
Chapter 5 
Optimal Hedging Under Robust-Cost 
Constraints 

5.1 Introduction 

In this chapter we analyze hedging o f a short position in a European call option by 
an optimal strategy in the underlying asset under a robust cost constraint (RCC), 
that is, under the restriction that the worst-case costs do not exceed a certain a priori 
given upper bound. This relates to a Value-at-Risk (VaR) condition, which is usually 
defined for stochastic models as the maximum costs for a specified confidence level. 
As compared to VaR, an RCC denotes a level of worst-case costs that cannot be 
exceeded within a given interval model. 

More specifically, the asset is modeled by an interval model I u ' d in N equal time 
steps from current time to expiry, cf. (3.9). Recall from Proposition 4.2 that a short 
position in the option, kept under a hedge strategy g, yields an outcome of costs in 
an interval I 8 . For discontinuous strategies this interval I 8 is not necessarily closed, 
and therefore best- and worst-case costs are defined as the infimum and supremum 
of costs: 

BC« : = i n f F = inf Q?(S). 

WC8 : = supF = sup g*(S). 
Sélu<d 

We refer to — BC8 also as the maximum profit under g. 
The RCC condition simply limits the worst-case costs W C ? . In this section we 

analyze the impact o f such a restriction for the set of admissible hedging strategies 
and provide an algorithm to solve this constrained optimization problem. To that 
end we first in t roducé some notation. 

The set o f all strategies wi th price paths S in some interval model is denoted 
by G. Thus 

G : = {g = (go,• • .,gN-i) I 8j • (5b Sj) -»• Yj e R } . 
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66 5 Optimal Hedging Under Robust-Cost Constraints 

Let V denote the RCC l imi t ; then the set o f all admissible strategies under this 
RCC l imi t is defined by 

Gv : = {g e G | W C S < V}. 

Furthermore, by Aj we w i l l denote the delta-hedging strategy [see (3.4), (3.5)] 

Aj(Sj) = XAj+\(uSj) + (1 - l)Aj+l{dSj),with 

[uSN-i-X]+-[dSN-}-X]+ 

N-\, 
(u — d)SN-] 

where X = ƒ ^ > a r | d by fj(S/) we w i l l denote the corresponding Cox-Ross-
Rubinstein option premium [see (3.2), (3.3)] 

/N(SN) = [SN + , 

fj(Sj) = qfj+] (uSj) + (1 - q)fj+l(djSj), (5.1) 

where q := 

5.2 Effect of Cost Constraints on Admissible Strategies 

Since delta hedging yields the lowest upper bound of costs among all strategies in 
G (Theorem 4.5), we have the next result. 

Proposition 5.1. IfV< fo(So), then Gv is empty. IfV> fo(So), then the delta-
hedging strategy belongs to Gv. • 

So the arbitrage-free Cox-Ross-Rubinstein price of the option C in the binomial tree 
model MU-D is the smallest RCC l imi t that is achievable for a hedged short position 
in the call option C wi th underlying asset S e I " ' ' ' . 

As may be expected, for RCC beyond this minimal level, the space of admissible 
strategies is centered around the delta-hedging strategy. To formulate the precise 
result, we int roducé the fol lowing concepts. For a given strategy, Hj denotes the 
realized hedge costs at ty. 

Hj:=-ZiZv7k(Sk+i-Sk). (5.2) 

In view of the previous result we also define the current latitude 

Vj(Sj,Hj):=V-Hj-fj(Sj), (5.3) 
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which is the excess of the RCC l imi t V over the past hedge costs Hj plus the 
minimal future worst-case costs (given by the Cox-Ross-Rubinstein price) fj(Sj), 
or, equivalently, the current wealth offset to the total minimal cost-to-go fj(Sj). 

The next theorem shows that V indeed determines the extent to which admissible 
strategies may differ from delta hedging. 

