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5.1 Model-predictive control of hybrid systems 

Model-predir·riPe m111ml (MPC) is a widely used technology in industry for control 

design ()f highly co1111i lex mult ivariahlc processes. The idea behind MPC is 10 starl 

w ith a model of tile open- loop process that explains the dynamical relations among 
system·s var iables (comrnanc..I inputs. internal states. and measured outputs). Then, 

constraint speci fication~ on system variables are added • . uch as input limitations 

( typically due to actuator saturation) and desired ranges where states and outputs 

should remain. Desired performance specifications complete the control problem 

setup and are expressed through differen t weigh ts on tracking errors and actuator 

efforts (as in classica l linear quadratic regulation). Al each sampling l ime. an open­
loop optimal control problem based on the given model. constraints. weights. and 
with initial condi tion set at the current (measured or estimated) state. is repeatedly 

solved through numerica l optimi7.ation. The result of the opt imi7at ion is ;111 optinwl 

sequence o f future control moves. Only the first sample of ~ uch a sequence is actu­
ally applied to the process; the rernaining move,< are d iscarded. A l 1hc next time step. 

a new optimal comrol problem based on new measuremems is solved over a shif1ed 

prediction hori1on. 

A l'ler quickly reviewing the basics of MPC based on linear modeb. in lhi~ sec-

1ion we introduce two hybrid model classes usefu l for MPC design. discrete hybric..I 

automata {DHA) and mixed logica l dy namical systems. and rev iew the mnin ide:.1s 

of' hybrid MPC. 

This section is hased on the paper 1581 for reviewing the hasics of model­

predictive control (MPC), and on 16321 for DHA and MLD models used in MPC 
or hy brid systems. 

5.1. 1 Linear moclcl-prcdictivc control 

The simplest MPC algorithm is based on lhc l inear discrete-time prediction model 

x (k + I) = Ax(k) + B1t(/•) (5. 1) 

of the open- loop process. where x (i.·) E IR" is the state vector at lime k. and u (k ) E 
R'" is the vector of manipulated variables to be determined hy lhe controller. anc..I on 

the solution of the fin ite- tirne-optimnl control problem · 

N - 1 

T L T T 111i11 x NP x ,., + x (k )Q x (k ) + 11. (/•) R.n (J..). 
II 

b <O 

:-;.I. x (k + I) = Ax(A·)+ Bu(k ). /.; = 0 . .. .. N - I. 

X I) = :i;C/.:) . 

1tmi 11 ~ 'U(k) ~ Urn;i •• h· = 0 . .... N - I . 

11111; 11 :::; Cx(A·) :::; y,,,,,,, . k = I , .... N. 

(5.2<1) 

(5.2b ) 

(5.2c) 

(5.2d) 

C5.2c) 

where N is the prediction horizon. U ~ lu ,.cn) ·· ii,.<N t ) ]T E IRN "' is these­

quence of manipulated var iables to be op1imi7.ed, Q = QT ~ Cl. R. = R. r > Cl. unc..1 
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f> P 1 O arc weight matrice~ of appropriate dimensions defining the pcrfor­
nwncc inckx. u 111; 11 • u 11111x E JR"'. 1Jmhi• 1J , 11 ,.~ f' IR.1'. C E IR1'x" defi ne constraint.-. 
nn inptll and ~late variables. respectively, and " < .. denotes component-wise i ncqual­

it ics. By s11hstituting x (k) = A~ :r(k) + 2::~ ,: A 1 nn(J.· - 1 - j) . (5.2) can he recast 

a~ the t1uadratic programming (QP) problem 

u (:r(/•)) " 111·~111i11 
u 
,...1. 

~U r H U t x 1 (/.·)C 1 U + ~xT(k)Y:r. (/.·). 
2 2 

GU < W :r(k) . 

(5.Ja) 

(5.3h) 

where U (.r (J.)) f 11. 1 1nu:r!kll n 1 c" 11< :r1~ ll J 1 is the optimal. olution. /-/ 
fl 1 ' (I and C. Y . G. \V. S arc mat rice~ of appropriate dimension~ 157. 67. 691. 
Note 1h:11 Y i' not needed 10 compute U ' (::r (/>)). as it only affects the optimal va lue 
nt (:iJn). 

The Ml'C control algorithm is ha~cd on the l'ollowing iterations: at t ime h'. mc:i· 
'lire or C\t 1111:1tc the currenl state :r.(k). solve the QP problem (5.3) to get the optimal 
'cquencc of fu1urc input move' U (:r(/.')). apply 

11(/.-) 1111(:r(k)) (5.4) 

to the proce". di,c:ml the remaining optimal move'. and repeat Lhc procedure again 

at time k ·I I . 
In the ab,cncc nf con~traint' (5.211) (5.2e). for l\l -+ -x: (or. equivalently. for 

V < -x and hy choo,ing P "' 1hc sol111ion of ihc algebraic Riccati equation ;11.soci ­
atcd With 111atrice~ ( A. B ) and weigh•~ (Q . n }l. lhc MPC control law (5.3)- (5.4)CO· 
inddcs wi1h 1he linear quadratic regulator (LQR) 1671. Frnm a dc~ign v iewpoin1. the 
MPC 'e111p (5.2) can therefore he 1hn11gl11 of' a' a way of bringing the LQR method­
ology tn sy,tcm~ with cnnstrainl\. 

The ha,ic MPC ~etup (5.2) c:rn he extended in many ways. In particul:ir in trad.· 

ing prnhlcm' U\ually one has to make a certain output vector u (k ) C:r(k) l IR1' 

tr.ick a reference 'ignal r (k) E R1' under con,traint' (5.2d)-(5.2e). In order to do <;o. 

the co't function (5.2a) is replaced hy 

\ I 

L (1}(~) - r(~')) 1 Q ,,{u (k) 1·(k)) + ..lu r {k) R..lu(k). (5.5) 

~ II 

where Q,
1 

Q;: > O e: !Ht''"'' is a matrix of output weights. and the increment> or 
command variab les ..Ju( ~· ) ~ n (k) n (A· I ) arc the new optimiz<llion variahlci.. 
poi.,ih ly funher constrained hy .... h1 ,,,; 11 < .... hi (I>) $ .LJu,,,;,,. In the above tracking 
<;Ctup vcc1rn [J- 1 (/,·) ,:1 {k) n '1 (I I )J t replaces x(k ) in (:'iJb) <md the control 

law {5 .-1 ) hccomc~ 11 (1.-) = n(~· - I ) + .J110 (:r:(~·). 1·(1.-), t1(J.· - I )). 
The 'tandard way of computing 1hc linear MPC control action. which i). imple­

mented in 11101;t commer<.:ial l\IPC package-.. i' to 'olve the QP problem (5.3) on-line 

at each time k (for example in the MPC Too/ho\ for MATLAB 1691). 

-

s,c41 Ftnt.te state _,_. =- 0 '!.f.~ / 
0=0 

•Pl 
11,1k1 
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Fig . .:'i. I Di.;crcte hybric.J :1u1mnaton <DHA ) a~ the conncc11on of ;1 h111tc·,tatc 
machine (FSM) and :1 \w11chcd a01ni- 'Y'lcm (SAS). 1hmuj!h a mode -.clccror 
(MS) and an e~ent gencra1or (EG). The output ,ignals arc nmi11cd for clarity. 
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Besides MPC scheme<. ba~ed on lincur prediction models. several fonnulation~ 
of MPC hased on general smooth nonlinear prediction 111(1clel:- (as well as on un­
certain linear models) exist. Most of them rely on nonl inear optimi1ation meLhocls 
for generic nonlinear functions/constraints to compute the eo111rol act ions. and :ire 
therefore mc1rc rarely deployed in prnc1ical applica1ioni.. 

MPC hased on hybrid dynamical models has emerged us a very promii.ing ap­
proach to handle ~witching linear dynamics, on/off inputs. logic \late\. <L' well a~ 
logic constrainL' on input and state v:iriablci.1621- Here below we review a modclino 
framcworl. for hyhrid sy~tcm' that i' tailored 10 Lhe synthe'i~ of M PC controller<;. e 

5.1.2 Discrete hybrid a utomata 

Oiscre1e hybrid auiomma (DI IA) 16321 arc the interconnection or a finilc· i.tate ma­
chine and a swi1chcd linc<tr dynamical system through a mode sclcc1or ;ind :111 event 
generator (Fig. 5.1 ). 

l.n the fo llowing we ~ill use the fact that any discrete variahlc fl E { n 1 •..•. {l; }, 

admi ts a Boolean encochng n E {O, I }"(.11. where rl(.i) is the numhcr of bit~ used to 
rcprci.cnt fl 1 • •••• fl 1. From now on we will refer to ei ther the variable or its enco<Jing 
with the same name. 

Switched affine system (SAS) A i.witchecl affine ~y~tcm i ~ a collection of linear 
alline 'ystems: 
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:r.,.(k + I )= A ,(A ,:r., (/.·) ~ G ,1qn ,.(k) + f ,(l·)· 

y , (k) = C .iA 1x,(k) + D ,1A)'lt ,.( J.·) + g ,CkJ · 

CS.6'1) 

(5.6h} 

where k f 7, 1 i~ the <ime indi<:a1nr. :r., E .1: c IR"· is the con1i11uo11s mlle vec­
tor. n, c ll. (" IR"' is the exogenous co11 t inuou~ input vector. y , f= y, C. RI'· 
i' 1he cotitinunu~ output vech1r. (A, . 13,. f ,. C ,. D ,. g , },FQ is a collec1in11 of ma-
1rice' of npponune dimension'. and 1hc mn<le 1(/.·) E Q ~ {I ..... ,.,} i' an tnpul 
'ignal I hat dmmc\ <he affine '>la<e updated) nanuc~. An SAS can be rcwri11cn a\ 1he 
comh1 nation of linear term~ and if-1hr11-t•l1e rule\: the '1a1c-upda1e equation (5.6a) i'> 
cqui\ a lent 111 

zi(k) ~ { A t.l\.(k) 
0 . 

8 111,(1.-)+ / 1.if(i(k)= I ). 
of h<' l'WiS<'. 

z.(~·) = { A •. r., (A·J-1 a , n,(I.·) + f •. if' (i(kl.= s) . 
0 . o ll1C'rWIS<'. 

.r.,(/. + I )= Lz,(k ). 
I I 

'~hcrc z, (I,) ( R" . 1 I . .... ·'·and C.5.6hJ ad mil\ a :.1milar 1ran~forma1ion. 

(5.7a) 

(5.7b) 

(5.7c ) 

E,·cnl i:cncra tor (EC ) An event generator'' a mathematical ohjcct that generate.., 
a logic \ign:tl .tccnrding 10 the \ali\faclion or ii linear aflinc COO\lntilll 

15, (k) ! 11 (.1:, (h:), n,.(k).k). 

where j' 11 : .¥,. x U, x Z n - [> ( { 0. I f "· is a veclOr of dc..,t-ript ivc 1'11nc1io11s 
of a line:1r hyperplane. and Z 11 " { 0. I .... f i' the ~cl of 11011ncga1 ivc integer .... In 
par1ic11lar 1lm•1'll11ld <'l'ent~ arc modeled a' [t5; (k) I) -4 la T:r.,.(k) + /1T 11 ,.(Vi < r·] . 
where the 'upcr,cript i denote' the 1-th component of a vector. 7i111P '' ''<'Ill,. can he 
al'n modeled a': !1~; (/. ) = I] - fl(/.) In . "here l (k + I ) = I(/.·) +TA denote' 
time. I i' 1hc 'ampling time. ;111d 10 i.., a given time. 

Fini te ~hllc m:ichine (I'S 1 ) A fini1c-,1a1c machine (or automaton) i' a d1M;rc1c 
dynamical proccs' that evolves ac.:cording to a logic ... 1a1e update function : 

(5.9a) 

where ,,., ~ .1'1 r I IJ. 1 } "• i" the Bnolc;m ~ta lc. 'IJ.t E U1 ~ { 0. I f "'' is 1hc ex­
ngcnnu' Boolean inpul. 6, (k ) is the endogcrH)U\ inpu1 coming from 1he F.G. and 
! 11 .r, x U 1 x 71 - ,l', is a de1cnnini,1ic logic function. (Herc we wi ll only re­
fer 10 ') nchmnnu' finite-state nwchinc<.. where the transi1ions may happen only at 
':11npling 111nc~. The adjective ··~ynchronou," will he omi11ecl for brevity.) An FSM 
can ~ conve111cn1ly repre.~e111cd u'ing :in oriented graph. An FSM may al\O lm\c an 
<l'-'tx:1:11cd Boolean output 
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Y1 (k) 9 11(:r.1(k). 11t(k) . i), (/>)). (5.9b) 

where ?Jr E Yt ~ JO. I}''' ;111d g1 : .l ', x U, x n - Y1 • 

1odc selector (MS) T he logic !\lalc :r.,(k). <he Boolean inpu1:. u r(k). and Lhe 
evcnls Ii, (k) select <he dyn;.imical mode i(/•) nf 1he SAS through a Boolean fum:1io11 
f\I : . ti x U, x T> - Q. which i' 1herefore called a modr 1rlN·111r. The output of 
1hii. function 

1(/.·) /M(:1·,(k). u r(k) . Ii, (k)) (5.10) 

i' called the rwlfrt• mode. We '"Y that a mode sll'il<'h occur' at \tcp /.· if 1(k) :j; 
i(k I ). ole that. in conll'a\I tn cnntinunu,-timc hyhrid model,, where i.witches 
c<111 occur at any time. in our diM.:rete-timc \elling a mode i.witch can only occur at 
~ampling inslanL~. 

DHA arc rela1cd to hyhrid <1111m111110( HA)I 15 1. the mnin differcm:e i~ in the 
lime model: DH A admit lime in the n<llural numbers. while in I IA 1he 1i111e is a 
real number. Moreover. DI IA models do not allow inswntaneous 1ran..,i1ions. and are 
deterministic."' oppo,cd 10 I IA where any enabled 1rnnsi1ion may occur in 1ero time. 
Thi, ha:. two con~equencc': (i) DI IA do nol admit f ive- luck~ (infinilc 'wi1ches in 1.cro 
lime). CiiJ DI IA do nol admit Zeno behavior' (infinilc swi1cl1c' in finite lime). Finally. 
in DI IA model,, guard'. re\CI map'. and conlinuou'> dynamic' are limited to I incar 
aflinc function\. Moreover. contrarily 10 HA. in DHA the con1in11ou,dynamic' i~ not 
a property of the 'late of the au10111a1on hut i' \Clectecl hy the mode ,efcetor (MS) 
ac.:cording ;1lso 10 di<.cre1c input' and event~. For equivalence rc\1111' llCtween linear 
hybrid automata anti co111inuou,-1ime piecewise affine ~ys1c1m 'cc 11 :16 J. Re,cl map ... 
in DI IA can he tlealt wi th a~ <b<.:rihcd in 16'.'21. 

5. 1.3 M ixed toi::ical d ynamical systems 

Thi~ :.cc1io11 describe~ how to 11-;11l\for111 a DHA into an equivalent hybrid model 
dc,crihcd hy linear 111ixcd-in1cgcr equation' and incqu:ili1ic1,. hy gcnerali1ing: ~cv­
cr-.il re,uh' that have already appeared in the literature 16~. 3:11. -155. 553. 66-1 f. 
111c h)hrid ~y~tem<. modeling language HYSDF.L introduced in 16321 and af,o de­
'crihed in Chap1er 10 wa' dcvclopc<l 10 de,crihe DHA and tn a111oma11cally operate 
lhe 1ran,forma1ion'. 

Logical function$ Boolean function' can he equivalently C\prc ...... cd by incquali­
tic:. I 1651. 

In order 10 in troduce our no1a1ion. we recall here some hn'ic dcli 11 i1ions of 
Boolc.1n algebra. A variable X i' a llo11/ra11 rnria/Jll' i r \' E { O. I } . A /Joo/eon 

e.rpressim1 i' inductively defi ned (lor 1hc s:ike of ~imp l icity. we wi ll ncglecl prcce­
denc.:c) hy the grammar 

u :: s I ·01 l~•1 v m2i1.'>1 m-ik•1 111121 

Ot • ''1101 ....... m-1!'1>1 - '~!H111 ). (5.11} 
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where .\· i~ a Boolc;in variable. and 1hc logic operator~ .., (not). V (or)./\ (and). ~ 
(implied hy). - (imrlic, J. - (iff) have the u~ual 'cmantics. A Boolean expression is 
111c·11111111wtil't• 11111111t1/ fmw (C Fl or pmd11c1 of mm.~ if it can he wri tten according 
to the following grammar: 

() ::= 11•1<1> /\ , ... 

~'· ::= t/11v 11-.d ,x ix, 
(5. 12) 

(5. 13) 

where ( • arc rnlled the 1er111.1· 1![ the pmt/111·1. and \ arc the 1er111s of 1/w .1w11 !/'. A 

C Fi, minimal if it ha' the minimum number of term). of product and each term has 
the 111111imu111 numhcr of tcnw. of ~um. Every Boolean expression can he rewritten 
a' a mmimal C F. 

A Roolcan c~pr.:"ion f will he al.;o called a Roolea11 fi111r1in11 when i" used to 
dd1nc a literal S ,, ""a function of S I · .. , \',, 1: 

(5.14) 

In gc11cral. we can de fine rc lalinns among Boolenn variahles X1 ..... .Y,, through a 
1100/c-1111 /111'11111111 

F { .\'I . .... .\'" ) I. (5. 15) 

where S, ~ {O. I}. i I ..... 11. otc 1ha1 each Boolean func1ion b al'o a Roolcan 
formu la. hu1 not vic:c ver).a. Boolean formul:1' can he equivalently translated into a 
~Cl or integer linear incquali lics. For instance. x I v X2 = I is equivalent to X1 + 
\'~ > I 16641. The 1ran, 1a1ion can he performed c i1hcr using an sy111/J11/il'll/ mcthod 
or a l!<'llllll' lrica/ mc1hod (~cc dc1ails in 1632f). In particular. Ilic 'ymbolical 111e1hod 
con'i'" of lirM converting (.:'i. 141 or (.:'i. l.:'i ) into it<. CNF 

,,, ( ) A V x, V ,x, · 
I I 1~ 1', 1f N, 

with f\11 . P, C 11 .. ..• 11} V,1 
linc:ll' inequalities is 

I . . . .. 111 . Then. lhc corresponding set nf in teger 

<' E. '" \', + 2:., \i, ( I - .\', ). 

{: (5. 16) 

Conlinuous-logic inlcrfaccs By using the ~o-call cd "hig-M" technique. events of 
the form (.:'i.R) can he cquivalcnll) cl<pres~cd a' 

Ji1(.1, ( ~· ) . 11, (/.-}. /; ) S \/ '( I ,s: ). 
/j1(.1", (k). 11,.(k ). k ) > m'rl: . i = 1 .... , n,. 

(5.17a) 

(5. 17h) 
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where /ti'. 111; arc upper and lower bClunds. respec1ively. on /j1(.r,.( k). 11 ,.(k), k ). A~ 
we will point out in Section 5. 1.3. sometimes. from a computational point of view. 
it may be convenient to have a l-ystem of inequalitic.' without ~trict inequalities. In 
thi ). ca~e we will follow the common practice (6641 of replacing the ~trict inequal­
ity (5. I 7h) by 

/j1(.r,(k). 11,.(l·).k) ~ f + (111 ' - r)rl:. (5.17c) 

where c is a small po~ it i vc ~calar. e.g. the machine precision. although the equiva­
lence does nol hold rm() < /i'1(.rr( l·). 11. .. (k). l· ) < <. as the numher). in 1hc in terval 
(0, <) cannot be rcprc).cntcd in a computer. 

The most c:ommon /01:ic to co111i111w11.~ interface is the if-then-cl'c conMruc1 

(5.18) 

which can be translated into 1661 

( Ill '}, J\/1 )<~ +:: < t1 2.I' -I /12 11 + f2 . (5. 19a) 

(1111 - A/2)~ :: < 11 2.1· '1211 - h · (.:'i . 19bl 

(111 1 i\/2)( 1- rl) I::~ 111 .r+ /1111 + /1. (5. 19c) 

( 1/11 i\/i)( I -~)-: < 111 .r - '1111 - /1. (5. 19d) 

where fl I,. 111, arc upper and lower bounds on 11 ,.r + /11 11 I- /,. i = I . 2. 1~ E { 0. 11. 
• f IR, .r E R" . 11 E IR"'. Note that when 112 • /1'J. . h arc .rero. (5. 18) (5. 19) coi nci<le 
wilh 1hc produc1 :: r5 · (11.r + /111 + f) descrihed in [664]. 

