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Abstract

Conditional indexation has recently attracted interest with pension funds that are looking for a
middle way between defined benefit and defined contribution. In this paper, we analyze con-

ditional indexation schemes from a life-cycle investment perspective. Welfare analysis is ap-
plied to investigate the performance of such schemes relative to alternative investment
strategies such as fixed-mix policies. We carry out this analysis in the context of a broad family

of utility functions, which takes into account the possible presence of two benchmark levels
corresponding to a minimum guaranty and to full indexation, respectively. For the purpose of
comparability, we construct a self-financing continuous-time implementation of the con-

ditional indexation scheme. The implementation involves continual adjustment of the par-
ameters of the contingent claim representing final payoff. Our findings indicate that, in
situations where large weight is placed on the benchmark levels, conditional indexation is fairly
close to being optimal.

1 Introduction

Over the years, employers around the world have strived to provide retirement

income security by setting up defined-benefit (DB) pension schemes. Under such

schemes, the employee’s pension benefit is determined by a formula that takes into

account such factors as years of service for the employer and, in most cases, wages or

salary. In many countries, pension legislation requires plan sponsors to make good

on these promises even if the underlying value of the pension reserve falls short.

As such, pension sponsors, rather than pension plan participants, bear pension

investment and longevity risks. From the perspective of pension participants, an

important appeal of the DB model is that it allows them to plan their retirement

income without requiring much knowledge of saving, portfolio choice, capital market

risks, or mortality trends. The aging population and the international move toward

the market-based accounting standard, however, have placed substantial funding
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pressure on DB plans. As a consequence, the past two decades have seen a strong

trend away from DB plans toward defined-contribution (DC) plans in many

countries, especially in the Anglo-Saxon world. Under a stereotype DC plan, each

participant has an individual retirement account into which the participant and the

sponsors (if any) make regular contributions. The retirement benefit then depends on

the total contribution and investment earnings of the accumulation in the account

over time. In the case of DC plans, retirement saving and income tend to be more

subject to employees’ control throughout the life cycle, and hence it helps to relieve

employers and other sponsors of some, if not all, responsibility for pension provision

under the DB framework.

Many commentators seem to agree that the shift to DC plans, however, is far from

being a satisfactory solution because they are too complex and too risky for in-

dividuals (see, for instance, Merton (2006)). Individuals typically lack the financial

expertise and computation capacities to implement complex lifetime financial plan-

ning, as is shown by Lusardi and Mitchell (2006) and van Rooij et al. (2006). DC

plans are also vulnerable to large marketing and management costs, and to market

failure like that stemming from adverse selection in annuity markets. As a balance

between DB and DC, an approach which has been implemented recently by many

Dutch pension funds and which is under discussion in the UK is to introduce a

practice known as ‘conditional indexation’.

In a conditional indexation scheme, the pension profile of a participant guarantees

a minimum level which is updated each year through a decision on the inflation

indexation for that year on the basis of the funding ratio of pension fund (the ratio of

asset value to liability value). That is, the guaranteed level is built up by multiplying a

conditionally granted indexation level each year. If a participant is granted full

indexation every year, then her pension can fully compensate for inflation, and it is

the maximum pension she can receive.

Thus conditional indexation schemes are essentially formulated in a framework of

two reference points : they guarantee a minimum nominal amount of pension rights,

and at the same time aim to provide pension rights sufficient to fully cover inflation.

In the words of Bikker and Vlaar (2007),

‘the typical pension contract nowadays comprises an average earnings defined benefit pension
in which only nominal benefits are guaranteed, but with the intention to provide wage in-

dexation. ’

A way of thinking about pension systems is suggested here which has as salient

features the presence of both a minimum benefit (guaranteed amount) and a maxi-

mum benefit (full indexation).

From the perspective of participants, conditional indexation schemes are similar

to DB plans in the way benefits are specified. From the perspective of pension funds,

conditional indexation brings a DC element as the liability value will generally

change in line with the development of the fund’s asset value through the

practice of indexation, therefore serving as a shield of the funding ratio against the

fluctuation of asset value stemming from exposure to financial markets (see Dai

and Schumacher (2008)). In a nutshell, conditional indexation, like traditional DB,
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enables participants to enjoy a high level of pension predictability, and like DC,

enables pension funds to have a high level of financial stability. While we focus on

conditional indexation from a pension perspective in this paper, similar schemes are

also relevant in the context of with-profit policies ; cf. for instance Grosen and

Jørgensen (2002), Ballotta et al. (2006), and Gatzert and Kling (2007) for a discussion

of related schemes.

The introduction of conditional indexation may raise a number of issues, such as

the valuation of pension liabilities, the definition of accrued pension rights, and long-

term stationarity of pension funds. In this paper, we focus on the quality of pension

profile of conditional indexation schemes from a life-cycle investment perspective,

working under the assumption that participation in the scheme is compulsory (as is

the case in The Netherlands) so that in practice a financial constraint is imposed on

participants.

The objective of carrying out an evaluation of alternative investment schemes calls

for the formulation of an evaluation criterion. As is common in the literature, we

will use the expected utility framework of von Neumann and Morgenstern (1944).

This framework still allows considerable freedom in choosing a utility function.

Rather than summarily eliminating most of this freedom by restricting ourselves to a

one-parameter family of utility functions, we apply some considerations relating to

the particular nature of the investment scheme that is under investigation in this

paper.

Reference points are absent from the power or constant relative risk aversion

(CRRA) utility function, which is the standard criterion underlying much analysis

on optimal pension investment and pension scheme design. It is common, though,

for individuals to use benchmarks or reference points as an aid in evaluation and

decision-making under uncertainty (Tversky and Kahneman, 1981). Perhaps the

most well-known example to economists is the notion of loss aversion in prospect

theory; one of the defining properties of loss aversion is that wealth is measured

relative to a given reference point. People divide risky outcomes into gains (greater

than the reference point) and losses (less than the reference point), and experiments

have shown that people’s preferences with respect to gains and with respect to losses

are different (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).

Prospect theory formulates the phenomenon by a utility function with a kink at the

reference point.

People may use different reference frameworks for decisions in different situations,

and in some cases like the above-mentioned pension fund context it seems more

appropriate to use more than one reference point. March and Shapira (1987)

argue that two reference points may have significantly more descriptive power than a

single one, and that from managerial perspectives on risk taking, a target level for

performance and a survival level are the most frequently mentioned references. On

the basis of their and other theoretical studies on multiple reference points, Sullivan

and Kida (1995) conducted some experiments to investigate the effect of multiple

reference points on managers’ decision-making under risk. Their finding indicates

that presence of two reference points is in conformity with a complex pattern of
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risk-taking behavior; managers’ decisions are affected by the positions of risky

alternatives relative to two important reference points.

In the finance literature, the notion of loss aversion, built on the assumption of

a single reference point, has been introduced by a number of recent papers, for

example, Benartzi and Thaler (1995), Barberis et al. (2001), Berkelaar et al. (2004), and

Gomes (2005). The commonmodeling approach is to introduce a kink in the reference

point distinguishing gains from losses. It may be noted that many commercial

investment products involve guarantees ; if such products are to be explained as

optimal from an expected utility perspective, then kinked utility must play a role.

Explanatory factors might include the principal/agent relationship; this factor also

plays a role in the pension context. For the purposes of this paper, we assume that all

considerations can be sufficiently expressed by a family of kinked utility functions.

Given the salience of two reference points in the pension context, it may be ap-

propriate to allow the presence of two reference points in formulating preferences.

The utility function we present below is an extended version of the power utility

function, allowing for kinks at two reference points. It is an extension of the power

utility function with a kink at a single reference point that Berkelaar et al. (2004) use

to express loss aversion.

In addition to reference points, updating the guaranteed level over time as seen in

conditional indexation schemes may be justified in part by external habit formation.

