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1 For instance, the chief executive of the British Finan
Sants, writes in a letter to financial industry CEO
www.fsa.gov.uk/pubs/ceo/valuation.pdf): ‘‘Few firms
frameworks for articulating model risk tolerance, an
risks within that tolerance. We believe a better defined
management framework could therefore feed into a be
valuation risk management framework”.
a b s t r a c t

We propose a procedure to take model risk into account in the computation of capital reserves. This
addresses the need to make the allocation of capital reserves to positions in given markets dependent
on the extent to which reliable models are available. The proposed procedure can be used in combination
with any of the standard risk measures, such as Value-at-Risk and expected shortfall.

We assume that models are obtained by usual econometric methods, which allows us to distinguish
between estimation risk and misspecification risk. We discuss an additional source of risk which we refer
to as identification risk. By way of illustration, we carry out calculations for equity and FX data sets. In
both markets, estimation risk and misspecification risk together explain about half of the multiplication
factors employed by the Bank for International Settlements (BIS).

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Due to the growing complexity of financial markets, financial
institutions rely more and more on models to assess the risks to
which they are exposed. The accuracy of risk assessment depends
crucially on the reliability of these models. In spite of the very sub-
stantial efforts made both by practitioners and academics to im-
prove the quality of market models, one needs to recognize that
there is no such thing as a perfect model. The hazard of working
with a potentially incorrect model is referred to as model risk.
Methods for the quantification of this type of risk are not nearly
as well developed as methods for the quantification of market risk
given a model, and the view is widely held that better methods to
deal with model risk are essential to improve risk management.1
ll rights reserved.
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While model risk is present in each market, the significance of
its role may be different in different markets, depending on such
factors as the amount of experience that has been built up and
the complexity of products that are being traded. Additionally, it
may be important to distinguish between the various purposes
for which models are used, such as pricing, hedging, and the com-
putation of capital reserves. There can be several sources of model
risk, including for instance the risk of human error in modeling;
various factors, and ways to guard against them, are discussed by
Derman (1996).

The main question that we want to answer in this paper is how
to incorporate model risk associated to the application of econo-
metric methods into the computation of required levels of capital
reserves. While it is of course possible and useful to investigate
the effect of parameter variations on risk measures that are com-
puted in a particular parametric framework, as for instance in Bon-
gaerts and Charlier (2009), our aim in this paper is to take model
risk explicitly into account as a separate risk factor. The paper is
similar in spirit to the work of West (1996), who discusses when
and how to adjust critical values for tests of predictive ability in or-
der to take parameter estimation uncertainty into account. Here
we adjust levels of risk measures, such as VaR, rather than critical
values. There are parallels as well with the work of Brock et al.
(2003, 2007) on the role of model risk in policy evaluation. How-
ever, the model averaging method proposed by Brock et al.
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(2003) is difficult to use in the applications we have in mind, since
it requires specification of a prior over the model space. The disper-
sion view expounded by Brock et al. (2007) is useful for robustness
analysis of policies; risk assessment, however, typically calls for
quantification of risk by means of a single number expressing the
required capital reserve.

Hull and Suo (2002) quantify model risk by comparing the pric-
ing and hedging performance of a simple model within the context
of a more complicated model, which is interpreted as representing
the true data generating process. This is a way of judging whether a
proposed model simplification is feasible. In this paper we do not
assume that we know the true data generating process. Closer to
the present paper is the work by Cont (2006), who studies the im-
pact of model risk on pricing. Our paper is different in the sense
that we are concerned with risk measures rather than prices;
moreover, we discuss a specific procedure to arrive at classes of
alternative models, whereas the discussion of Cont (2006) is ab-
stract in this respect. Approaches to the design of policies that
are robust with respect to model uncertainty have been developed
for instance by Hansen and Sargent (2007) and ElKaroui et al.
(1998). Robust hedging strategies can play an important role in
mitigation of model risk. Here we assume that the effect of hedging
is already incorporated in the definition of a given position.

In this paper, we incorporate model risk into risk measure cal-
culations by constructing classes of models on the basis of standard
econometric procedures. We then arrive at adjustments of a nom-
inal risk measure, such as VaR, by computing the worst case across
such classes. We distinguish between several stages of modeling
which each give rise to different model classes and hence to differ-
ent adjustments of a chosen risk measure. In this way, we define
several components of model risk which we refer to as estimation
risk, misspecification risk, and identification risk.

Estimation risk is the risk associated with inaccurate estimation
of parameters. This type of model risk has perhaps most frequently
been discussed in the literature; see for instance Gibson et al.
(1999), Talay and Zheng (2002) and Bossy et al. (2000). Misspecifi-
cation risk is associated with incorrect model specification. The
presence of misspecification risk may be detected by the use of
standard econometric methods. Identification risk arises when
observationally indistinguishable models have different conse-
quences for capital reserves.

For an example of identification risk, consider the following sit-
uation. The value of a mortgage portfolio depends on the delin-
quency behavior of home owners, which in turn may be
influenced by house price appreciation rates. If in the available
data set the house price appreciation rate is constant, or nearly
so, then on the basis of statistical procedures it is not possible to
make statements about the dependence of model parameters on
the appreciation rate. Of course, one might construct models under
the assumption that parameters do not depend on the house price
appreciation rate. However, such models may not provide ade-
quate risk assessment in situations in which the appreciation rate
does move considerably.2

As noted by Cont (2006), the notion of components of model
risk does not come up in an abstract framework, since in such a
setting one can work with a class of alternative models which is as-
sumed given and which in principle does not need to have any par-
ticular structure. However, in applications we must have a way to
construct the class of alternative models, and this may lead to the
presence of more structure than can be or needs to be supposed at
2 This example is modeled on the 2007 subprime mortgage crisis, but is stated in an
idealized form to bring out more clearly the notion of identification risk. Whether in
the case of the subprime crisis it was really not possible to predict the changes in
delinquency behavior on the basis of data is debatable; see for instance Demyanyk
and Van Hemert (forthcoming).
the abstract level. The situation we consider in this paper is of that
type. The distinctions that we construct are meaningful within the
context of a given econometric framework; of course, they do de-
pend on the specific framework that is chosen and we do not claim
that model risk in general should be or even can be decomposed in
such a way.

Currently, no explicit capital requirements are imposed by reg-
ulators in connection with model risk, save perhaps risk factors
due to human errors which are covered under operational risk.
However, the Basel Committee does apply the so called multiplica-
tion factors which could be motivated in part as a way of taking
model risk into account. In our empirical applications, we consider
time series data of the S&P 500 index and the USD/GBP exchange
rate. We consider two simple models (a Gaussian i.i.d. model and
a GARCH(1,1) model) which are estimated on the basis of roll-
ing-window data, and we find that both are rejected when used
as nominal models. However, adding misspecification risk and esti-
mation risk at the usual 95% confidence level leads to risk measure
levels that pass the standard backtests in all cases we consider. The
results can be interpreted in terms of a multiplication factor that
should be applied to account for model risk in a given market.
Our results for these models indicate that about half of the regula-
tory capital set by the Basel Committee can be explained by incor-
porating estimation and misspecification risk, when computing the
1% Value-at-Risk at a 95% confidence level for estimation risk. Of
course there are other considerations that may play a role as well
in the determination of multiplication factors, such as macroeco-
nomic effects (procyclicality) and the effects on the behavior of
regulated institutions; see for instance Heid (2007) and Kaplanski
and Levy (2007).

The remainder of the paper is structured as follows. In Section 2
we first present a simple example based on simulated data to illus-
trate the approach to model risk that we take in this paper. Then, in
Section 3, we discuss the formulation of risk measures in an envi-
ronment in which we work with multiple models that may employ
different probability spaces. Our method of quantifying model risk
is presented in general terms in Section 4. Then we turn to empir-
ical applications in Section 5. Section 6 concludes.
2. Illustration of model risk

By market risk we understand the risk caused by fluctuations in
asset prices. Market risk for a given position may be quantified by a
risk measure such as Value-at-Risk (VaR) or Expected Shortfall
(ES). The purpose of this section is to illustrate in a simple example
the possible impact of several forms of model risk on market risk
assessment.

