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a b s t r a c t

Symmetries are often helpful in reducing the complexity of the analysis of dynamical systems. Here we
discuss a symmetry that combines a transformation in space with a scaling of time. Examples are given
of a number of nonsmooth dynamical systems in which a symmetry of this type occurs. The time-scaling
symmetry can be combined with return mapping analysis to achieve a dimension reduction in addition
to the one already obtained from considering the return map. The method is applied in a study of Zeno
behavior in linear systems with relay feedback.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of symmetry has been used for the study of
dynamical systems in physics as well as in control theory (cf. for
instance Fagnani and Willems (1993), Marsden and Ratiu (1999)
and Nijmeijer and van der Schaft (1985)). Standard examples
include translational and rotational symmetry. These symmetries
refer to groups of space transformations which map the set of
solutions of a given system into itself. The type of symmetry
considered in this paper is based on a combination of space
transformations and scaling of time. We call this type of symmetry
a time-scaling symmetry.
Time scaling has been employed extensively in control

theory (cf. for instance Kokotovic, O’Reilly, and Khalil (1986)),
but usually not in conjunction with space scaling. Space–time
scaling invariance has been used in geophysics, as a means of
carrying over information from one scale to the other; see for
instance (Venugopal, Foufoula-Georgiou, & Sapozhnikov, 1999).
The basic idea in this application is that smaller features evolve
similarly to larger ones, but on a faster time scale. Typically the
space and time scales are not linearly related. Brownian motion
constitutes another example of a dynamic process that exhibits a
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space/time scaling invariance in which the space and time scales
are not linearly related.
This paper shows that there are close connections between

time-scaling symmetry and the Zeno phenomenon. The latter term
is used in the context of nonsmooth dynamical systems to describe
a situation in which an infinite number of mode switches takes
place in a finite interval of time. We study the Zeno phenomenon
in this paper by making use of Poincaré mappings (also called
return mappings) which are a well-known tool for the study of
nonsmooth systems (cf. for instance Brogliato (1999, Ch. 7)) and
for nonlinear systems in general. The technique makes it possible
to study an n-dimensional continuous-time system through an
(n− 1)-dimensional discrete-time system. It is shown below that,
in the presence of a time-scaling symmetry, a further dimension
reduction may be possible which leads to the study of an (n −
2)-dimensional system defined by the orbit return map that is
introduced below. Under certain conditions, periodic solutions of
this systemgive rise to Zeno solutions of the originaln-dimensional
continuous-time system.
Sufficient conditions for the absence of Zeno solutions have

been developed in many papers; cf. for instance Çamlıbel and
Schumacher (2001), Heemels, Çamlıbel, and Schumacher (2002),
Pogromsky, Heemels, and Nijmeijer (2003), Shen and Pang (2005)
and Zhang, Johansson, Lygeros, and Sastry (2001). On the other
hand, as noted in Lamperski and Ames (2007), not many sufficient
conditions are known for the presence of such solutions. Here,
as in Lamperski and Ames (2007), we focus on conditions of the
latter type. Lamperski and Ames (2007) consider hybrid systems
with resets and find sufficient conditions for Zeno behavior in
situations that generalize the well known bouncing ball example;
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herewe study systemswith continuous trajectories, covering Zeno
examples of Filippov and Fuller.

2. Definitions and first examples

To define the notion of a time-scaling symmetry, we first of all
need scaling of time. Scaling is performed by the multiplicative
group of positive real numbers, denoted by R+. We also need a
family F = {Fα | α ∈ R+} of mappings from Rn to Rn such that
F1 is the identity mapping and Fα1Fα2 = Fα1α2 for all α1, α2 ∈ R+.
Such a family is called a spatial transformation group parametrized
byR+. In this paperwe consider only spatial transformation groups
parametrized by the multiplicative group of the positive reals
and so for brevity we shall frequently omit the qualification. Of
course one can convert from a parametrization by the additive
group of the reals to the multiplicative parametrization by taking
exponentials.
If x is a function from a (finite or infinite) interval (t−, t+) of

R to Rn, then its time-scaling transform with parameter α ∈ R+
relative to the transformation group F is the function Tαx from
(α−1t−, α−1t+) to Rn defined by

(Tαx)(t) = Fα(x(αt)), t ∈ (α−1t−, α−1t+). (1)

The collection of mappings {Tα | α ∈ R+} is said to form a time-
scaling transformation group.
We consider systems described by equations of the form

