus
given by:

B t Bi j
d

j

n
= +−

=
∑log

1
. (22)

In this equation,n is the number of times the
chunk has been retrieved from memory andtj
indicates the length of time since thej-th
presentation andd andB are constants. According to
Anderson et al. (1998) this equation predicts that
forgetting of individual experiences and learning will
both be power functions (in accordance with the
Power Law of Forgetting and the Power Law of
Learning). One problem with such an assertion is
that within ACT-R the above equation may not be
linearly related to the dependent variable of interest,
hence it is unclear whether the same prediction
would be made for the full implemented model.

This base-level activation combines with the
activation that the target trace receives from
associated chunks that are currently active.
According to ACT-R,

( )S S P i jji = + log ( , ) (23)

whereP(i, j) is the probability that chunk will be
needed when elementj is present or active. This is of
course similar to the standard assumption that the
association between two elements is a function of
their co-occurrence but now couched in a rational or
Bayesian framework.

If the combined activation of the target chunk
exceeds a retrieval threshold, a correct response will
be given. Finally, it is assumed that the latency of a
response is an exponentially decreasing function of

the activation level of the corresponding chunk.11 It
is assumed that the system will always retrieve the
chunk with the highest activation (provided it is
above the threshold). Due to the presence of noise in
the system, the activation values will have a
probability distribution (a logistic distribution is
assumed). The probability that a chunk with a mean
activation value ofAi (and varianceσ2) is above a
thresholdτ is then equal to:

( )[ ]Pr
exp /

(i)
A si

=
+ −

1

1 τ
where s= ( )σ π3 . (24)

In this equation it is assumed that there is only
one chunk above threshold. If there are more chunks
above threshold, the system will choose the one with
the largest activation. The probability that the target
chunk has the largest activation is given by an
equation similar to the Luce choice rule (as in the
sampling equation used in SAM):

( )
( )P choose i
A t

A t

i

j
j

( )
exp

exp
=
∑

where t = ( )σ π6 .(25)

Anderson et al. (1998) show that such a model
can explain a number of finding from episodic
memory paradigms such as serial recall, recognition
memory, memory search in the Sternberg paradigm,
the Tulving-Wiseman law, and free recall. We will

11 For simplicity, we disregard the assumption (introduced by
Anderson, Reder and Lebiere (1996)) about mismatch penalties. This
assumption was introduced in order to enable ACT-R to predict that
when the goal is to retrieve the sum of 3+4, the chunk 3+4=7 should
receive a larger activation value than the chunk 3+1=4.

List-Token

B

implyList-3
SL SW

Figure 4: ACT-R representation of a chunk encoding the occurrence of the word
"imply" on List-3 in a recognition memory experiment (After Anderson, Bothell,
Lebiere & Matessa, 1998).
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discuss one representative example here, the
application of ACT-R to recognition. In this ACT-R
model it is assumed that during study chunks are
formed in memory that encode the occurrence of the
words on a given experimental list (see Figure 4). It
is further assumed that the system sets up production
rules such as:

Recognize-A-Word
IF the goal is to judge whether the word occurred

in a context
and there is a trace of seeing the word in that context
THEN respond yes

In order to be able to give 'no' responses the
model assumes that there is a similar rule that fires
when there is no trace of seeing the word in that
context that is above threshold, i.e. when the
"Recognize-A-Word" rule times out. This is
obviously not a satisfactory solution since it makes it
impossible to generate fast negative responses. In
addition, since such a time-out criterion is
presumably fixed, the model incorrectly predicts that
the latencies for negative responses will be
unaffected by factors such as frequency, list length,
etc.