Suppose that XT denotes the current (known) position, and that
the future position can be described by a random variable
XTþ1 ¼ XT expðYTþ1Þ, where the log return YTþ1 follows some un-
known distribution conditional upon the information available at
time T, represented by a r-algebra FT . To form a risk assessment,
one could for instance choose to model the distribution of the log
return YTþ1 as a normal distribution with mean l and variance r2,
i.e.,

YTþ1jFT �Nðl;r2Þ ð1Þ

or, equivalently, YTþ1 ¼ logðXTþ1=XTÞ ¼ lþ r�Tþ1 with �Tþ1jFT �
Nð0;1Þ. The Value-at-Risk at level p is then given by

VaRTðXTþ1 � XTÞ ¼ XTð1� expðzprþ lÞÞ ð2Þ

where zp denotes the pth quantile of the standard normal distribu-
tion, and where the index T indicates that the VaR is calculated at
time T, given the information FT . One may also choose an alterna-



Table 1
Illustration of model risk.

p VaR Est.risk E&MR E&MR E&MR
N t MixedN

0.01 7.07 0.48
(0.07)

0.95
(0.13)

2.99
(0.43)

1.06
(0.15)

0.025 5.99 0.43
(0.07)

0.69
(0.12)

1.12
(0.19)

0.67
(0.11)

p ES Est. risk E&MR E&MR E&MR
N t MixedN

0.01 8.05 0.53
(0.07)

1.01
(0.13)

6.04
(0.75)

1.97
(0.24)

0.025 7.09 0.49
(0.07)

0.83
(0.12)

3.03
(0.43)

1.16
(0.16)

The table reports the Value-at-Risk (VaR) and expected shortfall (ES) market risk at
level p, together with corresponding estimation risk (Est risk), assuming i.i.d. nor-
mal returns with annualized mean 0 and variance 0.25, with relative estimation risk
in brackets. The sample size is 500; the initial capital is 100. In addition, the sum of
estimation and misspecification risk (E&MR) is reported in experiments in which
the data set is generated by a normal (N), a t4 (t), or a mixed normal (MixedN)
distribution, all standardized to have annualized mean 0 and variance 0.25. In case
of the mixed normal both normals have mean 0 and the first, with probability 0.99,
has annualized variance 0.24, while the second, with probability 0.01, has annu-
alized variance 1.24. Relative risks (with respect to VaR or ES) are shown in
brackets.
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tive risk measure such as Expected Shortfall (ES) at level p, which
under the normality assumption is given by

ESTðXTþ1 � XTÞ ¼ XT 1� 1
p

exp lþ 1
2
r2

� �
Uðzp � rÞ

� �
ð3Þ

where U denotes the standard normal cumulative distribution
function.

However, in a practical situation, VaR and ES are not observable,
since l and r are unknown parameters. Instead, one has to esti-
mate l and r, say, by bl and br respectively, assuming, for instance,
the availability of an i.i.d. sample of past values of Y. Replacing
ðl;rÞ by their estimates ðbl; brÞ, one obtains an estimated VaR
and estimated ES. The quantity obtained in this way will be re-
ferred to as the nominal market risk as measured by VaR or ES.

Clearly, the estimated parameters bl and br in general contain
sampling (estimation) error, which is transferred to the estimated
VaR and ES, so that the use of the estimated VaR or ES may result in
an underestimation of the actual risk. To take this estimation error
into account, one could construct, say, 95%-confidence intervals for
the VaR and ES, and use the upper confidence level to quantify the
risk with estimation error incorporated. The difference between
the upper bound of this confidence interval and the nominal mar-
ket risk then gives an indication of what might be called the esti-
mation risk.3

This is illustrated in Table 1. The second column of the table
shows estimates of VaR and ES at levels p ¼ 0:01 and p ¼ 0:025
which have been computed on the basis of simulated data. Specif-
ically, we used 500 observations of a model whose log returns are
i.i.d. normally distributed with annualized mean l ¼ 0 and vari-
ance r2 ¼ 0:25; the initial capital is 100 and the estimation meth-
od is Maximum Likelihood. The third column shows corresponding
estimation risks which have been calculated as the difference be-
tween the upper bounds of the 95% confidence intervals and the
nominal market risk, which is given by the point estimates of
VaR and ES. The relative estimation error, calculated as the estima-
3 We employ the assumption of i.i.d. returns. However, this assumption might not
be satisfied in a practical application. Non-i.i.d. returns require, in particular, an
adaptation of the calculation of the estimation risk. Grané and Veiga (2008) indicate
how to proceed in case of non-i.i.d. returns.
tion error relative to the nominal market risk, and included be-
tween brackets, takes values around 7% in all cases.

We now include nonnormal data generating processes in the
analysis, while holding on to the i.i.d. assumption. In practice, inad-
equacy of the normality assumption for the conditional distribu-
tion of log returns may be detected by misspecification tests. In
such a case we might postulate no more than

YTþ1jFT � G ð4Þ

where G is an arbitrary continuous and strictly increasing cumula-
tive distribution function. We then find for the Value-at-Risk at le-
vel p

VaRTðXTþ1 � XTÞ ¼ XTð1� expðG�1ðpÞÞÞ ð5Þ

while for the Expected Shortfall at level p we get

ESTðXTþ1 � XTÞ ¼ XT 1� 1
p

Z
expðyÞ1ð�1;G�1ðpÞ�ðyÞdGðyÞ

� �
: ð6Þ

Let bG denote a nonparametric estimate of G; then a nonparametric
estimate of VaR and ES can be obtained by replacing G by bG. Sam-
pling error in this nonparametric estimate can again be taken into
account by constructing, say, a 95% confidence interval. The differ-
ence between the upper bound of this intervals and the nominal
market risk then provides us with a measure that may be viewed
as incorporating a combination of possible model misspecification
and estimation error. We shall refer to this as the combination of
estimation and misspecification risk.

Table 1 (columns 4–6) presents these combinations of estima-
tion and misspecification risk. These combinations are calculated
as the difference between the upper bounds of the 95% confi-
dence intervals and the nominal market risk, for the cases when
the log returns are generated by a normal, a t4, or a mixed normal
distribution, in all cases standardized such that the annualized
mean and variance are given by l ¼ 0 and r2 ¼ 0:25. The mixed
normal distribution is composed of two zero-mean normal distri-
butions of which the first, with probability 0.99, has variance
0.24, while the second, with probability 0.01, has variance 1.24.
A nonparametric estimation technique (cf. Section 5) is used to
compute both the nominal market risk and the 95% confidence
interval. The table shows that, when the normal distribution is
used to generate the data, the combination of estimation and
misspecification risk slightly exceeds the estimation risk that
we found when estimation was done under the (correct) assump-
tion of normality of the log returns (12%, rather than 7%). Much
larger figures are found when the true distribution is nonnormal,
in particular when the t4 distribution is used with p ¼ 0:01; in
relation to the estimated risk measures, the combination of esti-
mation and misspecification risk amounts to 42% in the VaR case
and even 75% in the ES case.