That is, the reference point that people use to evaluate their consumption depends on

the history of general consumption level, reflecting people’s desire to ‘catch up with

the Joneses ’. In this paper, however, we abstract from this point in formulating a

benchmark utility function, in view of the absence of a firmly established standard

for expressing external habit formation, and also to stay close to the classical CRRA

framework.

The implication of two reference points for pension finance can be shown through

looking at the investment policy optimal with respect to the extended power utility

function incorporating reference points. Assuming the standard Black and Scholes

(1973) economy, we shall solve for the optimal investment policy in the sense that the

expected utility of participants is maximized. As will be presented below, the optimal

investment strategy can be characterized by a (partial) floor protection at the lower

reference point, as well as a (partial) cap at the upper reference point. Intuitively, it

can be interpreted as buying partial floor protection through selling part of the upside

potential, similar to what is done in a collar construction. Compared with loss-averse

preference, which is characterized by utility function with a kink at a single reference

point, the strategy optimal for the preference with two reference points provides a

better downside protection at the cost of forgoing more upside potential.

The subject of welfare analysis is a stylized conditional indexation scheme which is

constructed to have a dynamically updated guaranteed level as seen in practice. To

make the welfare analysis comparable with standard life-cycle investment studies, we

impose that conditional indexation schemes be financially fair in the sense that the

value of pension rights is equal to the value of contributions. In the absence of

financial fairness, some participants could be arbitrarily better off with ex ante wealth

transfer from others. To this end, we shall discuss ways in which one may construct
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pension systems that combine conditional indexation with financial fairness. The

main idea we use below is contingent exchange of one option by another of equal

value, with continuous updating of the parameters characterizing the options. This

implies that conditional indexation as defined here could in principle be used by an

individual as a private investment scheme. Being implemented in a financially

fair manner, conditional indexation schemes can then be subject to welfare analysis to

see how good conditional indexation schemes can be from the life-cycle investment

perspective of participants. We illustrate by numerical examples how the evaluation

outcome depends on the presence and strength of the reference points.

Since our purpose in this paper is to focus on the welfare implications of conditional

indexation, we avoid technical complications due to factors that we believe are less

directly related to the conditional indexation idea. We do introduce, as discussed

above, utility functions that involve particular reference points because such reference

points also play a role in conditional indexation. However, we do not include in the

analysis several features that are often considered in the recent life-cycle investment

literature, such as human capital, stochastic interest rates, stochastic inflation, lon-

gevity risk, and asset return predictability. In a more comprehensive investigation,

such factors should be taken into account; here our aim is to present a first analysis.

The paper is organized as follows. In the next section, we formulate a class of

piecewise power utility functions to allow that risky outcomes are evaluated against

two reference points, and specify the financial setting. To establish the benchmark of

the welfare analysis, the pension investment optimal for this class of utility functions

is investigated in Section 3. Section 4 discusses the formulation of conditional

indexation schemes whose payoff structure is close to those generated by collective

pension funds in practice. The welfare analysis of conditional indexation schemes is

illustrated by numerical examples in Section 5. Some concluding remarks are in

Section 6.

2 The model

2.1 The utility function

The power utility function is the most widely used evaluation measure in the litera-

ture on dynamic asset allocation. It has some desirable properties in terms of math-

ematical tractability, and it reflects constant relative risk aversion, which is thought

to be a reasonable assumption on people’s risk preferences. The power utility func-

tion is also used as a building block to accommodate other attributes of preferences

like loss aversion and habit formation. In this respect, refer to Berkelaar et al. (2004)

for an example on loss aversion, and to Sundaresan (1989) and Campbell and

Cochrane (1999) on habit formation. Following a similar approach, we propose a

utility function with the power utility as a building block in order to reflect the

presence of reference points.

Assume that an individual considers pension investment in a framework of two

reference points : a guaranteed level and an intention level, denoted by h1 and h2,

respectively. With respect to the two reference points, possible pension payoffs at

retirement, W, can be divided into three regions: below the guaranteed level, beyond
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the intention level, and in between. As in papers on loss aversion, the presence of the

two reference points is formulated by two kinks corresponding to the two points in

the utility function. Within each of the three regions, the utility is specified in the

standard power form, reflecting locally constant relative risk aversion. In addition, we

impose that the utility function should be continuous.

In general, the utility function can be formulated by a piecewise power function

characterized by five parameters :

U(W)=

kLh
cLxcM
1 (y(W, cL)xy(h1, cL))+y(h1, cM) for Wfh1

y(W, cM) for h1<W<h2
1

kUh
cMxcR
2

(y(W, cR)xy(h2, cR))+y(h2,cM) for Woh2

8>><
>>: (1a)

where

y(x, c)=
x1xcx1

1xc
for cl1

logx for c=1

8<
: (1b)

In the above, the parameters cL, cM and cR are positive and represent the local

constant relative risk aversion within the left, middle and right regions, respectively.

The parameters kL and kU, which must be greater than or equal to 1 to ensure

concavity, denote the ‘kinkedness’ of the utility function at the lower and upper

reference points. For simplicity, we mainly work with the two-parameter family that

is obtained by the simplification that the degrees of kinkedness are identical at both

reference points and the local rates of risk aversion are identical for the three regions:

U(W)=

ky(W, c)+(1xk)y(h1, c) for Wfh1

y(W,c) for h1<W<h2
1

k
y(W, c)+ 1x

1

k

� �
y(h2, c) for Woh2

8>><
>>: (2)

where c (>0) is the local rate of relative risk aversion, and k (o1) is the kinkedness

parameter (Figure 1).

There is a parameter similar to k in the utility function of prospect theory that

represents the degree of loss aversion. Tversky and Kahneman (1992) estimate that

the loss aversion parameter is equal to 2.25 based on the experimental results of a

group of individuals facing hypothetical decision problems. The two kinks cause the

marginal utility to jump at the two reference points. We note that when k=1, the

utility function is reduced to the standard power utility function, and that it also

incorporates the utility function considered by Berkelaar et al. (2004) as a special case

when h2 is infinity. Because of the kinks, the preference expressed by the piecewise

utility function has the property of first-order risk aversion at the reference points

(Segal and Spivak, 1990).

2.2 The financial setting

We assume that the individual, over the working life, contributes to an occupational

pension scheme an amount whose value is known at entry into the pension system,
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and receives a lump-sum pension at retirement. In line with standard life-cycle

investment analysis, the individual, within the expected utility framework, would

invest the contributed amount in such a way that the expected utility over the lump-

sum pension is maximized. We work in a highly simplified setting, namely the stan-

dard Black–Scholes economy. This assumption, in addition to simplifying the

analysis, allows one to focus on the impact on pension investment of two reference

points, and makes it straightforward to examine some popular investment policies

that already developed in a complete-market setting from a new perspective.

Specifically, the financial setting is as follows.

’ The only risk factor is stock market risk, and it is traded through a stock index St

following a geometric Brownian motion

dSt=mStdt+sStdZt

where m and s are the constant drift and volatility parameters, and Zt is a stan-

dard Brownian motion.
’ The riskless asset is a cash bond with constant interest rate r, whose price Bt

changes according to

dBt=rBtdt
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Figure 1. The two-parameter class of utility functions (2). This figure visualizes

the utility function for different values of the kinkedness parameter : k=1 (dash-
dotted), k=2.25 (dotted), k=5 (dashed), and k=10 (solid). Other parameter
values are: c=1, h1=223, and h2=495
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’ Thus the pricing kernel (stochastic discount factor) jt is characterized by

djt=xrjtdtxljtdZt

where l=(mxr)/s is the market price of risk.
’ We assume that the individual makes a single contribution at time t=0, and

retires and receives pension at t=T. The value at time 0 of the contribution is

denoted by W0.
’ We assume that two levels h1 and h2 have been defined which satisfy

h1<erTW0<h2 and which are referred to as the guaranteed level and the

intention level, respectively. The corresponding annualized growth rates : p1 :¼
1
T log (h1=W0) and p2 :¼ 1

T log (h2=W0) will for concreteness be referred to as

price inflation and wage inflation, respectively. The theory allows other inter-

pretations as well, as long as the inequalities p1<r<p2 are satisfied; for instance

p1 might correspond to a nominal guarantee.
’ We shall illustrate results by numerical examples. For this purpose, it is assumed

that the economy is characterized by an annual risk-free interest rate of 3%,

stock risk premium of 4% per year (i.e. m=7%), stock market volatility of 20%

per year, an annual price inflation of 2% and an annual wage inflation of 4%.