According to ACT-R, the activation of the chunk
representing the tested item can be written as:

A B W S W SW W L L= + + (26)

whereWW is the weighting given to the word,SW

is the strength of the association from the word to the
trace,WL is the weight of the list context andSL is
the strength of the context association. Anderson et
al. (1998) show that this may be approximated by

A B n d T W LL= + − −' log( ) log( ) log( ) (27)

where B' combines all the constant effects,n
equals the number of presentations/rehearsals,T is
the time since presentation,L is the list length,d is
the decay rate, andWL is the attentional weighting of
the list context.

This model for recognition (that is quite similar
to a model presented by Anderson and Bower, 1972,
1974) assumes that recognition is based on a search-
like process and as such is quite different from the
global familiarity recognition models such as SAM,
MINERVA 2 and TODAM (the latter will be
discussed below). Of particular interest is the fact
that the model predicts the absence of a list-strength
effect in the presence of list-length effects which has
been a major problem for most recognition models.
ACT-R predicts these results because list strength
and list length affect do not affect activation in the
same way: increasing the strength (by increasing the
study time) has an effect on the base-level activations

whereas list length results in greater fan. Increasing
the number of other list items increases the fan and
hence decreases the activation of the target trace.
Increasing the strength of the other list items (other
than the tested item) has no effect on the base-level
activation for the target trace and hence will not
affect the activation of that trace.

It should be clear that such a general framework
should be easily generalized to implicit and semantic
memory paradigms. In fact, there is no distinction
within ACT between episodic and semantic memory
systems. Presumably the semantic chunks would be
much stronger and more complete (as in the REM
model for implicit memory). Anderson et al. (1998)
present a number of simulation results that
demonstrate that it may indeed be able handle
implicit memory data. Implicit memory effects are
predicted because prior study increases the base-level
activation. For example, in a word identification task
(naming, perceptual identification) ACT-R assumes
that the letters are the sources of activation and that
these activate the word trace. The activation of a
given word trace is equal to the base-level activation
of that trace plus the activation it receives from the
letter nodes. The model accounts for the
independence between implicit memory and explicit
memory since only explicit memory depends on
context. It is not clear however whether or how the
model accounts for the dependence of repetition
priming in such tasks on the modality in which the
word is presented during study.

In sum, despite its great potential as a unified
theory of cognition, it is difficult to evaluate ACT-R's
standing as a model for memory since detailed
comparisons with other models have not been made.
Also, systematic comparisons with the data within
particular paradigms have not been made. In
addition, as mentioned above, ACT-R has problems
with the explanation of negative latencies that are
reminiscent of the problems that the older ACT
models had. However, ACT-R is certainly an
excellent example of the general trend towards more
and more general theories that we have observed in
the nature of the mathematical modeling entrerprise
in the past 30 years.

NEURAL NETWORK MODELS AND
DISTRIBUTED MODELS

In the 1980s and 1990s a class of models became
popular that at first sight seemed to differ greatly
from the memory models we have been describing. In
these models (known as neural network,
connectionist or parallel distributed models),
information was not represented in separate traces or
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chunks (as in SAM and ACT) but was assumed to be
distributed over a large set of nodes. In these
distributed models, it is the pattern of activation over
a set of nodes that defines a particular item. As in
spreading activation models, the activation that is
due to the input (the cues) is propagated through a
network of links and it is the structure of these links
(the organization of the connections, and the weights
on the connections) that determine which output will
result from a particular input. These models became
popular, in part, because at least superficially they
appeared to embody a neurally plausible architecture.

It should be mentioned at the outset that there are
innumerable variants of these models. The various
approaches differ considerably in the degree to which
different memories are superimposed. In some neural
net models, such as ART (Grossberg, 1987;
Grossberg & Stone, 1986), the system represents
memories as vectors at one level, but assigns a single
node to such a vector at another level. These systems
are probably best thought of as representing
memories separately. Other architectures use a
distributed representation but one that is very sparse
(relatively few of the vector positions are used to
encode a memory; e.g. Kanerva, 1988). In these
sparse systems the overlap in vector positions of any
two memories can be very low, so that the
representations are effectively separate. We shall
begin discussion with models that use densely
overlapping representations.