ẋ(t) = f (x(t)) (2)

on an open subset X of Rn, where f is a function from X to
Rn. In most applications below, the function f is not continuous.
The following solution concept will suffice for the purposes of the
present paper. An absolutely continuous function x : (t−, t+)→ X
defined on a finite or infinite open interval (t−, t+) of R is said to
be a solution of the system above if it satisfies the Eq. (2) almost
everywhere on (t−, t+). A solution xwith domain (t−, t+) is said to
be maximal if there does not exist another solution x̃ with domain
(t̃−, t̃+) ⊃ (t−, t+) such that x̃(t) = x(t) for t− < t < t+, and
at least one of the inequalities t̃− ≤ t− and t̃+ ≥ t+ is strict.
As a matter of terminology, we shall use the term ‘‘trajectory’’
both to refer to triples (t−, t+, x) and to refer to time functions
x : (t−, t+)→ X ⊂ Rn.
The notion of time-scaling symmetry can now be defined as

follows.

Definition 1. The dynamical system (2) is said to exhibit time-
scaling symmetry with respect to a given spatial transformation
groupF if, for any solution x : (t−, t+)→ X of (2) and any α > 0,
the function Tαx : (α−1t−, α−1t+) → X defined in (1) is also a
solution of (2).

It is straightforward to reformulate the notion of time-scaling
symmetry in a ‘‘behavioral’’ (representation-free) way. The time-
scaling symmetry is then a symmetry in the sense of Fagnani and
Willems (1993).
The following are classical examples of systems that exhibit

Zeno behavior. In both cases a time-scaling symmetry is present.

Example 2. In 1960, Fuller (1961) considered the problem of
optimizing the quadratic cost function

∫
∞

0 x
2
1(t) dt for the linear

system ẋ1 = x2, ẋ2 = u subject to the input constraint |u(t)| ≤ 1
for all t . He found the closed-loop dynamics under the optimal
control to be of the form

ẋ1(t) = x2(t) (3a)

ẋ2(t) = −sgn(x1(t)+
1
2
mx22(t)sgn x2(t)) (3b)
where 0 < m < 1. He also showed that the system reaches
the origin in finite time, after infinitely many switches. It is easily
verified that Fuller’s system is subject to time-scaling symmetry
induced by the spatial transformation group Fα = diag(α−2, α−1).

Example 3. Filippov (1988, p. 116) discusses the following
example:

ẋ1(t) = sgn x1(t)− 2 sgn x2(t) (4a)
ẋ2(t) = 2 sgn x1(t)+ sgn x2(t). (4b)

It is straightforward to verify that this system exhibits a time-
scaling symmetry corresponding to the spatial transformation
group Fα = diag(α−1, α−1).

The bouncing ball (see for instance van der Schaft and
Schumacher (2000, Section 2.2.3)) provides another standard
example of Zeno behavior. While this system has resets and so is
not in the class of systems that we consider in this paper, it may be
noted that a time-scaling symmetry is present in this example as
well.We now continuewith a discussion of time-scaling symmetry
in linear systems with relay feedback.

3. Linear and piecewise affine systems

Suppose that the system defined by (2) is linear; we then write

ẋ(t) = Ax(t). (5)

Suppose also that the mappings Fα are linear. It is immediately
apparent from the properties of the matrix exponential that, for
any given n × n matrix K , the collection of linear mappings
defined by αK := exp(K logα) (0 < α < ∞) forms a spatial
transformation group. Conversely, if Fα (0 < α <∞) is a collection
of linear mappings such that F0 = I and Fα1α2 = Fα1Fα2 for
all α1, α2 ∈ (0,∞), then it follows from semigroup theory (see
for instance Curtain and Zwart (1995, Ch. 2)) that the limit K :=
limα→1(Fα − I)/(α − 1) exists, and Fα = αK for all α.
Necessary and sufficient conditions for the spatial transforma-

tion group defined by K to provide a time-scaling symmetry for the
system (5) are provided below.