The working life of the individual is 40 years. The present value of the contri-

bution at time t=0 is 100. Thus the guaranteed and intention levels are 223 and

495, respectively. The parameter values are summarized in Table 1.

3 Pension investment for the benchmark utility

To understand the benchmark utility function in the context of life-cycle investment,

we now investigate the investment policy sought by the individual to optimize

E[U(WT)]. In a complete market, such as the Black–Scholes economy, the optimal

pension payoff as a function of the state of the economy can be obtained using the

equivalent martingale method (Cox and Huang, 1989), i.e.

WT=(Uk)x1(yjT) (3)

where (Uk)x1 denotes the inverse of the marginal utility function, and y is a Lagrange

multiplier which is determined by the budget constraint E[jTWT]=W0. In the context

of a collective pension fund, the budget constraint can be interpreted as imposing

financial fairness between generations.

For the piecewise power utility function (2), one can solve the optimal profile

of pension WT as a function of the value of pricing kernel at retirement jT
(see Appendix A.1.1). To make the optimal pension profile intuitively more

Table 1. The parameter values

r m s p1 p2 W0 T h1 h2

3% 7% 20% 2% 4% 100 40 223 495
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appealing, Figure 2 plots the optimal pension as a function of the annualized return

of stock markets. The optimal pension profile falls into five regions : three slopes

connected by two plateaus. In the slope regions, the pension right is increasing with

the return on the stock index. In the plateau regions, the pension benefit is constant at

the reference levels, independent of stock index changes. The optimal profile of pen-

sion benefits can be characterized as a partial floor protection, attained at the cost of

forgoing some upside potential of stock markets.

The implication of the two reference points can also manifest itself through com-

parison with the optimal payoffs for alternative utility functions. Figure 2 also shows

the payoffs optimal for the standard power preference and the loss-aversion pre-

ference. Berkelaar et al. (2004) show that loss aversion as expressed by a single ref-

erence point leads to a partial portfolio insurance strategy. In comparison with the

loss-averse agent and the CRRA agent, the participant who uses two reference points

gives up more payoff in good states of the financial market to finance a better

downside protection.

To illustrate the impact on the optimal pension benefit of the two parameters used

in (3), k and c, Figure 3 presents the cumulative distribution of the optimal profile of

pension benefits for various values of the parameters. The six plots on the first row,
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Figure 2. The optimal pension as a function of stock market return. This figure
shows the optimal pension payoff for the utility function (2) as a function of the

stock index return assuming the parameter values: k=10, c=1, h1=223 and
h2=495 (bold line). For comparison, the figure also shows the optimal profiles for
a CRRA utility (k=1, c=3; drawn line), the standard logarithmic utility (k=1,

c=1; dotted line), and a utility function with only one kink (h2=O ; dash-dotted
line). For parameter values not mentioned here, see Table 1
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assuming c=1, show the simulated cumulative distribution functions of the optimal

pension benefits for varying values of k. For k greater than 1, the optimal profiles of

pension benefits invariably feature probability clustering at the two reference levels,

reflecting a partial portfolio insurance and selling of upside potentials. The clustering

becomes more pronounced with increasing prominence of the reference points. For

the level of kinkedness equal to the rate of loss aversion reported by Tversky and

Kahneman (1992), the probabilities of having pension benefits at the guaranteed and

intention levels are about 9 and 25%, respectively. For k=10, the clustering becomes

dominant, with the probabilities increased to about 10 and 60%, respectively. If the

effect of the reference points is so strong as to justify k=100, then the optimal pen-

sion benefit is close to a binary payoff structure: the guaranteed level will be paid if

the stock market index is below a certain level at retirement, otherwise the intention

level will be paid. Actually, it can be shown that a binary payoff structure is optimal

in the extreme case where c=0 and k=O (see Appendix A.2).

The plots on the second row of Figure 3, assuming k=1, present the distributions

of the optimal pension benefits for varying degrees of risk aversion. In this case, the

preference reduces to the standard CRRA. As discovered by Samuelson (1969) and

Merton (1969) the CRRA individual finds it optimal for allocating a constant pro-

portion of pension asset value in risky assets. This type of strategy, known as the

‘constant-proportion’ or ‘fixed-mix’ strategy, leads to a lognormally distributed
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Figure 3. Cumulative distribution of the optimal pension for different values of k and c. The
figure illustrates the impact of k and c on the optimal investment through simulated cumu-
lative distribution function of the resulting pension value at time T. The plots on the first row
are for fixed c and varying values of k, whereas those on the second row are for k=1 and

varying values of c. For parameter values not mentioned here, see Table 1
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profile of pension benefit in an economy of the Black–Scholes type. In a given

financial market, the proportion in risky assets is determined by the rate of relative

risk aversion: in the Black–Scholes economy, the proportion of pension assets in

risky assets is l/sc, where l is the market price of risk as introduced before. As shown

in Figure 3, the variability of the lognormally distributed pension benefits generated

by this strategy is decreasing with the degree of risk aversion. For CRRA preference,

an increasing degree of risk aversion will make pension benefits concentrate more and

more on a single value, rather than on the two reference levels as in the case of kinked

utility. The difference highlights that k and c in the utility function (3) reflect different

aspects of preference.

To complete the discussion on the investment policy for the benchmark class of

utility functions, we turn to the investment strategy needed to realize the optimal

profile of pension rights at retirement. The optimal pension can be viewed as a con-

tingent payoff that can be replicated by a delta replication strategy. The fundamental

theorem of asset pricing tells us that the process {jtWt} is a martingale, so the optimal

pension asset value Wt at time t (fT) satisfies

Wt=
1

jt
Et[jTWT]: (4)

Following this approach, one can solve the optimal pension asset value Wt as a

function of time t and the value of the pricing kernel (Wt=f(t, jt)).

Given the one-to-one correspondence between the pricing kernel and the stock

price in the Black–Scholes economy, the optimal pension asset value can also be

expressed as a function of time and of the stock index value St, i.e. Wt=g(t, St). The

holdings of risky assets (‘delta ’) can be determined by the partial derivative of the

optimal pension asset value at time t with respect to the stock market level at time t.

As an alternative to computing the delta, we characterize the optimal investment

strategy by the weight of pension asset value invested in the stock index (see

Appendix A.1.2). Figure 4 illustrates the optimal investment policy by presenting the

stock weight as a function of time and the stock market return (only the weights for

the last 20 years are shown for ease of viewing). The investment strategy requires a

sophisticated, dynamic adjustment of the stock weight depending on time and on the

realized return on stock markets. The relation between the weight and the return on

stock markets is of a ‘W’ shape. The intuition is as follows. When the return on stock

markets is at such levels that it is likely to realize the guaranteed or intention levels,

then a low weight in risky assets is needed to ascertain the realization of the reference

levels. However, if it is very unlikely for the terminal pension asset value to be at the

two reference levels because of, for instance, very strong or weak stock markets, then

the pension fund will behave like a constant-relative-risk-averse investor with no

kinks, and the weight in risky assets is approaching that required by a constant

proportion strategy.1 This effect is in particular strong at times close to maturity. In

scenarios where stock returns are good for some time but then go down, the optimal

1 If there are no kinks (k=1), the resulting CRRA utility with unit rate of relative risk aversion will, for the
parameter values considered in the paper, lead to a constant proportion strategy which allocates 100% of
the pension asset value in stock markets independent of time and of the stock market performance.
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strategy reduces the stock holdings when bad returns appear, so as to reach at least

the upper threshold with high probability.