Even if YTþ1jFT � G cannot be rejected on the basis of misspe-
cification tests using the available past data, measures quantifying
future risk employing this model may still fail. Indeed, this may
happen when past and present are insufficiently representative
of the future (for risk assessment purposes). Such contingencies
can be explored by stress testing. For instance, one may propose
a model of the form ðYTþ1 � aðZTþ1ÞÞ=bðZTþ1ÞjFT � G where Zt is a
variable that has been constant or nearly constant for t 6 T but
that for some reason experiences a shock between time T and time
T þ 1. When a and b are included, the Value-at-Risk at level p is gi-
ven by

VaRTðXTþ1 � XTÞ ¼ XTð1� expðaþ bG�1ðpÞÞÞ;

and for the Expected Shortfall at level p we get

ESTðXTþ1 � XTÞ ¼ XT 1� 1
p

Z
expðaþ byÞ1ð�1;G�1ðpÞ�ðyÞdGðyÞ

� �
:
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Using the nonparametric estimate bG to estimate G, assuming that
the past is representative for G but not for a or b, one can estimate
the Value-at-Risk and Expected Shortfall corresponding to each
chosen value of a and b. Again, sampling error can be taken into ac-
count by constructing 95% confidence intervals. However, the ‘‘cor-
rect” values of a and b cannot be retrieved from past data, since
they are not identified. The difference between the upper bounds
of the confidence intervals for some chosen range of a and b
(including a ¼ 0 and b ¼ 1) and the nominal market risk again pro-
vides us with a worst case scenario, now also taking into account
the possible error due to the lack of identification. We shall refer
to this difference as total model risk, consisting of estimation, misspe-
cification, and identification risk. The sum of the estimated market
risk and the total model risk will be referred to as total market risk.
4 We assume here that the nominal risk riskq;m0 ðPÞ is finite; if not, we leave model
risk undefined.
3. Model risk

In the literature, model risk is usually formalized in terms of a
collection of different probability measures on the same probabil-
ity space (as for instance in Cont (2006)). However, financial
institutions may carry out risk assessment studies on the basis of
models of different natures. For instance, models based on a
finite number of economic scenarios may be used alongside con-
tinuous-time models based on stochastic differential equations or
discrete-time (VAR, GARCH, . . .) models. In this section we present
a worst-case formulation of model risk extending across models
that may represent uncertainty in different ways. We do assume
that (as is usual) risk assessment is done on the basis of a probabi-
listic model, concentrating in particular on Value-at-Risk and
Expected Shortfall. The discussion in this section is abstract; in the
next section, we discuss a specific construction of a class of alterna-
tive models within the context of a given econometric framework.
For the sake of simplicity we focus on the quantification of risk in-
volved with a payoff taking place at a fixed date rather than with a
payoff stream. The assessment of risk is to be made at the current
time. In the notation we suppress the time indices referring to the
current time and the time at which the payoff takes place.

We start with a model class M. Models may be of different nat-
ure so that we prefer to consider M as an abstract set, but we do
assume that to each model m 2M there is an associated probabil-
ity triple ðXm;Fm; PmÞ which allows a probabilistic formulation of
the risks that we want to quantify. Associated to the triple
ðXm;Fm; PmÞ is the space of random variables L0ðXm;Fm; PmÞ (the
Pm-equivalence classes of Fm-measurable functions on Xm); for
brevity, this space will be denoted by LðmÞ. Extending the termi-
nology of Artzner et al. (1999), we shall say that a risk is a mapping
P that assigns to each m 2M a random variable PðmÞ 2 LðmÞ. The
set of all such mappings is denoted by XðMÞ. A ‘‘risk” in this sense
involves probabilistic uncertainty through the probabilistic nature
of each PðmÞ as well as ambiguity through the parametrization in
terms of M. Elements of XðMÞ will sometimes be referred to sim-
ply as ‘‘products”, ‘‘assets”, or ‘‘positions”, even though this usage
neglects the distinction that should be made between an actual
product, such as a Google share, and its representation as a math-
ematical object. The values that PðmÞ take may be interpreted as
representing payoffs in terms of units of currency, or payoffs in
terms of units of a chosen reference asset.

To extend the notion of risk measure to a multimodel setting,
we use a description that takes the probability space as an argu-
ment, rather than as a given environment. Value-at-Risk at a given
level p, for instance, is redefined as a mapping that takes two argu-
ments, namely a model m and a random variable X defined on LðmÞ,
and that assigns to m and X the number VaRpðm;XÞ defined by

VaRpðm;XÞ ¼ � inffx 2 RjPmðX 6 xÞP pg: ð7Þ
Likewise, we can define (employing the description of expected
shortfall in Acerbi and Tasche (2002)), with Qp ¼ �VaRpðm;XÞ,

ESpðm;XÞ ¼ �
1
p

EPm X1X6Qp þ Q pðp� PmðX 6 Q pÞÞ
h i

: ð8Þ

In general, we may define a risk measurement method for the model
class M as a mapping q that assigns a number qðm;XÞ 2 R0 :¼
R [ f1g to each pair ðm;XÞ where m 2M and X 2 LðmÞ. Given such
a risk measurement method q, we may then define another map-
ping which (by abuse of notation) is also denoted by q, and which
assigns to each element of XðMÞ a function from M to R0, defined
by

ðqðPÞÞðmÞ ¼ qðm;PðmÞÞ:

In this way we define a risk measure that can be used for multimod-
el representations; we will call it a multimodel risk measure.

In the above we did not discuss which properties a risk measure
q should have in order to qualify for that title. In the recent litera-
ture there has been a renewed interest in axioms for risk measures
(cf., for instance, Artzner et al. (1999), Föllmer and Schied (2002),
and Frittelli and Rossazza Gianin (2002), to mention only a few
contributions). Here, we just note that the multimodel risk mea-
sures introduced above can be looked at as parametrized versions
of risk measures defined on a given probability space, so that no-
tions such as monotonicity, translation invariance etc. carry over
in a straightforward way. In particular, if axioms are imposed, such
as to support the interpretation of the risk measure q as the
amount of required capital, then the function ðqðPÞÞðmÞ defined
on a given model class M can be viewed as giving, for each
m 2M, the amount of required capital under the assumptions of
model m.

A multimodel risk measure as defined above is a function on a
given model class M. To arrive at a single number which repre-
sents an overall assessment of risk, we shall take a worst-case ap-
proach and define

riskq;MðPÞ ¼ sup
m2M

qðm;PðmÞÞ: ð9Þ

An alternative would be a Bayesian approach, in which the market
risk measure is a weighted average of risk measures according to
some prior. Depending on its risk attitude, a financial institution
may then assign larger weights to unfavorable models. However,
the choice of a prior is difficult and to a large extent arbitrary. In
a worst-case approach, one only needs to specify the model set
M; this may be seen as an acknowledgement of the restrictions of
statistical modeling in the face of limited data and limited under-
standing of the true dynamics.

The risk defined in (9) depends on the model class M. If the
model class consists of a single element (the case of no ambiguity),
then the definition of risk measurement method, as given above,
coincides with the usual one. In the general case, given a risk mea-
surement method q, a nominal model m0 and a tolerance set K with
m0 2K, we can define the model risk of product P by4

/qðP;m0;KÞ ¼ riskq;KðPÞ � riskq;m0 ðPÞ: ð10Þ

In this way one obtains a decomposition of the total market risk
riskq;MðPÞ as the sum of nominal market risk riskq;m0 ðPÞ and model
risk. Obviously, similar definitions may be stated in case one has
several levels of ambiguity expressed by nested model classes; we
define, assuming K1 �K2,

/qðP;K1;K2Þ ¼ riskq;K2 ðPÞ � riskq;K1 ðPÞ: ð11Þ
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Fig. 1. Risk assessment on the basis of econometric modeling.
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Below we discuss how such model classes come up naturally in the
context of econometric modeling.
4. Model classes from econometric modeling

In addition to the framework of the previous section, we now
assume that we have data available and that econometric proce-
dures will be applied to extract suitable models from the data. In
addition to the probability space ðXm;Fm; PmÞ and the random var-
iable PðmÞ that are used for risk assessment and that therefore
serve a forward-looking purpose, we now assume that to each
model m under consideration there is also associated a joint distri-
bution function Fm from which the observed data may be supposed
to be drawn. This joint distribution function is referred to as the
‘‘data generating process” of model m. For the purposes of the dis-
cussion in this section we do not need a specification of the rela-
tion between the forward-looking part of the model and the data
generating process; in practice, of course, these components are
typically closely related.