Proposition 4. The transformation group Fα = αK establishes a
time-scaling symmetry for the linear dynamical system (5) if and only
if

AK − KA = A. (6)

Proof. If z(t) = αK x(αt) where x(t) is a solution of (5), then
ż(t) = αK+IAx(αt). Therefore the time-scaling symmetry holds if
and only if αK+IA = AαK for all α > 0. To see that this relation
implies (6), differentiate with respect to α and set α = 1 in
the result. For the converse, first consider the dynamical system
v̇(t) = Kv(t) with initial condition v0. Define w(t) = Av(t). Then
ẇ(t) = Av̇(t) = AKv(t) = (I + K)Av(t) = (I + K)w(t). It follows
that, for all t ∈ R, e(K+I)tAv0 = AeKtv0. Since this holds for all v0,
we obtain e(K+I)tA = AeKt for all t . The desired conclusion follows
by taking t = logα. �

The following proposition shows for which matrices A
the Eq. (6) can be satisfied.

Proposition 5. Let A be a square matrix. There exists a matrix K such
that (6) holds if and only if the matrix A is nilpotent.

Proof. The necessity follows from the properties of the solutions
X of the matrix equation AX − XB = 0 Gantmacher (1959,
Ch. VIII), when A is looked at as a solution of the equation
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XK = (I + K)X . For a more direct proof, see also Prop. 2.2
in Burde (2005). For the sufficiency part, it is convenient to use,
following Fuhrmann (1976), the linear space XD = {f (z) ∈ Rk[z] |
D−1(z)f (z) is strictly proper rational} where D(z) is a polynomial
matrix of the form diag(zn1 , . . . , znk ). The mapping A : f (z) 7→
(f (z)− f (0))/z is a nilpotent operator on this space, and it is easily
verified that any nilpotent operator on a finite-dimensional real
vector space is isomorphic to a mapping of this form. Moreover,
one verifies by straightforward calculation that the mapping K :
f (z) 7→ zf ′(z) takes XD to itself and is such that AK − KA = A. �

If K solves (6), then so does K +MA for any matrixM such that
AM = MA. In particular, K + µI is a solution if K is, for any µ ∈ R.
Some properties of matrices K that satisfy (6) are given below.

Lemma 6. Let a linear mapping A be given that acts on a real vector
space X. For i = 0, 1, 2, . . . , define Xi = {x ∈ X | Aix = 0}. If
K is a linear mapping such that (6) holds, then all subspaces Xi are
invariant under K .
Proof. The proof is by induction. For i = 0 the statement is trivial.
Suppose that KXi ⊂ Xi for given i, and take x ∈ Xi+1. Then
AKx = KAx+ Ax ∈ Xi because Ax ∈ Xi, so that Kx ∈ Xi+1. �

Proposition 7. Let A be a matrix of size n and suppose its minimal
polynomial has degree n. If the relation (6) holds, then there existsµ ∈
R such that the eigenvalues of K are equal toµ,µ+1, . . . , µ+ n−1.
Proof. We already know that Amust be nilpotent. The assumption
on the minimal polynomial of A implies that the subspaces Xi
introduced in the lemma above satisfy dimXi = i for i = 1, . . . , n.
We can choose a basis x1, . . . , xn of the state spaceX such that, for
all i, {x1, . . . , xi} is a basis of Xi, and Axi = xi−1 for i = 1, . . . , n
with x0 = 0. By the K -invariance of the subspacesXi as shown in
the lemma above, we can write Kxi =

∑i
j=1 kijxj. We have

AKxi =
i∑
j=1

kijxj−1 =
i−1∑
j=1

ki,j+1xj

(I + K)Axi = (I + K)xi−1 = xi−1 +
i−1∑
j=1

ki−1,jxj.

By the independence of the vectors x1, . . . , xn, the relation (6)
implies that kii = ki−1,i−1 + 1 for i = 2, . . . , n (and also that
ki,j+1 = ki−1,j for j < i − 1). Because of the upper triangular form
of K , the eigenvalues of K are equal to the diagonal elements kii
(i = 1, . . . , n). The statement follows (take µ = k11). �

Consider now the class of piecewise affine systems defined by
the equation

ẋ(t) = Ax(t)− b sgn (cTx(t)) (7)
and suppose that there exists a matrix K such that

AK − KA = A, Kb = −b, cTK = λcT (8)
for some λ ∈ R. We can then verify that the system defined by
(7) admits a time-scaling symmetry with respect to the spatial
transformation group defined by Fα(x) = αK x. Indeed, suppose
that x(t) is a solution of (7), and define z(t) by z(t) = αK x(αt).
From the properties (8), it follows that

αK+IA = AαK , αK+Ib = b, cTαK = αλcT. (9)
Therefore we have
ż(t) = αKαẋ(αt)
= αK+I(Ax(αt)− b sgn (cTx(αt)))
= AαK x(αt)− b sgn (α−λcTαK x(αt))
= Az(t)− b sgn (cTz(t)).
For future use we note the following property of systems that

satisfy (8).
Proposition 8. If the system (A, b, c) satisfies (8), then cTAjb = 0 for
all j = 0, 1, 2, . . . such that j+ λ+ 1 6= 0.