4 Conditional indexation schemes

As mentioned above, a defining property of conditional indexation schemes is that

the guaranteed amount of pension is adjusted over time. For instance, if a participant

is granted full indexation to wage inflation each year after her entry into the fund,

then the two thresholds will converge with the guaranteed amount approaching the

intention amount at retirement. On the other hand, if the participant is so unlucky as

to receive no indexation at all during the entire working life, then the guaranteed

amount at retirement will be same as the amount that was already guaranteed at the

time of entry.

Given the diversity of conditional indexation schemes, it is far from being trivial to

ask which one to take as the subject of welfare analysis. Our purpose in this paper is

to construct pension schemes with the defining property of dynamically adjusted

guaranteed level as stylized conditional indexation schemes. The current practice of

conditional indexation is implemented collectively by pension funds, and some

studies show that the resulting conditional indexation schemes are not necessarily

financially fair on a generation-by-generation basis in the sense that the value of the
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pension payoff may not be equal to the value of the contribution. It has been

estimated that redistribution of wealth may reach 30% or more of the value of

the liabilities (Kocken, 2007; p. 37) (cf. also Kocken (2006) for a more extensive

theoretical analysis). For the purpose of welfare analysis, it is necessary to impose the

condition of financial fairness, since the absence of financial fairness implies that one

individual can be arbitrarily better off through wealth transfer from others.

Therefore, in the construction of stylized schemes, we impose the condition of

financial fairness.

The construction of the stylized conditional indexation schemes starts with a digital

contingent claim at time 0. Such a claim is optimal under a kinked utility function

with c=0 and k=O (a piecewise linear function which drops to xO at the guaran-

teed level and which saturates at the intention level). The claim is written on the stock

index, and at retirement pays the guaranteed level h1, if the index is below a certain

strike ; otherwise it pays the intention level h2. At time 0, the value of the option is

equal to the contribution value, W0. In the Black–Scholes economy, the given h1, h2,

and the option value W0 determine the strike of the option as in (16). Browne (1999)

shows that the policy to maximize the probability of reaching a given value wealth by

a deadline is to buy a European digital option with a particular strike price and

payoff. Applying Browne’s insight, one can show that the digital claim maximizes the

probability of reaching the intention level while subject to the constraint of not falling

short of the guaranteed level. At time 0, the probability of reaching the intention level

is determined by

p=W l
ffiffiffiffi
T

p
+Wx1 W0e

rTxh1

h2xh1

� �� �
(5)

where Wx1(.) denotes the inverse of the standard normal cumulative distribution

function. The above equation for p is well defined only for exrTh1fW0fexrTh2,

where the scheme is reduced to the all-bond scheme forW0=exrTh2. In the following

welfare analysis, the case where W0>exrTh2 may arise. In such a case, we use the

all-bond scheme with payoff WT=exrTW0 to replace both the digital scheme and the

stylized conditional indexation scheme constructed on the basis of the digital scheme.

The digital option by itself reflects the idea of a guaranteed level, but not the idea

of conditional indexation. We would like to increase the guaranteed level when cir-

cumstances allow. Assume that circumstances are indeed found favorable at a first

review date following time 0; then it is possible to sell the digital option that was

purchased at time 0 and to buy a new digital option that has an increased lower level.

The self-financing property of the strategy is guaranteed by requiring that the value of

the newly bought option at the time of its purchase is equal to the value of the

previously owned option at that time.

In this way, we obtain one constraint on the characteristics of the new option to be

bought. However, a digital option is characterized by three parameters (upper level,

lower level, and strike) so that two degrees of freedom remain. As a second constraint,

we impose that the intention level h2 remains the same. The third constraint might be

provided by imposing that the strike also remains the same, but a more basic re-

quirementmay be that the probability of reaching the upper level is kept constant. This
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may be motivated if one thinks of the size of the investment at time 0 as reflecting an

implicit decision on the probability of reaching the intention level, via the relation (5).

Under the proposed rules, high returns on the stock market will result in an in-

crease of the guaranteed level, while both the intention level and the probability of

reaching that level remain constant. Under the assumptions of the Black–Scholes

market, we can and will consider a continuous-time version of the proposed strategy;

moreover, using the completeness of the Black–Scholes market, the process of buying

and selling options can be replicated by suitable portfolio rebalancings. We will

consider two versions of the proposed scheme; one in which the rules as stated above

are applied irrespective of stock returns, so that also downward adjustments may take

place, and another (which is closer to practice) in which adjustments in the downward

direction are not made and one accepts that under adverse circumstances the prob-

ability of reaching the intention level decreases.

4.1 The updating rules

4.1.1 Version I: two-way adjustment

This rule prescribes that the probability of reaching the intention level be constant

over time. In particular, if the probability of reaching the intention level increases

(decreases) due to an upturn (downturn) of the stock index, then the strike denoted by

Kt
(1) is adjusted upwards (downwards) to the level that restores the probability to the

benchmark p. At the same time, the guaranteed level, denoted by h1,t
(1), is increased

(decreased) to ensure that the update is self-financing. This scheme is mainly of

academic interest ; a more realistic scheme that allows only one-way adjustment is

described below. Appendix A.3 shows that the two-way adjustment rule leads to

dynamics of the strike Kt
(1) and guaranteed level h1,t

(1) for t<T given by

dK
(1)
t =

Wx1( p)s

2
ffiffiffiffiffiffiffiffiffiffi
Txt

p +
1

2
s2

� �
K

(1)
t dt+sK(1)

t dZt, K
(1)
0 =K (6)

dh(1)1, t=
(h2xh(1)1, t)w(d

(1)(t))

[1xW(d(1)(t))]
ffiffiffiffiffiffiffiffiffiffi
Txt

p 1

2
ldt+dZt

� �
, h(1)1, 0=h1 (7)

where

d(1)(t)=
log (St=K

(1)
t )+ rx1

2s
2

� �
(Txt)

s
ffiffiffiffiffiffiffiffiffiffi
Txt

p

=Wx1( p)xl
ffiffiffiffiffiffiffiffiffiffi
Txt

p

As an alternative to the stochastic differential equation (6), the dynamics of the strike

can be explicitly expressed as a function of the stock index value:

K
(1)
t =St exp mx

1

2
s2

� �
(Txt)xWx1( p)s

ffiffiffiffiffiffiffiffiffiffi
Txt

p� �
(8)

As can be seen from (8), the strike tends to the stock index as t approaches T, which

implies that the investment policy is to take an increasingly sensitive bet in the form of
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digital options that are increasingly at the money. For the dynamics of the guaranteed

level, it can be shown that

p- lim
t"T

h(1)1, t=h2

that is, the guaranteed levels converge in probability to the intention level as t

approaches T (see Appendix A.3). This is not surprising given that the drift and

volatility terms of (7) ‘explode’ as t approaches T unless the guaranteed level con-

verges to the intention level.

4.1.2 Version II: ratchet adjustment

This rule introduces a ‘ratchet ’ effect by allowing only upward adjustment of the

guaranteed level. In a nutshell, the updating rule is to keep the probability of reaching

the intention level no higher than the benchmark p. The updating is the same as version

I in the case of stock market upturns: if the stock markets rise, and the probability

of reaching the intention level rises above the benchmark, then the strike and the

guaranteed level are adjusted upwards in such a way as to restore the probability to

the benchmark. In the case of stock market downturns where the probability falls

short of the benchmark, however, the strike and the guaranteed level are unchanged.

As such, the strike, Kt
(2), and the guaranteed level, h1,t

(2), can be adjusted upward only.