We assume that a basic (low-dimensional) model class M is gi-
ven and that we also have an extension model class M1 which may
for instance be a nonparametric class. Working within the class M,
econometric methods provide us typically with a point estimate as
well as a tolerance (confidence) set for the class of models that may
describe a given product P. It may happen, however, that these
models fail to satisfy misspecification tests. The econometrician
can then switch to the broader class M1 and obtain a new tolerance
set K1 which typically is wider than the original set K. For the
purposes of risk management, it may be desirable to apply further
tests that are not data-based (‘‘stress tests”) and these tests may
suggest a further extension of the tolerance set. In this way we ob-
tain a hierarchy of tolerance sets which leads to a decomposition of
total risk in various components.
4.1. Selection of nominal models

In this subsection we describe an econometrically based selec-
tion of the set of nominal models K, given some selected model
class M, and having available past and present data.5 The setup is
illustrated in Fig. 1.

Assume that the available (past and present) data can be repre-
sented by a vector z. This data set may consist of past and present
observations concerning the product P under consideration, but
5 We follow to some extent Heckman (2000).
observations on other variables may be included as well. We think
of the data z as being a realization of a random vector Z which is
distributed according to a joint cumulative distribution function
which we call the actual data generating process. In general, the ac-
tual data generating process Fa is unknown, but we can assume
that it belongs to a (large) set of possible data generating processes
which is denoted by D (the box ‘‘data generating processes” in
Fig. 1, where the ‘‘data” are generated by Fa). The data generating
process associated to a model m is given by a mapping d, which as-
signs to each model m 2M the induced probability distribution
dðmÞ 2 D (see ‘‘d”, linking the boxes ‘‘models” and ‘‘data generating
processes” in Fig. 1). Thus, given model m, we postulate Z � dðmÞ.
The set of all data generating processes induced by M is denoted
by dðMÞ. We have dðMÞ � D, where typically the inclusion is strict.

VaR example. To illustrate, consider the case where the data set
consists of observations on a product P forming a time series sam-
ple of length T. Suppose one postulates Z ¼ ðZ1; . . . ; ZTÞ0 � Fa ¼ GT ,
i.e., Z1; . . . ; ZT �

i:i:d:G. Then a model class may be given by
M ¼ fmhjh 2 H � Rkg, with dðmhÞ ¼ ðGhÞT , and dðMÞ ¼ fðGhÞT jh 2
H � Rkg. The example in Section 2 corresponds to the case where
Gh is the normal distribution function with parameter vector
h ¼ ðl;rÞ0, cf. (1).

For purposes of estimation, data generating processes are typi-
cally represented in terms of characteristics such as moments,
cumulative distribution functions, transformations, copulas, and
so on. Let E denote the characteristics space and let the data charac-
terization mapping be given by v : E! dðMÞ (see ‘‘v”, linking ‘‘char-
acteristics” and ‘‘data generating processes” in Fig. 1). For instance,
in terms of our illustration when the model class is given by
M ¼ fmhjh 2 H � Rkg, with dðmhÞ ¼ ðGhÞT , we can take E ¼ H, with
vðhÞ ¼ ðGhÞT .

The selection of the set of nominal models now proceeds as fol-
lows. First, let bE ¼ EðzÞ � E represent the selected characteristics
based on the employed econometric method (for instance ML,
GMM, . . .) and using the available data z (indicated by ‘‘E”, linking
‘‘data” and ‘‘characteristics” in Fig. 1). In case we only work with a
point estimate, we have bE ¼ fbeg, where be ¼ beðzÞ represents an esti-
mate of the characteristics. Alternatively, when allowing for esti-
mation inaccuracy the estimation procedure results in a
confidence set bE. Next, given the data characterization mapping
v and the selected characteristics bE, the selected (or estimated)
data generating processes in D are given by D :¼ vðbEÞ � dðMÞ.
Finally, given D, we find as set of nominal models K ¼ d�1ðDÞ.6
6 By definition, d�1ðDÞ ¼ fm 2MjdðmÞ 2 Dg.



7 Alternative uniform confidence bounds around a nonparametric distribution may
be obtained from the Cramér–von Mises statistic or the Kuiper statistic (see, for
example, Shorack and Wellner (1986)).
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This results in the quantification of market risk given by
riskq;d�1ðDÞðPÞ.

VaR example (cont’d). We have, with be ¼ bh ¼ ðbl; brÞ0, and
D ¼ vðbeÞ,
riskVaR;d�1ðDÞðPÞ ¼ XTð1� expðzpr̂þ l̂ÞÞ; ð12Þ

the sample analogue of (2). In addition, we can construct a confi-
dence region around be, resulting in bE, and then calculate, with
D ¼ vðbEÞ,
riskVaR;d�1ðDÞðPÞ ¼ sup

ðl;rÞ2bE XTð1� expðzprþ lÞÞ: ð13Þ

In case d�1ðDÞ ¼ fm0g for some m0 2M, the market risk is quanti-
fied by riskq;m0 ðPÞ ¼ qðm0;Pm0 Þ, so that there is no ambiguity
about the appropriate model in M that is used to quantify the mar-
ket risk. However, when d�1ðDÞ is not a singleton, there is ambigu-
ity. This situation may arise for two reasons. First, the selected
characteristics that define D may not be unique, for instance, due
to taking into account estimation inaccuracy. We refer to this type
of ambiguity as data ambiguity, since there is ambiguity about the
appropriate data generating process in dðMÞ. Secondly, d�1ðDÞ
may not be a singleton, even if D is, because the transformation d
is not one-to-one. In this case multiple models m 2M describe
the same data generating process in D, so that knowing this data
generating process does not suffice to retrieve the underlying mod-
el. We refer to this type of ambiguity as model ambiguity. In econo-
metric terms, model ambiguity arises in case of lack of identification
or underidentification: in case d is not one-to-one different models in
M describe the same data generating processes in D, so that on the
basis of a data generating process one is unable to identify a unique
corresponding model m 2M. Inasmuch as models that are mapped
to the same data generating process are observationally equivalent,
model ambiguity may be resolved by introducing appropriate iden-
tifying assumptions.

4.2. Estimation risk

Econometric methods typically deliver both a point estimate be
and a confidence interval bE. This allows the quantification of esti-
mation risk as follows (11):

/qðP;d
�1ðvðbeÞÞ;d�1ðvðbEÞÞÞ: ð14Þ

For instance, the difference between (12) and (13) yields the quan-
tification of the estimation risk in the VaR example under the nor-
mality assumption.

Under the assumption that the mapping d is one-to-one so that
there is no model ambiguity, we can for any given e 2 E define a
model m ¼ mðeÞ 2M uniquely by requiring dðmðeÞÞ ¼ vðeÞ. We
can then define a mapping g from the characteristics space E to
the extended real line R0 by gðeÞ ¼ qðmðeÞ;PðmðeÞÞÞ, and the esti-
mation risk can be quantified as

sup
e2bE gðeÞ � gðbeÞ: ð15Þ

If the characteristics space E admits a differentiable structure and
the mapping g is smooth, it may be possible to construct an approx-
imate quantification of estimation risk directly. For instance, in the
VaR example, the nominal risk based on characteristics e, gðeÞ, is gi-
ven by (12). Under appropriate regularity conditions, the limit dis-
tribution of this variable can be obtained by the functional delta
method (see for instance Van der Vaart (1998)). Then an approxi-
mation to sup

e2bE gðeÞ can easily be constructed from the distribution
of gðeÞ.
4.3. Misspecification risk

We assume now that the result of the econometric procedure
discussed in the previous subsection is subjected to a series of
data-based misspecification tests; these may consist of standard
backtests or of a more extensive suite of tests in which the assump-
tions of model set M are confronted with the data. We also assume
that the econometrician has a larger model class available, denoted
by M1.