Proof. From (6), one easily proves by induction thatAjK−KAj = jAj
for all j = 1, 2, . . .. Moreover, this relation trivially also holds for
j = 0. So for all j = 0, 1, 2, . . .we have jcTAjb = cTAjKb−cTKAjb =
−cTAjb− λcTAjb, that is, (j+ λ+ 1)cTAb = 0. �

4. The orbit return mapping

We revert to the general setting of Section 2. A subset S of the
collectionAC(X) of absolutely continuous functions of time with
values inXwill be said to be parametrized by initial conditions if for
every x0 ∈ X there is exactly one maximal solution (t−, t+, x) ∈ S
such that x(0) = x0, with t− < 0 and t+ > 0. We shall refer to
trajectory sets that are parametrized by initial conditions as state
trajectory sets.When a state trajectory set is given, the value at time
t of the trajectory passing through a given vector x0 is denoted by
x(t; x0), and the domain of definition of the trajectory is denoted
by (t−(x0), t+(x0)).

Lemma 9. Let S ⊂ AC(X) be a state trajectory set that satisfies
a time-scaling symmetry relative to a spatial transformation group
F = {Fα | α ∈ R+}. For every α ∈ R+ and x0 ∈ X we have
t±(Fα(x0)) = α−1t±(x0), and for all t ∈ (t−(Fα(x0)), t+(Fα(x0)))we
have

x(t; Fα(x0)) = Fα(x(αt; x0)). (10)

Proof. Due to the time-scaling symmetry, the function t 7→
Fα(x(αt; x0)) belongs to S; moreover the value of this function at
t = 0 is Fα(x0). The claims now follow from the assumption that S
is a state trajectory set. �

An important tool in the study of dynamical systems is the
so called Poincaré map or return map. This map is defined on a
suitably selected Poincaré section (a hypersurface of codimension
1 that is transversal to the motion defined by the system, cf. for
instance Guckenheimer and Holmes (1983)). In the context of
systems that show time-scaling symmetry, we are interested in
particular in Poincaré sections that are invariant under the spatial
transformation group. A subset S ofX is said to be invariant under
the group F if FαS ⊂ S for all α ∈ R+. In this case we must
actually have FαS = S, because x = FαF1/αx for all x. The orbit
corresponding to a state x0 ∈ S is the set {Fαx0 | α ∈ R+}. Any
invariant set is a union of orbits, and vice versa.
Let a state trajectory set on X ⊂ Rn be given, and let S be a

subset of X. The return set S0 is the set of initial conditions x0 for
which there exists a time τ > 0 such that x(τ ; x0) ∈ S. If τ is
moreover such that x(t; x0) 6∈ S for 0 < t < τ , then τ is said to be
the first return time of x0 and we write τ = τ(x0). If x(t; x0) ∈ S for
all t > 0, then we set τ(x0) = 0. The return map (or Poincaré map)
R : S0 → S is defined by

R : x0 7→ x(τ (x0); x0). (11)

Assume now that we work with a given state trajectory set on
X that shows time-scaling symmetry with respect to the spatial
transformation group F = {Fα | α ∈ R+}.

Lemma 10. Let S ⊂ X be invariant. Then the return subset S0 of S
is invariant as well. Moreover, if τ is the first return time of x0 ∈ S0,
then α−1τ is the first return time of Fα(x0).

Proof. The claim follows from

x(t; Fα(x0)) ∈ S ⇔ Fα(x(αt; x0)) ∈ S
⇔ x(αt; x0) ∈ S.

The first of these equivalence relations follows from Lemma 9, the
second from the invariance of S. �
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Fig. 1. Orbit return mapping. A Poincaré section is shown together with
two dynamical system trajectories. Bold lines indicate orbits of the spatial
transformation group.