ConlinumL~ dynamics A' already me ntioned. we wi ll deal wi th dynamic' <le­
scrihed by linear affine difference equal ion" 

.I', (k + 1) L :.( ~·). (5.20) 
I I 

Mixed logical dynamica l systems In 1621 the m1thors proposed d i ~crc1c- 1 ime hy­
hrid 'Y'lems deno1ed a' mixed logical dynamical (MLD) "Ystcm'>. An MLD sy,tem 
i<. described hy 1hc following re la1ion': 

:i:(k - 1) = Ax(~·)+ B 1u (k) + B 26(k) + B 1z (k) + B·,. 
y (k) = Cx(/") -l D 1 u (k) + D ir5(k ) I- Daz(~·) + D r,. 

E-i~(k ) + E :1z(k } S E 1n (k} f- E1:r:(k } + E r.. 

E21~(k ) + Eaz(k) < E 1n (k ) 1 E 1x(~· ) + E r.. 

(5.21 a) 

(5.2 1b) 

(5.21c) 

(5.2 ldJ 

where x E IR" x { 0. 1 I"' is a vector of continuous and hi nary <.I ates. u E 
R"' x {O. qm, arc lhe input<;, y E RI'· x {O. 1}1' ' the outpuh. i5 E {O. I jr, . 
z E R" represcnl auxiliary binary and con1inuou~ variahles. respectively. and A . 
8 1• B 2• B:i. C. D 1• Di . D :1 . E 1 ..... E r. . and E 1 .... . .E,., arc ma1rices of~uirnb le 
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cJ1111cri-irnh. Given the current ' late :r( ~·) and input u(~·) . 1hc time-evolution nf"{5.2 I) 
b determined hy 'olving il (h·) and z(k ) from (5.2 1c)-(5.2 1d). and then updating 
J: 1 ( q and !/ (Vi fro111 (5.2 la)- (5.2 1 hJ. Sin<.:e the problems of synthesis nnrl analys is 
of Mt.D models arc tackled u~ing nrtimi:rat ion techniques. we have rcpla1:ed strict 
i ncc111ali 1ie~ a' in (:'i. I 7b) by non-strict incqualitic~ <ls in (5. I 7c). (011c mny nlso cx­
plici1 ly include in (5.2 1) .. 1rict incqualitic,. "'well as equa l itic~.) A formal definition 
ol wcll-po~cdncl-s for MLD 'Y'tcm' :rnd a t e~t 10 a~l.ess the wcll-po,cdne~' have 
been prc,entcd in (o2(. 

For equi\'alcncc re,ult~ hctwccn MLf) 'Y'tem' and PWA <>y<;tc1m. \CC Sec­
lltlll .'i.:t 

5.1.4 llybrid model-predictive cont rol 

MJ>C' ha,cd on hybrid dyna111ic;1I models h;" cincrged in rcccnl year~ a' a very 
promising appro;1ch to nperate switching lim:nr dynamics. 011/o lT i11 p11ts, and logic 
'l:lte,. ' 11hjcc1 10 co111hina1iom. of linear and logical constraints on input and state 
vari;1hJc, IC1'.!1. Hybrid dynamic<; arc often so complex that a satis factory fccdhad. 
cnntrolla c;111no1 he l>ynthc~i1cd h) u~ing analytit:al tool~. and hcuri~tic tlcs1g11 pro­
cedure\ "'ually require trial ancJ crmr ,c...,i<m' and cxten,ive teMing. and arc time 
wn,11mi11g. l"O\tl). :md often inadequate to deal with tile complexity of the hybrid 
w ntml problem properly. 

A' for lhc linear MPC cal>.:. h)hrid MPC' dc~ign i~ a ~ystcmatic appmach to meet 
performance and cnn,traint ~pecilication' in 'Pile or the aforementioned 'witching 
amnng cliffcrc111 linear dynamic~. logical '\ale tran~itions. and more comple:-. logi1:<1I 
c.:onMrai nt ~ on ~ystem"s variuhlc, . The approach consists of modeli11g 1hc ~wi 1ch ­

ing npe11-loop procesi. and w11s1r;ii 111 ~ as a cliscrct.c hybrid automaton usi 11g 1hc lan­
gua!!C l/ YS/)~/, 1632 1. and 1he11 a1110111 a1ical ly tnmsl"orming lhc model into lhe MLD 
form (5.21 ). 

Tlw a"oda1cd linite-horiwn optimal con1rol problem hased on quadratic w~I' 

tal..c' 1hc form (5.J) with 

u 

'uh1cct to the further rc~tri1:1inn that 'omc of the components of U mu\t he either 0 
or I. The problem b therefore a mixccl-i11tegcrquadrnti1: programming ( M IQP) prob­
lem. for which hoth 1:ommercial ( I 9X. 3341 and public.: domain solver' (such n' the 
one in 161 l l an.: available. When infinity norm~ llQ:c(k)ll"' · II Rtt(k )ll,. II P.1:( ~·)11, 
<1ri.: u~cd in (5.2a) in place of quadrat ic costs. the opt imitation problem hcc.:0111cs a 
111ix.ctl-in11.:gcr linear programming (M I LP) problem 157. 63 1. which can he also han­
dled hy efficient public clo111ai11 ~ol vcrs such a~ 14:1.J]. a~ well ai. hy co1111m:rciul 
,nJvcr~ I 198. ~3.J I. 

llnfrn1una1ely MIPs arc NP-complete problem,. However. the <.tatc of the art in 
'oh mg MIP problems is growing con,1antly. and prohlems of relatively large 'i;c 
can he ' lllvcd q1111e cllicientl)- While MIP problem~ can alway, he 'ohcd to the 
global optimum. closed-loop 'tahilit) propertic' can he guaranteed "' long a' the 
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optimum value in (5.3) decre<i~c' at each time step. Usually. MIP 'olvcri. provide 
good rcasihle <;olution' wi1hin a rcl<nively short 1imc compared to the total time re­
quired 10 fi nd and cert ify the glohal optimum. In the worst-case the complexity ol 
opt imully computing the cont rol ac1in11 u (k) on-line at each lime k depends expo­
nentia lly on the number o r i111cgcr variables 1553]. In principle. 1his limits Ille scope 
of applicalion of the proposed method to re latively ' low system~. ~int:c the 'amplin11 
lime should he large enough for real-time implementation 10 allow 1hc worst-c<L'c 
computation. 

In general. an 11 P 'olvcr provides 1he 'olut ion after 'olving a 'equenec of re­
laxed 'tandard linear (or quadratic) problem' (LP. QP). A poten1ial drawback of MIP 
i~ ( I) the need for convening the di,crete/logic pan o f the hyhrid problem into mixed­
intcger incqualitie~. therefore l o~ing mo" of the original cliserc1c ~lruclUrc. and (2, 
the foci that it' cfticicncy mui nly relic' upon 1hc 1igh111es~ of 1hc continuous LP/QF 
relaxa1ions. Such drawbat:ks arc not suffered hy techniques for solving conMraint i.:tl· 
isfac1 ion prob lem~ CCSP). i.e. tile prohlcm or determining whc1hcr a ~ct of con:;traint~ 

over discrete variables ca11 he sath. fi cd. Under the c lass or CSP solvers we menlior 
con,lraint logic programming CCLP) 14391 and sa tisfiahili ty (SAT ) ~o l ve r~ 1287]. the 
latter ' peciali1ed for the stllbfi.ihi lity of Boolean fonnulas. The approach of 1601 
combines MIP and CSP technique' in a <.:o-operativc way. In par1icular. convex pro· 
gramming for optimi1ation over real variables. and SAT 'olvcl'\ for determining the 
<,;lfi<;fiahility of Boolean formula\ (or logic con,lrain1'1. arc combined in a ~ingll 
hranch and hound 'olver. 

Another approach for reducing the complexity of on-line computation' is to loo~ 
for 'uhoptimal <;olution~. For in,tance in 13371 the authcm, propo~c to ~uitably con· 
i-train lhe mode seque nce over the pred iction hori/.On. so 1h:11 on-line optimiLatior 
is solved more quicl-ly. Although t: lo.~ed-loop srnhi lity is ., till guaranteed by lhis ap· 
proach. clearly in gene ral 1hc overa ll tracking performance nl" the recdbat:k loop get~ 
deteriorated. 

In the last decade. erplicit 11111de/-predi("ffrf' r·o111ml ha~ been propo~cd as a wa) 
lo comple1ely get rid of the need o r on-line i;ol vcr~ (<.cc I 11 I for a 'urvey on cxplici 
MPCJ. 

For linear MPC. 10 get rid of on-line QP an approach tn C\aluate the MPC 
law (5.4) wa.~ propo1ocd in (671. Rather then 'olving the QP problem (5.3) on-lim 
for the current vector x(~·). the idea i' to <;o)vc (5.3) nff-line for all vector<; x withir 
a given range and mal-c tile dependence o r 11. on x Pxpli<"it (ralhcr than implicitl) 
defined by the oplimitation procedure (5.J)). 111e key idea i' to lrcm (5.3) as <111111/ti· 
/llll"<11111'1ric qu;idra tic prngra111111ing prohlem. where :r.(k ) is the vector or parameters 
I 1 111rns nut tha11he optimi1er U ' : IR" -> IR"' N,, is a piecewise <1 l"fii1e and wn[inuuw 
function. and consequently the MPC controller defined hy (.'i .4) cun be represenle( 
explici tly ns 

u (x ) 
{ 

F 1x + g 1 if H 1x < /,•1 

F 11 X + 9.1: if ~ \/ :I" ~ ,,. ,,. 
(5.22 
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II tum' al'o m111h:111hc ~cl of \late<.,.\" for which problem (5.3} admi1s a ~olution i' 
a polyhedron. and 1ha1 the optimum value in (5.3) is a piecewise quadratic. convex. 
and co111inunu' function of x (A ). The con1roller ~1ruc1urc (5.22) is simply a look-up 
tahlc ofhnear gain~ ( F ,.!J,). where the Hh gain is 'elected according 10 the \Cl of 
linear inequalities H ,:r <: k·, 1hat 1hc state vector saiisfie.~. Hence. the evaluation 
of the MPC conrrollcr (5.4). once pul in the form (5.22). can be carried out by a 
very ~implc piece of conlrol code. In 1hc mosl naive implementa1ion. lhc number of 
operation' depend' linearly in 1he wnr,1 case on the number A I of p<1rti1ion,. or even 
logari1hmically if 1hc pai1i1ion;, arc properly ~torcd 16301. 

An ahernmive way of ~olving MIP problems on-line is to extend explicit MPC 
idea' 10 the hyhrid case. For hybrid MPC problems based on infinity norms. 1631 
showed 1ha1 an equivalent piecewi1-e aflinc expl icit reformularion- possibly discon-
1inum1,, due 10 binary variables can he obrained 1hrough off-l ine mulliparamc1ric 
111ixecl-in1cgcr linear programming rechniques. 

T hanks 10 1he possihili1y of conven ing hybrid models (such as 1hosc designed 
1hrm1gh N YSIJ~L) In an cquivalcnl piecewise affine (PWAJ form 1561. an explicit hy­
brid MPC approach dealing wi1h q11adra1 ic eos1s was proposed in 11051. based on dy­
namical programming (l)P} i1era1ions. Muhiparame1ric quadra1ic programs (mpQP) 
urc ~olved al each i1era1ion. and quadraric value func1ions are compared to possi­
bly climinarc region' th:u arc proved 10 never he optimal. A ditrerenl approach still 
cxploi1ing 1hc PWA Mrucrurc of 1hc hybrid model was proposed in 14461. where all 
IJfMihlc 'wi1ching 'cqucncc~ arc enumerated. nn mpQP is solved for each ~cqucncc, 
and (1uadra1ic co''' arc compared on-line to determine 1he optimal inpu1 (in thi~ rc­
'()CCI. one could delinc 1hc approach ~cmi-cxplicil). To overcome lhc prohlem of 
cnumcrallng all ~witching ~cqucnccs and ''°ring all the corre.~ponding mpQP ~olu­
ti<>n .... h:n:kward' rcachahili1y analy'i~ i~ cxploi1ed in ( 10] (and implcmcn1ed in 1hc 
H} bric/ Tool/xi\). A procedure to po~t-pmce~' the mpQP solutions and eliminate 
all polyhedra (and 1hcir a~~ociarccl con1rol gain~) that never provide the lowe<,I c<N 
wa$ 'ugge,ted in 1101. Typically 1hc DP approach provide.~ simpler explicit 'olu­
tion<. when long hon1011' N arc cho~cn. hut on the contrary tendi. to 'uhdividc the 
\tare 'pace in a larger numhcr of polyhedra than 1he enumeration approach for l-hort 
hori7on~. 

For closed- loop convergence rc~u11, of hybrid MPC the reader is referred lo 162, 
138. 386- .1881 and 10 1hc Phi) 1hcsis 13851. Extensions of hybrid MPC to stochas1ic 
hyhrid syl-lcms was proposed in 159]. and 10 even1-hased con1inuous-1imc hybrid 
systems in 171 ]. 

The Hvhricl Toolhox fill' MATLAB 1571 provides a nice developmenl cnviron­
mcnl for hyhrid and cxplici l MPC' design. 1-lyhrid dynamical systems described 
in 1'YSDEL nre au111mn1ically converted 10 MATLAB MLD and PWA objecls. 
ML() and PWA ohjccls can be valida1cd in open-loop simulation. either from the 
command line or through their corresponding Simulink blocks. Hybrid MPC con­
troller~ h:1scd on MILP/MIQP op1imin11ion can be designed and simu lated. either 
from the command line or in Simu/inJ... and can be converted to lheir explici l form 
for dcploymcm. Severn! dcnw~ arc available in 1he Hyhri<I Toolbox dis1ribu1ion. 
The 1oolhm. can he freely downloaclcd from hllp://www.dii.unisi.it/hyhrid/toolbox. 
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Similar funcrionalities are also included in the Mu/Ii P11mmctric Too/bo,~ 13751. The 
reader is referred 10 Chapter 10 for a more dc1ailcd dc~cription of these tools. 

In conclu~ion. hybrid MPC control can deal with very complex spccifica1ion~ 
in terms of models and conqraintl- hy u~ing mi~ed-imcgcr programming solver.;. 
Explici1 ver.;ions of hybrid MPC arc poi.sihlc. hu1 ~till limi1ed 10 ~mall systems with 
few binary variahle . Example~ of applica1ion' of hyhrid MPC' to industrial control 
problems arising in the au1omotivc domain arc reported in Chapter 15. 

5.2 Complementarity systems 

5.2.1 M ndeling aim 

In many area.~. espccinlly in 1he domain of physical sys1cms or in economic ap­
plicarions. conlinuous-time hybrid sys1c1t1s usually riri~c in ~pccilk forms. The 
con1inuous-lime dynamics corresponding 10 1hc diffcrcnl modes. as well as their lo­
ca tion invariants and guards, are often c losely relarcd. Indeed. in many ciL"es the 
dynamics corre.~ponding to the diffcrcnl mode~ all ~hare a par1 1ha1 c:111 be called 1he 
core dynamics of the system. 

The theory of complcmc111ari1y hybrid ~y,1cm~. as originally p111 forward in 
1572. 573]. aims al providing a compact reprc~cnw1ion of many of such systems. 
h combine.~ locarion invarianl~ and guard' in 1hc form of 1·m11pleme11wriN co11di-
1io11s such as 0 :S' z l. w ~ II. where z and t11 arc equal-dimensioned vectors. and 
1he inequalities hold componenlwi,c. II i' nol wi1hou1 rca~on 1ha1 many hybrid sys­
tem~ can be formulated in 1hi' manner. 'incc complcmcntari1y condition~ arc clo,ely 
rcla1ed with variational and optimal formul:11ion'. which arc known to be underly­
ing many ~ysteml- in physics and economical applicarion~. Furthermore. it can be 
~hown 1hat. roughly ~peaking. all piecewisc-linc:ircharac1cri~1ic~ can be modeled by 
complementariry condirions. 

In addition 10 the rather broad applicahility of complemcnrnri1y modeling there 
are 1wo other important advantage~ of complemcntariry model~. First. comple­
mentarity models often provide a very compact description of hybrid i.y:;tems. es­
pecially in comparison with hybrid atllomata. Funhermorc. 1hc complementarity 
model usually remains to the physics of the ~ystcm. and phy~ical ~ystem prop­
erties (such as passivi1y) are naturnlly rcnec1cd in the representation. Secondly. 
complemen1arity modeling offers powerful mc1hods for an:ilysi~. Using 1he well­
developed theory of 1he linear cornplcmcntari1y problem (LCP) from op1i111iza-
1ion theory fl891 one may prove slrong rcsuhs concerning well-posedness (ex­
istence and uniqueness of sol111 io11s). srahili1y and co111rollahi l i1y. Also the 1he­
ory of the LCP offers a wealth of compuuuional mcrhods. e.g. for the ef'licient 
compu1ation of the next location al an evcnl lime. We refer 10. e.g .. [ 149, 3001 
for a derailed description of these rcsulls. especially for linear complementari ty 
systems. 

ln •his section we will mainly concentrate on indicming the modeling power of 
complementarity hybrid syMcm' hy di~cussing a lis1 of appealing examples from 
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d1ffcn:n1 applicalinn area).. i111:h1ding 1hc running examples 111 1hil> handhoo"-. Fur-
1hcr111nrc. we will hriclly 'kc1ch 'ome of 1hc main rcsull). which have hccn nbwincd 
nn 1hc \~Cll -p11'cdnc". '1ahili1y. con1rollahili1y. aml '1ahilinhili1y of linear comple­
mcn1ari1y 'Y'lcms. 

5.2.2 Ocfini l ion 

C'o111plemen1ari1y sys1crn ). can he conslructcd as loll nwl> 1572. 571]. S1ar1 from :1 
nonlinear inpu1/ou1put 'Y'lcm. with k inp111' and k oulptlls: 

d.r . 
- (/ ) = j (.1·(1 ) .11(1) ) . 
ell 

y (I) ll ( .r(/).11(/ )). 

(5.23a) 

(5.23h) 

\I here~·(/) i' an 11-dimensional ' talc variahlc. n (/) E :R:1· is the inpul vector :ind 

!/( 11 pt 1, 1he ou1pu1 veclur. To the 'Y'lcm (5.:Da) (.'i.23h>. add the relation 

ll y (I ) L 11.{I ) ~ ll. (5.23c) 

/\ rclatinn ol lhe form ( 5.2'.kl :ire called a r11111p/e1111•11wri1y rl'lmio11 in 111:11hcmatical 

prui;ramming: whence the name rm11ple111r•111ari11• .1.1•.11e111s for dynamical .~ystcms of 
the form (5.:2.\) . olc 1ha1 <5.2Jc) 1s equivalcn1 to the cn111ponen1wi~e requircmen1 
tha1 . loreach / I. .. L the following hold': 11,(/) > 0. 11,( I ) ~ 0. and al lca,1 
unc nf these two i11cqu:rl i1ic.' i' sa lisficd wi th equali1y. 

In view of 1he particular ro le of 1he input and outpu1 vari:rhlc' in the formulminn 
ol cnmplcmcntarit) 'Y'tcm'. lhc nota1i1m' !I and /1 arc ~nmc11mcs rcplac1..'<l by w 
and z . II> ~leer away from 1hc 1111crpre1a1mn of 1hc input n,~ a control and the ou1pu1 
:"an nhser\'alinn anu al,n 111 he 111 line wi th notalional convcn1ions in mathcmalical 
pmgr:1111ming. In add111011. the forn111la1ion in (5.2.1) can he made mnrc general hy 
allt>l\ing 1he funclion' f and /1 IO depend dircc.:1ly on 11rnc. 

lmplicil in (5.23c) is thechnic.:eofan .. ac1ive index se1·· n{I) C {I.., . . k) which 
i' 'uch 1ha1 11.(/) = 0 lor i E fl (/ ) ancl 11 1 ( / ) ()for 1 '/ n(I ). Any such index ~cl is 
'aid 10 reprc,en1a111otl1• of opera11on. In a lhed mode. 1he 'Y'lcm aho\'C hcha\C' a' 
lhc dynamical sys1em dc).crihed hy 1he di lTercnlial cqua1ion (.'i.23a) and the algcbrnic.: 
rela1ions (5 2Jh) l<)gcther wi1h lhc cquali1ie' 1hat follow fro1111 hc choice of 1he ac1ivc 
mdc~ '>Cl 111 15.23cJ. A change of mode occur' when con1inuation wi1hi11 a given 
mode would viola1c the nonncga1ivi1y con,1raim' a"ocimed wi1h 1hi~ mode. The 
dc,.i:rip1i1111 ror111a1 of c.:0111p lcmcn1ari1y 'Y~lcms is such th:11 1hc 11ons111001hness is 
made canomcal. and 'pceilic pmpcnics. 1hcrcforc. mu\I he expre ... sihle in tcnw. of 
lhl' f1111c11011' / ( · . ·) and h ( ·. · l occurring in (5.23a) and (.'i.2Jh). and po"ibly 111 

tC1"111). or a 11 ini lial condition. 
A ~uhcl:"' nf panicular in1crc,1 ari\c<. when 1he functions f and h in (5.2J)arc re­

quired 10 he linear; the rc~uhing /!1w111· cm111>le111e11wr11y \Hte1111 I .1o.t I arc described 
by rcla1ion' or the rorm 

.i:( I ) 

y (f ) 

:. F11r1her swi1cl11:u 'Y"C1m 

A :i:(I ) t B u ( I ). 