For simplicity of terminology, we shall refer to the collection of
tests alluded to above as the set of backtests, even though this set
may contain tests that would not normally go under this name.
The purpose of the backtests is to test, on the basis of past and
present data, whether the risk assessment obtained on the basis
of the estimation procedure described in the previous subsection
is reliable. In particular, one may test the hypothesis Fa 2 D where
D ¼ vðEðzÞÞ is the set of data generating processes obtained from
the estimation procedure on the basis of the data z. When the
hypothesis is rejected, the following possibilities exist. First, it
may of course happen, as in any statistical procedure, that by
chance the test produces an incorrect solution and that in fact Fa

does belong to D. Secondly, again by chance, it might happen that
Fa does not belong to the estimated set D, even though Fa does be-
long to dðMÞ; however, the probability of this should be small
when the data set is sufficiently large and the estimation proce-
dure is valid. Finally, it may be the case that Fa R dðMÞ. In this case
the relation Fa 2 D cannot hold for any choice of the selected set of
characteristics bE. We shall henceforth focus on this possibility and
speak of a misspecification error in case the hypothesis Fa 2 D is
rejected.

If a misspecification error is indicated, an extended model class
M1 may be invoked. Correspondingly we extend all elements of the
structure in Fig. 1. In the extended setting, we obtain a new esti-
mated set of data generating processes D1 ¼ v1ðE1ðzÞÞ. If now the
hypothesis Fa 2 D1 is not rejected on the basis of the applied back-
tests, we can quantify the misspecification risk according to (11) by

/qðP;d
�1ðDÞ; d�1

1 ðD1ÞÞ: ð16Þ

VaR example (cont’d). When misspecification tests using the
observations z1; . . . ; zT reveal that the normality assumption is too
strong, we can consider as an extension a model class M1 such that
d1ðM1Þ ¼ v1ðGÞ, where G is a subset of the set DðRÞ of all non-
decreasing right continuous functions h : R! R such that
hð�1Þ ¼ 0 and hð1Þ ¼ 1. The choice of G may be motivated by par-
ticular required characteristics; for instance, in case one would like
to exploit the first and second moment of Z1, then it makes sense to
let the set G consist of distribution functions with bounded first and
second moments. Let v1ðGÞ ¼ GT so that v1ðGÞ ¼ fG

T jG 2 G � DðRÞg.
We can estimate G consistently by means of the empirical distribu-
tion function based on the sample z1; . . . ; zT . Denote this nonpara-
metric estimate by bG, so that be1 ¼ bG. To obtain a confidence setbE1, we may take a confidence region of level a that can be con-
structed in the following way:

bE1 ¼ G 2 GjGðxÞ 2 bGðxÞ � ka=2ffiffiffi
n
p

� �
8x 2 R

� �
;

where ka=2 is the critical value of the Kolmogorov–Smirnov
statistic.7

Just as in the case of estimation risk, a simplified approximate
procedure may be used to determine misspecification risk if suffi-
cient smoothness is present to apply the functional delta method.



8 For the S&P 500 series we use the total return series from Thomson Datastream
code: S&PCOMP(RI). The £/$ exchange rate is given by Thomson Datastream code:
USBRITP(ER). For the US risk free interest rate we have transformed the Thomson
Datastream series ECUSD3M(IR) to continuously compounded interest rates. For the
UK risk free interest rates we use the continuously compounded interest rates of the
Thomson Datastream series ECUKP3M(IR).

9 We use the Rosenblatt–Parzen nonparametric kernel estimate, with a normal
kernel. In view of the approximate normality of the data, the bandwidth h has been
set equal to h ¼ 1:06r̂n�1=5 which is the optimal bandwidth selection for normally
distributed data.
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VaR example (cont’d). It is straightforward to construct a con-
fidence interval directly around the following nonparametric esti-
mate of (5)

g1ðbe1Þ ¼ XTð1� expðbG�1ðpÞÞ ¼ XTð1� expðzTðbpncþ1ÞÞÞÞ;

where TðtÞ denotes the tth order statistic of ðz1; . . . ; zTÞ0 and bac is
the largest integer that is less than or equal to a. The upper bound
of the (nonparametric) confidence interval around g1ðbe1Þ may be
computed as

g1ðbe1Þ þ za=2XT expðbG�1ðpÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ
TðG0ðG�1ðpÞÞÞ2

s
where a is the level of the confidence interval and where G0ðxÞ, the
derivative of G evaluated at x, can be estimated using, for instance,
the Rosenblatt–Parzen kernel estimator.

4.4. Identification risk

For purposes of risk assessment it may not be sufficient to apply
only tests based on past and present data. After all, risk manage-
ment is concerned with the future. Therefore, additional tests
may be applied which we shall refer to as stress tests. Such tests
serve in particular to capture the risk associated with changes of
a type that is not represented in past data. For instance, one may
consider the effects of changes in certain parameters which have
been constant in the period that is covered by the available data
(relating to central bank policy, for instance), or one may look at
the impact of rare events which have not occurred in the data per-
iod. To accommodate such effects, it may be necessary to extend
the model class further, beyond what may have been needed to ar-
rive at models that are not rejected by backtests. The extended
model set then typically contains parameters that are not identi-
fied on the basis of the available data, such as a parameter which
expresses the influence of a factor that has been constant in the
data period, so that in this connection we speak of identification
risk.

Associated with the model class M2, we assume the presence of
all elements indicated in Fig. 1. In particular, an estimated set bE2 of
characteristics is constructed which typically contains bE1 and con-
tains characteristics that are not distinguishable from those in bE1

on the basis of the available data. Correspondingly, a tolerance
set K2 ¼ d�1

2 ðv2ðbE2ÞÞ can be constructed. A quantitative measure
of identification risk is then given by

/q P;d�1
1 ðv1ðbE1ÞÞ;d�1

2 ðv2ðbE2ÞÞ
	 


: ð17Þ

It is often possible to describe the relation between the model class
M2 relating to stress tests and the model class M1 relating to back-
tests by means of parameters a which can vary within a set A in the
model class M2 but which are fixed, say at value a1 2 A, in the mod-
el class M1. The estimation procedure applied in the model M2 can
then be constructed as a parametrized version of the estimation
procedure applied within M1. In particular, the identification risk
can then be represented as

sup
a2A

riskq;mðaÞðPÞ � riskq;mða1ÞðPÞ: ð18Þ

VaR example (cont’d). In case the i.i.d. assumption cannot be re-
jected, it makes sense to postulate that this assumption can be ex-
tended to the future ðT þ 1Þst period as well. However, this is an
assumption, which cannot be inferred from the past and present
data up to time T. An extended model class may be constructed
for instance as in Section 2.

By definition, identification risk cannot be quantified on the ba-
sis of information extracted from the data by means of economet-
ric procedures. Instead, its quantification must take place on the
basis of the risk manager’s insight in the functioning of a particular
market. In the empirical applications that will be discussed below,
we will focus on estimation and misspecification risk.

4.5. Total model risk

Given the quantification of estimation, misspecification, and
identification risk, we can quantify the total model risk. We as-
sume that we start with a (low-dimensional) model class M which
allows the construction of a point estimate as well as a confidence
interval. From this we obtain a quantification of estimation risk
from (14) or (15). It may happen that the model estimated within
the class M does not pass backtests, and in this case we assume
that extension to a larger class M1 is possible so that a model
can be constructed that is no longer rejected by the applied back-
tests. We can then quantify the misspecification risk using (16) or
the alternative procedure based on the functional delta method. Fi-
nally, for purposes of risk management it may be deemed neces-
sary to use an even larger model class M2 which may not be
identified on the basis of the available data. The identification risk
is quantified on the basis of (17) or (18). Summing the estimation,
misspecification, and identification risks, we get the total model
risk. Adding to the total model risk the market risk, as quantified
on the basis of be by risk

q;d�1ðvðbeÞÞðPÞ, we get the total market risk,

i.e., riskq;KðPÞ with K ¼ d�1
2 ðD2Þ.

5. Empirical applications

In this section we demonstrate how the methodology of the
previous sections can be used in portfolio risk management. We
use data sets obtained from time series of the Standard and Poor’s
500 equity index and the £/$ exchange rate. As already mentioned
above, since our analysis in this section is based on return data, we
do not consider identification risk.