Theorem 11. If S ⊂ X is invariant, then the spatial transformation
group restricted to S commutes with the return map. In other words,
for all x0 ∈ S0 and all α ∈ R+ we have R(Fα(x0)) = Fα(R(x0)).

Proof. By the preceding lemmas, we have R(Fα(x0)) = x(α−1
τ(x0); Fα(x0)) = Fα(x(τ (x0); x0)) = Fα(R(x0)). �

It follows from the theorem above that the return map takes
orbits to orbits. In otherwords, points on the same orbit aremapped
by the return mapping to points on the same orbit, as illustrated in
Fig. 1. The quotient map on the orbit space will be called the orbit
return map.
Concretely, the orbit returnmapmay be constructed as follows.

Assume we have an invariant Poincaré section S. Typically the
orbits are of dimension 1 and the orbits on S can be parametrized
by an (n − 2)-dimensional coordinate vector which we shall call
v. One may choose α as a parameter on the orbits, by selecting
an arbitrary point on each orbit corresponding to α = 1. As
a more intrinsic parameter, one may take the return time; by
Lemma 10, the return time scales inversely with α on a given orbit,
so that different points on a one-dimensional orbit indeed have
different return times associated to them. The Poincaré map takes
the ‘‘triangular’’ form R(v, τ ) = (v′, τ ′)with

v′ = R1(v) (12a)

τ ′ = R2(v, τ ). (12b)

The orbit return map is then given by R1. It is a map on an (n− 2)-
dimensional space.
A case of particular interest ariseswhen the sequence generated

by the iteration (12a) is periodic. Consider in particular the case in
which the orbit return map R1 has a fixed point, i.e. in the Poincaré
section there is an orbit of the transformation group which is
mapped to itself by the return mapping. Take an initial condition
x0 on this orbit; we then have R(x0) = Fα(x0) for some α > 0. By
the commutativity of the return mapping and the transformation
group, we have R(Fαjx0) = Fαj(R(x0)) = Fαj+1(x0). The return
times corresponding to the sequence x0, Fα(x0), Fα2(x0), . . . are, by
Lemma 10, τ(x0), α−1τ(x0), α−2τ(x0), . . .. Thus the return times
form a geometric sequence, and if α > 1 the sum of the return
times is finite. In the case in which the Poincaré section is in
fact a switching surface, we have infinitely many events in a
finite time interval; since convergence takes place ‘‘to the right’’
(i.e. there exists a time point tZ such that every interval of the
form (tZ − ε, tZ ) contains infinitely many events), we speak in this
case of a right Zeno solution. In case α < 1, the same reasoning
applies backwards in time and we have a left Zeno solution. In
the examples given above, Fuller’s system has right Zeno solutions,
whereas Filippov’s example admits left Zeno trajectories.
In both examples discussed in Section 2, the switching surfaces
are invariant and actually consist of only finitely many orbits of
the spatial transformation group, as expected since the state space
dimension is 2 in both cases. Because the orbit returnmapping acts
on a finite set, it has to be periodic.

5. Zeno solutions in relay systems

Consider the class of systems (7) under the conditions (8). The
conditions imply that b is a right eigenvector of K with eigenvalue
−1, and cT is a left eigenvector with eigenvalue λ. We know from
Proposition 8 that at most one of the Markov parameters cTAjb can
be nonzero. The case in which all Markov parameters are zero is
not of interest here, and so we require that λ is a negative integer,
and that cTA−λ−1b 6= 0. Actually the behavior of the system (7)
is not affected if we multiply the vector c by a positive constant;
therefore, reverting time if necessary, we can without loss of
generality assume that cTA−λ−1b = 1. This sign of the leading
Markov parameter is the one that has been shown in Lootsma, van
der Schaft, and Çamlıbel (1999) to ensure uniqueness of solutions
in the ‘‘forward’’ sense (without considering left Zeno solutions). A
state trajectory set as in the previous section can be constructed by
considering a collection of initial conditions which is closed under
the transformation group, together with one maximal solution
trajectory for each initial condition.
Our purpose is to obtain a sufficient condition for the presence