Cx(f ) f 011.(1 ). 

II ~ y (I ) - 11(1) ~ II. 

15:1 

(5.24a) 

(5.24b) 

(5.24c) 

where A. B . C. and D arc linear mapping~. In some applicationl> ii i ~ na1ura l 10 
a~low an ex1ernal inpu1 (forcing 1erm) in a complemem:irity "Y'tcm. TI1e e<1ua1ion'\ 
(:i.23a) and f.'i.21h) arc 1hen replaced hy cqua1ion' of 1he form 

x ( I ) - f (x(l ) . 11 ( / ). 11(/ )) . 

y (I ) - h (.r,(/ ).11( / ).11(1)) . 

(5.25a) 

(.'i.25b) 

where 1'(/ ) denote' 1hc forcing 1crm: 1he cqua1ion f.'i .21c) is unchan!!ed. In lincur 
complcme111ari1y 'YSlcms we require 1ha1 lhc forcing 1crm al'\o cnlc;:;, linearl}. M> 
tha t the sy~1e111 (.'i.24) is replaced hy 

:r (I l 
y (I ) 

A :r(I) + 8 11 (1) + E11(1). 

C~r(I ) + D '11 ( I ) + 1"11(1 ) . 

() < y(I ) ..l 11( / ) ~ 0. 

(5.26a) 

(5.26b) 

(5.26c) 

where A. B . C. D . E . and F arc linear mappings. Another useful gcm:rali1.ation 
CJf (5.21) is ohwincd when 1hc cornplc111en1arity rcla1io11 (.'i.2:lc) i' replaced by lhc 
relation 

c ) 11(1) l. 1t{f) [ c . 
where C is a cone in R~· and C' is the dua l cone defined hy 

c· {n I (11. u ) ~ II lor all 11 (" <'}. 

(5.27) 

In panicular. 1his formal allows lhe incorpora1ion of both equali1y and incquali1y 
con\lr:ii111<.: a typical choice of the cone C i1, R1 ' x { O}. which implic~ C R1 • x 
IR£' , + 

5.2.3 Examples 

TI1i). sect ion show~ by means of seven.ti examples how w mple mcnll1ri1y rel at ion~ can 
he obtained when modeling phrical 'Yslem" of different nature. 

Example 5. 1 DC-DC com'crtcr 

The IX' ·D\ convener 'lmwn m Fig. 1.17 con,1s1' of an inductor f,. a capacnor ( ', rc,i,. 
lance' 111 .. Ur- . Md a rcsiMance load f?.1ogc1herwi1h a diode/) ancl an ideal ,wi1ch S. The 
diode i' modeled a~ an idc:il diode. and ii' cons111111ive rela1inn c:m be 'uccinctly cxprc"cd 
h} 1hc complcmcm:uity condi1ion 

(I :S II /) ..l I/) ~ 0. (5.28) 
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w11h , 11• rc'1x:c11 vcly 1•n. 1hc currc111 1hmugh 1he diode nncl 1he vollage ncro'' lhe diode. 
F1111hcnm1rc.1hc cnns1i1u1ivc relation or the ideal swi1ch .'i cm1 he 'imply exprc,sed as 

(5.29) 

w11h is.,,.,, lhc curre1111hrnugh1hi: 'wi tch and 1hc vollagc ucross the switd1. 
Taking a' ront111uou' 'late varwhlc' 1hc vollage t•r· acrrn., the capaci1or nnd the cur­

rcnl 11 1hro11gh the indurtor. \\C ohrnm 1hc following dynamical cqua1mns of 1hc DC-DC 
convcr1er: 

~ [ ' '•] = 111 ,, [
-,.,,, 

1
11, 1 

11 ] [':r] + [r1 n~
1

11, 1 () ] 
(I ~ 11 () f 

[''.fl] = [T!f'rr;- O] ["'"] + [-1!-flfr;: I] 
' ·' II I 11 I 0 

1 lcrc. /~ "1hc 'nhagc of 1hc inpul '011rcc. 
r>cli 11111i; the ,·,,-i11'11i1111 (i 111ctio11 1T :is 

[in] f- (?) F . 
l'" T 

[in] 
1'~ . 

11'(/) = {I I if the 'Wilch 8 j\ on al lime I , 

if 1lw 'wi1ch :-.·"cm :u lime I. 

;11111 lhC cone' 
c , - r x fO} C1 =R1xR. 

1111c can rcprc,c111 the rcl111ions (5.2X) :mrl ( 'i.291 a' 

, [••n] [' n] . L .11 1 , • .l E C.111· 
/ .~ I ':; 

(5.JOa) 

(5.30h) 

(5 . .lOc) 

Sy,lcm' of Ille form (5. 1()) arc called ""'itdwd rrmr c11111p/1'111r11t(lri11• .1y.<li'lll.~. A< <hown 
111 1157. 15X. 1071. 1h" da<' pmv1de' a compact rcpn:'Cnta1ion ol any l)pc of power 
convener-. 

N111e 1h111 certain properties of 1hc r>C-OC converter arc immedimcly ohwincd a> a di reel 
i:on,cqncncc nf 1hc l"omplcmcnt:inly model mi:. For example. it is readily verilied thal the 
11M.il cncrg) // (1• . 11) · jc·,.; 1 ~ L;f '1nrcd in 1hc c1rcui1 •:ui~fic~ 

d l 2 ~ - II = - n1 i1 - n";,. - 111 + E / p , 
di 

where I dc11n1c' 1hc c11rrcn1 1hough the re,iqive load fl. und I,- " 1hc curren1 1hrough 1hc 
vohagc source with volwi:e P,. I lcm.:c /lflS.\'iPity of 1he nh1:11ned model" directly c<Lablishcd. 
lln fact. 1hi' become< even more 1r:111<paran1 by wri1ing (5.30) inlo a por1-Hamil1011ia11 form. 
1h11' ob1a111111g a pnr1-l lm11i/11111im1 n1111ple111t•11111ritr w11t•111. l 0 

F.umple 5.2 Tho-rank \ VS/cm 

The di~crctc ,Lale~ of the two-Ian~ 'Y~lem. i n1md11ced 111 Scc1ion 1.3. l arc determined hy 
mcqualitic' 111volving 1hc con1in11011' •LnlC'- ancl hy ex1crnal •wi1d1e,, The ~y~1c111 can he 
modeled 111 a "' i1ched complemc111;in1y fr.1mC\\.ork. The m:1in i~<ue' arc: (i ) modeling of 
the mode-dependent flow through the valve V 1. and (ii) modeling of 1hc openini: :111d closing 
ol the valve,. 
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Con~1der lir•t item (i). The flow C(111:11ion• cnn he de~nhecl in 1erm' of the posi11vc-par1 
opcra1or which is delined, fur .r· E R, hy 

.r • - rna"C(.r, 0). 

Indeed. we cm1 wri1e 

15.31) 

where T (.r ) i s 1he Torricel li charac1cristic 

T (.r) l"SA11 (.r ) J 2.ql.rl, (5.32) 

which may he considered 10 be a smnolh func1ion even lhough it' deriva1ivc al .r = O i' 
inlini1y. The pnsi1ivc-pm1 operntor in i1' 1urn can he dc•crihcd i111cnn' of a complementary 
charac1eri<tic. •incc 1he rclution~ 

11•=.r •, .:.= , (-.r ) f 

arc cquh·alenl 10 
r = ,,, 0 $ II' l.: ? 0 

Therefore. 1he rclaiinn (5.J I ) can allcmn1ively he fnr11111l;11cd 11' 

v Q1J(/ ) 11 1 (I ) T ( 1111 (I ) - 11•1(1)). 

Logclhcr wi1h 1hc co111plcmen1;1ri1y rcl:nions 

and the ulgehrnic relation' 

0 $ 1111(1) J_ :1(1) ~ o. 
u $ ,,.1(1) J. =~(I )~ n. 

11•t{I ) - ft 1(/ ) - h., f- : 1(1). 

111~(1 ) = lt-1 (1) - /i,, f- ::i(I ). 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

The Torricelli chm.1ctcri,1ic (5.32) could he replaced by a n1111<moo1h func1ion: for instance 
a relay charactcmllc might be an allcma1111e. Complemcniaril) modeling i' 1hen ,Lill po,,i­
blc hy using the 1cchniq11e' dc,cribecl be low in 1hc discussion of relay 'Y'lcms. 

The swi tching of the valves can he modeled ns in (:U I ) hy mean' of a multiplicative 
f:lcmr. hu1 an 11hcrnat1 11e i< 10 uo;c the •etting of \wi1ched cone complementarity <y,1em~ a.' 
pm(l(i'cd in 11571. One 1hcn in1roducc1, 10 1hc now variahle Q 1, another 1•anable >. 11 • which 
rel ales 10 pres,11re drop ncms' lhe 11nl11c V 1. The model ing (5.:1 1) (or c{1111vale111 ly (5 .)3)) i' 
1hcn replaced by 

Q~J(I ) = T ( 11•1(I ) - wi{ l ))-1- >.11(1) . (5.38) 

togc1hcr wi1h 1hc complementarity rcla1ion 

C,: 1111 3 >.1 1(1) J. ()1; (1 ) E <' • ., ,,,, (5.39) 

where C j, 1hc cone-valued func1ion defined by 

C.1 =- {O}. C1 =R. 

Thi~ models an on/off switch. One could also de,crihe \Wtlt.:hcs 1ha1 udmit llo\\ m one 
dircc1ion only hy making 11,c of the cone' IR 1 ancl IR . 0 
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Example 5.3 Relay ~yMcms 

Con~idcr :1 dynamical 'Y'lcm of the fom1 

:i;(/) / (;r( I) . 11 (1)), (5.40) 

togc1hcr with the following no11smno1h relminn thal ~pccitiei- the depcndcrn.:e of ihc input 
variable 11 (/) nn the slate :r.(t): 

11 (/ ) I if li (:r(I)} > 0. 

() ~ 11( / ) < I if /t (x {t)) 0. 

11(1) ()if /t(:r.(I )) < o. 

(5.4 la) 

(5.411>) 

(5.4 lc) 

Such a 'Y'tcm is c:illc<l a di/f Pn•111iol 1•q11111it111 11·i1'1 diw·11111i11111111s ri11l11-/w11d sit/1• nr :1 rt'/1.11• 
n-11,•m The laner tern1innlo!!y i~ derived from the fac1 1h:11. if one introduces nn ou1pu1 
vari:ihlc 11(1) = l1 (:r(/ )) . the rela1ion hct\\CCn 11( /) and 11(1) given hy (5.41 I is known a~ a 

1-e/ny r/11mw1eri~1ir. The '>'"em can of t:our'c also he vic,..ed ai; a hybrid 'Y~tem with three 
diffcren1 mode,. 

Rclny ,ystems can he modeled :" t•onc complemcnwrity systems. For this purpn,e. 
intruducc mo inp111 variahJc.,. ;.ay 1•( /) 1111d :(I ). in nddi1ion to 11( /). Corrc.,ponding 10 1he 
three input \anahle' 11 (/ ). r•(I ). and :(/ ), introduce three ou1pu1variuhle'11(/). 11(1). and 
r (I ) . \\luch arc dcfinccl in 1cmis of the 'talc and input h1rrnbles by 

11(/ ) ~( / ) . 

11(/) :(l)+li{:r( /)), 

r( / ) - 11(1) + t•(/ ) 1. 

A cone rn111plemcnt:1nty 'Y'tcm i' fomied hy takin!! 1hc equation (5.40) together with the 
follow111g cone cnmplcmcntarity relation': 

() " 11(1 ) .1 11(/);::: tl. 

() " 11(1 ) l. 1•(/ ) > o. 
O r( / ) l. :(1) E 1R 

Thi' i' of the form (5.27) wi1h C = JRi x (0). The third relation i' cquiv:ilent to the 
requirement 1ha1 11(/ ) I 11(/) = I fnr :ill/ . "' a consequence. 1he 11111nhcr of mode.' implied 
by 1hc hr-t two relation' is r.:duced from four to 1hrcc. 'ince the mudc corre<pond1ng to 

11 ( I) n and 1•(/ ) II " eliminated. The three remaining vote' can he de<crihcd a~ 

follmv': 
I . 11(! ) - o. /1(1 ) > O. q{/) = 0. r•( I) ;::: 0. The rel:11ior1' 11(1) '2: II and q(/ ) = 0 imply 

that 1n this case we must have li (w(I)) $ !l. 

2 11 (/) '> 0. 71(/ ) - ll.11(/) = n. 1•(1) 2: 0. TI1c relation~ 11(1) - 0 and q(I) = 0 imply 
thal J;(:r(I )) = II. From the relauon' 11 (/ ) > 0. I'( / ) ~ 0. and u {I ) + 1•{1) I it 
follmv' that 0 ~ 11(1 ) ~ I. 

3. 11(1 ) '> o. 71(1 ) = O. 11(1) ;::: O. 11(/) ll. The relations 11(/) > 0 nnd q(/) = 0 imp1~ 
1h:it 111 thi< ca'c we rnu.,1 h:we li (:r(t )) ~ 0. From 1•(/) = 0 and 11(/) +"(I) - I it 
follO\\' that rt( / ) - I. 

It ,, seen 1hat the cone cnmplementanty 'y<tem de,cnbc' 1he s.1me dynamic~ a~ the relay 
i.y<tcm. In this <pccilic ca<e. where we huve a single relay characteri,tic. the refonnul:111011 
in cone comple111cn1111·i1y form may appear 1n he art ificial ;md pcrhap~ even awkward. I low· 
c1•cr. rhe cone cornple111e11wri1y form ~implifie~ s11hs1an1ially the des,ri1>ti<m of muhi-rcgimc 
dynamic' 111 more complit::ned situa1mn,. TI1is is demon,tmted helow. D 

Example 5.4 Filippov systems 

Con~ider the dynamic' 

l 

:i: (I ) = L ,\ ,(l )/, (x (I )). 

' I 
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111(/ ) = // (:r(I )), 

where 11 is a smooth mapping fmm R " tn Rl . 1ngc1her wi1h 1he linear cons1mint 

k 
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(5A2a) 

I>.ui c5.42b> 
o: I 

and 1he complementarity conditions 

0 $ A(/) .1 w (I ) 11 (/ ) I ~ 0. (5.42c) 

where 11(/ ) is an additional unknown. and where ft deno1e.s 1he A·-vcctor who,c entries arc 
al l equal to I. To explain the meaning of these cqumonns. consicler n 1ime I at which the state 
vector .r(t) is loc:uc<l in the open \Cl 'H., delincd hy 

1t, = {:r j //,(:r) < lli(·:r ), forall j / 1} . (5..13) 

To cnM1re 1ha1 rhe Hh componc111 or 111(/) n(I ) O is nonnci:ativc. we 111u>1 ha\'c rr{/ ) $ 
111,(1) = IT,(:r.(I)). lflhe stricl incqualily n(I) < 1111(!) was valicl, 1hcn all components or 
the vector w (I) - 11(/) ll would he Mrictly positive. which hy 1hc comple111en1arity condi1io11 
would imply that all cocfficie111s of lhe vec1or A would he /.Cro. TI1is would conlmdict the 
con\lraint (5.42h). It follow' thnl. fnr :r.( I ) E ?t,. we mu'' h:1vc rr (/) = w,(I). Since 
1111(1) n (/ ) > 0 for J f. ·1. 1he co111plementari1y condition< implie.s then that ,\1 = O for 
.i f i. and from 1hc conmaim (5.42h) it fol l ow~ 1hu1 .\, = I . TI1crefore. we find that for all 

I , ... ,k. 
:i:(f ) / ,(:c(/ )). 1f .r(I ) € 7{,. (5.44) 

In thl\ way we sec th:it the C(1ua11ons (5.42) de-:crihe a mulu-rei:ime sy .. 1em with ,tale· 
dependent switching. Moreover, 1he equation> define a convex rclnxa1ion on the houndarie.< 
hc1wec11 1hese region,. Systems nl' th ii. type have heen studied extensively 12371. 

Tu wri1e 1he <y,1c111 in the cone cnmple111c111ari1y fonn (5.2:1a)- (5.23b)-(5.27J. <.lcli ne 

C = R! x (O} . u = [:]. (5.45) 

Example 5.5 A Leonriev economy 

A model for a continuous-time Leonllev economy may he con,1ructecl a.< follows. Let .r ,(t). 
11,(t). and 1J; (/) rc,pcctively denote 1hc inventory. rmcluction ra1c. ond ne1 exogcnow, de· 
1111111d a.~sociatc<l wi1h com111odi1y ·1 at rime /. F11 nhem111re. let q, 1 dc1101e the umoum or 
co111mocli1y i required for the producuon of one unit of commodity .7· A balance equation 
for lhe evolulion of lhe inventory may then be "rinen in the fonn 

:i-(1) : ( T - Q )11 (1 ) 11(1) , (5.46a) 

where Q i< lhc m;itrix fomicd from the eleme111s 'I• i · It is nat11r.1I to impose lhat inve111ory 
'hould be nonncgath·e. bu1 1his is by no means <110icien1 to de1crmine a solution uniquely. 
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However. 1f we funhermorc impo'e 1ha1 rhe economy i~ efficient in the sense 1ha1 ii produces 
rhe lt~we<,t mnounL~ of commodiric' tlrnr arc ,ufficie111 10 meet demnnd. 1he11 commodilies 
urc nor produced when there j, 'till a po<itivc 11wcntory. nnd arc orhen.,isc produced in 
Jll'I <uflic1cn1 amount' In prcve111 11wentory fmm hccoming negati\e. In other word.~. the 
complcmcn1nr11y rellllion 

O < :r: (/ ) J. u (t) 2: 0 (5.46h) 

mu'' hold for all/. The 'Y'lcm (5.46) i< in rhc form of the forced linear complementarity 
' Y'lcm (5.26) wirh A - 0. B = l Q. C l . D = 0. E =- I . and F = 0 . 0 

Example 5.6 A usc:r-re~ource model 

Many mcxlcl' for nerwork u<agc can he descrihcd in renm of u<ers who have access rn 
\C\'Crnl rc'm1rce,. For 111,tancc. u-.cr< ma) be nrigin-dc,1ina1ion p:ur\ in a traffic nctwor~ 
m1Klcl. and 111 this cnsc rc,oun:es arc rhe linh her ween cru"ings. In the con1ex1 nf produc 
11011 planning. users 111ay he prnducls nnd resources 111ny he 111achinc,, TI1e use of a given 
re'ourcc gencr:rte< a ccn:1in co~l for the user. for in<lancc in 1cm1< of incurred delay: 1hi1, 
co'l depend' 111 general on the load 1hat i' pl:iccd on rhc rc.'ourcc b) ult user<. A typical 
purpose of modeling i' 10 describe rhe hehavior of users in determining thei r demand for 
..crvices from the re.<mirccs uvailahlc to them. 