Although naive observers usually find it hard to
imagine how memories could be retrieved with any
degree of accuracy if large numbers of them are
stored in densely superimposed and distributed
fashion, each such model incorporates appropriate
storage and retrieval mechanisms that make such
retrieval effective. Perhaps the earliest simple
example comes from the model proposed by
Anderson, Silverstein, Ritz, and Jones (1977; also
known as the 'brain state in a box' model, or BSB). In
this model, items are represented as vectors of feature
values. Learning is represented by changes in
synaptic strengths. Assume that the system is
presented a list of paired associates. Each pair of
items is represented as two vectors (sayfi andgi). If

the two items are studied together the synaptic
strengths are modified in such a way that the
connection strength between noder in the input layer
and nodes in the output layer is modified by an
amount equal to the product of ther-th value in the
input vector (fi(r)) and thes-th value in the output

vector (gi(s)). Using vector notation, this is

equivalent to the assumption that the changes in the

synaptic strengths are modified according to the
matrix Ai:

A f g 'i i i= (28)

Thus, if a list of such pairs is studied, the
strengths are modified according to the matrixM
with M =∑ Ai. The trick of such models is that

despite the fact that there does not seem to be a
representation for the individual items or pairs, the
system does have a surprising capability to generate
the appropriate response vector from a given input
vector. If we make the assumption that all vectors are
orthonormal (mutually independent and of unit
length) then when we present the memory system
with fi (via matrix multiplication as follows) then it

will generategi:

( ) ( )Mf A f g f ' f g f ' f gi j i j j
j i

i i i i i= = + =
≠
∑∑ (29)

The assumption of orthonormality is of course
unreasonable, but much research has shown that
relaxing this assumption does not harm the approach
irreparably. If the vectors are not orthonormal, noise
is added to the system, such thatgi in the above

equation has noise added to it. In other words,
retrieval with the stimulus term as input produces the
response term plus noise. How much noise is added
depends on the number of memories that are
concatenated relative to the size of the vectors.
However, large vectors allow the system to degrade
gracefully, and quite a large number of paired
associates can be encoded and retrieved with some
degree of accuracy.

A variant of such a model may be used to explain
recognition performance. In this case the composite
memory vector consists of the sum of all item
vectors. Postmultiplication with the test item (i.e.,
taking the dot product with that vector) will result in
a familiarity value that may be used to determine a
recognition decision.

Although we have discussed the BSB model as a
memory model, most of its applications have been to
categorization and classification. Indeed many of the
distributed, composite models have a natural
application to categorization phenomena because the
superimposition of similar memories produces a
composite that sometimes may be akin to a prototype.
In this chapter, however, we discuss the application
of such models to memory.

Relatives of the BSB model are the TODAM
model (Murdock, 1982), the CHARM model
(Metcalfe Eich, 1982) and the Matrix model (Pike,
1984; Humphreys, Bain, & Pike, 1989). Each of
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these has been applied extensively to episodic
recognition and recall. However before turning to a
discussion of such models, we will briefly discuss a
class of neural network models that has received a
great deal of attention and has had considerable
success in other areas of cognitive psychology but has
had some problems when applied to human memory.
In this type of model it is assumed that learning may
be represented as changes in the strengths of the
links connecting the nodes in a network. A
representative example, the back-propagation model,
was studied by McCloskey and Cohen (1989), and
Ratcliff (1990).