Theorem 5.2. The set Gv of strategies admissible under the RCC level V > fo (Sb) 
for S £ I u , d is given by 

{ge&\Y?m(SJMJ)<8j(So.,...,SJ)<r7ax(SJ.HJ)}., (5.4) 

with 

yfD(Sj,Hj) 

with V defined by (5.3) and Hj the realized hedge costs (5.2). • 

See the appendix for a proof. 
Summarizing, the consequence of including a restriction on the worst-case costs 

is that the set of admissible strategies is restricted to an interval around delta 
hedging, wi th fixed proportional centering determined by u and d and time-varying 
interval length determined by realized hedge costs. 

5.3 Calculating Maximum Profit Under a Cost Constraint 

In this section we present a numerical algorithm to maximize profits under a l imi t 
for worst-case costs in a given interval model for the asset. Or, stated differently, 
wi th an RCC l imi t V on worst-case costs, we look for a strategy g that provides 
the highest lower bound for best-case costs. We w i l l denote this lower bound for 
best-case costs by 

B C * ( S 0 , V ) : = in f Q*(S), (5.5) 
{geG v.SeI u- r f} 

wi th QS(S) as defined in (4.5). 
Thus BC* (So. V) is a lower bound for best-case costs (and hence an upper bound 

on maximum profit) under the RCC level V and wi th asset prices in ïu'd wi th init ial 
price SQ. Notice that by choosing g equal to the stop-loss strategy, we in fact obtain 
just the opposite o f what we want, i.e., a maximum profit that is outperformed by 
any other admissible strategy under optimal conditions. 

To determine Solutions, we first analyze the recursive structure of this minimiza-
tion (5.5). I t amounts to the dynamic programming problem 

:=Aj(Sj) 

Vj(Sj;Hj) 

( t i - i ) V 

Vj(Sj-Hj) 

(l-d)Sj-
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M i n i m i z e / : = Zj~0 F(j.Xj.Uj.Vj) + G(XN) 

with Xj+1 = h(j.Xj.Uj. Vj) 

for (uj,Vj) G D(j,xj), 

with the fol lowing definitions of the variables: 

Sj 

Yj, 

Sj+1 / Sj 

with the domain D(j.Xj) the rectangle specified by the conditions 

uj e rj(Sj,Hj) := [ir{Sj,Hj),1j™{Sj,Hj)}, 

Vj e [d.u], 

with Ty11" and y j 1 3 " defined as in Theorem 5.2, and wi th the state recursion and cost 
function given by 

Sj+\ 
V J S J 

HJ-UJ(VJ~1)SJ 
So So 
Ho 0 

J = - Hj=o U J ( V J - 1 )Sj + [SN - X] +. 

Notice the path dependence of the criterion, which becomes apparent in the 
occurrence of the realized hedge costs in the state. Equivalently, the criterion is path 
dependent through "current wealth" V - Hj, where the RCC l imi t V is interpreted 
as the ini t ial wealth. 

The corresponding value function consists o f the best-case costs conditioned on 
the current asset price and past hedge costs: 

BCN{SN-HI\ [SN — X}^+HN . 

BCjiSj.Hj) : = min (BCj+1(SJ+uHj - Yj(Sj+l-Sj)). (5.6) 
{Yj^rJtSj+i€[dSj,uSj]} 

with the domain for B C , taken as 

{(Sj,Hj)\Sj>0,Hj>V-fj(Sj)} (5.7) 

to avoid minimization over an empty domain. Not coincidentally, this definition o f 
domain is consistent w i th the recursion in (5.6) because I ) is determined just to 
guarantee that Vj = V — Hj - fj(Sj) remains nonnegative. 
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Thus B C 7 denotes the best-case costs, given that at tj the asset price is Sj and that 
past hedge costs accumulated to Hj or, equivalently, thatx^ = (Sj.Hj). 

Before we go into computations, we show that the optimization problem has a 
solution. A proof of the next result can be found again in the appendix. 