The Bank for International Settlements (BIS) has suggested
risk-based capital requirements which are closely related to the
Value-at-Risk methodology. Here, we show how the model risk
measurement approach can be taken into account, as already illus-
trated in Section 2 on the basis of simulated data. First, we present
the data and our basic model class M. Then we discuss the selec-
tion of an appropriate extended model class M1. Finally, we pres-
ent the model risk results in terms of multiplication factors.

5.1. Data and basic model class

The data set that we work with has been obtained from Thom-
son Datastream.8 The periods covered by our data set are 26-10-’81–
12-01-’06 in the case of the S&P 500 market and 03-01-’86–12-01-
’06 in the case of the £/$ exchange rate. Fig. 2 shows the normal den-
sity with variance equal to the sample variances of the S&P 500 data
and the British pound/ US dollar (£/$) exchange rate data and com-
pares this to a nonparametric density9 estimate of the densities of
the S&P 500 and the £/$ exchange rate. So, we expect some misspe-
cification error when calculating the Value-at-Risk and expected
shortfall on the basis of a nominal model assuming normally distrib-
uted log returns.
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Fig. 2. QQ plot and density comparison of the normal density with nonparametric density estimate (using the Rosenblatt–Parzen kernel estimator with Gaussian kernel and
bandwidth h ¼ 1:06sn�1=5) of the daily (total) returns of the S&P 500 and £/$ exchange rate. The data periods are 26-10-’81–12-01-’06 (S&P 500) and 03-01-’86–12-01-’06 (£/$
exchange rate).
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Fig. 3. The upper panel displays the parameter estimates of the volatility in the S&P 500 market for both the Gaussian and the GARCH(1,1) model (with l ¼ 0). The lower
panel displays the parameter estimates of the volatility in the £/$ FX rate market for both the Gaussian and the GARCH(1,1) model (with l ¼ 0). For both markets the
estimates use two-year rolling window models. The data sets run from 26-10-’81 to 12-01-’06 in case of the S&P 500 market and from 03-01-’86 to 12-01-’06 in case of the £/$
exchange rate.

10 Estimating l as well yields somewhat less stable parameter estimates. However,
in terms of the model risk analysis the outcomes with l estimated and l ¼ 0 are
almost the same.

11 The other estimates presented in this figure will be discussed in the next
subsection.
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In the subsequent analysis we use a rolling window approach
with a window of two years in order to apply our model risk mea-
surement procedure. Using this rolling window approach we can
estimate on the basis of each of these two years of daily data the
models under consideration, and obtain an estimate of nominal
daily risk. This yields a time series of estimated risk measures of
length equal to the length of the available time series minus the
first two years. This time series is used in the statistical
investigation.
As basic model class M we use the Gaussian i.i.d. model class
(1), with l ¼ 0.10 Fig. 3 shows the resulting estimates (correspond-
ing to be) for the (annualized) volatilities,11 on the basis of which the



Table 2
Coverage tests VaR for S&P 500.

Model VaR level (%) FOEL (%) 1-Sided 95% CI p-Value FOEL p-Value Chris.

Gauss. Mkt risk 2.5 2.9 (2.5%;–) 0.03 0.00
Gauss. Est. risk 2.5 2.3 (2.0%;–) 0.82 0.00
GARCH(1,1) Missp. risk 2.5 3.0 (2.7%;–) 0.01 0.00
Nonpar Missp. risk 2.5 1.9 (1.6%;–) 1.00 0.00

Gauss. Mkt risk 1 1.8 (1.5%;–) 0.00 0.00
Gauss. Est. risk 1 1.4 (1.2%;–) 0.00 0.00
GARCH(1,1) Missp. risk 1 1.8 (1.5%;–) 0.00 0.00
Nonpar Missp. risk 1 0.9 (0.6%;–) 0.91 0.70

The table shows the results of FOEL and Christoffersen (1998) (Chris.) tests for VaR market (Mkt) risk according to the Gaussian model, and VaR market risk including the
corresponding estimation risk components. See main text for definitions. Daily data on S&P 500 (total return) index from 26-10-’81 to 12-01-’06.
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market risk (i.e., risk
q;d�1ðvðbeÞÞðPÞ) can be quantified, with risk equal

to VaR or ES. Taking into account the corresponding estimation inac-
curacy, we quantify the corresponding estimation risk via (15).
5.2. Model class selection

In addition to M, the Gaussian i.i.d. model class (1), we consider
two possible extensions to deal with potential model misspecifica-
tion. The first one, Mnp

1 , is the nonparametric extension (4). The
second one, MG

1 , is a GARCH(1,1) model class with Gaussian inno-
vations, which has more potential to capture time-varying risk.12

In case of the nonparametric model class Mnp
1 , we proceed as de-

scribed in Subsection 4.3, where we use the Rosenblatt–Parzen ker-
nel estimate (with normal kernel) as nonparametric estimate.13 In
case of the GARCH(1,1) model class MG

1 , we proceed as in case of
the basic model class M. Fig. 3 also shows the estimates for the
(annualized) volatilities according to the GARCH(1,1) models. The
predictions of the estimated GARCH(1,1) models are, as could be ex-
pected, much more erratic than those of the Gaussian models. In case
the basic Gaussian model class M is rejected, but the model class
Mnp

1 or MG
1 turns out to be an appropriate extension, we quantify

the corresponding misspecification risk, using (16),14 also taking into
account the corresponding estimation risk. We investigate the selec-
tion of an appropriate model class M, with corresponding selected D,
focusing in particular on the case where backtests are applied based
on the rolling window approach. We start by investigating the appli-
cation to the VaR risk measurement method. Using the rolling win-
dow approach, we obtain VaR estimates for the whole sample range
(except the first two years). We consider four cases: Gaussian i.i.d.
without and with estimation risk, nonparametric i.i.d. with estima-
tion risk, and GARCHð1; 1Þ with estimation risk. Ideally, the fre-
quency of excessive losses (FOEL), i.e., the number of days at
which the loss exceeds the predicted VaR, should be close to the
VaR levels. Thus, we consider the case where backtesting is done
based on the FOEL. As a benchmark we choose the 1% level for
VaR, since this is the quantile required by BIS (see Basel Committee
12 Berkowitz and O’Brien (2002) find that an ARMA(1,1)–GARCH(1,1) model with
Gaussian innovations does a good job in forecasting Value-at-Risk for their portfolios
of investment banks. Since we do not find any statistically significant ARMA structure
in our data, we restrict the model to the GARCH(1,1) type. Just like in the basic model
class we set the mean equal to 0, yielding more stable estimates than when the means
are estimated as well, but without affecting the outcomes of the risk analysis. We also
tried other GARCH models classes, like the HYGARCH model class, which is able to
capture long memory. The results in terms of our risk analysis are quite similar to the
GARCH models. Therefore, we only report the results in terms of the GARCH model
class. For alternative (advanced) volatility estimation methods see, for example,
Eberlein et al. (2003).

13 The bandwidth h has been set equal to h ¼ 1:06r̂n�1=5, with r̂ the estimated
standard deviation of the returns or exchange rates in the corresponding rolling
window sample. This is the optimal bandwidth selection for normally distributed
data.

14 Or the analogue of (15), with be1 replacing be, and bE1 replacing bE.
on Banking Supervision (1996a)). For purposes of comparison, we
also include the 2.5% level. Denote by T the number of days in the
backtesting period, i.e., the sample period with exception of the first
two years, by f the number of times the VaR level has been exceeded,
and by 1� p the level of VaR (2:5% or 1% in our case). The test sta-
tistic of the FOEL test (see for example Kupiec (1995)) is given by

F ¼
ffiffiffi
T
p f=T � p

pð1� pÞ : ð19Þ

The FOEL test is an unconditional coverage test: it compares the
unconditional predicted frequency according to the model with the
empirical frequency observed in the data. However, as discussed
by Kupiec (1995), the FOEL test might not be very powerful. When
the return distribution changes over time, for instance, from peri-
ods of low volatility to periods of high volatility, and vice versa, a
model that does not take this into account might still have correct
unconditional coverage, while at any given time it may have an
incorrect conditional coverage. Christoffersen (1998) proposes a
test for correct conditional coverage, testing both for the appropri-
ate distributional assumptions and absence of clustering. We also
use this conditional coverage test in our model class selection.
The FOEL test can be seen as testing for the appropriate distribu-
tional assumption, while the Christoffersen (1998) test combines
correct distributional assumptions with absence of clustering.