To -.ct up a general model in 111a1he111a1ical 1crm<. ,uppo<e 1ha1 we have p n,Cr\ and 111 

rc'nurce.,. lnrrrKlucc rhc following quan1i1ie': 
• /, 1(1) = load per un i1 of time 11l:iccd hy u'er ·ion rcsnurcc.i al 1i111e /: 

• q, 1(1) = co't incurred :11 rime I hy user r when applying to resource J: 

• tl, (1) =: rota l dem:ind nf user 1 nl time/: 

• 11,( I ) = co't accepted hy ui.cr 1 :11 1imc /. 
TI1.: ahovc lJUOnt11ic' arc •um111ari1ec1 in a ltHul mmri( L(I) E R~x"' (load i' tal.cn to he 

11onnega1ivcJ. a <'o.<t 11111/rir Q (/) E lR'' x"'. a 1lf'111ru11/ v1•c11Jr <l(I) E R1'. and an acce111NI 
, II\/ 1•rr1or n (t ) E :R1'. Moreover we inrrcx:lucc a ttflle 1•1•1"1nr x(I) E: R" in rcnns of which 
the dyna111ic' of 1hc ~yMcm is dc,cnhcd. and which moreover dctcm11ne.< the cost matrix: 

tl .r(I) = f( :r(I ). L (I) ). 
cit 

Q (t ) = /1 (:r( /) , L (/ )). 

(5.47a) 

(5.47h) 

Tn dcscrihc rhc hchnvinr of u~crs. we assume 1hn1 rhe Wartlrop principle holds 111 every time 
in,lant /. In other word<,, given a demand Je,·cl. each user distribute' iLs load over resource< 
111 'uch :1 wa) that all rc'ource~ 1ha1 arc m.ed generate 1hc 'ame co<t (thi< is the accepted 
co~I ). and rhcrc is no resource 1ha1 is not used und that would generate a lcs<cr CO!.I . Thi' 
llchav1oral principle. together wi1h rhc nonncg111ivi1y CJf lhc load. c~n he expre,scd in matrix 
tcnn' h) 

O ~ L (/ ) .L Q (/ ) - n (I ) · I r~ 0. (5.47c) 

wltcrc the "pcqJ'" relarinn is undc"tn<>d in the sense nf rhe inner producr (11, fJ) = 
1r(A

10B ) for A . B E R1'""' . To cln<e the model. we runhcnnnrc need 1hc accounting 
rclati<>11 

L (t) D - r/(I) (5.47d) 
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as well a' a '"con,Litutive rclmion'" hctween the demand and rhe acceprcd coM. "hich we 
take 10 he of rhc fonn 

l?(d.a) O. (5.47e) 
where R is a mapping from R'' x R' ' 10 R1'. The ')'<tern (5.47) can he rendered a' u cone 
complemenrnrity system (5.23a) - (5.23h) - (5.27) hy mean~ nf the identification~ 

11 = (L . n ). 

y = (h(x.L) - a · D 1 • R( LD , n )}. 

C = R~"'" x jO} C R''" 1 '" ~ ' 1• 

(5.48) 

A' a <pecific ca.<e. consider a siiuntion where 1hc re<ourcc< con<1M of m noninteract­
ing queue.< and lhe state varittbles arc the queue lengths. Ignoring the ~Jluation~ in which 
buffers are cmp1 y or full (which in fact could he mttur:1 lly modeled 111 a complcmcntariiy 
fr:rmcwork). we write simple queue dynamics 

cl.r J ' I 
T!" (t) - ( U [, )1 - r, (5.49) 

'~here r~ i< a conslant thar rcprcsenLs the p1'tlCCs,ing <peed of queue j . A po'siblc cxprc.,,ion 
lorcost 1s 

Q.l k 1·'1 t 111,,, 
where k , is~ prnJl'.lrtionality constam. and the con,tant< m ,1 represent a lixcd co,1 thal may 
he USCNpcc11ic . Finally 3$\unie that dem:ind i< con,1:1111. \:t). rl(I ) = rlo irre,pecu'e of the 
acrual cost n(I ). We rhen arrive ar the following dyn:im1cal model: 

:i: ( / ) /,;r (/) O r. 

Q (I) - D · (K:r(l )) r + /II . 
L (I ) II = d.o. 

0 < L(t ) 1 Q (I) - n ( f) · I,. > 0. 

(5.50a) 

(5.50bl 

(5.50c) 

(5.5()d) 

Thi; i' a linenr (actually allinc) cone complcmcnrurity sy,rcm. The con, rant tern" i.;;m be 
treated as ex ternal inputs. analogously 10 (5.26). O 

_5.2.4 Pre liminaries 

For the sake of complete ness. we review the linear co111pleme111arity proble m of 
mathematical prog ramming and the notion of pa,siv ity of system~ theory. 

Linear complementarily problem Given an 111-vector q a nd an 111 x 111 matrix 
M. the linear complementarity problem LCP(q . /v/) i~ to find an 111-vcctor z ~uch 
that 

z ~ o. 
q + i'vf z ~ 0. 

z T(q -1 M z) - ll. 

(5.5 la ) 

(5.51 b) 

(5.5 lc) 

If such a vec1or z exists . we ~ay 1ha1 z .wfre.~ (is a .m/111in11 of) LCP(q, M ). We say 
that the LCP(q, Ml isfea.~ible if there cx isLs z satisfying (5.5 I a ) and (5.5 1 b). 
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We define lhe sets 

LCP - J 111( M ) := { q E IR'" I [,(' J> ( q . M ) admit!> a solution } (5.52) 

and 
LC'P - k<•r(M ) := { z E R '" I z solves /.,(' P (O. M )}. (5.53) 

The LCP is a wcll-swdied subject of nunhematical programming. An excellent 
survey of the topic can be found in the hook 11891. For the sake of completeness. we 
quote the following two theorems. The first one can be considered as 1he.f11ndame11wl 
theorl'm of LCP theory. IL states necessary and sufficient conditions for the unique 
solvabi lity of the LC'P for all vectors q. 

T heorem 5.1 / / 89 / The LCP( q . M ) lws a 1111iq11e .m/11tion for all q if and 
11111,r ~{all tire pri11cipal minors 1l the matrix 1\IJ are positive. 

l'vlatrices wi1h the above-mentioned properly arc known as P-matrices. It is well­
known 1ha1 every posi1ive defin ite matrix is in this class. Besides posi1ive definite 
matrices. the nonnegative defin ite matrices wi ll appear in 1he LCP con1cx1 in the 
~equel. If 1hc M matrix is nonnegat ive de flnite then the LCP does not necessari ly 
have :-;ohllions for llll vec1ors q. For example. 1hc LCP(q . 0) admits solutions only if 

<7 ;::: o. 
The following theorem charactcri rcs the conditions under which an LCP with a 

nllnnegativc dctinite matrix NI has solutions: 

Theorem 5.2 / 189 j Ll't 1\ I b1' 11 no11nl!gatiw' de.finitl! matrix. Then. 

L('P - li 11(M ) = (LC!' - kl·r(M ))'. (5.54) 

Linear passive systems I-laving roots in ci rcui1 theory. passivity is ~1 concept 1hat 
has a lways played a central ro le in syste ms theory. A system is passive if' for any 
time interval the dif'fcrence between l11c stored energy at the end of' the in1erval and 
at the hcginning is Jess than or equal 10 the supplied energy during the interval. 

Ocfinition 5.1 (Passive system) 16631 A linear sys1e111 E(A, B , C, D ) 
KiVl'll by 

x (/ ) = A x(!) + B z (I ). 

w(I ) = Cx(l ) + D z(! ) 

(5.55a) 

(5.55b) 

is 1·111/ed p;1ssive (f tltere exis1s a 11on11ega1ivef11tll'tion V : JR "' ~ lR+ .rnc/r 
1/tm for all 111 :::; / 1 and all trajef'tories (z .. r. 111) id' the system (5.55) the 

fnllowi11K i11eq11ality lrolds: 

!
,, 

I ·(x (/n)) + . 
111 

zT(l )w (t ) di ~ V (x(l 1 ) ) . (5.56) 

ff ii exists 1/te fit11cti11n V i.~ 1·alled a storage function. 
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Passivi ty properly can be characterized in lerms of the stale space representation or 
lhe transfer matrix of the system as follows. 

Proposition 5.1 Consider the.follmvin~ sta1e111e11ts: 
I . The system E (A. B . C. D ) is passive. 
2. 111e linear lll(tlrix inequalities 

I< = KT ~ 0 and [
AT.K + KA K B - C~~] < Cl (S.S?) 
B rK - C -(D + D 1

) -

have r1 solution J(. 
3. Thefi111rtio11 V(.1:) = 4:rT K :1· de.finn o .1·1nm~I! ftmrtirm. 
4. The tran.~/'er matrix G (s) = D + C (sl - A )- 1 Bis posi1ii>e re11I. i.e .. 

n*fG (.A) + G "(.A)Ju 2!'. Ofor all ('(/l/lple.x vettor.~ n and all comple"1· 
1111111hers .A sudt that Re(>. ) > 0 and.>. is nnt ( Ill eigf't1v11l11e 11.f A. 

5. Tl1e triple (A , B. C ) is 111i11i111al. 
6. The pair (C , A ) is ob.1·l!n1abll!. 
7. The matrix J( is positivl! de.finite. 

Tlte.followin~ implirati1111.1· l10/d: 
(i). I ¢::> 2 ¢::> J. 

(ii). 2 => 4. 
(iii ). 4 and 5 => 2. 
(iv). 2 and 6 => 7. 

5.2.5 Existence and uniqueness of solutions 

Consider 1hc system 

x(f ) = A:i;(f ) + B z(I ) + Eu(/ ), 

w (I ) = Cx(I ) + Dz(f ) + Fn(I ). 

0 :5 z(I ) J_ 111(1) ~ II, 

(5.58a) 

(5.58b) 

(5.58c) 

where the slate x takes values from JR" . the input u from JR~·, the comple men­
tarity variahles (z , w ) from JR"'+"'. We call these sys1e ms li11eor complemen­
wri1y .1:i·s1e111s and denote (5.58) by LCS(A, B , C , D , E. F ). When the sextuple 
(A , B , C , D , E , F ) is clear from the co111ext, we use only LCS. 

We say that a triple (z, x. w). where x is ahsolutely continuous and {z . w ) is 
locally integrable: 

• is a Carathend01:v solttti0t1 of (5.58) for the initial state x 11 and the input u if 
x {O) = xn and (5.58a) is satisfied for almost all I ~ 0 and (5.58b}-(5.58c) are 
satisfied for all I ~ 0: 

• is afmwa rd solution of (5.58) for the initial state xo and the input u if (z. x. w ) 
is a solution and for each r 2: ()there exist an index set f1'(i) £; { l, 2 .... ' 711 }. 

and a rositive number 1:1 such that 
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:i:{I ) = A x (! )+ B z(I ) + Eu(! ). 

w (I ) = Cx(I ) + Dz(f ) + Ftt(I), 

Z0 (1)( I) ;::: 0 W,..(i) (/. ) = 0, 

z.,. (1)(1) = (l 111,,. (ll(I) ~ 0 

(5.59a) 

(5.59b) 

(5.59c) 

(5.59d) 

holds for all I E (1.t + c). Here ().r· denote.~ the complement of Lhe set ll' in 

{ I . 2 . ... . 111 }. 

Throughout the chapter. we will he mainly interested in Bohl-type inputs. A func­

tion f : lR+ __. 1R1' is said to he a 811hfJi111uir111 if .f (I ) = Z exp(X l.)Y holds for all 
I ;:::: 0 mid for some matrices X , Y. and Z with appropriate sizes. 

Existence and uniqueness of forward solutions The following theorem provides 
suflicienl conditions for the existence and uniqueness of forward solutions: 

Theorem 5.3f151/ Let G( .~) = D + C( .~I - A ) 1 B. S11ppose 1'101 
• .for all rr ~ { I. 2 . .. .. 111}. G ,,.,, ( s) is i1111enible tis" ratio11al 11w1rix a11d 

.~ 1 G 1 "" ( s) i.v pm per: a11d 
• G (11) is a P-111a1rix.fnr all .l'l!{fide111/y large reol 111m1hers 11. 
T'1e11. 1/te.follmvi11{: s/llte111e111s are equi11ale111: 

I. There e.xi.m 11 fmwnrd snlu1io11 rd' the LCS (5.58)./(ir the initial st me Xo 

011d rite Bohl i11p111 n . 
2. Cx11 + F11.(0) E LCP - l111(D ). 

MorM1•er. if n forward sol111io11 eri.1·ts it is unique. 

Existence and uniqueness of Caratheodor y solutions Theorem 5.3 presents con­
dition:- for the ex istence and uniqueness o f' forward solutions. However, the unique­
ncs~ of Caratheodory solutions is not guaranteed by those conditions in general as 
illustrated by the following example. 

Example 5.7 Complcmcmwricy syscem wich multiple solutions 

The 'LCS(A . B . C. 0. 0 . OJ with 

A = 0110 - I 

[

fl Cl() - Ii 
0 0 0 - I ' 
0 (} () u [

I ;\ Ol 
B = () I :l 

:1 0 I ' 
noo 

[
I Cl 0 ()] 

c = () J 0 0 
on 1 n 

has multiple Carmheodory solutions for thi.: i 11i1ial state :r.o = c:ol (0.0, 0. I ) 178. 5841. 
Note 1hn1 C B is a P-matrix and hence all the conditions of Theorem 5.:l arc satisfied. 
Conl"equcntly. there exists a unique forward solution. D 

The fo l lowing Lheorem provides condilions for uniquene.~s o r Carntheodory so­
lutions. II follows from the standard existence and uniqueness results of ordinary 

differential equations with Lipschitzian right-hand sides. 

5 Further switched systems 

Theor em 5.4 Suppose !hat D L~ a P-111a1rix. The11, 1he.fol/owi11g slatemem.,· 
are equivalent: 

I . There exists a Cara1Modo1y solwio11 <~{ the LCS (.'i.58) for a11y inilial 
s/l//e xn and a11y locally integrable i11pu1 u . 

2. There exi.m afmward .wl111it111 t>f the LCS (5 .58).for a11y inilial stale x 0 
and a11y lnc:a//y integrable i11p111 u. 

Moreove1: if ( z' , x ', w i) ·i = l. 2 are solu1im1.1· with the initial slate x 0. and 
the i11p111 u. then ( z 1. x 1, w 1) = (z2 , x 2 • w2 ). 
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The P-matrix condition of this theorem is somewha1 res1ric1 ive. It turns out 1hat 
passivity of the underlying linear system is sufficient in order to guarantee unique­
ness of Caratheodory solutions as slated next. 

Theorem 5.5 { 1617 Suppose that the system E(A , B , C. D ) is passive a11d 
!he LM/s (.'i.57) have o positive de,fi11ite so/111io11. Then. 1he.fnllowi11g state­
mel/f.1· ore equivt1len1 for a given pnsi1i11e real number T, t 111 i11i1ial state x 0 , 

and a 11 input 1t: 

I. There exists a Cara1heodo1:v solwio11 of tlte LCS (.'i.58) for the i11i1ial 
.vtote xn ond the Bohl inp111 u. 

2. Tl1ere exists a forward .\'Ol/l/ion r!{ the LCS (5.58).fi'ir the i11i1ial swte Xu 

and the Bohl input u. 
3. The relmimzs 

Fn(I) E (LCP - k<'r(D ))* + lm C , for 11.ll f > 0. 

Crto + Fu(O) E (L(!P - k<'r(D ))' 

//old. 

(5.60a) 

(5.60b) 

Moreovn; if (z;, x', w' ) i = l, 2 are solutions with thP initial state x 0 • and 
the i11pu111 .. 1he11 the relations 

I . x 1 - x 2 = 0; 

2 z 1 - z 2 E k(•r [ B ] · . D + D T ' 

3. w 1 - 1112 E D kC'r [ B ] D + D T 
hold. 

Zeno phenomena Consider the input-free LCS 

:i:(I ) = A x (! )+ Bz(!-) , 

w(I ) = Cx(t ) + D z(t), 

0 ::; z(I:) l. w (I ) 2 0. 

(5.61a) 

(5.6 1b) 

(5.6 1 c) 

Let (z , x, w ) be a Caratheodory solution of the LCS (5.61 ). Define the index se1s 
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n {/ ) = { i I z,(t) > 0 = w, (I)}. 

, /(/) - {i I z ,(/) = 0 w,(1)}. 

..,(1) - {1 I z ,{I) - o < 111,(1)}. 

(5.62) 

(5.63) 

(5.64) 

ror I > 0. We say that a time instant t• > II is: 

• 1111onsll'i1c/1i11g time i11.m1111 with respect 10 the solution (z . x. w ) if there exist a 
pn~itive real number c and index sets (n,. /I .. "I' •) such tha1 (n(l), /l(t ), ')' (/)) = 
(11 , . il • . 1.) forall/ f( / <'./•)lJ(/',/* I t ): 

• a fll'itchi11g ti111e imtmlf ir it i~ 001 a nonswitching time in~tant. 

Let r he 1hc set of all -.witching t ime instant-. wi1h rc,pect to 1hc -.olu1ion (z. -:r . w ). 

We ~ay 1ha1 the solution (z. :r , w ) is 

• fl'.ft ·Zl·11u .fi·ee i f 1hc sci r ha' no lefl accumulation points. i .e.:. rnr each I ~ 0 
1hcrc existi, a po!<itive real numher F such 1ha1 r n (/ , I + e) = '1: 

• ri.~f11-Ze110 fre<' if the sci r h.i~ no right accumulation point:.. i .e. for each I > 0 
there CX i<.I<. a po<.iliVC real numher ,,- !>llCh that r n (/ - E. I)=~: 

• 7.Pnnfree if it i, both left· and righ1-Zeno free. 

Four 1hcore111s 1ha1 provide sufficient conditions 1ha1 exclude ceriain types of Zeno 
hdwvior are in nrder. The fir,I one rnlel- out both lcfl and right Zeno hchnvior under 

n rc,tric1ive condition: 

Theorem 5.6 /5K~/ Su111mse that D i., a P-111atri\. Then. all .,ofutimi.t of 
thr LCS (5.61) are 7R11t1 fl't'e. 

T he secoml rule' uul only lcf t-Zcnoncss under a lc~s rcs1r ic1 ive co11cli1 ion. namely 

the p;1ssivity assumption: 

Theorem 5.7 /306/ Suppose that the ,,yste111 E( A , B . C. D ) i., 1mssil'e a11d 
i·ol( 8 . D + D r) i' of full colu11111 rem~. Then. 111/ .wlwio11.~ of the /,CS (5.6 1) 

tll"i' Jeft-ZR11o(rt'e. 

Tiie third rc~ult rule!. oul Zeno behavior in ca~c the underlying syl.tCm i~ passive and 

D matrix sati,fic~ certain conditions: 

T heorem 5.8 / 149. ( 52 / Suppose 1fw1 the system E( A . B . C. D ) is pa.vsive 

011d c·nl(B . D 1- D'I') is of.full m f1111111 m11k. If there exists lln ill(/er ser 

n ~ { I. 2 .. ... 111 f 11/rh that 
• D .,., is pnvitfre deji11i1e: 
• D ,.,, = 0 and 0 ,. .. = 0 : a11d 
• D .. ,, i1 skl'll'·.\l"lllllll'trir. 
Tlre11 aff solutir111s 1f the LCS (5 .61 ) are Zeno.free. 

5 Funlier swi1che<l 'YMCms 

The final result relaxe~ the passivity requirement: 

·n1eorem 5.9 / 162/ Suppose that 111 = I. D - 0 . nnd CB > 0. Then. all 
mlmirmf of the LCS (5.6 1) Me Zeno.free. 

Sta bility To study 'tabili1y. we introduce a ~tronger version of pas~ ivi t y: 

Definition S.2 (Strictly p11ssive system) Tire system E(A . B , C. D ) is 
called strictly pa~s i ve. if 1he matrix ineq11afi1ies 

l< = K ·' (l I [A TK + KA r f< T<B - C T] <(l (5.65) 
> am B 1 K C (D + D T) -

(1111•e a .wfutir111 J( .for ,\fl/lie E > 0. 
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Lyapunov stability of linear complementarity sy~1 erm is em1bl ii;hecl hy the following 
theorem under the pa~<.ivi ty a<.sumption: 

Theor em 5. 10 f 155 / Consider the LCS (5.6 1 ). Suppose that the linear .\\'.\ · 
1e111 E(A . B , C. D ) i1 .\trictly pa1.1fre. The11 tht• LCS (5.61) is g/11b111/y e.\· 
po11e11tiallv ,ftable. /11 1·t1w• L'(A , B , C . D ) if pa.Hfrr m1fr. then tfl(• .1,1·ste111 
is L\•t1p1111m1 stable. 