Proposition 5.3. There exists an optimal strategy g* and a best-case price path S* 
suchthatQ8'{S*) = BC*(S0,V). • 

As it seems too complicated to obtain closed-form solutions, we develop a nu-
merical procedure that exploits some specific features of the dynamic programming 
problem, enabling a relatively simple forward recursion for a "frontier function" in 
one variable, wi th known init ial conditions. Note that this approach differs from the 
Standard numerical solution of the dynamic programming problem, which would 
amount to a backward recursion for a function in two variables, conditioned on 
unknown final values o f asset prices SN and realized hedge costs HN- The fol lowing 
method hence avoids the use of a rather large grid matrix o f sample points. 

First a frontier function o f minimal realized hedge costs is determined as a 
function of asset prices, then the best-case asset price path is determined by 
backward recursion, and finally the optimal strategy is reconstructed. 

Algorithm 5.4 (Maximum profit under R C C ) . 

Data: Init ial asset price So, an interval model for assets I " * , excercise price X and 
time T o f a European call option, and an RCC l imit on worst-case total costs at 
expiry, WC8 < V. 

Step 1: Determine the "frontier function" of minimal realized hedge costs 
H*(j,Sj) by 

ff*(0,S0):=0, (5.8) 

ff*(l,Si) : = - % ( S , - S o ) fo rS , e [dS0,uS0], (5.9) 

H*U+hSj+l) : = min / / ' ( . / .<>; ) (Sj+] .V; sy= / / " i . / . .V,;: . (5.10) 
Sj&j 

with 5; G [dJS0:uJS0}, Ij := [dJSQ.uJS0] n and yjj defined by 

H i<r?°*(Sj,H*(j,Sj)) iorS, ; - .V ; . 

Ji' \f?m(Sj.H*{).Sj)) f o r . S , . - - . V , 

Step 2: Determine the optimal price path 5* recursively by 

S*N := argmmSNe[dNSoMNSo]{H*(N.SN) + [SN-X}+], (5.12) 

S*j : = a r g m i n 5 . 6 / . [H*(j.S*) - y j ( 5 } + 1 - Sj)}, (5.13) 

wi th jj defined as in (5.11) wi th Sj+\d by S*+l. 
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Step 3: Determine the optimal strategy g* by 

gj(So,...,Sj) 
rT^(Sj,Hj) ifs*j+1>s*j, 
1F(SJ,HJ) ifs*j+l<s*j. 

(5.14) 

Result: The strategy g* yields the maximum profit — BCg under the restriction that 
worst-case costs WCg are at most V and asset prices are in accordance wi th the 
interval model I u J . These best-case costs are achieved for the price path S* under 

Remark 5.5. From (5.14) we see that the optimal hedge depends on the realized 
hedge costs in the past and that at each time step all gained reserves beyond the 
RCC l imi t are put at risk. This is a typical feature o f the modeling we have used so 
far. I f one is unhappy wi th these kinds o f strategies because they are too risky, one 
should take this into account explicit ly in the modeling. A t this moment there is no 
incentive in the modeling to avoid this k ind o f behavior. We w i l l return to this issue 
later on. • 

That Algor i thm 5.4 indeed achieves the advertised result is shown in the 
appendix. Before illustrating the algorithm wi th an example, we give a brief 
explanation. Init ial hedge costs are set to zero in (5.8), and (5.9) simply denotes 
the realized hedge costs under optimal hedging as a function o f the current price 
Si after the first step. For the second time step, H*(2,S2) denotes optimal realized 
hedge costs, which now not only involve optimization over hedge position j \t 
also over all paths in I u ' starting at So and ending at a fixed value S2. The interval 
1\s all possible values for the asset price at t\r such paths. It is important 
to note that the algorithm postpones optimization over current prices, so hedge costs 
H*(j, Sj) are conditionally optimal, assuming an arbitrary fixed price level Sj at time 
tj. Optimal price paths are then determined by a backward recursion (5.13) starting 
at an easy-to-evaluate final condition (5.12). 