In Tables 2 and 3 we present the results of the two coverage
tests with 95% confidence intervals. The results for the basic
Gaussian model without estimation risk indicate a failure to pass
the backtesting requirement in terms of appropriate distributional
assumptions, both in case of the S&P 500 data and in case of the £/$
data. Taking estimation risk into account (at the usual 95% confi-
dence level) seems sufficient for both the S&P 500 and the £/$ ex-
change rate to pass the FOEL test, but only at the 2:5% level.
However, the Christoffersen (1998) test reveals a failure of appro-
priate conditional coverage. Thus, only taking account of estima-
tion risk in the Gaussian model class seems insufficient for
passing the investigated backtest requirements.

As a consequence of this outcome, we include misspecification
risk by passing from the Gaussian i.i.d. model to the GARCH(1,1)
and nonparametric i.i.d. model classes (including estimation risk
at the 95% confidence level). The GARCH(1,1) model class is not
sufficient to prevent the VaR limit from being exceeded too often
unconditionally. In fact, it performs even worse than the basic
Gaussian model class: the extra flexibility of the GARCH(1,1) mod-
el class does not seem to be helpful in achieving better out-of-sam-
ple VaR predictions. On the other hand, in case of the
nonparametric i.i.d. model class the number of times the 1% VaR
limit is crossed (conditionally or unconditionally) does not exceed
the required level in a statistically significant way, as follows from
the FOEL and Christoffersen tests. However, in case of the S&P 500
at the 2.5% level, clustering of excessive losses results in a rejection
on the basis of the Christoffersen (1998) test. This suggests that the



Table 3
Coverage tests VaR for £/ $ FX rate.

Model VaR level (%) FOEL (%) 1-Sided 95% CI p-Value FOEL p-Value Chris.

Gauss. Mkt risk 2.5 3.4 (3.0%;–) 0.00 0.00
Gauss. Est. risk 2.5 2.9 (2.5%;–) 0.07 0.03
GARCH(1,1) Missp. risk 2.5 3.3 (2.8%;–) 0.00 0.00
Nonpar Missp. risk 2.5 1.6 (1.3%;–) 1.00 0.49

Gauss. Mkt risk 1 1.9 (1.5%;–) 0.00 0.00
Gauss. Est. risk 1 1.4 (1.1%;–) 0.02 0.00
GARCH(1,1) Missp. risk 1 1.9 (1.6%;–) 0.00 0.00
Nonpar Missp. risk 1 0.6 (0.4%;–) 1.00 1.00

The table shows the results of FOEL and Christoffersen (1998) (Chris.) tests for VaR market (Mkt) risk according to the Gaussian model, and VaR market risk including the
corresponding estimation risk components. See main text for definitions. Daily data on £/$ from 03-01-’86 to 12-01-’06.

Table 4
ES tests.

Market Model ES level (%) F p-Value ES model rejected

S&P 500 Gauss. 5 �10.0 0.00 Yes
GARCH(1,1) 5 �10.9 0.00 Yes
Nonpar 5 0.5 0.69 No
Gauss. 2.5 �16.4 0.00 Yes
GARCH(1,1) 2.5 �16.1 0.00 Yes
Nonpar 2.5 0.4 0.66 No

£/$ Gauss. 5 �7.5 0.00 Yes
GARCH(1,1) 5 �7.7 0.00 Yes
Nonpar 5 1.0 0.84 No
Gauss. 2.5 �9.6 0.00 Yes
GARCH(1,1) 2.5 �10.3 0.00 Yes
Nonpar 2.5 1.5 0.94 No

Test of expected shortfall for the Gaussian and GARCH(1,1) and the nonparametric ES model (for definitions, see main text). The upper panel presents the results of the S&P
500 and the bottom panel presents the results of the £/$ FX rate. The column F presents the values of the test statistic presented in Kerkhof and Melenberg (2004). Daily data
on the S&P 500 (total return) index from 26-10-’81 to 12-01-’06. Daily data on the £/$ FX rate index from 03-01-’86 to 12-01-’06.
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nonparametric i.i.d. model class suffices at low VaR levels (like 1%),
but might fail at higher levels (like 2.5%). To conclude, we reject the
basic Gaussian i.i.d. model class M, but accept the nonparametric
i.i.d. model class Mnp

1 as an appropriate extension, at least as far
as the VaR risk measurement method at the 1% benchmark level
is concerned. However, at the higher 2.5% VaR level a further
extension of the model class, also allowing for non-i.i.d. behavior,
would be needed.

Next, we consider expected shortfall. In this case we apply the
backtest for expected shortfall proposed by Kerkhof and Melenberg
(2004). This test uses the functional delta method and compares an
estimate of the risk measure under consideration (in our case ES)
obtained from the test sample to an estimate of the same risk mea-
sure obtained from a reference sample. This test already accounts
for estimation risk. For ES we adopt higher levels than for VaR,
namely the 2:5% and 5% levels, following arguments given in Kerk-
hof and Melenberg (2004) who motivate that, for an appropriate
comparison between VaR and ES, the latter should have a higher
level.15

The results presented in Table 416 indicate that both the rolling-
window Gaussian model class and the GARCH(1,1) model class, both
with estimation risk (at the usual 95% confidence level) included, are
strongly rejected, while the rolling-window nonparametric model
class, with estimation risk included, cannot be rejected for both ser-
ies. Thus, similar to the VaR case, we reject the basic model class M,
15 We refer to Kerkhof and Melenberg (2004) for a detailed description of the test,
which also includes a transformation of the return series to a standardized return
series using a probability integral transform. The rolling window approach that we
use here can be accommodated within the setting of the same reference, as noted in
the cited paper.

16 For the nonparametric case, we apply the method of Chen (2008), but we simplify
by assuming independence over time.
but if we include misspecification risk by means of the nonparamet-
ric i.i.d. model class Mnp

1 , also including the corresponding estima-
tion risk at the 95% confidence level, the computed ES levels pass
the considered backtest requirement, so that we accept the model
class Mnp

1 .

5.3. Model risk via multiplication factors

The relation between on the one hand the misspecification
risk (with corresponding estimation risk included) and on the
other hand the nominal (Gaussian i.i.d.) market risk may be
represented in terms of a multiplication factor.17 The rolling-win-
dow estimation procedure described above generates point esti-
mates as well as confidence intervals in the three model classes
that we consider. We define for each day the nonparametric
multiplication factor for VaR at level p as the quotient
VaRnp þ 0:95p=VaRN

p , where VaRnp þ 0:95p denotes the upper bound
of the 95% confidence interval in the nonparametric i.i.d. model
class, and VaRN