In one back-propagation model (Ackley, Hinton,
& Sejnowski, 1985; Rumelhart, Hinton, & Williams,
1986) a 3-layer representation is assumed: a layer of
input nodes, a middle layer of so-called 'hidden units'
and a layer of output units. If an item is presented for
study, a particular vector is created in the input layer.
The input units then send activation forward to the
hidden units (in a nonlinear fashion) and these in
turn send the activation to the output units. How
much activation is sent forward from a particular
node to some other node is determined by the
strength of the connection between these two nodes.
Learning consists of modifications of these
connection strengths in such a way as to increase the
match between the output vector generated by the
network at a given layer and the desired or correct
output vector at that layer (this adjustment is known
as theDelta rule). At the final layer, the desired
output is obvious. At earlier layers, the desired output
is computed by 'back-propagating' the error signals at
the final layer. The magnitude of the change in the
strength of a given link is a function of the error in
the output: If there is no error, the weights will
remain unchanged, but if the error is large, the
change will also be large. In essence the back-
propagation model performs a kind of least-squares
fitting procedure. It can be shown that such a 3-layer
network can be taught any type of mapping between

the input vectors and the output vectors. However,
such a model has some problems when applied to
standard memory paradigms.

The most basic problem is usually referred to as
"catastrophic forgetting", and was highlighted by
McCloskey and Cohen (1989) and Ratcliff (1990).
When items or lists of items are learned sequentially,
the model shows almost complete forgetting of the
prior items or lists. In the basic model there is
nothing that protects the weights that encode earlier
memories from adjustment as new items are learned.
The better learned are the new items, the more
forgetting occurs for the previous items. Now,
forgetting is of course a basic property of human
memory. However, contrary to the back-propagation
model, such forgetting is almost never complete, and
the 'decay' of old memories occurs increasingly
slowly as time between study and test increases. For
example, consider the phenomenon of retroactive
interference (this is the task discussed by McCloskey
and Cohen, 1989). In such tasks, two lists (say A-B
and A-C) are studied in succession. In typical
experiments with human subjects, the learning of A-
C will decrease the probability of recall for the A-B
items. However, even after extensive training on A-
C, there is still fairly good recall of A-B (see Figure
5, left panel). McCloskey and Cohen (1989)
simulated such a retroactive interference paradigm
with a 3-layer back-propagation network. It was
shown that the network and the human subjects
differed radically: Reasonable good performance on
the A-C list required almost complete forgetting of
the A-B list (see Figure 5, right panel). The
adjustment of the weights to allow A-C learning
eliminated the prior weight patterns. Similar
problems for recognition memory performance were
demonstrated by Ratcliff (1990), who showed in
addition that this model fails to predict a positive
effect of amount of learning on the d' measure for
recognition.
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Thus, such 'feedforward' network models require
modification in order to handle even the most basic
results in human memory. A number of investigators
have constructed more complicated variants that do
not suffer from catastrophic forgetting (see e.g.
French, 1992, Chappell & Humphreys, 1994, or
McClelland, McNaughton & O'Reilly, 1995),
although such variants are quite different from the
simple connectionist approaches discussed here. For
example, the McClelland et al. (1995) model
assumes that a back-propagation-like system is used
but only for semantic and procedural memory
(represented in the neocortex). Episodic memory
(represented in medial temporal lobe structures such
as the hippocampus) would store information in a
way that minimizes the overlap of distinct memories.
The latter type of representation is of course quite
different from the composite and distributed
representations that characterize traditional
connectionist models.

More subtle but even more difficult findings for
such networks to handle are the list-strength
findings. Strengthening some list items doesn't harm
recognition or cued recall of other list items (Ratcliff
et al., 1990). Shiffrin et al. (1990) showed that a
large class of network models cannot predict both
list-length and list-strength effects. Extra items harm
performance by changing weights, but strengthening
other items also changes weights and should cause
similar harm. Finding ways to allow strongly
composite and distributed models to handle this
pattern of findings has proved remarkably difficult.