Example 5.6. We consider an at-the-money European call option wi th exercise 
price X = 1. We assume that the underlying asset follows a price path in the interval 
model IT"' , wi th u = 5 /4 and d = 4 /5 , N = 4 time steps, and initial asset price 
So = 1 • Sampling o f asset prices is done wi th a logarithmically regular grid, wi th 51 
points on [d,u]. A further decrease of this mesh hardly affects the outcome of the 
algorithm. 

The unique Cox-Ross-Rubinstein arbitrage-free option price in the correspond-
ing binomial tree MU>D is given by / 0 ( S 0 ) = 0.1660, cf. (5.1). Wi th the aid o f the 
algorithm we computed that maximum profit, under strategies that guarantee this 
l imi t , are given by 1/9 and are achieved for the price path 

strategy g*. • 

S* = (So\SÏ,S2,S;,S4) = (1 ,1 ,1 ,5 /4 ,25 /16 ) . (5.15) 



5.3 Calculating Maximum Profit Under a Cost Constraint 71 

i 1 1 1 1 1 1 1 r 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 

T 1 1 1 1 1 1 1 1 r 

0 b i i i i i i i i i i i _ 
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 

Fig. 5.1 Optimal costs under RCC restrained strategies. Both plots contain the graphs of the 
optimal current latitude V*(j,s) := V — H*(j,s) —fj(s) with s e [dj ,u'], for j = l , 4. In the 
upper plot the RCC limit is chosen equal to the lowest achievable cost l imit , i.e., V = fo{So) = 
0.1666, while in the lower plot this is increased by 5% to V = 0.1743. Thus V*(j,s) denotes the 
maximum current latitude compatible with a price Sj = 5 under strategies that are admissible under 
these RCC limits. In the upper plot V* is zero at the boundary points d-> and u' because these are 
only achievable by a sequence of extreme jumps in prices, which keeps the latitude at the zero level, 
by defïnition of delta hedging. The fact that V*(\,s) = 0 for all s 6 [d,u] is somewhat coincidental 
because this would not be the case for exercise prices unequal to 1 

The same analysis is repeated wi th a slighly higher RCC l imi t 1.05/o(Sn) = 
0.1743. Max imum profit turns out to be 0.1531 and is achieved for the price path 

5* = {So,S*\,Sl,Sl,Sl) = (1 ,0 .9564 .1 .5 /4 .25 /16) . (5.16) 

To give an impression of the outcome of the optimal realized hedge cost functions 
H*(j,s) for j = 1,2,3.4 [cf. (5.9) and (5.10)], we have plotted the corresponding 
optimal current latitude V*(j.s) = V -H*(j,s) - f(j,s), both for the tight RCC 
l imi t V = fo(So) and for V = 1.05/o(So), i n Fig. 5.1. This has the fol lowing 
interpretation. I f at time tj the asset price is given by Sj = s, then the realized hedge 
costs Hj, defined by (5.2), are under optimal circumstances equal to H*(j.s), i.e., 
under optimal admissible hedging and for the best price path in I u - d from Sb to 
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Sj = s. Hence V* (j. s) denotes the maximum current latitude compatible wi th a price 
Sj = s. I n particular, Ü * ( 4 . S 4 ) = V-H*(4,S4) - / ( 4 , S 4 ) . By (5.12), the last price S*4 

of the optimal price path minimizes H*(4,S4) + ƒ (4,54). Thus the optimal price S^ 
is obtained from the plot as that price at which the j = 4 curve attains its maximum 
value. I f V = 0.1666, then we see that this optimal price S4 is approximately 1.56, 
whereas for V = 0.1743 the price S^ is slightly smaller. Furthermore, the maximum 
profit, ~BC*(S0.V) = - # * ( 4 , S J ) - f(4.S*4), is obtained from this curve as the 
difference between the maximum value o f the curve and V. Thus, for V = 0.1666 
the maximum profit is approximately 0.28 — 0.1666 w 0.1104 and for V = 0.1743 
it is approximately 0.325 - 0.1743 « 0.1507. 