In general. obtaining nccci;sary and sufficient condi1ions for st:ihili ty is a hard task . 
Only in the planar c.:asc. one can provide ~uch condit ions as stated in the next 

theorem: 

Theor em 5. 11 f 156 / Comider the LCS (5.61 ) with 111 = I. 11 2. anti 
( C. A ) is ti/I nh.1en-able pair. The followi11g fWte111ellff hold: 

I. Suppo.fr 1/u11 D > Cl. The LCS (5.61) is aswnptotirnllv .\fablt• if and 
011/y (( 
(a) 11ei1her A 1111r A BD 1 C has 11 rea/ 11m111egflliFe eigenvt1 f11e. 

and 
(h) i.f lmth A and A - B D - 1 C (1111•e nm1re11( eigenvalue.f then rT1 /w1 + 

rT2/w2 < 0 where rT1 ± iw1 (w1 > 0) t11·e the eiJ(e1w1rfue.1 of A anti 
112 i iw..,_ (w:1. > 0) are the eigt•111•11fuef of A - B D 1 C . 

2. Suppose that D > 0. The LCS (5 .6 1) /rm a 11nnro11sw111 periodic .wlu-
1im1ifa11d011/y if both A t111d A - B D 1Chm•e11011reaf eigenmlues. 
and 111 /wr t 11:1./w2 - n whe1't' 111 + iw1 ore thr eigem•a/ues 1l A and 
112 ± iw2 are the eigem•alues of A B D 1 C. Morem•e1; ({ there i.,. 
r111e periodic .mlmirm. then all othl'r .wlutio11s nt't' alsn periodic. A11d, 
7r /w1 + 7r /w~ i.1 the period of a11y solution. 

3. Suppose thw D = 0 l/11(/ CB > 0. 71w I.CS (5.61 ) i., mymptmi­
cally swhle if and 011/y if A has 110 real no1111eg01i1•e eige11w1/ue and 
(J - B ( CB) 1 C)A has a real 11egmii'e ei11e111•alue (11me that 011e 
eiKenrnlue i\' alreadv ~em). 
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Con~roll ability and stabilizability Lei (zx ... u . :i:Xo .tt , wx ... u ) denote the solu-
1ion of 1hc LCS (5.58) for 1hc initial s1a1c x n and the input 11 •• We say thal rhe LCS 

(5.58) is 

• t•n111mllah/1' i r for any pair of states (xu. x r) E JR"+" there exists a locally intc­
grahle input n such that 1he trajectory :rx.,,n satisfies xXn.u (T) = x r for some 

T > 0: 

• \tahili:ahle if for any initial ~1a1e x0 there exi~IS a locally integrable inpul u ~uch 
1hat li111 11 .... xx ... u = O. 

111c following theorem pre~enl~ algebraic necessary and sufficient condition\ for 
1hc con1rollability or an LCS: 

Theor em 5.12 { 150} Suppn.~e that D is a !'-matrix and the tran.~/er 111t11rix 
F I C(.~ T A )- 1 Eis invntihlt• 11s a ratio11a/ 111atrix. Then. the LCS (5.58) 
;,,. u1111mllable if. and 011/y if. 1he.follmvin>111110 cn11di1ions hold: 

I . The 1wir (A . [B E)) i.~ ro111ml/ahli'. 
2. The svstem of inequalities 

1/ > 0. 

[e 11 "l [AC >J ~] = 0, 

f{' 11
1
'] [ ~] < () 

admits n" so/11tio11 A E JR tmd 0 f (e. 17) E IR"+m. 

(5.66a) 

(5.66b) 

(5.66c) 

II rurn~ out 1hat s1abilizahili1y can also be drnrac1erized in the same way: 

Theorem 5.13 Suppou that D is a P-matrix and the 11w1.efer matrir F + 
C ( . .,J - A )- 1 E is i1ll'enibf Pas a rotinnal motrix. Then. 1he LCS (5.58) if 

.wahili:ahle if. and 011/y if. the Jolloll'i11R 11110 conditions hold: 
I. The pair (A . [B E )> isswhili:able. 
2. The \'_\'.ft Pm of illequalitie~ 

,., ?: o. 

rtT Tl [A - >.! E] = 0 .. 17 c p • 

re 11TJ [g) s o 

admits 110 snl111io11 0 $ A E R am/II # (e. T7) E Ill:"+"'. 

(5.67a) 

(5.67h) 

(.'i.67c) 

.'i Fun her switched <y\IClll• 

5.3 EqujvaJence of piecewise a ffine systems, mixed logical 
dynamical systems, and linear complementarity systems 
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In 1his section we discuss equivalences among five classes or discrete-lime hybrid 
systems, viz. mixed logical dynamical (MLD) systems. linear complementarity (LC) 
systems. extended linear complementarity (ELC) syi:tem~. piecewi~e affine (PWA) 
i;ystems, and max-min-plus-scaling (MMPS) systems. Some of the equivalences 
can be established under (rather mild) additional ac;sumption~. The!>t! results are of 
paramount imponance for transferring theoretical propertie<; ancl 1oob from one class 
to another. wi1h 1he con~equence 1ha1 for the 1udy of a particular hybrid ~ystem that 
belongs 10 any of these clas~e,, one can choose the mos1 convenient hybrid modeling 
framework. The proor~ uf all 1he equivalence results reported in 1hi~ ~cction can be 
found in [3051. 

5.3. 1 Summar y of the fi ve classes of' hyhricl models 

In the previous chapters of 1hi~ handbook it ha~ already been indicllled that. as 
1rac1able methods to analy1.e general hybrid systems arc 1101 avai lable. several au­
thor<; have focussed on special subclasses of hybrid dynamical !>y~tem~ for which 
analysi<; and/or control design techniques are currently being developed. Some ex­
amples of c;uch c;ubclasscs arc: linear complementari ty (LC) system~. mixed logi­
cal dynamical (MLO) sy~1ems. lrrst-order linear hybrid syiacrm with saturation. and 
piecewise affine (PWA) ~Y\lems. Each subclass has its own advanwge~ over the oth­
ers. For instance. stability criteria were proposed for PWA ~ysrcms (Section 4.4). 
control and verification rechniques for MLD hybrid models (Sec1ion 5. I ). and con­
dir ions of existence and uniqueness of solu1ion 1rajec1ories (wcl 1-poscdness) for LC 
systems (Section 5.4). 

In this sect ion we wi ll show 1ha1 several of such suhclasses of hybrid systems are 
equivalent when considered in their discrete-time formulation. Some of 1he equiv­
alences arc obtained under addi tional assumptions related 10 well-posedness and 

• boundedness of inpul. state. outpul , or auxiliary variables. TI1ese results allow to 
transfer all 1he above analy\is and synthesis 1ools to any of the equivalent subclassel 
of hybrid systems. 

Firsl we briefl y recapitulate 1hc five classes of hybrid systems con~idered in 1his 
<;ection. l11e variables u (k ) E ITT "' . x (k) E IR " and 11(/>) E mt denote the input. 
s1n1e and outpul. respcc1ively. a l lime k. 

Piecewise affine (PWA) syslems PWA systems arc descrihecl by 

x (k + I)= A ;x(k ) + B ,t,(k) + f , ~ [:r.(J.")] } 
y (/>) = C,x (J.·) + D ,tt(k ) + g.; or 11.(k) E ! " (5.68) 

where fl, are convex polyhedra (i.e. given by a fini1e number of linear inequali1ies) in 
the input/state space. PWA system~ fonn the "'simple.st" extension of linear systems 
that can still model nonlinear :incl non-smooth processes with arbi trary accuracy and 
are capable of handling hybrid phenomena. 
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1ixecl logical dynamica l (MLD) systems As introduced in Section 5.1 .. 1. an inte­
gration or logic. dynamics. and constraints results in the description 

x(k + I ) = A x(!>) I .81u(h-) r B 26(A·) + B :1z(k), 

y (I.·):::: Cx(A·) I D 1•11.(/.·) + D26(!.:) + D :1z(k), 

E 26(/.·) + E :iz(k) ~ E 1n (q -+ E 1:r:(Vi + E r., 

(5.69) 

(5.70) 

(5.7 1) 

where :r(q - fx.' (k) x;~·(k)rr with :r, (/>} c IR"· and x.,(k ) E {O. I}"'" z(~·) E 
ITT ' and 6 ( ~· ) E {O. I}"· are auxiliary variahles. l l1e inequalitie.~ (5.71) have lO be 
interpreted componcntwi~e. 

R P1111tr/.. 5.1 h i' as~umcd 1hat for all :r(k ) v. i1h :ri.(k) E {O. l} "". :1ll 11( k) with 
111,(q €'- {O, 1} '"1'. all z ( A·) E Ill '• and all ~(k) E {O. l} "'• sa1isfying (:'i.7t) i1 
hold' 1h:11 .I'( A· + I) and 11(A·) determined from (5.69) - (5.70) arc such th:u .ri.(k + 
t ) E {O. l }"'• and 1)1.(k) E {O. I f11 '. Thb is without loss or genenili1y. as we cun 
1:1kc hi nary cnmpnncnl$ of slates and outputs (if uny) to he auxiliary vuriahlcs as well 
(,cc thc proof nf Pmpnsi1io11 I of 165(). Indeed. if. fnr i11s1ance. y i.(k) E {O, I }1

'• 

i,. 11<11 Ji rcctly implied h) 1he (i11 )eq11ali1ic,, we inlr<Kluce an addi1ional hinary vcc1or 
vnriuhlc 6.,(k) E {O. I }1

" and lhe incqu;tli1ics 

fC:r( k ) + D ru(k) + D 26 (k ) I D 1z (.l.·)Ji. - o .(k ) $ 0 , 

C:r( k) - D 1u ( A·) 0 16(.1.-) D 1z(k)Ji. + 611(1.-) $ O. 

\\lllch -Cl\ o.(k) equal to u1o(.I.·). TI1c nolalinn I Ji. IS used to <elccl 1hc ro\\~ of 
1hc cxprc"inn (5.70) thal <.'Orrc<pond 10 1he hinary pan of y (k). Hence. !}1.(k) -
6,,(.1.-) f.' {O. t }'" Similarl}. we can deal wi1h 111.(k ) and x i.(.1.· -r I). 

Linear complementarity (LC) systems In discrete time these systems arc given 
by the cquul ions 

a:(k + I ) - A:i:(k) I B 1n (A·) r B 2w(k), 

y (J.· ) = Cx(~·) I D 11i(k) + D 2w (k). 

11(/,· ) = E 1 x ( A· ) + E i 11 (J.·) + E:iw(J.·) + g 1, 

0 ~ v (k ) .L w (k) > 0. 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

with 11(k), w (k) f- nr and where .L denote' the orthogonality of vectors (i.e. 
v (A·) • 11J(k) means 1ha1 11T(k)w (A') 0). We call v (A· ) and w (k ) the comple-
111entari1y variahles. 

Exle ncled linear complementarity (li:l~Cl systems Several types of hybrid sys-
tems can he modeled as cx1c11ded linear eo111ple111en1arity (ELC) systems: 

x(k + I)= A:c(k) I B1t1,(k) f. B2cl(k) . 

11(k·) = Cxfk) -l D 1n (k) f D 2d(k). 

E1x (k) + E 2t1(k } + E:1d(~·) ~ g 1. ,, 
L IJ (g t - E 1x(k) - £i11(k)- E ;id (k ))1 = Cl. 
1-I Jf</>, 

(5.76) 

(5.77) 

(5.78) 

(5.79) 
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where d (k) E IR ' i ~ an auxiliary variable. Condi1ion (5.79) is equivalent to 

Il (a1 - E 1x(k} - E2u (/.·) - E :1d(/•))
1 

= 0 foreaehi E {1.2 ..... 71} , (5.80) 
J~¢>. 

due 10 the inequality conditions (5.78). This implies that (5.78)-(5.79) can be con­
l>idered as a system of linear inequalities (i.e. (5. 78)). where there arc 1, groups of 
linear inequalities (one group for each index l.CI </>, ) uch that in each group at leai.l 
one inequality ~hould hold with equality. 

Max-min-plus-scaling (MMPS) systems In (5781 a cla~< of di~crete-cvent sy!>­
tcm~ has hcen introduced that can he modeled u<ing the operation~ maximiL.ation. 
minimiza1ion. addi tion, and scalar multiplication. Expressions that arc built usino 
these operations are called max-min-plus-scaling (MMPS) expressions. e 

Definition 5.3 (Max-min-plus-scaling expression) A 111o r-111i11 -JJ/11.1·-.1'('11/i11R 
exJJression .f of tlw l'f1riohle.1· .1· 1 ••••• • r,, is de/inf'fl by //w Rrm11111t11· 

(5.8 1) 

ll'ith i E {I, 2, ... , 11}, 11, ,J f IR. and where fk, !1 are again MMPS ex­
prPssion.~. (The .f.w11b11l I .11w1dxfor OR mu/ the defi11itio11 if l'<'t'llr.m•e.) 

An MMPS expre,,ion i,, for example 

fl.1"1 a.ri I i t 111ax(111 in(2,,. , . - .1"2) .. r :i ;\.,.:1). 

Com.icier now systems !hat can he descrihed hy 

x(k r I ) - M , (x(k ), n (A·). d (A·)). 

y (k) M .,1(x(k). u (k) . d (/>)). 

M , (x (k ). u (J.·). d (A·)) ~ r.. 

(5.82) 

(5.83) 

(5.84) 

where M r. M 11 • and M , arc MMPS cxprc<sions in term' of the components of 
x(~·). the input n (k ). and the auxiliary variahles d(A· ). which arc all real-valued. 
Such sy,tems will be called MMPS system•;. 

5.3.2 Systems equivalence 

In this section we prove that MLD. LC, ELC. PWA and MMPS systems are equiv­
alc111 (a lthough in some cases additional a.~sumptions arc required). The rel<llions 
hetwecn the models arc depicted in Fig. 5.2. 

MLD and LC systems 

Proposition 5.2 fany MLD S\'.ttem ctm be wri11e11 m nn /.C .wstem. 
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:1 

Fig. :5.2 Graphical rerrescmation of the links among 1he classes of hybrid sys-
1e111s considered in this paper. An :1rrow going from class A 10 class B means 
thai A is a subset of B. The number nexl to each arrow con·csponds 10 the 
proposition thal states 1his relation. Moreover. arrows with a star(*) require 
condi1ions to establish the indicated inclusion. 

As mentioned hefore. all proofs of the equivalence resuhs presented here can be 

found in 1305]. 

Proposition 5.3 £very lC sy.1·1e111 mn Ile wri11e11 as a11 MW ,1y.~te111, pro­
vided 1'101 t/u> variables w (h:) and v (k) are (i·o111po11e111wise) bounded. 

ProposiLion 5.3 assumes thal upper hounds on w and v are known. This hypothesis 

is no1 restrictive in prnctice. as these quantities are related to continuous inputs and 

slates of the system, which are usually bounded for physical reasons. 

LC and ELC systems 

Proposition 5.4 Every LC system can be wri11e11 as an F:LC sys1e111. 

PWA and MLD systems 

A PWA system of the form (5.68) is called well-posed, if (5.68) is uniquely solvable 

in :r: (J• + l ) and 11(k). once x(k) and u {k) are specified. The following proposition 

has been stated in 1651 and is an easy extension of 1he corresponding result in f621 
for 11>iecewise linear (PWL) systems (i.e. PWA systems with f , = g; = 0): 

Proposition 5.5 Every well-posed PWA .1ys1e111 ca11 be rewrit1e11 as a11 MLD 
system os.mming thw the set of.feasible Silli es a11d input.~ is bounded. 

l?emark 5.2 As MLD moclels only allow fornonstrict inequal ities in (5.71). in rewri t­
ing a disconiinuous PWA system a~ an MLD model strict inequalities like :r.(k) < 0 
(where assume here ror the sake of simplici ty of the exposition and without 
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los.• of general ity 1ha1.r(k) is a sc.1lar) must be approximated hy :r(k·) ~ - dor some 
e > 0 (typical ly 1he machine precision). with the assumption that -e < :c(k) < O 
cannot occur due to 1he finilc number 11f hits used for repre.~enti ng real numbers 
(no prohlem exists when the PWA system is coni inuous. where lhc stricl inequality 
can he equivalemly rewri11en as nonstrict. or ! = 0). See 162] for more details and 
Section 5.8 for an example. From a strictly thenrc1ical poin1 of view. 1hc inclusion 
stated in Proposition 5.5 is therefore nm exact for discontinuous PWA systems. mid 
lhe same clearly holds for an LC. ELC or MMPS reformulation of a disconl inuous 
PWA system when 1he route via MLD is rnken. One way 10 circumvent such an 
inexactness is 10 allow part of the inequallcie.~ in (.'i .71 ) 10 be strict. On the other 
hand. from a numerical point of view this issue is nol relevant. TI1e equivalence of 
LC and MLD systems (cf. Propositions 5.2 and 5.J) implies that all continuous PWA 
can be exactl y written as LC syslems as well. A similar result for continuous PWA 
systems can he derived from (217 (. 

17 1 

The MLD system (5.69) is called comple1ely well-posed. if x(k+ I ). y (k ), o(J.:) and 

z(k) are uniquely defined in their domain. once :r.(k) and n (A:) are assigned 162] . The 
reverse statement of Proposi tion 5.5 has been established in 1651 under the condition 

that the MLD system is completely well-posed: 

Proposition 5.6 A mmpletely well-posed MID .1:i•ste111 Niii /Je rewritte11 m· a 
PWA sy.1·/<'111. 

Constructi ve procedures for converting MLD systems i 1110 PWA form were pro­

v ided in 155. 561 (and implemented in the Hybrid Toolbox [571, see Chapter I 0) and 

in [2651. Equivalences between PWA systems and 01her hyhrid model classes have 

been also investigated in r 136]. where lhe authors examine a relationship exist ing 

among linear hyhrid automata (LHA ) and piecewise affine (PWA) systems, showing 

in a constructive way that a L HA can be equivalently represented as a con1inuous-

1ime PWA sys1em. 

MMPS and ELC systems 

Proposit ion 5. 7 The classes of MM PS and ELC sys/ems 1·oi11cide. 

MLD and F.LC systems 

Proposition 5.8 Every ML{) system can be rpwri11e11 as an ELC system. 

f?1'111t1rk 5.3 Note tha1 the condition o, (k) E { 0, I} is also equivalent to the MMPS 
constraint m11x{- 15i{k), 15,(i.·) - I) = 0 or 111i11 {..51{k), l - ..5, (k)) = 0. 

Proposition 5.9 Eve1:v £LC sys/em can be wri11e11 as 011 M/,0 system. pr.t>­
vided tfl(lf tllf' q11c1111i1y g4 - Et x {k) - E-i11.(k) - E:id(k) is (1·ompone111wise) 
bounded. 

Note tha t Gust as for Proposition 5.3) the houndedne.~s hypothesis in Proposition 

5.9 is not restrictive in practice. since lhe inputs and i;latei; of the y tern are usually 
bounded for phys ical reasons. 
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Exam11le 5.8 EquilllJ/clll l1ybrid SJ\lems 

To dcmo11,1ra1c 1hc equivalcm:cs proven above. we con,idcr the example 1621 

{
II l{r(k )-! 11(/.·) . 

r (k -1 I )= 
0.X.r(k ) I 11( k). 

if J·(J.·) ~ n. 
1f r (k) < 0. 

with 111 <.. .r (k ) < ,\/. In 1621 i1 i< shown 1hal C.5 .R.5) can be wriuen as 

. r (k ~ I ) - 11.8.r(k ) I- 11(k) t l.fiz( I.·), 
111iS(J.·) ~ .r(k) - 111 . 

:(k ) ~ \/ IS( k), 
:(/,'.) < .r(k) - m ( I - iS( J. )) . 

.r(k) < (fl/ + 1")6(k) - £, 

:(k) > 111iS(A·). 
:(k) ~ .r (k ) ilf( I - ~(/.·)) . 

(5.R5) 

(.5.!16) 

:md 1hc condi1ion ~(k) E jO. I j . Note thal 1hc \lric1 inequality .r(k) < 0 ha' heen replaced 
hy .r( k ) - - . ''here ~ > Cl" a small numhcr (typical!) the mach111c prcci\lonl. In 'icw of 
Remark 5.2 observe 1ha1 < O resuh:. in :1 111a1hcmn1ic;i lly exac1 MLD model. In lh" c:1;.e 
1hc model i' wcll-r o-:cd. h111 nor completely well -pm.eel a~ .r(J.·) - 0 al lows both o(J.·) = 0 
and n(A·) = I. (An MLO model i' called wcll-JlO"ed. if .r(k + I ) :md 11(k ) arc uniquely 
dc1crm111cd. once :i· (A·) and 14(kl arc given. Nn1e 1hat there arc nn rcquiremenl' on 5 (1.·) uncl 
z(k). ) 

One can vcnfy that (5.l\~) can he rcwri11cn as 1hc MMPS model 

.r(k I I)= - 0.X.r(k) f Ui111n.x(ll ,.r(k)) ·I 11 (A·). 

a5 the I C fom1ul:1tion 

. r(J. ~ I ) 

n < ,,.(k ) 

O.x.,.(k) I u(A· ) ~ l.fi:i(k·) . 