of Zeno solutions on the basis of the study of the orbit return
mapping. We will concentrate on solutions of (7) that alternate
between ‘‘positive’’ phases in which cTx(t) > 0 and ‘‘negative’’
phases where cTx(t) < 0. Since the dynamical system (7) has the
property that −x(t) is a solution whenever x(t) is a solution, the
trajectories that alternate between positive and negative phases
can also be looked at as trajectories of the hybrid system with
resets defined by ẋ(t) = Ax(t) − b, cTx(t) ≥ 0 for all t , and
x(τ+) = −x(τ−) when cTx(τ ) = 0. If cTx(0) = 0, cTx(t) > 0
for 0 < t < τ , cTx(τ ) = 0, and x(τ+) = −x(τ−) is on the same
orbit of the spatial transformation group as x(0), then, by the time-
scaling symmetry, there exists a solutionwhich starts at x(τ+) and
which returns to the surface cTx = 0 at a point which is again on
the sameorbit. In thisway, a fixedpoint of the orbit returnmapping
of the original system (7) is obtained, so that Zeno solutions may
emerge in the way described above. We will concentrate on the
route to Zenoness which is based on fixed points of what might
be called the half-return mapping. It should be noted, however,
that all cycles of this mapping also give rise of fixed points of the
orbit returnmapping or an iterated version of it, and these provide
alternative routes to Zenoness.
By Lemma 10, we are not essentially constrained in the search

for fixed points if we assume that the return time τ is equal to
1 (replace if necessary the initial condition x(0) by Fτ x(0)). The
solution to (7) on the interval [0, 1] is given by

x(t) = eAtx0 −
∫ t

0
eA(t−s)bds (13)

and in particular x(1) = eA(x0 − (
∫ 1
0 e
−Asds)b). Since the matrix A

is nilpotent, we have in fact

eA =
m−1∑
j=0

Aj

j!
,

∫ 1

0
e−Asds =

m−1∑
j=0

(−1)jAj

(j+ 1)!
(14)

wherem is the nilpotency index of A.
To find fixed points of the orbit return mapping, we therefore

can look for initial conditions x0 that satisfy cTx0 = 0 and

−αK x0 = eA
(
x0 −

∫ 1

0
e−Asds b

)
(15)
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for some α > 0. A solution exists if the matrix I + e−AαK is
invertible and h(α) = 0 for some α > 0, where the function h
is defined by

h(α) = cT(I + e−AαK )−1
∫ 1

0
e−Asdsb. (16)

In this way we obtain a characteristic equation for fixed points
of the orbit return mapping in the system (7) subject to the
conditions (8). Right Zeno solutions are associated with solutions
of the equation h(α) = 0 that satisfy α > 1, whereas left Zeno
solutions relate to roots α in (0, 1).
The characteristic equation needs to be supplemented by a

viability condition, namely that cTx(t) > 0 must hold for 0 < t <
1. In view of Proposition 8 we can write

cTx(t) =
m−1∑
j=1

1
j!
cTAjx0 t j −

1
(−λ)!

t−λ . (17)

The absence of roots in the interval (0, 1) of this polynomial
in t may be verified for instance by constructing its Sturm
sequence (Jacobson, 1987); positivity may then be checked
by verifying that the first nonzero element in the sequence
cTAx0, cTA2x0, . . . is positive.
Some properties of the function h defined in (16) can be

obtained by making use of Proposition 8 in combination with
power series developments as in (14). In particular, if the
eigenvalues of the matrix K are negative, then limα→∞ h(α) =
(−1)λ+1/((−λ)!). The number h(1) is equal to the coefficient of
x−λ in the power series development of the function (1−e−x)/(1+
e−x) = tanh 12x. These coefficients are zero for even values of −λ
and alternate in sign for odd values. In relation to the situation
at α = 0, note that the function h(α) defined in (16) can also be
written as

h(α) = α−λcT(α−K + e−A)−1
∫ 1

0
e−Asds b.

It follows that, if the eigenvalues of the matrix K are negative, the
function h(α) is of the form h(α) = α−λ/((−λ)!) + higher-order
terms in α. In particular, the lowest-order coefficient is positive.
The sign considerations demonstrate, for the case in which the
eigenvalues of K are negative, that the function h(α) has roots both
in (0, 1) and in (1,∞) if−λ+ 1 is a multiple of 4.
Under the assumption that the pair (cT, A) is observable, the

characteristic equation can be obtained alternatively by applying
the linear mappings cTAj (j = 0, . . . , n − 1) to both sides
of the fixed-point Eq. (15) and making use of the properties in
(9) and Proposition 8. We obtain an upper triangular system of
linear equations for the variables cTAjx0 whose solution depends
on α; the additional requirement cTx0 = 0 then leads to the
characteristic equation. For instance, in the case λ = −m = −n
(note that observability of (cT, A) implies that the nilpotency index
of A is equal to the state space dimension), the equations are

(
1+ α−n+j

)
cTAjx0 +

n−j−1∑
`=1

1
`!
cTAj+`x0 =

1
(n− j)!