I f the RCC l imi t is fixed at its smallest value, /o(So), then the initial hedge 
position is fixed because it must be equal to the delta hedge 0.5830. For the 
increased RCC l imi t the interval o f admissible init ial hedge positions is given by 
[0.5369.0.6863]. In Fig. 5.2 we show the range of admissible strategies for time 
instants t\, t%, and f 3 under RCC limits V = fo(So) and V = 1.05/n(So). This gives 
an idea o f how far hedge positions may deviate from delta hedging under best-case 
circumstances. • 

5.4 Extensions 

We have described how a worst-case cost restriction can be translated to strategy 
limits and shown how to determine maximum profits under such a constraint. In this 
section we discuss extensions o f this result wi th respect to the choice o f the RCC 
l imi t and variants of the cost criterion. 

First we pursue the pure interval calculus a little further in Sect. 5.4.1. I t is shown 
how cost l imits can be chosen on the basis o f the maximum loss/profit ratio and how 
an option premium can be based on this criterion. 

These criteria, which are based solely on interval l imits for asset prices, have 
some degenerate features as a performance measure for investments, especially i f 
the number o f time steps is large. Under the RCC restriction, the downside risk is 
l imited, by construction, but (as was already mentioned in Remark 5.5) in each step 
hedge volumes are driven to the maximum amount, and consequently all the gained 
reserves beyond the RCC l imi t are put at risk at each step. In particular, for a long 
sequence of time steps this seems odd, and it may be more desirable to secure profit, 
at least partially. 

Therefore, in Sect. 5.4.2 we also analyze how to minimize expected costs 
under additional stochastic assumptions wi th in interval models. This relates to a 
fairly general result that depends only on the expected growth factor, E(Sj+\/Sj). 
However, despite the different nature o f the criterion, we w i l l see that the optimal 
hedge volumes turn out to be maximal again at each step. 
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Fig. 5.2 RCC-admissible strategies. The plots on the left-hand side correspond to the tight RCC 
l imi t V = fo(S0) = 0.1666, on the right-hand side to V = \Q{S0) = 0.1743. The dashed lines 
indicate hedge positions according to delta hedging, as a function of prices Sj at time tj, with j = 1 
in the upper plots, j = 2 in the center, and j = 3 in the lower plots. The solid lines denote the 
graphs of y™ a x and jj™, as a function of Sj, and with realized hedge costs H* (j, Sj), which are the 
optimal hedge costs compatible with asset price Sj at tj, cf. (5.11). Whenever the corresponding 
current latitude is zero (Fig. 5.1), the strategy must coincide with delta hedging. The prices S\, 
and 5 | in the best-case price paths (5.15) (left plots) and (5.16) (right plots) are indicated by an 
asterisk and hence mark the actual outcome y* of the strategy for this path 

5.4.1 Loss/Profit Ratio 

In Sect. 5.3 we described an algorithm for solving the minimization problem (5.5). 

The solution consists o f an optimal strategy and the construction of a corresponding 

price path at which pronts are maximized. I t is not hard to verify that worst-case 

costs under this strategy reach the prescribed RCC l imi t V, so that in fact the entire 

cost interval of the strategy (4.6) is known: 

/«* = [BC*(S0,V),V] (5.17) 

fo rg* a solution of (5.5). 
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The question arises as to how to compare these intervals for different values of V 
i f the RCC l imi t is a design variable rather than an externally imposed value. More 
generally, the question is how to evaluate cost intervals o f strategies. By definition, 
the option premium is not included in the cost intervals, and incorporating i t as an 
additional factor we arrivé at the question o f how to compare the interval of results 

[a-f.b-f] and [ c - ƒ , < / - ƒ ] 

wi th [a.b] and [c,d] cost intervals o f two strategies and ƒ the (yet-to-be-determined) 
option premium. 