.r(J.·) i ;(/.·) l (k) ~ o. 

and a' 1he F.LC rcprcsc111111 i1111 

f( J. + I ) ll.&(k ) i u(k} l.lid( k). 

r/(k ) < o. 
r(J. ) d(k ) < n. 
() (.r (k ) tl(k ))( 1/(k )). 

(5.117) 

(:'i.88) 

(5.89) 

While 1hc Ml.I) rcprcse111111ion (.5.R6) require' hound:. nn .r(k). 11( /.·) 10 he <pccitic<l (al· 

1hough ,ucl1 hound:. c:m he nrhitrarily large). 1hc PWA. MMPS. LC. and EL\ c~prc,"ons 
do 1101 require ' uch a spccihca1ion. . . . 

01c 1ha1 we only n.:cd one max-opcra1nr in (5.ll7) and one complemcn111ri1y pmr 111 

15.l!RH.5.1!9). If "e would mm<form 1he Ml.D <yMem (5.!16) into. e.g .. 1hc LC model :L< 
indic:11cd hy 1he equivalence proof. 1hi' would require nine complcmenianty pairs. Hence. 
i1 is clcur 1ha1 1hc pl"llOI:< only \ how 1hc ct111cep111:ll equivalence. hut do 1101 rc,ult in the mosl 
compact models. 0 

Outlook I n 1hi' section we have discu~sed the equivalence nf five classes o f 

di,crete-time hyhrid syMems: MLD. LC. ELC. PWA. and MMPS systems. For some 

of the 1rn11sfor111ations add it ion al conditions like boundednc~s of 1hc state and in­

put variahlc~ or well-po~cdness had to be made. The~e result~ allow one to transfer 
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properties and lools from one c lass to another. So for the s1udy o f a particuhu· hy­
brid syMem that belong~ to any o f these cl;t~se~. one can choose the most convenient 
modeling framework. 

In the conrinuous- time framework. which is the natura l habitat for most of the 

applications for LC systems. such broad equivalence rela1 ions arc ou1 of the quclllion. 

There are relntions though of LC systems to other specific cla~~ci. of nonl>mooth 
systems such ns specilic d i ffercntiul inclusions based on the normal cones or convex 

analysi~ und ~o-callcd projected dy namical system~. The reader may consul! ( 124 • 
3031 for these relation~hips . 

5.4 Solution concepts and well-posedness 

This \eel ion con,iden. the fundamental syMem-thcoretic propeny of well·poscdne\!. 

for hyhrid dynamical :.y~tem~. We intend to provide an overview on 1he av<ii lablc 

resull ' on exi~1 ence and uniqueness of 'olulion' for given initial conditions in th<! 
context of various de,cription format:. for hylmd 1-ystem' and their corre,1xmding 
solution concepts. 

5.4.1 Prohlcm statement 

On an ahstract le' el, 'cicntific modeling may Ile defined <t' the procesi; of finding 

common descriptions for group' o f observed phenomena. Often. several de:.cription 
forms arc possihle. 

Example 5.9 Flying h11// 

To take ;m example from not VCI) recent technology. 'UP~ "c want 10 dc-crihc the flioht 
of iron halb fired from n cminon. One dc~cription can he oh1:1incd hy no1ing 1ha1 , uch h~h 
apprnxima1ely follow 1>urabola,. which may be paramc1ri7ed in 1erms of firing angle. cannon 
ball wcighr. and amoun1 of gun powder u<ed. Another po<-<ihlc descnp110n characteriic., 
1hc trajectories of 1hc cannon ball:. m, ~olut ion;. of ccnain clilTcrenrial ec1m11ion;.. The l;11tcr 
description may be viewed as being fairly i111/in'rt: after al l it represent;. 1rnjec1orics only 
as <olutions to some problem. rather 1ha11 cxpre ... sing direc1ly what 1hc lraJectorie'- urc. :" 
1he fiN descriptton fom1 does. On 1hc other hand. the dc\Crip11on hy mc:m., of dirferenti:il 
equation~ is npplicablc lo u wider rungc or phenomena, and one may. therefore. feel tha1 it 
reprc,cnts a deeper insight. Be\idc,. in1erconncc1inn (compo<ilinn) become\ mud1 easier 
since tl is in gcnerJI much e:L\ier 10 write down cqu.111011\ rh:m ICl delerminc the ;olutions of 
1hc i111erconnec1cd ;.ystc111. D 

There are many example., in \Ciencc where. a~ ahovc. an implicit de\cription 
(Lhat is. a description in terms of a mathematical prohlem to he solved) i s U\Cfol and 

possibly more powcrful tlwn expl icit descriptions. Whenever an implicit description 

is u1,ed. however. one ha~ to show that the description is a "good" one in the sense 

that the stated problem ha~ a well-defined :.olu1ion. This i' essentially the i!-~ ue of 
well-posednes!'-. 
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Man) differen1 dcscrip1ion formal" have been proposed in recent year~ .ror. hy­
brid 'Y'leim. Some propo~cd form' arc qui1c direct. others lead t~ ralher md1r~t 
description,. TI1c dircc1 forms have advantages from 1he poi.nt of view o~ a11alys1.~. 
bul the indirect fom1s arc often preferable from the perspecuve of mode/mg (~pec1-
licat ion): example' will he <;ccn below. The more indir_e<:L a de.~crip1i~n f~rm is. the 
harder it becomes 10 ~how thal solu1ions arc well-dehned. This secuon mtcnds to 
provide a survey on the available re.suits on cxisten~e '.111d uniquene.ss of so.lution~ for 
given initial conditions in 1hc contcx1 of 1he dc.,cnp11on fom1ats for hybrid ~ystems 
ai. con~idcred in this handhook. 

5.4.2 Model classes 

Thi!' section summnri1.es 1hc models of hybrid systems 1hat wi ll be invcs1iga1cd late1· 
wiLh respcc1 to the cxi~tcncc and wcll-posedncss of a solu1ion. 

Hyht"icl automata 1 lyhrid uu1oma1a were already defined in Section 1.2 and Sec­
tion 2. 1 and we refer 111 lhe formal definition of 1his model class based on the 8-tuple 
II (Q.,\'. J. /111/ , /im. £ , Q. 'R,) given there. 

Differential equations with discontinuous 1·ight-hand sides During the past 
decades. exten~ive ~tudic<. have hccn made of differe111ial eqm11ic111s wi1h disn1111i1111-
011.1 rigli1-lumd .~itle.1 (cf. in particular 12371 and 1639. 6401). For a typical example. 
consider the following spccilicaiion: 

.r {
/ i(.r ). 
h(.r ). 

when /i (.r ) > 0. 

when /i (.r) < 0. 
(5.90) 

where h i~ a rcal-v;ilued fum:1ion. A <.y'\tcm of this form can be looked at either"" 
a di~continuous dynamical i.y<;tcm or a~ a hyhrid system of a particular fonn. TI1c 
,pccification above i<. ohviously incomplete since no stat~ment is ma~e about the 
<.it uaiion in which /1 (.r) O. One way to arrive al a solution concept 1s to ~dopt. a 
suiiahlc relaxation. Specifically. Filippov 12371 proposed rewriting the equations 111 

a cm1l'<' X rclaxaiion (5.90) ~1~ 
.r E F(.r). 

where 1hc ~ct -valued func1ion F(.r) is defined hy 

{

lf,(.r)f . 
/i'(.r) - {/2(.r)}. 

111 I 3o C [O, 1] s. l. /J - 11/1(.r) + (I - 11)/2{:r)} , 

(5.91) 

when h{.r) > 0, 

when h (:r) < (), 
when /i(.r) ...; 0, 

(5.92) 

where it is assumed (for simplici1y) that / 1 and hare given as continuou~ functions 
defined on {.r I /i (.r ) > O} and {.r I h(.1:) ::; O}. respectively. . . 

The discontinuous dynamical system has now been refomiulated a:; a diff~"'"""' 
indusion. and so ~olution concepts and wcll-posedness results can be applied that 
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have been developed for systems of this type 1261. Other methods to obtain differen­
tial inclusions are proposed by U1kin ( .. control equivalent defini1ion .. ) and Ail'...errnan 
and Pyatnitskii (Seel. 5.4.4). In case lhe vector fields f ,(x ) arc linear(i.c. of the fom1 
A ,x for some matrix A,) and the switching surface is given hy a linear function h. 
then the system (5.90) is called a piecewi.fe linear .w.ftem. These syslems will receive 
special attention below. 

Hybrid inclusions A conceplUally simple model. hut still powerful to model many 
classes of interesl. was developed recently in 1133. 27 1. 2731. II extends the differen-
1ial inclusion (5.9 1) by restricting its "Oow region .. to a sci C and including resets of 
the state variable in the "jump set'' V. As such, lhc model consist of the data of two 
subsets C and V of JR". and two set-valued mappings :F and 9. from C, respectively 
from V. to lR". The hybrid system is wriucn as 

x E :F(x) if:1; E C, 

a: + E Q(x) if:r: E 7J, 

(5 .93a) 

(5.93b) 

The state variable is now given by x(I) E JR" for lime I f' JR. hul some parts of the 
state vector are also allowed to take only integer va l ue~. 

Complementari ty systems Complementarity syMcm" have hcen discussed already 
in detail in Section 5.2. The reader is referred 10 th:JI section for an exposition on this 
class of hybrid systems. 

5.4.3 Solution concepts 

A description formal for a cla"s of dynamical "YStcm~ only specifics a collect ion of 
trajectories if one provides a notion of "olu1ion. Actually the 1erm '"solu1ion·· already 
more or les.s suggests an implicit descrip1ion format: in computer l>Cience 1erms. one 
may also say tha1 a definition should he given of whm is understood by a run (or 
an exec111i011) of a system descrip1ion. Formally "peaking. de.scription formats are 

• a mauer of syntax: Lhey specify what is a well-formed expression. The notion of 
solution provide.~ semantics: to each well-formed expression i1 as.,ociates a collection 
of functions of lime. In 1he presentmion of description formats above, the sy11tac1ic 
and semantic aspects have no1 been strictly separa1cd. for reasons of readability. Here 
we review in a more formal way solu1ion conccpls for several of 1he descripl ion 
formats that were introduced. 

Solution concepts for hybrid automata We will use the (autonomous) hybrid 
au1omara formulation as in Section 1.2 and Section 2. 1 based on the 8-LLip le H = 
(Q, X , f , /nil., lnv ,E, Q, 'R.). To formalize the solution concep1 based on this model 
syntax, we will use the fo llowing definitions. 

Definition 5.4 (Hybrid time trajectory) [4271 A 
T = { /, }:;,,0 is C1ji11i1e ( N < ) or i11ji11i1e ( N = 
of the real line, such 1ha1: 

hybrid rime 1rajecwry 
) sl'q111'11Ce of i111ervals 
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• / , = lr, .r:J ll'ith T, < 'T: = T,+1for Cl ~ / < N; 
if \' < . t'ither I, = f rv. 'T~ J or Iv = ITv, T'N] with r , ~ T~ < • 

A hybrid time trajectory d1ic' not allow left accumulation points . Indeed. the 
event time' <.cl £ . { O} 1 { f; 11 E N} and the corresponding i.equence of intc~~ah 
cannot he rcwri11c11 m term' of a hyhrid time trajectory. Hence. the ahove defi11111011 
exclude' implicitly ,pecitic Zeno behavior and that this concept ha.~ a "prcferre? di­
rection of time:· Thi' i' cau,ed hy the fact that it a.~~umes that the set of event time' 
i' well-ordered hy the u<.ual order of the reals. but not necessarily by the reverse 
order: in other word,. event times may accumulate 10 the right. but not to the lefl. 
(An ordered set S is said lo he well-ordered if each nonempty subset of S has a l ~aM 
clement. ) This lack nf symmetry wi1h respect 10 time can be removed hy allowmg 
the ~Cl or evenl limes r Ill be of a more general type. Simi lar a.~ymmetrie:- in lime 
arc also the case for the snlutinns ol' hyhrid inclusions and the forwa rd solutions of 
complernc111ari1y sys1crn' a:. discussed below. ln terestingl~. Fili~pov ~c~lulion ' ~·or 
disconl inum" dynamil:al sy~1 c111s do have a more symmetric 11011011 o l 111nc. wl11ch 
gunrantccs that 1i111c-revcr,ed Milutions remain to be solutions or 1he tim.c-reverscd 
system. This prnpcny is ln'l for the cxccut ions of hyb~·id automata. solu11ons to hy­
brid inclu,inn' and forward ~nl ution~ to complemcntanty systems (sec also l5'.l21 for 

a further tli,c11,~ion ). 11 
We ,ay that the hybrid time trajectory T = { /,} ~11 i. a prefix of r' - { ./, }.' n 

and write r < r' . if they arc identical or 'T i~ finite. J\f '2'. J\'. I , = ./, for' 
o. 1 ••••• .\' I. and J, c ./ N. In c:i'c r i~ a prefix of T 1 and they arc not idcnt ical. 

T i' a ~tril't prefix ol r'. 

Oefiniti on 5.5 (Execution) A11 t1 1en11i1111 \ of ll hyhrid t11110111a1011 i~ a col-

ft1t'tio11 \ ( T. ,\, l) ll'ith: 
• T ( / ,} ,' n" l11·'1rul 11111l' 1mjet't01"\': 
• ,\ (,\,} ,' 11 ll'itfl ,\, : I , - Q: and 
• ( ( (. },' 11 ll'ith (, · I , - X 
. "11i 1(1"i11g 
• i11i1i11f ('(ll/l/itim1 (.>.(rn) .. 1·(r11)) E /m l: 
• 1'tll//i1111m1.1 el'llllllim1.for all 1: 

• ,\, i.1· """ ''"'"· i.e .. .>. , (I) - .>. , ( T,) for all f E f( 
• (, i1· the .wl111io11 111 th<• d(O'ere111ial equation ( = f (,\, (I ). €(1)) 011 

tlte i111e1w1f I , ll'itlt i11itial n111di1io11 (, ( T;) at r,: 
• .for off I E fr., <l it holds thm €,(I) E fm•(>., (f )): 

• di.1·c·rN<' t•1•11f111im1 j(1ralf i. r = (,\,(Tn, .>.,+1 (T,+1)) E £. €(r;) E 9 (1) 
mul ((1 (r:).~ 11 i{TtJ t )) E 7?.(1·). 

Solution concepts for differential equations with disconti.nuous right-l~and side 
A~ wc have ~cen above. Mime differential equations with d1scont1mtous right-hand 
;..idc can be con~idercd from the pcr,pectivc of' differential inclusions. The ~tandard 
~olulion conccpl for cliffcrcn1ial inclusions i~ 1he following. A ~ector f~111c~1on x.( ' ) 
defined on an intcrv.il fa. Iii is \aid to he a .wil111io11 of the drfferen11al mclu;..1on 
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:i: E F (x ). where F ( ·) is a ;..et-valued function. if x (-) i~ absolutely continuous 
and satisfies :i:(f ) E F (x (/)) for almo't all I E f11, 11]. The requirement of absolute 
conlinuity guarantees the exi~tencc of the derivative almo~t everywhere. One may 
note that the solution concept for differential inclusion~ doe~ not have a preferred 
direction of time. a~ opposed to the notion of an execution for hybrid automata. 

Solution concepts for hybrid inclusions For the hybrid inclusions (5.93) a solu­
tion concept (cf. 1133. 27 1. 2731) ii. u~ed that ~hows similarities with the one adopted 
for the hybrid automata. It is hai;ed upon the notion of a hyhrid time domain. which 
is tightly connected to hybrid time trajectory tl~ in Definition 5.4. becau~e the hybrid 
time trajectory includes the "event counter r into the hybrid time domain. 

Definition 5.6 (Hybrid time domain) A t·m11p11l't hybrid time domain is a 
.~et 1) C lR ;>n x N giPe11 by : 

.I I 

TJ LJ f11 .1 1 1 iJ x {.j}. 
.I n 

where ./ E N' a11d () = 10 < 11 • • • < I .1. /\ /11•/Jrirl time d11111ai11 is a .~et 

V c JR ?II x fll .l'llch that.for each (7' .. /) E V. 1) n ( [0. TJ x { 0, .... ./} ) is 
a i'Ompa<·t hybrid time domain. 

Also the hybrid Lime domain' have a "preferred direction of time·· as left accu-
mulation~ of the reset time' { f J } arc not allowed. 

Definition 5.7 (Hybrid trajectory) A hvliritl tmjflctnry fr a pair(do111 x. x) 

co11sis1i11g of hybrid time domain dom :r and "fi111t'tim1 :i: defined on dom 
x that i~ /o('alfy t1bsof/l/l'fy t•ontin110111 in f 011 (dom :r. ) n (R~o X {j}) for 
earh .i E fll. 

Now we are ready 10 formally introduce a ~olution 10 (:'i.93) . 

Defin ition 5.8 (Hybrid arc) A hrlirid tmje<·ton• :r : dom :r _, R" is a 
.w/111io11 sometimes called a hybrid air 10 (5. 93) if: 

I. for all j E N mu/ for almost all I ( 1, ;- dom :i: n (1lh 11 x {.i} ). If(! 

have x (I. J) E C tmd .i;( I , J) E F (:r(I , .i) ): 
2.forall (l ,J ) E do111xsuch11tm (l, J -I I) E dt111r:i:, 111l'flfl1 1ex(l , j ) E 7J 

mrd x (l . . i + 1) E 9 (x (f ,J)) . 

Solution concept for complementarity systems Section :'i.2 introduced the con­
cepts of Caratheodory and forward solutions for complementarity system~. T hese 
two notions are only valid for absolute continuous solutions implying that the x-pan 
of the solutions cannot jump aero~~ events (mode switches). For (linear) comple­
mentarity systems of a higher index such "' mechanical systems wi th uni lateral con­
strainti; 1ha1 induce impacts, this requiremcn1 is too s1rong and one has to add jump 
rules that connect continuous states before and after an event has taken place. Under 
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sui tahle condi1ions (~pcc ifi call y, in 1he case of linear complementari1y systems and 
in the ca~e of Hamihnnian complementarity systems). a general jump ru le may he 
gi,en (302. JC>4. 572). 

5.4.4 Wcll-posednc.'is notions 

In 1he context of systems of differential equations, the Lenn well-posedne!.s roughly 
111c:u1s tha t 1here is a nice relation between trajec1ories and initial conditions (or. 
more generally. boundary conditions). There arc variou~ ways in which 1his idea can 
be made more preci,e. so the meaning of the 1erm may in fact be adapted to the 
par1icular prohlem class al hand. Typically it is required that solutions ex isl and nrc 
unique for any given ini1ial condition. Bo1h for the existence and for lhe uniqueness 
~latcmenl. one has 10 speci fy a func1ion cla'~ in which solu1ion' arc con~idered. The 
func1ion cla1':. used for existence may he 1hc same ai; the one used for uniqueness. 
or they may he different: for instance. one migh1 prove 1ha1 ~olu t ion s exist in some 
function cla:.~ and 1ha1 uniqueness holds in a larger function clai.s. In 1hc latter si1ua­
tion one i:. ahlc to show ~pccific properties (the ones sa1isfied by the smaller func1ion 
<.: lit)..S) o f solut ion 1rajcc1.oriei. in the larger class. In case one is dealing w i1h a sys1cm 
cle~cription that includes equality and/or inequality cons1rain1~. it may be reasonable 
to l i mit Lhc ~ct of initial condition' to a suitably cho,cn set of "fea~iblc" or "con'i~· 
tent" initial condition~ . 

I f solutions exist and are unique. a given system description defines a mapping 
from 1he ,ct of initial condi ti on~ Lo 1rajcctory ~cl. In the theory of ~mooth dynam· 
ical systems. it is usuully 1:1kcn II\ pan of 1he deli nil ion of wcll -po~edne's Lha1 this 
mapping is con1inuous wi1h respect LO suitnhly chosen topologies. In 1hc case of non­
'mooth and hyhrid dynamical srtems, i1 frequently happen' 1ha1 there are certain 
houndarie:. in 1he continuou!. s1a1c space '-Cparating region' of initial condi tions that 
generate widely different 1rajec1orics. Therefore. con1inuous dependence of solutions 
on ini1ial condi1ion~ (al least in the sense of the topologies that arc commonly used 
for M11001h dynamical ~y~1em~) may be a requirement Loo s1rong for hybrid i;ystem~. 