The strike resulting from this version of conditional indexation, denoted by Kt
(2), is the

running maximum of the strike from version I (see Appendix A.3), i.e.

K
(2)
t =max

sft
K(1)

s (9)

Given the dynamics of the strike, one can determine the updating of the guaranteed

level by the requirement that the value of the updated pension rights should be un-

changed. The SDE for the guaranteed level is not of a simple form, so it is omitted

here. We only note that the running-maximum relationship does not hold for the

guaranteed levels.

Figure 5 presents a simulated history of the strikes and guaranteed levels for the

two updating rules. It illustrates the increasing volatility of the guaranteed level on

the basis of the first version as t approaches T, and the running-maximum relation-

ship between the strike prices resulting from the two rules.

4.2 The pension rights of the conditional indexation schemes

We now want to see the effect of both strategies onWT, the realized capital at time T.

First, define by continuity the values of the strikes and the guaranteed levels at time T

for both updating rules, that is,

K
(i)
T Jlim

t"T
K

(i)
t , h(i)1,TJlim

t"T
h(i)t , i=1, 2 (10)

The pension rights resulting from the two versions of conditional indexation, WT
(1)

and WT
(2), are then

W
(i)
T =(h2xh(i)1,T)1ST>K(i)

T
+h(i)1,T, i=1, 2 (11)
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For the conditional indexation of version I, given that the guaranteed level con-

verges to the intention level in probability, the pension rights at retirement also

converge to the intention level. This is a peculiar outcome since it appears to con-

struct an arbitrage opportunity; the proposed investment strategy seems to ensure a

return that is higher than the riskless return. The explanation is that this version of

conditional indexation allows ‘outrageous’ investment behavior, which violates the

admissibility assumption in the finance literature (see e.g. Section 6.C of Duffie

(2001)) Like the well-known ‘doubling’ strategy, the first version of conditional in-

dexation involves shorting more and more of the riskless asset and going long in the

risky asset in some states of nature, and it has to allow the possibility that pension

asset value can go negative and be unbounded from below before the intention level is

actually attained. Investment strategies of this nature are usually ruled out in the

finance literature by the admissibility assumption, which either prohibits the wealth

process from going negative or imposes a square-integrability condition.

For the ratchet indexation, Figure 6 presents the distribution of the pension

rights in our standard example. Also shown is the relation between the pension
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Figure 5. Simulated histories of the strike and the guaranteed level. The upper panel is

a simulated scenario of the stock index over 40 years, and the corresponding histories
of the strike and the guaranteed level are in the middle and lower panels, respectively.
In the middle and lower panels, the histories based on the two-way updating rule are

represented by a solid line, and those based on the ratchet updating by a dashed line.
For the parameter values of the simulation, see Table 1
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rights and the annualized return on stock markets. In addition to the notable con-

centration on the two original thresholds, the pension rights generated by ratchet

conditional indexation have considerable probability of falling in the intermediate

region between the two thresholds. The pension rights are path-dependent, rather

than dependent solely on the stock index level at retirement. The resultant pension

scheme will be used as the stylized conditional indexation scheme in the following

welfare analysis.

5 Welfare analysis

By now we have set up the criterion and the subject of the welfare analysis. To apply

welfare analysis to the stylized conditional indexation scheme against the utility

function (2), we have to resort to numerical methods because of the absence of

an analytical solution. Therefore we need to choose the value of parameters charac-

terizing the benchmark utility, in particular, k and c. Tversky and Kahneman

(1992), based on psychological experiments, estimate that the rates of local

relative risk aversion are rather small (+0.12 in the gain region, andx0.12 in the loss

200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

Amount of pension benefits

F
re

qu
en

cy

Distribution of the pension benefits

200 250 300 350 400 450 500
–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

A
nn

ua
liz

ed
 r

et
ur

n 
of

 s
to

ck
 m

ar
ke

ts

Amount of pension benefits

Scatter plot of pension benefits w.r.t. return of stock markets

Figure 6. The pension benefits resulting from the ratchet conditional indexation. The

figure shows the pension profile from the ratchet rule of conditional indexation. The
upper panel presents a simulated histogram of the pension rights, whereas the lower
panel illustrates the relation between the return on the stock index and the amount of

pension rights. The number of simulations is 10 000. See Section 2.2 for the parameter
values of the simulations
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region).2 Most of the literature on the application of the idea of loss aversion to

finance (e.g. Ait-Sahalia and Brandt (2001), Barberis et al. (2001), Berkelaar et al.

(2004) and Gomes (2005)), assumes that the coefficient of local relative risk aversion

is between 0 and 1. We shall take c=1 in the following. As for k, the estimated value

of 2.25 that Tversky and Kahneman (1992) obtain in the context of loss aversion is

on the basis of the choices of a group of individuals facing hypothetical decision

problems. Given the critical importance of retirement income security, a higher

degree of kinkedness may be reasonable. In addition, the standard CRRA utility will

be included as a special case of (2). Thus we consider ks{1, 2.25, 5, 10, 100}.

The purpose of the welfare analysis is to assess the quality of conditional in-

dexation schemes to individuals whose preference is characterized by the family of

utility functions (2) in the context of life cycle investment. The performance is

measured by welfare loss in terms of the additional contribution value required for

a pension scheme to reach the same level of expected utility as is obtained from

the optimal strategy. Apart from the stylized conditional indexation scheme, other

pension schemes are considered for comparison purposes (see Appendix A.4 for the

computation of expected utility of these schemes).

First consider the pension schemes resulting from constant-proportion strategies

characterized by different stock weights. The second row of Table 2 shows results for

a scheme with a constant stock weight of 50%, which, in the numerical setting as

given in Table 1, is optimal for the CRRA preference when the coefficient of relative

risk aversion is equal to 2. If the benchmark utility is the standard logarithmic utility

(k=1), the welfare loss of this constant-proportion scheme is substantial because of

Table 2. The welfare loss of various schemes against the benchmark utility with

different parameter values (in percent). The table reports the welfare loss in terms of the

additional percentage of contribution value which is required for a pension scheme to

reach the same level of expected utility as is obtained from the optimal strategy. The

numbers in smaller font are the rates of relative risk aversion corresponding to the best

constant-proportion schemes. Notice that the first column (k=1) actually uses the

standard logarithmic utility as the benchmark

Benchmark: c=1, k=… 1 2.25 5 10 100

Optimal for c=2, k=1 22.2 3.7 8.7 21.9 86.1
Best constant-proportion 0.0 3.4 4.2 5.6 9.2

Corresponding relative risk aversion (RRA) 1.0 1.5 3.0 3.5 5.5

Optimal for c=0, k=O 122.7 50.6 5.0 1.4 0.6
Conditional indexation 122.7 29.8 9.9 6.4 6.0

2 A utility function typical in prospect theory is of the following convex–concave shape:

U(W )= xA(hxW )b1 for Wfh
+B(Wxh)b2 for W>h

�

It becomes approximately piecewise linear (i.e. approximately locally risk neutral) based on the estimated
values of b1=0.88 and b2=x0.88. As indicated by Sharpe (1998), the (approximate) local risk-neutrality
leads to investment strategies that are rather extreme.
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insufficient risk taking: over 20% more contribution is needed for the scheme to

obtain the same level of expected utility as the optimal strategy, which is a constant-

proportion scheme with 100% stock weight. If the two reference points are present in

the individual preference, and their significance is moderate with k=2.25, then this

scheme looks much better with welfare loss less than 4%. The two kinks introduce

first-order risk aversion, and hence make the 50%-stock-weight scheme look more

favorable against the kinked benchmark utility than against the logarithmic bench-

mark. From this perspective, the parameters k and c, albeit reflecting different

aspects of preference, substitute for each other to some extent. As the kinkedness

parameter increases, however, the welfare loss increases considerably. A plausible

explanation of large welfare loss for large k value is that an individual with strongly

kinked utility favors good downside protection at the cost of giving up upside

potential, in which respect the constant-proportion scheme is poor.