There is an infinite number o f ways to evaluate uncertain costs. In this section we 
confine ourselves to the somewhat academie assumption that nothing is known about 
costs besides the limits o f the interval. In this way we illustrate the consequences 
of the interval models without any additional assumptions on the asset pricing 
process. Notice that in this context the strategies that achieve the maximum profit 
for fixed worst-case costs, as constructed previously, relate to an "effective frontier" 
of portfolios because, from the pure "interval perspective," these dominate all 
strategies wi th the same worst-case costs and smaller profits. The only design 
parameters left, then, are the value o f the cost l imi t and the option premium i f i t 
is not considered as given. 

As a consequence of the absence of arbitrage, we must consider only those 
intervals that contain zero because entirely positive or negative cost ranges relate 
to the existence of strategies that yield certain profit. Recall from Theorem 4.5 that 
the precise bounds for arbitrage-free option premiums are the intrinsic value o f the 
option, [SQ — X } + (lower bound), and the Cox-Ross-Rubinstein price /o(So) for 
maximum volatil i ty (upper bound). The loss/profit ratio (LPR) o f such an interval 
[a — f.b — f] is defined as . There is a simple argument for considering this ratio 
as the main criterion. Suppose there are strategies that lead to cost intervals [a, b] and 
[c,d], so that the net results wi th option premium ƒ are respectively [a — f,b — f] 
and [c — ƒ , d — f]. I f we allow for portfolio rescaling, we may scale the second one 
by a factor ^j, which gives [a—f, l2zZK|z£)] Comparing this wi th [a — f,b — f] is 
now simply a matter o f comparing the right bounds, and their ordering is precisely 
determined by the LPR of the intervals. Observe that the cost interval wi th the 
smallest ratio is preferable in the absence of additional information. 

From (5.17) it now follows that for a given (arbitrage-free) option premium ƒ 
and an achievable RCC l imi t V [hence not below the Cox-Ross-Rubinstein price 
/ o ( S b ) ] , t n e optimal LPR criterion is given by 

HereBC*(5'o, V) is given by (5.14), and it is interesting to see how this ratio depends 
on V and ƒ . In particular, one might address the question o f how to minimize this 
ratio over V for a fixed ƒ . Notice that for the maximum arbitrage-free premium, 
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ƒ = /o(So), the RCC that minimizes this LPR*(V) ratio is V — fo(So) because then 
the ratio is zero. Moreover, it is easily verified that for a fixed RCC l imi t V, LPR* (ƒ) 
is a decreasing function. So its min imum value is attained at ƒ = /o(S'o). 

In the fol lowing example we consider this dependency of the optimal LPR on its 
RCC l imi t V and option prices ƒ in more detail. 

Example 5.7. We proceed wi th Example 5.6. Figure 5.3 illustrates the dependence 
of best-case costs BC*(Sn : V) on cost l imi t V by applying the algorithm to several 
values of V. It seems that BC*(S0,V) depends piecewise linearly on this RCC l imi t 
V. There seems to be a change in the slope of the best-case costs around V = 0.18. 