p denotes the VaR at level p computed on the basis
of the estimated nominal Gaussian i.i.d. model. In this way, the
multiplication factor takes into account both estimation risk and
misspecification risk. Plots of the multiplication factors for VaR
at level 1% are shown in the left panels of Fig. 4 for the two mar-
kets that we consider; corresponding plots for ES at level 2.5% are
shown as well. These panels show that the estimation and misspe-
cification risks at the 95% confidence level are covered comfort-
ably during the full sample period by fixed multiplication factors
17 Since both VaR and ES are not necessarily positive it may be more appropriate in
principle to use differences rather than ratios, as we did in Section 4. To take position
size into account, differences might be expressed as a percentage of portfolio value.
The use of multiplication factors applied directly to a risk measure is standard in BIS
regulation, however, and therefore we phrase the results in these terms.
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Fig. 4. The upper panels display estimation and misspecification risk multiplication factors (on the vertical axis) of the 1% VaR and 2.5% ES for the S&P 500 index during the
period 26-10-’83–12-01-’06 (left is Gaussian and right GARCH(1,1)). The lower panels display estimation and misspecification risk multiplication factors of the 1% VaR and
2.5% ES for the £/ $ FX rate during the period 03-01-’88–12-01-’06 (Gaussian on the left, GARCH(1,1) on the right).
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Fig. 5. The figure compares two-week losses on the S&P 500 to the capital requirements (on the vertical axis) for an investment in the S&P 500. Given are the capital
requirements using the BIS regulation and the capital requirements based on 1% VaR and 2.5% ES model risk multiplication factors. The graph has been truncated: in the
GARCH(1,1) model, the BIS capital requirement reaches 350 at the time of the 1987 stock market crash.
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at the levels 2.3 (S&P 500) and 1.6 (£/$ exchange rate). In the case
of the 2.5% ES we find that multiplication factors 1.7 (S&P 500)
and 1.5 (£/$ exchange rate) are sufficient for the Gaussian model
class. These levels are lower than the BIS multiplication factor
which is normally 3, but of course the BIS factor must also cover
other sources of risk, possibly including identification risk.18 The
18 The value 3 of the multiplication factor may also be obtained from estimation risk
at a confidence level of about 99.99%. This interpretation may however not be suitable
in light of the emphasis usually placed on standard confidence levels.
analysis of the previous subsection revealed that the
GARCH(1,1)-model class, although being an extension of the basic
Gaussian model class, in terms of risk measurement actually
seemed to perform worse than the Gaussian model class. To
provide some further understanding, we plot in the right panels
of Fig. 4 GARCH multiplication factors, defined as VaRnpþ
0:95p=VaRG

p where VaRG
p denotes the VaR at level p computed on

the basis of the estimated nominal GARCH(1,1) model. GARCH
multiplication factors for ES are defined similarly. The right panels
indicate that for the GARCH(1,1) model class the model risk
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Fig. 6. The figure compares two-week losses on the £/$ FX rate to the capital requirements (on the vertical axis) are given for a firm trading in the £/$ FX rate. Shown are the
capital requirements using the BIS regulation and the capital requirements based on 1% VaR and 2.5% ES model risk multiplication factors.

Table 5
Capital requirement schemes.

Market Scheme Avg. 1-day exceedance per
year

Avg. two-week exceedance
per year

Avg. CR

S&P 500 BIS Gauss. 0.04 0.04 23.9
MRMF VaR 2.25 1.48 9.1
MRMF ES 1.30 0.94 10.7

£/$ BIS Gauss. 0.00 0.00 14.5
MRMF VaR 1.51 0.84 5.8
MRMF ES 1.29 0.73 6.1

The table reports the 1-day average exceedance rate, two-week average exceedance rate, and the average capital requirements (CR). The CR schemes investigated are the BIS
CR for the Gaussian model, the VaR misspecification risk multiplication (MRMF) factor based CR (with estimation risk included), and the ES misspecification risk multi-
plication factor based CR (with estimation risk included). Data sets: S&P 500 (26-10-’83–12-01-’06) and £/$ FX rate (03-01-’88–12-01-’06).
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multiplication factors are much higher than for the Gaussian mod-
el class. This can be explained by the fact that the GARCH(1,1)
model class responds much more quickly to periods of low vola-
tility and then forecasts low values of VaR and ES, contrary to
the nonparametric estimates. The relative stability of the multipli-
cation factor for the i.i.d. Gaussian models may be interpreted as
an indication of better robustness properties of this model class
compared to the GARCH(1,1) models.

Figs. 5 and 6 show the capital requirements based on the BIS
capital requirements. All requirements are based on investments
of $100 in the market; results can therefore be interpreted as per-
centages. We have used the BIS backtest procedure (see Basel
Committee on Banking Supervision (1996b)) to backtest the
Gaussian model (and also the GARCH(1,1) model for comparison)
and to determine the multiplication factors according to the BIS
rules.19 The capital requirement can then be determined by multi-
19 Multiplication factors are adapted on the basis of backtesting performance. Such
adaptation is done on a quarterly basis. To avoid possible random effects related to
the timing of the three-month periods, we have actually implemented it on a daily
basis. The BIS capital requirements are therefore not precisely those that would result
in practice.
plying the daily Value-at-Risks by the multiplication factor andffiffiffiffiffiffi
10
p

.20 The capital requirements are compared to the two-week re-
turns. In addition to the BIS capital requirements we plot the cap-
ital requirements based on the model risk multiplication factors
shown in Fig. 4. In Figs. 5 and 6 we see that under normal market
conditions the model reserves based on the model risk measures,
including the misspecification risk with corresponding estimation
risk, cover the losses safely. These figures also show again that
the capital requirements for the nominal GARCH(1,1) model class
(without estimation risk) are much more variable than those of
the Gaussian model class.

The performance in terms of number of exceedances per daily
returns, two-week returns, and average regulatory capital is more
or less the same for both models as can be seen from Table 5. Table
5 shows that the number of exceedances of the two-week VaR and
ES is very small for all capital requirement schemes. Of course, the
capital requirements set by the BIS are exceeded least, but they are
also quite large compared to the estimation and misspecification
20 Though the models are backtested using daily VaR, banks should report two-week
VaR. The BIS allows the scaling by

ffiffiffiffiffiffi
10
p

. Under the Gaussian model class assumptions
this would be correct.
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risk multiplication factors. Eventually, the regulator needs to make
a trade-off between the cost of exceedance of the capital require-
ments and the cost of impeding banks in their operations by charg-
ing high capital requirements.

6. Conclusions

In this paper we have presented a method to adjust capital
requirements for trading activities in a market, based on the extent
to which this market can be reliably modeled. The framework ex-
tends standard frameworks for the determination of market risk by
considering risk measurement methods for a class of models rather
than for one particular model. This allows the quantification of
model risk on top of nominal market risk.

We focus in particular on model risk associated to uncertainties
in econometric modeling. This leads in a natural way to the con-
struction of total model risk from three components: estimation
risk, misspecification risk, and identification risk. These distinc-
tions are related to different levels of ambiguity which are re-
flected by model classes that are typically used in econometric
modeling of financial markets.

We illustrate how backtesting may be used to decide whether
only estimation risk has to be included, or whether, in addition, also
misspecification risk needs to be taken into account. Our empirical
results suggest that, for commonly used model classes, namely an
i.i.d. Gaussian and a GARCH(1,1) model class, misspecification risk
cannot be ignored. Satisfactory results were obtained from a non-
parametric i.i.d. model by including estimation risk at a standard
confidence level. However, in case of the S&P 500 these satisfactory
results only apply to the 1% VaR level. For the higher 2.5% VaR level
the assumption of i.i.d. returns seems to be too strong, requiring as
topic of future research an extension of the nonparametric approach
allowing for non-i.i.d. returns. We also have found higher volatility
of multiplication factors in the GARCH models, which may be indic-
ative of a certain lack of robustness of these models. Moreover, the
analysis indicates that, in the markets we have investigated, the
multiplication factor set by the BIS is conservative by a factor of
about two, if it would only be intended to cover estimation and mis-
specification risk. Of course it has to be taken into account that other
risk factors play a role as well, and that in our empirical applications
we have only considered well established markets.

Concluding, the framework presented here allows regulators to
differentiate their capital requirements on the basis of the extent
to which a market can be reliably modeled on the basis of current
technology. Depending on the performance of available models for
market risk assessment, model risk reserves can be determined.
The empirical analysis in this paper was limited to investments
of rather standard types. Further research would be needed to look
into the role of model risk for more complicated products and in
less liquid markets, where estimation and identification risk may
play a larger role. We have only considered risk assessment; a fur-
ther step is to investigate consequences for risk management, for
instance in terms of robust hedging strategies.
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