In the sphere of constant-proportion strategies, one can vary the stock weight in

order to maximize the expected utility with respect to the (possibly kinked) bench-

mark utility. We refer to the optimal constant-proportion schemes with respect to the

benchmark utility as the best constant-proportion scheme. When the benchmark is

reduced to the logarithmic utility, the best constant-proportion scheme has no wel-

fare loss simply because the scheme keeps stock weight equal to the level required by

the logarithmic utility. As can be seen from the third row of Table 2 for kinked

benchmark utility, the welfare loss of the best constant-proportion schemes is in-

creasing with the kinkedness parameter. Welfare losses reflect the inability of con-

stant-proportion schemes to provide downside protection required by the kinked

benchmark utility. Moreover, for a more kinked benchmark, the best constant-pro-

portion scheme decreases risk taking, as is seen from the fact that the rate of relative

risk aversion corresponding to the stock weight of the scheme (shown in smaller font

in the table) is increasing with k.

Another scheme we consider for comparison is the rigid digital scheme, which at

retirement pays the guaranteed level if the stock index is below the strike given by

(16), and pays the intention level otherwise. As mentioned above, the digital scheme

forms the basis of the construction of the stylized conditional indexation scheme, and

is optimal with respect to the kinked utility function (2) with k=O and c=0. The

digital scheme suffers from welfare loss in that (i) it assumes the greatest possible

strength of the reference points (k=O), and (ii) it assumes local risk neutrality

(c=0). As shown in the fourth row of Table 2, the digital scheme’s welfare loss

decreases with the value of the kinkedness parameter k used in the benchmark utility.

When ko10, the welfare loss becomes rather small. It is a natural outcome, recalling

that the pension profile which is optimal for a kinked benchmark utility with large

values of k resembles the payoff of a digital option as illustrated in Figure 3.

The stylized conditional indexation scheme, the focus of the welfare analysis, is

built on the basis of the digital scheme through updating the lower threshold over

time. As the bottom row of Table 2 shows, like the digital scheme, the conditional

indexation scheme incurs a welfare loss, which is decreasing with the kinkedness of

the benchmark utility. For an individual with logarithmic or a mildly kinked utility

(k=1 or 2.25), the utility loss of the conditional indexation scheme (and the digital
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scheme) is significant. Against the logarithmic benchmark, for the conditional

indexation scheme and the digital scheme to achieve the same utility level as is

obtained by the optimal scheme, it is insufficient that the contribution is increased to

such a level that the probability of reaching the intention level is one, i.e. to the level

equal to h2e
xrT. As mentioned earlier, the two schemes are assumed to be reduced to

the all-bond scheme with payoff equal to exrT W0, and the welfare loss is computed

accordingly.

In comparison with the digital scheme, the dynamic updating of the guaranteed

level introduces another element of suboptimality with respect to the benchmark

utility, namely a non-constant lower reference point. It perhaps accounts for the

welfare loss of the conditional indexation scheme being higher than that of the digital

scheme in the case where ko5. Nevertheless, against the strongly kinked benchmark

utility (e.g. ko10 or 100), the stylized conditional indexation scheme is close to the

optimal as it has a moderate welfare loss of about 6%. In short, for individuals in

whose preference the reference points play little role, the stylized conditional in-

dexation scheme leads to material welfare loss, while for those paying much attention

to the references, the scheme offers a reasonable option for retirement savings from

the point of view of welfare analysis.

6 Concluding remarks

In this paper, we have used welfare analysis to evaluate the performance of con-

ditional indexation schemes from a life-cycle investment perspective. This type of

analysis is usually applied to study the effect of constraints. Conditional indexation in

principle is not a constraint, but effectively such schemes imposed by compulsory

participation cannot be undone by participants without costs, and they are taken as

a given by most people. For this reason, the welfare analysis on the basis of a

frictionless financial market, where participants actually need not care about the

suboptimality of pension schemes in that they are capable of undoing any financial

contracts and achieving their optimal investment profile themselves free of cost, is still

relevant in providing insights into the performance of conditional indexation schemes

in practice.

For the purpose of this analysis, we needed to establish both the criterion and the

subject of the utility analysis, namely a benchmark utility and representative con-

ditional indexation schemes. To do justice to the two reference points which underlie

the formulation of conditional indexation and which often stand out in the discussion

of pension provision, we propose as the benchmark utility an extended family of

CRRA utility functions which accommodate the presence of reference points. The

two reference points, as reflected by kinks in the utility function, lead to a pension

investment policy with partial floor protection attained at the cost of forgoing some

upside potential. The stylized conditional indexation scheme subject to welfare

analysis is constructed to have a ratchet-adjusted guaranteed level, reflecting common

practice. Possibly deviating from practice, the stylized scheme is financially fair be-

cause it is constructed on a self-financing basis. The property of financial fairness

ensures that it makes sense to investigate conditional indexation schemes by means of
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utility analysis, and that such schemes are comparable with life-cycle investment

policies.

Some numerical exercises show the influence of reference in the benchmark utility

on the evaluation outcome of the stylized conditional indexation scheme. If the effect

of the reference points is weak or even absent, the conditional indexation incurs

substantial utility loss. If, however, the reference points are significant in preference,

the scheme offers a reasonably good approach to pension provision as the welfare loss

vis-à-vis the optimal is moderate. Conversely, increasing attention to conditional

indexation may therefore be viewed as evidence of the presence and significance of

reference points in participants’ evaluation of pension provision.

The stylized conditional indexation scheme has been formulated in such a way that

it can be implemented by an individual. However, the implementation of conditional

indexation is usually done by collective funds. The collective implementation may

play a role in saving transaction costs and hence have an impact on the evaluation of

pension schemes. It is a point beyond the scope of this paper, which invites further

research. Another avenue for further research will be to use more realistic financial

settings, for example, stochastic inflation rates and the possible long-term predict-

ability of asset returns.
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A Appendix

A.1 Derivation of the optimal pension profile WT and investment strategy under

piecewise power utility

A.1.1 The optimal pension profile WT

The marginal utility function of the piecewise power utility (2) is3

Uk(W)=

kWxc for Wfh1

Wxc for h1fWfh2
1

k
Wxc for Woh2

8><
>:

Then the optimal pension profile at time T can be obtained by the Cox and Huang

(1989) approach as expressed in (3) ;4 in particular,

WT=

(kyjT)
x1=c for jTfj1

h2 for j1<jTfj2
(yjT)

x1=c for j2<jT<j3
h1 for j3fjT<j4
yjT
k

� �x1=c

for jToj4

8>>>>>>><
>>>>>>>:

(12)

where j1= 1
kyh

xc
2 , j2=1

yh
xc
2 , j3=1

yh
xc
1 , and j4=k

yh
xc
1 .

A.1.2 The optimal investment strategy

By substituting (12) into (4) and after some straightforward but somewhat tedious

calculus, one can obtain the optimal wealth at time 0ft<T

Wt=h2e
xr(Txt)[W(d1(j2))xW(d1(j1))]+h1e

xr(Txt)[W(d1(j4))xW(d1(j3))]

+(kyjt)
x1=ceC(t)W(d2(j1))+

yjt
k

� �x1=c

eC(t)[1xW(d2(j4))]

+(yjt)
x1=ceC(t)[W(d2(j3))xW(d2(j2))]

(13)

where W(.) denotes the cumulative standard normal distribution function, and

d1(x)=
ln(x=jt)+ rx1

2l
2� �
(Txt)

l
ffiffiffiffiffiffiffiffiffiffi
Txt

p

3 In the case of utility functions that are not everywhere differentiable, marginal utility can be expressed by
the superdifferential, which is a multivalued function. For simplicity, we do not adapt the notation.