(18)

from which cTx0 can be obtained in terms of α. The procedure also
produces the coefficients needed in (17).
A formal statement of conditions for the presence of Zeno

solutions is given in the following theorem.

Theorem 12. Consider a system of the form (7). Suppose that there
exist a matrix K and a negative integer λ such that the conditions in
(8) are satisfied, and cTA−λ−1b = 1. The system (7) admits a right
Zeno solution if there exists α > 1 such that
(i) the matrix I + e−AαK is invertible,
(ii) h(α) = 0, where h is the function defined in (16),
(iii) the polynomial appearing in (17) with x0 defined by

x0 = (I + e−AαK )−1
∫ 1

0
e−Asds b (19)

is positive on the interval (0, 1).
If the same conditions hold for a number α ∈ (0, 1), then the

system admits a left Zeno solution.
Proof. Assume that the conditions hold with α > 1. Define x0 as
in (19). The function x(t) defined by (13) on the interval 0 ≤ t ≤ 1
is a solution of (7) and satisfies x(0) = x0, cTx(0) = 0, cTx(1) = 0,
and cTx(t) > 0 for 0 < t < 1. Moreover, the condition h(α) = 0
implies that x(1) = −αK x(0). By the time-scaling invariance due
to the conditions (8), the function y(t) = αK x(αt) (0 ≤ t ≤ 1

α
)

is a solution of (7) as well. On account of the sign symmetry and
the time-homogeneity of (7), the same is true for the function
z(t) = −y(t − 1) (1 ≤ t ≤ 1 + 1

α
). The concatenation of x(t)

(0 ≤ t ≤ 1) and z(t) (1 ≤ t ≤ 1 + 1
α
), which with some abuse

of notation we denote again by x(t), is a solution of (7) on the time
interval 0 ≤ t ≤ 1 + 1

α
; in particular, note that x(1) = z(1) so

that continuity is ensured. The newly defined function x(t) satisfies
x(1 + 1

α
) = α2K x(0). Extend x(t) once more by defining x(t) =

α2K x(α2(t − 1 − 1
α
)) for 1 + α−1 ≤ t ≤ 1 + α−1 + α−2 + α−3;

the function constructed in this way is again a solution of (7).
Going on in this way, we find a solution that undergoes switches
at times

∑k
i=0 α

−i for k = 0, 1, 2, . . .. Since α > 1, the event times
converge to a finite limit and we find a right Zeno solution. In the
case 0 < α < 1 we can follow the same trajectory in the reverse
time direction and in this way obtain a left Zeno solution. �

Example 13. The following system was studied by Pogromsky
et al. (2003):

ẋ1(t) = x2(t) (20a)
ẋ2(t) = x3(t) (20b)
ẋ3(t) = −sgn x1(t). (20c)

The system satisfies (8) with K = diag(−3,−2,−1) and λ = −3.
The sign considerations above already demonstrate the presence
of roots both in (0, 1) and in (1,∞). In this case, because the
expression (17) is a third-degree polynomial with negative leading
coefficient having zeros in 0 and 1, the condition cTAx0 > 0
is necessary and sufficient for positivity of cTx(t) on the interval
(0, 1). From the Eq. (18) we find (1 + α−2)cTAx0 = 1

2 −
α
α+1 so

that cTAx0 > 0 for α < 1. This shows that at least one left Zeno
solution is present, as was already established in Pogromsky et al.
(2003) by a different method. Since cTAx0 < 0 for α > 1, no right
Zeno solutions arise in this way. The characteristic function is

h(α) =
α3(α2 − 3α + 1)
6(1+ α2)(1+ α3)

which shows more specifically that there is exactly one root in the
interval (0, 1), namely α = 3

2 −
1
2

√
5.

6. Conclusion

Dimension reduction by means of the Poincaré mapping is
a well known technique in the analysis of dynamical systems,
in particular in the study of periodic solutions. This paper has
shown that under certain conditions a second dimension reduction
is possible. The technique has been applied to give sufficient
conditions for the presence of Zeno solutions in a class of linear
systems with relay feedback.
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