In Fig. 5.4 the LPRs are shown for a range o f arbitrage-free option premiums. 
The fair price interval is in this case given by [0.0.1666]. We plotted the optimal 
LPR for different choices of the option price from this fair price interval. It turns 
out that there are two ranges o f option premiums for which LPR*(V) has a different 
min imum location. For option prices sufficiently close to the minimal RCC bound 
/o(So), t n e minimal LPR*(V) is attained at V = /o(So). For option prices below a 
certain threshold, LPR*(V) has an inf imum at V = °o. Thus, by relaxing in those 
cases the RCC constraint, we improve the LPR*. • 
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Fig. 5.4 Optimal loss/profit ratio for several option prices. The curves denote the LPR* for several 
option prices. The lowest one corresponds to the Cox-Ross-Rubinstein price /o(So) = 0.1666; 
hence it is zero at V = /o(Sn)- The other curves {bottom to top) correspond to option premiums of, 
respectively, 0.95, 0.93, 0.5, and 0 times /o(So)- Prices outside this range are not arbitrage free. For 
factors from 0.93 to 1, the minimum is at the left, so the minimum LPR* is achieved for the lowest 
achievable cost bound V = /o(Sb), while for lower premiums the optimum switches to infinity 

5.4.2 Maximum Expected Profit Under a Cost Constraint 

In this section we take a step from the purely indeterministic features, as represented 
by interval models, to the probabilistic properties o f prices. We assume that, in 
addition to the limits that an interval model induces for the growth factor o f prices, 
its expected value is also given. Thus we assume that in each step 

Ej[SJ+l/Sj} = l+e(j,Sj), (5.18) 

where £/[•] denotes the expectations conditioned on past prices up to and including 
tj, and e is a real-valued function denoting the expected growth rate at tj for 
current price level Sj. Notice that under a risk-neutral probability measure and prices 
relative to a tradable asset, there are theoretical arguments for setting e = 0, making 
the measure a martingale. Wi th e expressing "real" expectations, the value o f e is 
typically positive and depends on the market price o f risk. 

It turns out that minimizing the expected costs under RCC still corresponds to 
hedging at the strategy limits imposed by the cost constraint. 
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Proposition 5.8 (Minimizing expected cost under R C C ) . Assume that asset 
prices follow paths in I and have an expected growth rate of\+e(j, Sj)for price 
Sj at time tj. The strategy that minimizes the expected value of costs (4.5) under a 
cost constraint V, 

g* :=aigmin s e G y£[g*(S)], 

is given by 

„ V o . , I rr(Sj,Hj) ife(j,Sj) 0, 
8j(*>,-,*j) \ y n i n { S h H j ) I F E { J , S J ) < 0 . 

where y-J 1" 1 and y™ a x are the RCC strategy bounds as defined in Theorem 5.2. • 

The proof of this result can be found in the appendix. This result shows that the 
expected-cost criterion does not restrain us from strategies that are at the cost l imi t 
at each step. 

5.5 Summary 

In retrospect, we showed that in interval models the price of an option is in general 
not uniquely determined. A fair price for an option wi th a convex payoff may be 
any price in a compact interval. The lower bound of this interval is determined 
by the smallest price that can occur in the interval model using, for example, a 
stop-loss strategy, and the upper bound is determined by the largest price that 
can occur in the interval model using a delta-hedging strategy. In a simulation 
study, we showed that in a discrete-time setting wi th uncertain volatili ty the use 
of binomial tree models may severely underestimate the involved cost o f hedging. 
This applies particularly when the hedging strategy underestimates the volatil i ty of 
prices. Finally, we considered the question o f how to find a hedging strategy for 
a call option that maximizes potential profits under the restriction that costs must 
not exceed an a priori given bound. We derived a numerical algorithm to calculate 
such a strategy under the assumption that this cost bound is not too strict. This 
strategy has the property that gained reserves beyond this cost bound are put at risk 
at every step. This outcome is on the one hand quite rational given our modeling 
framework. On the other hand, the strategy does not seem to be in line wi th the 
basic idea behind hedging, which is to reduce risk. Clearly, the strategy satisfies 
the strict requirement o f not crossing the cost bound. Profit maximization, however, 
might not be the correct specification of the hedger's objective. To find hedging 
strategies that are perhaps more in line wi th the idea o f risk reduction, one could 
look for different objective specifications or restrict the set of admissible strategies 
to an a priori defined class. Together wi th the issue o f seeing how this theory works 
in practice, these are challenging subjects for future research. 