A cautionary note should be inserted here,

however. One must be very careful not to generalize
too far when discussing neural network models as a
group. This class of models is in principal broad
enough to include virtually every other model yet
developed, or to be developed. One would no more
want to draw a conclusion about 'neural network'
models as a group than about 'mathematical' models
or 'computer simulation' models as a group. In the
above discussion we have mentioned some problems
that arise for certain back-propagation models that
assume a densely composite and distributed structure.
Other neural network models have been developed
with quite different structures and properties. For
example, the ART models developed by Grossberg
(e.g. Grossberg, 1987; Grossberg & Stone, 1986)
incorporate mechanisms that in effect produce
separate storage for different memories. In the
simplest version, there are two layers with
bidirectional connections. An input pattern of
activations at the first layer causes what initially
might be a distributed pattern of activation at the
second layer, but inhibitory connections within the
second layer cause a 'winner take all' phenomenon,
and typically just one node at that layer comes to
represent the input pattern. Rules of operation insure
that sufficiently different input patterns get assigned
to different nodes at the second layer. Such a system,
with each memory pattern encoded by a different
node and the connections to that node, is markedly
different in character from a system in which each
memory is encoded (in part) by all nodes and their
various connections.
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Figure 5: Left panel: Observed proportions of correct recall of A-B and A-C pairs as a function of the number of study trials
on the A-C list. (Adapted from Barnes & Underwood, 1959).
Right panel: Predicted proportions of correct recall of A-B and A-C pairs for a 3-layer back-propagation model (Adapted
from Lewandowsky, 1991).
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TODAM and CHARM

The TODAM model (Theory Of Distributed
AssociativeMemory) was developed in a series of
papers by Murdock (e.g. 1982, 1983, 1993, 1995). A
related model, CHARM (Composite Holographic
AssociativeRecallModel) was developed by Metcalfe
Eich (e.g. 1982, 1985). In both TODAM and
CHARM individual memory traces are represented
as vectors that are then added together and stored in
a single composite vector,M . In both, a pair of items
(say vectors represented byA andB) is stored by the
operation ofconvolution(say, the vectorA*B ), and
in both, cued recall occurs with the presentation of
the vector representing the probe item (say,A), and
use of the operation ofcorrelation (the inverse of
convolution, sayA#M ). These two mathematical
operations are related in such a way that the
correlation of a vectorx with the vector obtained by
convolutingx and y will generate the vectory (and
the application of the two operations in practice
produces noise that is also part of the output): In
short, A#(A*B) = B + noise, so that the correlation
operation enables the system to retrieve the B item
from A (and vice versa). An even more important
source of noise is produced by the fact that all the
stored pairs are added together in a single composite
vector,M . In this case, usingx to correlate with the
memory vectorM will produce as outputy plus an
amount of noise that grows with the number of pairs
that have been added toM .

TODAM and CHARM differ in their
representation of single item information. TODAM
stores the vector representing a single item by adding
it to M directly; in fact if a pair A-B is studied,A, B,
and A*B are all added toM . CHARM represents a
single item by convoluting it with itself (e.g.A*A),
so that presentation of A-B results in addition of
A*A, B*B, andA*B to M . This difference produces
a different approach to single item recognition: In
TODAM, the test item is compared directly to M. In
CHARM, the test item is first convoluted with itself
and then compared to M.

Consider TODAM first. If we denote the memory
vector prior to the study of A-B asM j-1, the memory
vector after study is given by

BABAMM 1jj ∗γ+γ+γ+α= 321− (30)

That is, there is some forgetting (represented byα),
storage of item information for both A and B (with a
weight equal toγ1 and γ2) as well as storage of
associative information (weighted byγ3). Hence, in
TODAM both single and pair information is added to
a single memory vector that contains all of episodic

memory. A good measure for recognition is the
match between the test item vector and the memory
vector, M , defined by the inner or dot product.
Hence, this model is similar to SAM and MINERVA
2 in that the familiarity value that is used in
recognition involves all of the items in memory. In
fact, these various recognition models are
surprisingly similar, because the main difference
concerns whether the sum across memories occurs at
storage or retrieval, a difference that for many
situations doesn't produce differential predictions.