4 Because the above marginal utility ‘function’ involves a one-to-many mapping at h1 and h2, it is not a
function in the normal sense of being a one-to-one or many-to-one mapping, and is referred to as a
multivalued function. The inverse relation (a generalization of the notion of inverse function) of this
multivalued function is indeed a function in the normal sense, and the Cox and Huang (1989) approach
still applies.
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d2(x)=d1(x)+
l

ffiffiffiffiffiffiffiffiffiffi
Txt

p

c

C(t)=
1xc

c
r+

l2

2c
(Txt)

� �

Applying the Itô rule to the expression of Wt (13), one can describe the optimal

wealth process by a stochastic differential equation. Alternatively, one can in the

Black–Scholes economy characterize any self-financing wealth process by the fol-

lowing stochastic differential equation:

dWt=(r+wtsl)Wtdt+wtsWtdZt

where wt denotes the stock weight at time t. Equating the diffusion parts of the two

above-mentioned stochastic differential equations leads to the the optimal weight of

risky assets at time 0ft<T

wt*=
l

sWt

h2e
xr(Txt)[w(d1(j2))xw(d1(j1))]+h1e

xr(Txt)[w(d1(j4))xw(d1(j3))]

l
ffiffiffiffiffiffiffiffiffiffi
Txt

p
�

+(kyjt)
x1=ceC(t)

W(d2(j1))

c
+

w(d2(j1))

l
ffiffiffiffiffiffiffiffiffiffi
Txt

p
� �

+
yjt
k

� �x1=c

eC(t)
1xW(d2(j4))

c
x

w(d2(j4))

l
ffiffiffiffiffiffiffiffiffiffi
Txt

p
� �

+(yjt)
x1=ceC(t)

W(d2(j3))xW(d2(j2))

c
+

w(d2(j3))xw(d2(j2))

l
ffiffiffiffiffiffiffiffiffiffi
Txt

p
� ��

where w(.) is the standard normal density function.

A.2 The optimal profile of pension rights in the special case where c=0 and kpO

For the extreme case where c=0 and kpO, the utility function (2) is reduced to

U(W)=
xO for W<h1

aW+b for h1fWfh2

ah2+b for Woh2

8<
: (14)

As in the more general case, using the equivalent martingale approach of Cox and

Huang (1989) for the utility can lead to optimal profile of pension rights contingent

on the pricing kernel jT :

WT=
h1 for jTojk
h2 for jT<jk

�

where

jk=exp
1

2
s2xr

� �
T+l

ffiffiffiffi
T

p
Wx1 W0exp(rT)xh1

h2xh1

� �� �

where Wx1(.) denotes the inverse of the standard normal cumulative distribution

function. Given the one-to-one relation between the pricing kernel and the stock
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index value in the Black–Scholes model, we can express the optimal profile in terms of

the stock index value ST :

WT=
h1 for STfK
h2 for ST>K

�
(15)

where

K=S0exp rx
1

2
s2

� �
Txs

ffiffiffiffi
T

p
Wx1 W0exp(rT)xh1

h2xh1

� �� �
(16)

A.3 The dynamics of the strike and lower threshold in conditional indexation

A.3.1 Version I

Given the rule that the probability of reaching the intention level is unchanged over

time, we have

Pr ST>K
(1)
t jSt, t

	 

=p (17)

Conditioning on the stock index value St at time t, ST can be expressed as

ST=Stexp mx
1

2
s2

� �
(Txt)+s

ffiffiffiffiffiffiffiffiffiffi
Txt

p
Z

� �

whereZ is a standard normal variable. Inserting the expression into (17) generates the

dynamics of the strike price as expressed by (8). Applying the Itô rule to (8), one

obtains the characterization of the strike price by stochastic differential equation (6).

Consider a European digital option which pays 0 at T if the stock price is lower than

the strike, and pays 1 otherwise. We allow the strike Kt to change over time, and

denote the pricing formula of the digital option by F(Kt, St, t). Given the dynamics of

the strike price from version I of conditional indexation, the pricing formula of the

digital option F(Kt
(1), St, t) is simply a deterministic function F1(t)

F(K
(1)
t ,St, t)=F1(t)=exr(Txt)W d (1)(t)

� �
where

d (1)(t)=Wx1(p)xl
ffiffiffiffiffiffiffiffiffiffi
Txt

p

For the dynamics of the guaranteed level, consider the updating in discrete time

first. At time t, the pension value is

Wt=(h2xh(1)1, t)F(K
(1)
t ,St, t)+h(1)1, te

xr(Txt)

At the time t+Dt before applying conditional indexation, the pension value

changes to

Wt+Dt=(h2xh
(1)
1, t)F(K

(1)
t ,St+Dt, t+Dt)+h

(1)
1, te

xr(TxtxDt)
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The pension value after conditional indexation is

Wkt+Dt=(h2xh(1)1, t+Dt)F(K
(1)
t+Dt,St+Dt, t+Dt)+h(1)1, t+Dte

xr(TxtxDt)

Since the conditional indexation does not change the pension value at time t+Dt, we

have Wt+Dt=Wkt+Dt and then the adjustment of h1,t
(1) is given by

Dh(1)1, t=h
(1)
1, t+Dtxh

(1)
1, t=

(h
(1)
1, txh2)[F(K

(1)
t+Dt,St+Dt, t+Dt)xF(K

(1)
t ,St+Dt, t+Dt)]

exr(TxtxDt)xF(K
(1)
t+Dt,St+Dt, t+Dt)

One can decompose the term F(Kt+Dt
(1) , St+Dt, t+Dt)xF(Kt

(1), St+Dt, t+Dt) in the

numerator as

F(K
(1)
t+Dt,St+Dt, t+Dt)xF(K

(1)
t ,St+Dt, t+Dt)= F(K

(1)
t+Dt,St+Dt, t+Dt)xF(K

(1)
t ,St, t)

h i
x F(K

(1)
t ,St+Dt, t+Dt)xF(K

(1)
t ,St, t)

h i
(18)

For the first term on the right-hand side of (18), we have

F(K
(1)
t+Dt,St+Dt, t+Dt)xF(K

(1)
t ,St, t)=F1(t+Dt)xF1(t)=

dF1

dt
(t)Dt+o(Dt)

= exr(Txt) l

2
ffiffiffiffiffiffiffiffiffiffi
Txt

p w d(1)(t)
� �

+rexr(Txt)W(d(1)(t))

� �
Dt+o(Dt)

(19)

where o(.) denotes the higher order term. For the second term on the right-hand side

of (18), F(kt
(1), St+Dt, t+Dt)xF(kt

(1), St, t), the difference is taken on the basis of fixed

strike price, and hence is the difference of the value of a digital option with fixed strike

price. We use F2(St, t) to denote the digital option pricing formula with a fixed strike

K, and

F2(St, t)=exr(Txt)W(d(t))

where

d(t)=d(K, t)=
log(St=K)+(rx1

2s
2)(Txt)

s
ffiffiffiffiffiffiffiffiffiffi
Txt

p

On the basis of the Itô rule, one has

dF2(St, t)=
@F2

@t
(St, t)dt+

@F2

@St
(St, t)+

1

2

@2F2

@S2
t

(St, t)d[S,S]t

= exr(Txt)rW(d(t))+l
exr(Txt)w(d(t))ffiffiffiffiffiffiffiffiffiffi

Txt
p

� �
dt+

exr(Txt)w(d(t))ffiffiffiffiffiffiffiffiffiffi
Txt

p dZt
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Because dF2(St, t) is equal to F(kt
(1), St+Dt, t+Dt)xF(Kt

(1), St, t) and because, for

K=Kt
(1), d(K, t)=d(1)(t), one can write

F(K
(1)
t ,St+Dt, t+Dt)xF(K

(1)
t ,St, t)= exr(Txt)rW(d(1)(t))+l

exr(Txt)w(d(1)(t))ffiffiffiffiffiffiffiffiffiffi
Txt

p
" #

Dt

+
exr(Txt)w(d(1)(t))ffiffiffiffiffiffiffiffiffiffi

Txt
p DZt

(20)

Substituting (19) and (20) into (18), one gets

F(K
(1)
t+Dt,St+Dt, t+Dt)xF(K

(1)
t ,St+Dt, t+Dt)=

(h2xh1, t)w(d
(1)(t))

[1xW(d(1)(t))]
ffiffiffiffiffiffiffiffiffiffi
Txt

p l

2
Dt+DZt

� �

which in continuous time converges to (7). Thus at last we obtain the stochastic

differential equation characterizing the evolution of the guaranteed level in continu-

ous time.