Sec, for inswncc, Lhe mechanical example in 13041 consisting of two carts connected 
hy a hook and a spring. where the motion of the first cart is constrained by a block. 
Thi ~ ~implc example illu,tratc~ the di~continuou~ dependence on initial conditions 
nicdy. 

One may also dis1inguish hc1wcen various notions of wcll-poscdness on the basis 
of the time interval that is involved. For in,iance. in the context of hybrid automata. 
one may ~ay thal a given au1om:11on is 11n11blockin~ 14271 if for each initial con­
tlil ion either a1 least one transition is enabled or an a smoolh evolution according 
10 1hc dynamics of one of the modes i~ possible on an interval of positive length. 
I f the con1inua1ion i' unique (the automaton is deterministic 14271). one may 1hen 
say 1ha1 1hc automaton is initially we/1-pn.\ed. Thb delini1ion allows a ~i tuation in 
which a 1ransitio11 from location I 10 location 2 is immediately followed by a Iran· 
~ition bad. 10 location I and ~o on in an infinite loop. so that T: = T, for all i in 
the hybrid time 1rajcc1ory corresponding to thi cxecmion indicating thal this solu· 
tion doe,~ not make progress in the continuous Lime d irection I ( live-lock). A stronger 
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notion. is obtained b~ re.quiri'.1g 111:11_ a solution exist~ at leas I on an interval IO, E) wi1h 
E > 0. sys1em descnpt1011s lor which such solulions exist and arc unique are called 
locally well-po.ft'd. In computer 1'Cicnce terminology. ~uch sys1cms "allow ti me to 
progress." Finally. if solutions exist and are unique on the whole half-line [U. ) , 
then one speaks of global well-po.fetl11ess. Local and g lohal wcl 1-posedness can be 
seen lo be a~ymmelric in their consideration of time in the i;cnse tha1 it con~iders 
''con~in~ous" tim~ I to be dominant over Lhe "di~crelc t ime" j (in the terminology of 
hyb~1d t11ne d~m:.11ns). For " physical" hybrid systems this asymmetry is usefu l as wc 
are 1111crested Ill the actual progress of rea l time I and less interested in the number 
of evcnti;. lni1ial wcll-poscdnesi; i!. from Lhi~ point of view more ~ymme1ric. 

Well-posedncss of hybrid automata Necessary and s11fficicn1 condi1ions for wcll ­
po~ednc~s of hyhrid automata have been s1<11ed in 14271. Basic.1lly these conditions 
mean that transi tions with non-trivial reset relalions arc enabled whenever contin­
uous evolution is impossible (this properly i~ called 11m1hlockinR) and tha1 discrete 
L~ansi1ion s mu~1 he forced by 1he con1inuous now exiting the invariant set. no Lwo 
d1~cretc 1ransi1ion~ can be enabled simultaneously. and no poinl x can be ma ped 
onto two diff~r~nt poin1s.x'. i: x" by the rcsc1 rela1ion n (q, r/) . this prope~y is 
called deter1111111s111. We w1 11 lormally state the results of 14271 after introducing some 
nece~sary concepl~ and definitions. 

. . An execution \ = ( T, ,\ , €) as de lined in Definition 5.5 is called finite. if T is a 
~1.111te sequence ending wi1h a closed in1erval: illfi11i1e. if T is an infini1e scquc 111ce or 
If L . ( r.. - T,) - : and marimal if ii is 1101 a ~Lric1 prefix of any other execution of 
the hybrid au1omaton. We denote the ~ct of all maximal and i nfinite execution~ of the 
automaton with initial state (q0 . x u) E /nit by 'H"' and rt.= respectively 

(l/11.X11) (q,,.:C11 ) ' • · 

Definition 5.9 (Nonblocking automaton) A hyhrid awnmnwn is called 
nonblocking if'Hc,, ... x .. ) is nonempty for n// (q0 , :r,0 ) e /11it. It i.1 called de­

terministic (frt.t,:,,,x,.) co11/(/i11s m 111os1 011e e/p111n11.for all (q0, xo) e /nil. 

TI1csc well -po..ednc~s concepts arc ~im ilar to what we called initial well -po~ed· 
ness as lhey do not say any thing abou1 live-lock or the co111inua1inn beyond accumu­
lat ion points of cven1 times. 

To simplify 1hc charac1crintion of nonblocking and determini~Lic automata. the 
following assumption has been introduced in 14271: 

Assumption 5.l The l'<'rtnrjield f (q, ·) is ~/oba//y Up.frhitz co11tilluo11•1·fi1r 
all q E Q. The edge (I/, </) is crmtoi11ed in[. if and rm(r if 9(q. <r' ) 'f 0 and 
x E 9 (q, q') (( fllu/ 011/y if 1here is a11 x' e ,Y .writ tltm ( x. x') E 'R(q, q'). 

. The first part of Lhe as~umpLion is Mandard to guarantee global existence and 
u111quencss of solutions wi1hin each location given a continuous initial . Late. The 
lauer part is wi1hout loss of generality as can easily be seen (4271. 

A state (q, :i:) is called readwhle if there exists a fini1c execution (T, ,\, €) with 
T = {IT, , T,'Jlt=o and (,\N(TN ). ~N(TN )) = (<j. :i:). The set Rt'arlt ~ Q x X denotes 
the collection of reachable st;lles of 1hc automaton. 
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The set or \tates from which continuous evolution is impossible i' defined a.s 

0111 - {(q0, :r.:11 ) E Q x A.' I 'Ve> 03/ E: !O,E) Xq,.,x., (1) ¢ /11v(c1n)}. 

in w hich :r ,
1
., :r.,(-) denotes the unique solu1ion lo :i: = f (qo. x) wi1h :i:(O) "" xo. 

Theorem 5.14 1-1271 u•/ A.1.111111p1io115. I he .w1isjied. 
/ .A /11•/u·id 11111n11101t111is11rmfilof'kir1R if.for all (q, x ) E Reol'li U 0111, 

1/wr<' exisl.v (q, q') E & willi :x; E Q(<i. q'). /11 case 1/ie c1111r111w1m1 is 
dNer111i11 is1ic. 1/ii.~ "'111di1irm is also 11ece.1·sm:i'-

2. A /11·'1rid a11wmmm1 i.1· de1em1i11i~1ir· if and 011/y if for all (q. x ) E 
Rrad1 
• ({:r E 9 (q. q' ).for .\01111' (q. q') c £. 1/ie11 (q, x ) E 0111: 
• if (q. </) E £ 011d (q. r/' ) E £with 1/ i 1]

11
• 1/1P11 x </ Q(q,r/) n 

(j(q. 1/1): and 
• if (q.1/) E fmu/:r, E= 9 (q, q' ). ll1e111/iereisn1 111os1011e :r.1 

E ,.y 
11·i1/i (x.:r:' ) E 'R.(q. r/ ). 

As a con,cquence of 1hc broad class of ~ystemi. covered hy the results in this 
~cc1 i o11. the condilions arc ra1her implici1 in 1hc sense 1hat for a particular example 
the conditions cannot be verified hy direct calculations (i.e. arc no1 in un algorithmic 
form). Especially. if the model dc,cription itself i' implicit (e.g. piecewise affine 'YS-
1e111. or complcmenlarity modeh) these results arc only a stan or the well-posedne'' 
analysii. a' the hybrid automaton model and the corresponding sets Reach and 0111 
have to be de1ermined tirsl. In the next scc1io11\. we will present results that can he 

checked hy direct computations. 
The cx ten,ion of the initial wcll-posedncss results f'or hybrid automata to loc:i l nr 

global exi,tcncc of execution' arc awkward a~ Zeno behavior is hard to characteri1c 
or exclude. and continu:llion beyond Zeno time<: i' not easy to show. This ii. one of the 
motivation 10 derive condition~ that guarantee the existence or absence of Zeno be­
havior (sec. e.g .. 119. 159. 272. 34 1. 532, 583. 619. 6801) To guarantee continua1ion 
beyond Zeno 1i111es the hybrid model is sometime:- extended or modified by using. 
c.c .. rclaxation-; 1341 I. As another example of an ex1cnsion. consider the the bounc-
in:, hall model (Section 2.3.3) in which "glohal 'olutions .. defined for all t in [O, ) 

e . r 
can be obtained hy adding the "constrained mode .. . i· 1 = .r2 = 0. otc that an case o 
complemenw rity modelling of the houncing hall by .r, = - fJ -l 111, 0 $ t11.Lr1 ~ 0 
{completed wi th the elas1ic reset map). where 111 represents the constraint force ex­
erted by the ground on the hall. !his constrained mode with .rt - 0 follows naturally. 
For complementari ty systems, hut also for differential equation ~ with discontinuou~ 
right-hand ides ~uch as piccewi~c affine system' or other swi tched systems. one ha' 
Lhe ad,an1agc that the location or mode can he described as a function of the con-

1inum1s s1a1c. Of course. in this case one is able to define an evolution beyond the 
Zeno time by pt'Oving that the ( lcfl -) limi1 of the continuous s1a1c exi st~ at the Zeno 

point {e.g. show for the bouncing ball as in Scc1ion 2.3.3 that 1i11111 T· .r1 (I) = Cl 
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and lim, rT- .r2(f) - 0. and that from (O. 0) T continuation in the constrained mode 
is c learl y pos.,ihle). Continuation from this limit follows then from initial or local 
existence. 

Well-~sednes.~ of piecewise linear syslcms A prohlcm of considerable impor­
tance • ~ to find ncccs.,ary and sufficient conditions for wcll -po.,cdncs" of piel:ewise 
linear systems 

{

A 1x, 

A 2 x , 
:i; = 

A , :r . 

when :r. E C1 , 

when :r. E C2. 

when x (! C, . 

where C, arc cenain i.ub~ets of IR" h:1ving the propcny 1hat 

int C, 'l int CJ = ~. ; =I .I· 

(5.94) 

(5.95) 

Th~' i. i .tuati~n may naturally arise from modeling. as well as from the application of a 
sw1tch111g linear feedback ~chcmc (wi th differenl feedback laws corresponding. to the 
subsets C, ). Of cour~c. even more general cases may he considered. or. instead. extra 
~ondi1ions may he impo,ed on the suh,e1s C,. Note that the first condition in (5.95) 
is a necessary (hut not ~ufficient ) condit ion for existence of solution~ for all initial 

condi1ions and the \CCOnd one is nccc~'ary (but again 1101 sufficient) for uniqueness 
{un lc~s the vector field~ arc equal on the overlapping p:im of the regions C,). 

A pnrticular case of the above problem. which has been investigated in depth, is 
1he '1i111oda/ linear case ' 

when C:r > 0. 

when C:r: $ 0, 
(5.96) 

under the additional <L~Mtmption tha1 horh pairs (C , A 1) ancl (C , A2 ) arc observable. 
The solution concept that wi ll be employed is the <'l't<>11t!Nf Ct1m1/ieodm·i• so/11• 

1ir111. which is a function x : [10 , I 1 J ~ R". which is ahsnlutclycontinuouson ito, f 1]. 

~m1~fies 

x (I ) = x (ln) +- .{ f (x (r ))tlr . (5.97) 

where f (:r.) is 1hc (di~continuous) vec1or lield g iven hy the r ight-hand side of (5.96). 
and 1here are no lcft-nccumula1ion points of event times on [10 .1 1 ]. 

Note that Filippov ~olutions involving ~liding modes arc not ex1e11dcd CuratMo­
~ory ~ol utions. M oreover. note Lhat if f (x ) is <·m11i111w11f then necessarily there ex-

1Ms a J( such 1ha1 A 1 - A :i + KC. and f is automatically Lipschitz continuous. 
implying local uniqueness of solu1ions hy classica l resu lts on ordinary differential 
equations. 
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Before staling the main result we introduce some notation. First we define the 
11 x 11 obscrvahility matrices corresponding Lo (C. A 1 ) , respectively (C. A2): 

w, -(:J.J w , = (:l~ . ) (5.98) 

(by assumption ihey both have rank 11). Furthermore we define the following subsets 

of the state space !Pi" : 

S,+ = {x E IR"iW ,:r. ~ O} 
i = 1,2, (5.99) 

s; = {x E IR"IW ;x ~ O} 

where ~ denotes /exicrigrophic ordering. thal is x = 0 or x ~ () if 1hc lirst com­
poncnl of x tha1 is nom:ero is pMitive. Furthermore. :r. :5 () iff - x ~ 0. Then 1hc 

rollowing rcsuh from 13351 t.:an he s1a1ed: 

Theorem S.J S The bimodal linear sy.~f Piil (5.96) is well-posed if and only 
(f one of the fnllnwi11g eq11iV(i/e11t conditions are satisfied: 

(a ) st lJ S2 = lR" : 
(hi st ns; = {O) : 
(c) W 

2 
W j" 1 is a lower-trir111g11/ar matrix with positive diogmwl ele-

ments. 

Possible cxiensions 10 noninvertible observability matrices, the situation of more 
than 1wo modes. as well ;1s to modification of the sets Cx ~ 0, C x .:5 0. arc 

discussed in 1:n5. 3361. 

Complementarity systems Several wc11-posedness resul1s were already presented 
in Section 5.2. These results focussed on Caratheodory and forward solutions that 
applied to absolutely continuous trajectories only. However, in various application 
domains of complementarity i>ystcms the restriction to continuous traj ectory is 10 0 

stringent. This is the case in the context o f unilaterall y constrained mechanical sys­
tems (c l'. 1122. 123. 302. 41 3. 4621) in which impacts cause clisconlinuiLies in the 
velocilies or the impacling bodies. In 1his section we wi ll provide a result thal ap­

pl ies to linear complementarity systems of the form 

± (I ) = A x (t ) + Bu(t ). 

y (I) = C x(t ) + Du(/:). 
0 ~ u (I) ..L y (I) ~ 0, 

(5. IOOa) 

(5. IOOh) 

(5. IOOc) 

in which impacts arc allowed. Before doing so. we will presenl a result for a class 
of nonsmooth dynamical systems consisting of linear saturation sy~tems and linear 
relay systems. which are based on '"complementarity reasoning," see r 149, 151 l 
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~inear sat_ar ation and linear relay systems As is well -known 12 171 iecewise 
J111ea~ .rel ~11~n s may be described i.n terms of the l inear complementarity ~:Oblem . In 
the Cll CllllS ,ind systems community (cf r395 64 11) 1 I . . · h . . . . . . · • ) t 1c comp crnentanty tormula-
u~n a5 a11 c,1dy bee? used t·or s1_at1c piecewise li near systems: this subsection may be 
viewed ai: an extension of Ihe cited work in the sense that we consider dvrwmic s s 
tems. For the sake of simpl icity. we wi ll focus on a specific type of piec~wise lin~l­
sy1 ~t~ms. ~ia'.11el y linear saturation syslems. i.e. linear systems coupled to s~turatio~ 
c 1a1 acten sucs. They are o f the form 

:i::(t) = A:r.{f) + Bn(t ), 

y (t.) = Cx(I } + Du(!), 

(u (i ). y(I.)) E sat.11rnt:ion ,, 

(5.10 l a) 

(5. IO!b) 

(5 . IO ! c) 

where x (t) E JR" . u (l} E JR"' y (t.) E IR"' A B C d D . . · . ' • · · an are matrices o f ap-
propnate s17.es. and si'tLnrnt.ion, is 1he curve depicted in Fi'g c , · I • · ; ' 
a d f' > f' w . ·"·' w1t 1 e2 - e > o 
'n 1 - 2 · c denote the overa ll syslem (5. 1 O I) hy SA'T'( A B c D t N 
that rel'.IY charac1eris1ics can be obtained from saturation char ct ' · 1'- ·b ). ~le Ji = p

2

. • a en s 1cs y scttrng 

.,, 

n II 

Fig. 5.3 Saturation charncteri stic. 

. One m_ay argue that the saturation characteristic is a Lipschitz conti f 
lion (provided that f' _ f ' . . · nuous unc-. 1 2 > 0) and hence the existence and uniqueness of the 
solutions follow fro 1~11.he theory o f ordinary differential cqu:11ions. The followi 11 ex­
ample shows that th is 1s not con-ect in general if the feedthrnugh term D is nonz~ro : 

Example 5.10 Linear saruracion system 

Consider lhc single-input single-outpul system 

j : = 1l. 

y =a-- 211 .. 

(5. 102) 

(5. 103} 
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where 11 and 11 rc,lrlctcd hy a 'at11r:111on characteri•tic with r 1 = - / 1 = - q = h - I / 2 
:L' 'hown 111 Fig. :'U. l Cl 1hc pcmxlic r11nc1ion ;, : R + - R he defined by 

11 ( /) 
{ 

1/ 2. 

- 1/ 2. 
1/ 2. 

ifO ~ I < I, 

ifl ~ I < :1. 
if:I ~ I < 1. 

:md ir(I - I ) _ i1(/ ) "hcncvcr I > I. R) u'ing 1hi< func1ion define r: R , - IR m. 

.i·(f ) = (' ii (.~) "·' · ./o 

Ji - .i· 21t. 

11 can be vcrilicd 1ha1 ( 1i , ,,. , - iJ). (0, 0, 0). and (ti , .r. !i} ;ire all snlu1ions of SAT(O, I . 

1. 2) wilh lhC 1cro i 11i1i11I ~ltllC. LJ 

As illu~1ra1ed in 1he example. 1he Lipschil7. continuity argument does nul work 
in general when .r; > f2. AIM1 in 1hc case. where Ji = f~ this reasoning does no1. 
a[lply. The following 1henrcm gives a ~urticicnl condition for the ~c.ll -posed'.1css .ol 
linear 'Y~tems with ~a1ura1io11 charac1cri~1ics. Rccall thal a P-111m1u 1s a malnx with 

all ~t~ principal minor' hcing positive. 

T heorem 5.16 1149. 151 I Cn11,itln SAT( A. B . C. D J. lei R -
di;1~( 1 l 1 'i) 1111d clin~(J:! - Ji). S11ppose 1ht11 G ('1) R - S i.\ 

" f ' -mntrirfor nil .mljici<'t1tly f(lfll<' fTE R. where 

C (" ) C (rT I A ) 1B + D . 

The11. 1he1'<' t•\i\/( a 1111iq111• fmward .m/111io11 of SAT( A . B . C. D Jfnr nil 

initial \/l/te1. 

Linear complementarity systems w ilh jumps Up 10 this point. lhc .rc~ults on 

wcll-poscdnc!>~ for complcmen1ari1y ~ystcms concerned solutions of wh1~h the :i> 

par1 is conlinunu~ . As 111c111ioncd before. for appl ications such as constramcd mc­
clrnnical syMcms {e.g. 1he bouncing hall) discontinui ties in the state varia~les arc rc­
qu'irecl. For lincm co111plcmc111:1ri1y sy~1cms as in (5. 100) a distributional lramcwork 
was used 10 oh1ai11 an ev1e11sion of the./(mrnrd so/111io11 mncepl (sec 13041 for de­
mi I~). The work 13041 presented also sufficient conditions for local .w.ell-p?scdness. 
In case of one complementarity pair, these condi tions are also surfic1c111 for global 

well -po~cdnc~i.. . 11 
('on~idcr 1hc LC'S(A . B .C. 0 ) as in (5. 100) wllh Markov para111c1ers.H . - D 

and H ' CA' 1 B . 1 I. 2 .. .. and define 1he leading row and colu111n 111d1ces by 
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where j E { 1 . . . . . k} and inf 0 :- . The INtdinJ: row r11effirie111 matrix M and 
leading cn/1111111 coefficie111 matrix N are then given for finitl' leading row and column 
indices by 

Theor em 5.17 (3041 /f r/ie leading co/1111111 <·oe.ffirie111111mrix N and the 
leadi11g row coefjicie111 matrix M nre hmh defined and P-matrices. 1/ie11 
LCS(A. B . C. D ) has a unique local forward .wlutinn (with jumps) on 
an inten•ol of the form IO. E) for .1'0111<' £ > 0. Mort>m•('1; lii•e-/ock (cw 
it~finite 1111111/Jer of events t i/ a11e time i11.~1m11) dof's 1101 0N·111: 

Differential equations with discontinuow; right-hand side.~ Different ial equa-
tions or lhe form 

± (I ) f (I , :r:(I)) (5. 104) 

with f being piecewise conlinuou~ in a domain 9 and wi th the sel JV! of discontinu­
ity poinL~ having measure 1.ero. received quite some :111en1ion in the litera1ure. M ajor 
roles have been played in lhi~ context by Filippov 12371 nncl Utkin [640]. An example 
of such a system wilh two •·modes .. was given in (5.90). As mentioned in Subsec­

tion 5.4.2. solution concept ~ have been delincd by replacing the basic differential 
equation (5. 104) by a differential inclu~ion of 1hc form 

:i:(/) E F (l.:r(/)). (5. 105) 

where Fis constructed from f . The c,olu1ion conccpl i~ then inhcrile<I from 1he realm 
of differential inclusions 126). 