CHARM has been applied much more extensively
to cued recall than to recognition. The recognition
approach is mentioned in Metcalfe Eich (1985). The
test item is correlated withM , producing an output
vector. This output vector is then compared to the
test item itself, via an inner product. Mathematically
this is essentially the same as taking the convolution
of the test item with itself and then taking the inner
product of the result with M. As with TODAM, the
end result is to compare the test item with all stored
items; as with TODAM, the summing occurs at
storage rather than retrieval.

Both TODAM and CHARM ought to predict
many of the basic phenomena of recognition
memory. However, both have the same problem
when applied to list-strength. They cannot predict
the pattern of list-length, strength, and list-strength
effects, for the case when items are strengthened with
spaced repetitions. List-length effects are predicted
because the extra items added to M produce
increasing noise. A spaced repetition of an item must
act much like a presentation of a new item, in terms
of producing extra noise, and hence list-strength
should harm memory for reasons analogous to those
holding for list-length.

Both CHARM and TODAM have similar
approaches to cued recall: The test item is correlated
with the memory vector, producing a noisy version of
the response term as output. Because the response
vector is quite noisy, an actual output requires
comparison to a separate lexicon of separately stored
items, a comparison process that may or may not
succeed in producing an output. The need for a
comparison to a lexicon, in order to clean up the
noisy output, is in itself not a problem, but some have
noted the mixed nature of the assumptions: Episodic
memory is represented as a composite, but lexical
memory as separate traces. If separate storage is
assumed (and required) for the one, why not for the
other? These caveats aside, both TODAM and
CHARM have been applied to a wide variety of
findings in cued recall, and with good success.
CHARM for example dealt with various forms of
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similarity among stimuli and responses, when cues
are both within list and extra list, and also a variety
of depth-of-processing findings. The reader is
referred to the above cited references for details.

One interesting and almost unique aspect of
TODAM is that it is the only recent model of
memory that has been applied in detail to serial order
memory. In this application it is assumed that
successive items are chained: Context is associated to
Item 1, item 2 is associated to item 1, item 3 to item
2, etc., each pair encoded as a convolution. At recall,
the system starts by using a context cue to generate
the first item, and then this item is used as a cue to
generate the second item, and so on. One problem
that has plagued such chaining models, is that recall
reaches a deadlock when a given item is not recalled.
In TODAM this is not necessarily a problem: Even
though the retrieved vector may not enable the recall
of a given item (the process of cleaning up the output
vector via comparison to a lexicon may not succeed),
the retrieved vector may still be used as a further cue.
Lewandowsky and Murdock (1989) showed that this
produces a viable model for serial recall.

One interesting extension of TODAM involves
the representation of higher-order associative units as
chunks, where chunks are made up of sums ofn-
grams. The basic idea is to combine some items say,
a, b, and c, into a chunk. This is done by first
combining a, b, and c into subgroups of different
sizes, calledn-grams. Thusa, b and c would be1-
grams; (a+b)*2 and (b+c)*2 would be two2-grams;
(a+b+c)*3 would be a 3-gram. The part in
parentheses is a simple sum of the vectors, and the *
notation indicates the n-fold convolution of the
vector in parentheses with itself (e.g. (b+c)*2 stands
for (b+c)*(b+c)). The sum of thesen-grams would
represent a particular kind of chunk. Murdock (1993)
introduced the TODAM2 model with these many
additions in order to better model many varieties of
serial-order tasks within a single theoretical
framework. We will not discuss this (rather
complicated) model in detail except to note that the
basic approach has remained the same: All
information that is required to do recognition, cued
recall, and serial-order tasks is stored in a single
memory vector, and retrieving particular types of
information from this memory vector involves
applying task-specific filters (such as the correlation
operation discussed above).