Next we shall show that the guaranteed level reaches the intention level before time

T almost surely. Consider first the stochastic process

dXt=x
Xtffiffiffiffiffiffiffiffiffiffi
Txt

p 1

2
ldt+dZt

� �
, X0=h2xh1, 0

Applying the Itô rule to the logarithmic transformation Yt=log Xt leads to

dYt=x
1

2

lffiffiffiffiffiffiffiffiffiffi
Txt

p +
1

Txt

� �
dtx

1ffiffiffiffiffiffiffiffiffiffi
Txt

p dZt,

or

Yt=Y0+l(
ffiffiffiffiffiffiffiffiffiffi
Txt

p
x

ffiffiffiffi
T

p
)+

1

2
log(Txt)x

1

2
logTx

Z t

0

1ffiffiffiffiffiffiffiffiffiffiffi
Txu

p dZu

Thus one has

Xt=X0exp l(
ffiffiffiffiffiffiffiffiffiffi
Txt

p
x

ffiffiffiffi
T

p
)

h i ffiffiffiffiffiffiffiffiffiffi
Txt

p ffiffiffiffi
T

p exp x
Z t

0

1ffiffiffiffiffiffiffiffiffiffiffi
Txu

p dZu

� �

Karatzas and Shreve (1998) (Section 1.2) show that under the time change

t=TxTexs,
R t

0
1ffiffiffiffiffiffiffi
Txs

p dZs is a Brownian motion defined for 0fs<O. The time-

changed stochastic process is

X̂s =X0exp l(
ffiffiffiffiffiffiffiffiffiffiffi
Texs

p
x

ffiffiffiffi
T

p
)

h i
exp Zsx

s

2

	 

Consequently,

p-lim
t"T

Xt= p-lim
s"O

X̂s =0
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where the notation ‘p-lim’ denotes convergence in probability. Thus, for the stoch-

astic process h1,t defined by

dh1, t=
h2xh1, tffiffiffiffiffiffiffiffiffiffi

Txt
p 1

2
ldt+dZt

� �
, h1, 0=h1 (21)

it holds that p-limt‹T h1,t=h2.

We now turn to the case in which h1,t is defined by (7). Multiplying the right-hand

side of (21) by w(d(1)(t))/(1xW(d(1)(t))) will result in (7). Given that the term w(d(1)(t))/

(1xW(d(1)(t))) is continuous, and tends to a finite constant as time approaches T,

it also holds that p-lim
t"T

h1, t=h2 in this case.

A.3.2 Version II

In this appendix, we shall motivate the rule of conditional indexation as given by (9)

through the case of discrete updating. First of all, by definition one has

K
(2)
0 =max(K

(1)
0 ,K

(1)
0 )

Next we show that the running-maximum relationship holds for any time

t+Dt through mathematical induction. Assume that the statement holds for time

t, i. e.

K
(2)
t =max

sft
K(1)

s

The probability of reaching the intention level at time t+Dt before updating the

strike is

pt+Dt=W mx
1

2
s2

� �
(TxtxDt)x

ln(K
(2)
t =St+Dt)

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TxtxDt

p
" #

and the strike price is updated by

K
(2)
t+Dt=St+Dtexp mx

1

2
s2

� �
(TxtxDt)xWx1[min(p, pt+Dt)]s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TxtxDt

p� �

Given this assumption, one can verify that

K
(2)
Dt=max K

(1)
t+Dt,St+Dtexp mx

1

2
s2

� �
(TxtxDt)xWx1(pt+Dt)s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TxtxDt

p� �� �

=max K
(1)
t+Dt,K

(2)
t

n o
=max K

(1)
t+Dt, max

0fsft
K(1)

s

� �
= max

0fsft+Dt
K(1)

s

Thus we have proved that for discrete updating, the strike price from version II is the

running maximum of that from version I, which motivates the rule given by (9) in

continuous time.
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A.4 Expected utility computation

The appendix shows the computation of the expected utility of the schemes studied in

Section 5 with respect to the piecewise power utility. For the scheme with the ratchet

conditional indexation, the expected utility can be obtained through Monte Carlo

simulations. For the other schemes, analytical formulae can be obtained through

integral calculus.

A.4.1 The expected utility of the optimal strategy

EU(WT)=x
1

1xc
+

h
1xc
1

1xc
[1xW(c1(j3))]+

h
1xc
2

1xc
W(c1(j2))

x
kh

1xc
1

1xc
[1xW(c1(j4))]x

h
1xc
2

k(1xc)
W(c1(j1))

+
1

k(1xc)
(ky)(cx1)=ceC(0)W(c2(j1))+

k

1xc

y

k

	 
(cx1)=c

eC(0)[1xW(c2(j4))]

+
1

1xc
y

(cx1)=c
eC(0)[W(c2(j3))xW(c2(j2))]

where

c1(x)=
ln (x)+(r+1

2l
2)T

l
ffiffiffiffi
T

p

c2(x)=
ln (x)+(r+1

2
1+c
1xc l

2)T

l
ffiffiffiffi
T

p

C(0)= r+
1

1xc

l2

2

� �
c

1xc
T

A.4.2 The expected utility of the digital scheme which is optimal for the utility with

k=O and c=0

As shown in Appendix A. 2, if the benchmark utility function (2) has the following

parameter values : k=O and c=0 then the optimal pension profile reduces to a

digital option. Against the general form of utility function (2), the expected utility of

the digital scheme is

EU(WT)=
h
1xc
1 x1

1xc
(1xp)+

h
1xc
2 x1

1xc
p

where p is determined by (5).

A.4.3 The expected utility of the constant-proportion strategy

Let cc denote the coefficient of relative risk aversion underlying a constant-

proportion strategy. The stock weight of the constant-proportion strategy is

wc=
mxr

ccs
2

Welfare analysis of conditional indexation schemes 349



and the pension rights are

Wc
T=W0exp [wcm+(1xwc)rx

1

2
(wcs)2]T+wcsZT

� �

The expected utility derived from the constant-proportion strategy with stock weight

wc is

EU(Wc
T)=x

1

1xc
+(1xk)

h
1xc
1

1xc
[1xW(c1(j

c
1))]+ 1x

1

k

� �
h
1xc
2

1xc
W(c1(j

c
2))

+
k

1xc
W

1xc
0 exp Hx(1xc)Cc(0)½ �[1xW(c3(j

c
1))]

+
1

k(1xc)
W

1xc
0 exp Hx(1xc)Cc(0)½ �W(c3(j

c
2))

+
1

1xc
W

1xc
0 exp Hx(1xc)Cc(0)½ �[W(c3(j

c
1))xW(c3(j

c
2))]

where

Cc(0)= r+
1

1xcc

l2

2

� �
cc

1xcc
T

jc1=
W0

h1

� �cc

exp[xccCc(0)]

jc2=
W0

h2

� �cc

exp[xccCc(0)]

H=
1xc

cc
r+

1+ccxc

2cc
l2

� �
T

c3(x)=
ln(x)+(r+1

2l
2+l2(1xc)=cc)T

l
ffiffiffiffi
T

p
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