CONCLUSIONS: THE FUTURE OF
MATHEMATICAL MODELING OF MEMORY

The above discussion has focused only on a few
of the best known examples of mathematical models

for human memory. We have emphasized those
models that seem to be the most general, models that
have been applied not just to one type of memory
task but to both recognition as well as recall tasks.
Even for these few examples we have not tried to
present a full discussion of all the results that have
been explained by these models, or how the models
actually predict the findings. Furthermore, we have
for the most part focused on just a few measures of
performance, in the accuracy domain, ignoring a
growing body of research and modeling concerning
confidence ratings, response time, and other response
measures. What we have tried to convey is a sense of
the broad approaches that characterize the various
frameworks. In doing so, we hope to have made it
clear that there has been a major evolution in the
mathematical modeling of memory from the middle
of the past century to the present. This evolution may
be summarized by noting that the current models are
models for memory processes rather than models for
particular experimental paradigms. Models such as
SAM/REM, ACT-R and TODAM/CHARM have
come a long way from the simple Markovian models
of the 1960s. There is every reason to expect that this
trend will continue in the coming years. In fact, both
the REM and the ACT-R approaches are moving
from the area of episodic memory to the areas of
implicit and semantic memory, opening up a whole
new range of problems to be handled.

In addition to becoming more and more general,
there has also been a development to put an
increasing emphasis on the processes of memory and
retrieval rather than the processes of learning. Most
current models (ACT-R is an exception) make very
simple assumptions regarding learning processes and
put most of the explanatory burden on retrieval
processes. This stands in sharp contrast to the models
of the 1950s (e.g., Estes' Stimulus-Sampling Theory).
However, it is clear that a large part of the variation
in real-life memory performance is due to encoding
strategies. Hence, a complete theory of human
memory should perhaps pay more than simple lip-
service to such strategies and provide a framework in
which such strategies may be derived from generic
principles that relate such strategies to the task
demands and the goals that the learner tries to
achieve. A first step in this direction was set by
Atkinson and Shiffrin (1968). More recently, the
ACT-R framework has been applied to a variety of
skill acquisition problems. Thus, a more complete
theory of human memory would provide a set of rules
or principles that would make it possible to predict
the nature of the information stored in memory given
a particular learning strategy.
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It should be emphasized that the success of the
current generation of memory models has in no way
precluded continuing advances in the development of
more descriptive (and sometimes simpler) models
(e.g. Riefer & Batchelder, 1995; Jacoby, 1998;
Brainerd, Reyna, & Mojardin, 1999), verbally stated
models (e.g., the levels-of-processing framework of
Craik and Lockhart,1972, or the multiple systems
theory advocated by Schacter and Tulving, 1994),
and large advances in empirical investigations of
memory. Rather, the formal modeling approaches
and the other approaches have developed hand-in-
hand, each gaining ideas and momentum from the
others. Although a number of the more
experimentally oriented researchers prefer the more
simple verbal models, most do not see any one of
these approaches as more 'right' than the others. Of
course, there are always a few complaints heard
about modeling efforts. One often voiced complaint
asks whether mathematical models really explain the
observed target phenomena, given that they always
require the estimation of a number of parameters
(sometimes a large number). Such objections are
occasionally well taken, but not typically so:
Parameter estimates are required to make
quantitative or numerical predictions of the data, but
it is often possible to obtain qualitative predictions
without estimating any parameters. More
importantly, using an explicit model makes it
possible to verify that a given verbal explanation
indeed suffices to explain the data. Most researchers
in this area have had the experience of being
astonished by the fact that a model made a particular
prediction although they would have bet on just the
opposite. Even verbal models with two or more
interacting processes have the potential of generating
predictions unanticipated by the theorist/modeler, so
that the apparent simplicity of many verbal models is
due more to the failures of intuition than a true
elegance of expression. A major advantage of the
modeling approach to memory is that it makes it
possible to discover the failures of intuition, the
actual structure of the model, and the correct set of
predictions, all of which can easily be missed by
theorists using less formal approaches.
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