Defini t ion 5. IO (Solulion or dilTcrcntial i nclui;ion ) Tlr<'f1111ctim1 x : fl -
IR" if call<'d a solution of tlw d(ffe1"Pl//ial i11c/11sio11 (5. 105) (f xis (1/)s11h11ely 
rn111i1111n11s mi tire ti111e-i111errnl fl (llld .1·a1is{i<'s x ( I) E F (I. :r.(I) ).far a/1110:>1 
all I E f2. . 

There arc several ways lo transform f into F 1111d we will res1ric1 ourselves to the 
1wo most famous ones and briclly discuss an alternative 1rnnsfonna1ion proposed hy 
Aizerman and Pyainitskii 16J. For further dc1uils sec 12371. 

In the r·onvex defi11 itio11 [2371. as already hriclly 111en1inncd in Section 5.4.2 the 
sel F,,(1. :1') is taken lo be the ~mallcs1 convex closed sci containing all the limit 
va lues of the function f (I. :r) for .r - .r. I = I and (/ .. 1' ) ft Ar. 

The co11tml et/Ltil'ale111 defi11i1io11 proposed by U1kin 16401 (sec also page 54 in 
12371) applie.~ 10 equations of the form 

:i;(I ) = f ( I. x(I ). 111 ( I. :r.) .... , 11 , (I , :r.)). (5 . 106) 
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where f i' conlinuou~ in 11~ argument~. hut 11 ,(1. x ) is a scalar-valued function being 
di~continuou' only on a smooth surface S, given by ¢,(x ) = 0. We define the set~ 
{,,(/.:r) a' {11, (I,.{' )} when :r f. S, and in ca~e x E S , by the clo:;ed interval 
\\ith end-point' 11, (1, :r) and 11; (1.x). 111c values 11;- (1.x) and 11; (1.x) are the 
limiting value~ of lhe function 11 , on both sides of the surface S, which we assume 
to c~ist. 111c differen tial equation (5.106) is replaced by (5. 105) with :F1,(l , x ) -
f (I. :r. U,(I, :i:) . ... . ll, (1. x )). 

Rl'mw·~ 5.4 In c tt'-C :F. (f. :r) is chosen a~ the smalle.'t convex closed set containing 
.F,,( I. :r). then the general definition of Ai1.cnnan nnd Pyatnitskii [6) is ohtaincd. ln 
ca'c J b affine in 11 1 • •••• 11 , and the 'urfoces S1, . . . , S r arc 1111 different and at 

the poin t of interl>Cction the normal vectors arc linearly independent. all the before 
mentioned dcfiniticm~ coincide. i.e. :F. = :F1, = :F.-. 

The wcll-poscdncss results of the differential equation (5. 104) or (5. 106) can 
now he based on the theory availahlc for differential inc lusions (cf. 126. 2371 and the 
references therein). A set-valued function :Fis called upper se111ico111i1111011s al po. if 
for all E > () there is a t5 > 0 such thnt :F(,,+ iIB) <;;; :F(11o) + t:R. where llJ denotes the 
unit h:tll. :Fis callc<l upper ~cmicontinuous on a set 'D. if :Fis upper semicontinuous 

in each point of the ~ct V. 

Ocfinition 5. 11 (Basic condition) We say 1ha11he se1-va/11ed map :F(I, x ) 
,·ati~jll!., tlw ha,ic conditions. ({" 
• for nil (I. :r ) ( Q tlw srt :F( I. x ) i~ 11011e111pty. hmmded. closed. a11d 

('(llll'l'f 

• :F it 11pprr ~e111irm11i1111m1~ i11 I. x . 

TI1c follo\\ ing rc,ult i' described on page 77 of the monograph [2371. 

Theorem 5.18 (Theorem' 2.7.I and 2.7.2 in (2371) If :F(l, x ) .mtisfies 
the b"'ir cmulitions i11 tlw dn11111i11 Q, tlie11 .for a11y poi/I/ {In. x o) E Q 

there 1•risn 11 ,111/111ir111 <~{ tlir pmblem 

:T(I) E :F(t.x(I)), x(fo) = x o. (5. l 07) 

If the bfltir c1111di1it111.\ tll"<' .wti.~fied i11 " closed a11d ho1111ded da111ai11 Q. 
t/1(•11 each .wl111io11 r1111 be ro111i1111ed 011 hnth .~fries up to the bo1111dw:v n.f 

tire do111ai11 Q. 

In comhinntion with the fo llowing result Theorem 5. 18 proves the existence of 
solutions for the diffcrentit1I inclusions related to :F,,. :F1,. :tnd :Fr: 

Theorem 5.19 (Page 67 in 12371> Thesets :F,,(f. x ). :F1,(I. x) a11d :F,.(I. x ) 
nre 11011e111pl.''. lm1111ded. 1111d closed. :F,, (I, x ) a11d :Fr( I. x ) are a_J.w c~11111ex. 
;:,, is llJ1/WI' .t11111inmti1111011.1 i11 :r. a11d :Fh and :F, are upper se111tcm111111w11.~ 

i11I. x . 
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Theorems 5.18 and 5.19 together~how the existence of i;olutions when Filippov's 
convex definition i" used under the condition that I i<> time-invariant. In ca e I is 
not time-invariant. additional a1-.sumption<. arc needed to arrive at :F being upper 
<;emicontinuous in t as well (cf. page 68 in 12371). For the definition of Aizerman 
and Pyatni tskii (i.e. using :F,.) existence of <:olutions is guaranteed. In case :Fb(I. x ) 
is convex for all relevant (I. x ) (e.g. if the condition" mentioned in Remark 5.4 are 
satisfied), then existence follows as well. I f lhc convexity assumption is not satisfied. 
the existence re.c;ult still holds if upper semiconlinui ty is replaced by cominuity (cf. 
page 79 in [2371). In fact, lhc two major cases studied in Chapter 3of126] are related 
to these two .situations: (i) the value~ of :F arc compact and convex and :F is upper 
semicominuous: and (ii) the values of :F arc compact. hut not necc.c;sarily convex and 
:F is conl inuous. 

Now we will discuss the issue of uniqueness. Right uniqueness (in the Fi lippov 
sense) holds for the differenl ial equation (5. 104) flt the poinl ( lo. :c0 ) . if there exists 
I 1 > lo such that· each two solutions of 1his cqua1ion sal isfy ing the ini tial condition 
x(lo ) = Xn coincide on the interva l fin , i 1 I or on the intcrv:tl on which they are both 
defined. Righi uniqueness holds for a domain V if from each point (10 . xo) E V 
right uniqueness holds. 

Not too many uniqueness resulls arc available in the literature. The most useful 
rcsull given in [2371 is related lo the following .si1ua1ion. Let the domain G c JR" 
be separated hy a 1>mooth surface S into domains r: and r.+. Let f and of /u.r, 
he continuous in the domains c- and r: t up to the houndary such that 1- (I. x ) 
and l +(l .x) denote the limit values of the function I at (l. x ). x E S from lhe 
regions c- and r:+. respectively. We define h (t. a:) - /~ (1. x ) - 1- (t .x) as the 
discontinuity vector over the surface S. Moreover. let 11(x ) he the normal vector to 
sat point x directed from c- 10 c+. 

Theorem 5.20 Consider the differe111ial eq11ntio11 (5.104) with I l/S 

above. let S be a twice cn111i1111rm.~ly d(f!erP11tinhlr mifocr and suppose 
tlwt the fi 111rtio11 11 is cr111tit111(1111·fy diffrre111ir1hle. ~{for ench I E (a . b) 
a11d ear:h poi111 x E Sat /1>as1 011e <lthe i11eq1mlities 11(x )T 1- (I, x ) > () 
or 11 (x )TJ+ (I. x ) < 0 (possihll' differe111 i11eq11alitie.~.for d(fferent x and 
f) is.f11/fil/ed. 1he11 righ11111iq11e11es.,· l10/ds.fnr (5. 104) i111he do111ai11 <}for 
I E (a. Ii) i111he sense of Filipprm 

111c criter ion above clearly holds for general nonlinear systems. bul needs to be 
veri fied on a point-by-point basis. Alternatively, the results on complementari ty sys­
tems. piecewise aftine systems or linenr snturntion systems arc more straightforward 
to check as it requires. for instance. the computation of the determinants of all princi­
pal minors of the transfer function of the underly ing li11car system, or determine the 
signs of the leading Markov parameters. However. the latter theory applie.~ to spec ific 
classes of hybrid systems and uses a dijfere111 solution concept. Hence, uniqueness is 
not proved in the Filippov sense. but in a forward senc;c. 
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Hybrid inclusions Adding reset maps and restricting the " flow region" for the 
above differential inclusions (5. 105) leads to the hybrid inclusions (5.93). In [271 I 
the fo llowing basic condit ions arc adopted: 

• C and V arc closed sets: 
• .F i s outer semicontinuous in the sense that for all x E JR" and all sequences 

{x,} wi th x , .... x . y, E F (x, ) such that !J, -> y, it holds lha1 !/ E F(x): 
• .F is locally hounded ( i.e. for any compact set r< ~ JR" there exists m > 0 such 

that for all :r, E /1' it holds that F (x) ~ 1118 . where IS is the unit ball) and F (x ) 
i s nonempty and convex for all x E C: 

• g is outer semiconlinuous and and Q(x } is nonempty for all x E 'D. 

Note that in the case o f locally hounded set-valued mappings with c losed values. 

outer semicontinuity agree.~ with upper semicontinuity. In general this is nol true 

1271 l. 
Ba.~ed on these basic condi tions, Proposition 2.4 in 1271 1 states existence results 

for these hybrid inclusions. Actual ly, 12711 follows here closely the l ines of 1271. 
where a similar result was obtained for so-called impulse differential i11c/11sio11s. To 
formulate the existence result we wi ll use the fo llowing concepts. The tangent cone 
Tr.(.r} 10 a sci C al the point x E C consists o r all o E IR."' for which there exist 
real numbers n, > () with n, -+ 0 and vectors 11, -+ 11 such thal for i. = 1, 2, · .. 
• 1• + 1 ~, 11, E C. A solution ( in the form of a hyhrid arc as defined in Definition 5.8) to 
(5.9.1) is called maximal if it cannot he extended and is called complete if its domain 
is unhounded (ei ther in 1he ")"and/or ·'f' directions). TI1e notions of max imal and 
complele solutions arc simililr in nature as maximal and infinite executions o f hybrid 

au10111a1a in Secrion 5.4.4. 

Theorem 5.21 Cn11sider the sy.1·te111 (5.93) 111i1h the (l/iove hasir cn11di-
1ir111s are .f11/jilled. If x 0 E V or xn E C and.for some 11eighlwrhood 
I/ of" a;n ii holds 1h(1( 

x' E U n (' implies 1ha1 Tr(x' ) n F(x') f; 0, (5.108) 

1he111herl' exisls o hv/Jrid arc x 1~/" the hyhrid inc/11sio11 wi1ll x(O, O) = Xo 
and dm11 x f; (0. o'). {((5. 108) holds.for any xo E C \ V. 1hen .fnr any 
11wxi11111/ solwio11x111leasr0111' rif 1hefol/owi11~ is /rue: 
( i J x is co111plete: 
(ii) x e11e11111al/y leaves eve1:v compaN subset ~(IR" : 
(iii) for some (T , ./) E dom :r wilh (T . .f) i: (0, 0) we have x(T, .J ) ¢ 

CU D. 
Case (iii) does 1101 occur if addilirmnlly we have for all xo E V that 

Q(xo) ~ r. u D. 

This result can be considered as an initial well-posedness result. In particular, it 

does not give any guarantee~ that a solution can be defined on a domain containing 
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some (I. • ./) with I > 0 (as live-lock is not exc luded) nor for I --> oo (due to finite 
escape times or righ1-accumulations of reset times). Uniqueness of trajectori es. is nm 
considered in the context of hybrid inclusions. Note that s1atemenl (i i ) above ex­
presses a k ind of "finite escape time'" condition. which is similar as in Theorem 5.18 
for differential inclusions only. 

5.4.5 Compari~on of some solution concepts 

The d i fference between Filippov and forward and extended Caratheodory solu tions 
wi ll be discussed in the context of !he class or systems for which all these concepts 
apply. In particular. we will study the plant 

x(t) = Ax(t) + Bt1.(l ); y (t ) = Cx(l.), (5. 109) 

in a c losed loop witJ1 the relay feedback 

u.(I) = - sgn(y(I.)). (5. 110) 

Note thai. in the context of Theorem 5. 16. we are dealing with the situation in which 
n = 2! and S = 0. No1e also that F,, = F11 = F ,. for such li near relay systems and 
that the corresponding solution concepL~ coincide and wi ll therefore be referred to a:; 
"Filippov solutions" from now on . 

Example 5.11 Difference be1ween Filippov and forward concepts 

Tiie cliffercncc between the forward snlutinns and Filippov ~ol u1in11 is rel med 10 Zeno behav. 
ior and is nicely demonstrated by an example cons1n1ctecl hy Filippnv (page I 16 in l237 I). 
which is given hy 

.1-i = - 11.1 + 2n2 , 

:i·2 = - 2n1 - 112 . 

!JI = .l"1, 

11~ = .1"2 . 

111 = - sgn(111 ), 

112 = - sgn(!/2). 

(5 .11 ltt) 

(5-11 lb) 

(5. 11 lc) 

(5. 11 Id) 

(5. 11 le) 

(.5.111 f) 

This system has. besides the 1..ero solution (which is both a Fi lippov and a forward solmion), 
:111 inlini te number or other trajectories (being Filippov. hut 1101 forward solu1ions) srnrting 
from lhe origin. The nonzero solutions (Fig. 5.4) leave the origin due IO left-accumulations 
of the relay swi tching time.~ and are Filippov solutions. but arc not forward solutions. How­
ever. this example does not satisfy the condi tions for uniquene.~s given in Theorem 5.16 
in Section 5.4.4. Hence. i t is not clear if the conditions in Section 5.4.4 are su fficient for 
Fi lippnv uniqueness :L~ well. 0 

The latter problem menrioned in lhe example is studied in 15321 for the case 
where (5. 1 O!J} is a sing le-input-sing lc-ou1pu1 (SISO) system. Theorem 5. 16 states 
that the positivity of the leading M arkov parameter H fl with H ; = CA' - ' B . i = 
1, 2, ... and fl =- min{i I H' #- O} implies ex i~lence uniqueness in forward sense. 
What about uniqueness in Filippov's sense? 
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Fig. 5.4 Trajcc1nry in 1he phase plane of (5. 111 ). 

Theorem 5.221532 1 Consider the sy.we111 (5. 109)- (5. I 10). The .fo/lowin~ 

s1me111e111s hnldJ(1r the relative dewee p hei11R I or 2: 
fl = I: Tiu, .1:i•ste111 (5.109)-(5. 110) has a 11nique Fifippm• so/11tio11 for a~f 

i11iti11f ro11ditio11s if' mid 011fy if the leridi11g Markm• parameter FI " 1s 

positive. 
fl '"' 2; The S\Wle lll (5. (09)-(5, I 10) Ito.~ n 1111ique Fifippov so/11tio11for i11itiaf 

co11di1io;1 x(Cl) = () if' and 011fy if' 1he IN1di11N Markrw parameter H 1' is 

positive. 
Moreove1: in rite casf' H 1 = C B > 0. Filippov sof111io11s do /IOI f/fl l'I! le.ft-

r1<'l" t11111tflllir111s of relay swirr flinM times. 

Interestingly. 1hc above theorem presen1s conditions I hat exclude particular ty pes of 

Zel!lO behavior. 
Up to this point. one migh1 hope 1hat the positivily o f the leading M arkov param­

eter is also sut'licienl for Filippov uniqueness for higher relative degrees. However. 

in f S'.l2 I a counrer-example is presenied of the form (5. 109)- (5. I I 0). w ith (5. 109) 

hei ng a triple integrator. 

Example S.12 Linear relay example 

This relay sys1em has one forward solution (being idenLically 7.ero) .sLaning in 1he_ origin 
(a:< expected. as the leading Markov parame1cr is posi1ive). hul has 11~fin 1 1el y.many Fil1p~v 
soluticm;. or which one i ~ 1he 1.cro solu1ion and 1hc other s1ar1s wi th a lell -accumulaLion 
point nf relay swi1ching times 15321. ! his example.can_also be c~insidcred in Ll~e lighl of the 
piecewise l inear systems (5.96) considered in SeCllon :i.4.4. which are of the tonn 

{

111odr l : :i: = A 1:i:, ir y = C:c ? O, 
iuod<' 2: :i: = A 2x. i f y = Cx $ 0, 

(5. 11 2) 
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wilh 

(

0 I 0 Cl ) ( 0 100 ) 0 0 I 0 () 11 I () 
A i= O O O - l . A 2 = IJ O O I . C = ( 1 000). 

000 0 0000 

(5. 11 3) 

An ex1ended Caratheodory solution concep1 (5.97) for 1his 1ype of systems and necessary 

and sufficienl condit ions for existence and uniqueness arc prcsenled in 1335 1 (see Theo­
rem 5.15). As this solution concepl doe.~ not allow for <liding modes and lef! -accumulation 
points of even1 l imes. Lhe above sys1e111 doe.~ no1 have any ex1encled Carath6oclory solution 
siarting from 1he initial s1a1e (0, 0, 0, I )'r as can easily he seen (cf. alsc> Theorem 5. 15). 

In summary. 1he triple integraLor connectcd to 11 (negative) relay fom1s a nice comparison 
be1ween the lhree mentioned solut ion concep1s: for the sys1em (5. 11 2) wi th (5. 113) and 
xn ={Cl, 0, 0, l )T, there exist 15321 
• 110 ex tended Cara1heodory solution: 
• one forward solu1ion: and 
• i11.fi11itely ma11y Filippov solu1ions. 0 

For speci fic applicaLions in discontinuous feedback con1rol 1hc Fi li ppov solution 

concept allows trajectories, which are not practically relevant for the stabili zation 
problem at hand. So-called Eu ler (or sampl ing) solu1ions seem to be more appropri ­

ate in this context I 176, 1781. Also in this case the discontinuous dynamical sys tem is 

replaced by a differential inclusion with the difference 1ha1 a particular choice of lhe 

controller i s made at the switching surface. This choice <let.ermines which trajecto­

ries are actually Euler solutions by forming the limits of certain numerical i n1egration 

rou1ines (cf. r 176, 1781 for more details). 

ln Section 2.4.2of1 2371 some rurther rcsul1s can be found on uniqueness. The 

most general result in [2371 for uniqueness in lhe selling of Filippov's convex d efin i­
tion uses the exclusion of lefl-accurnula1ion points as one of 1he conditions to prove 

uniqueness. Unfortunately. it is not clear how such assumptions should be verified. 
As a consequence. Theorem 5.22 is quite useful. ln Sec1ion 2.4.2or 12371 one can 

also find some resuhs on continuous dependence of solutions on initial data. See also 

the recent survey of I 188] on disconlinuous dynamical syslems. 

5.4.6 Zenoness 

The above examples, and also the discussion in Chapter 2, indicate that the Zeno 
phenomenon in all its forms complica1es simulat ion and many analys is and design 
problems. including the well-posedness issue. Depending on which type of Zenoness 
is allowed in the solution concept, the answer to the well-posedncss problem differs. 

So. cond itions stating the ex istence or absence of certain variants of Zenoness are of 
interest. Such conditions are general ly hard to come hy. hut some rather recent w orks 
provide some interesting insight$ in this d i ffi cuh problem. l11e reader might want 10 

consult 119. 159, 272. 34 1. 532, 583. 61 9, 6801 and the references therein. Som e of 
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these works also indicate possibilities on how 1.0 proceed (define solutions) beyond 

Zeno point~. 

Bibliographical notes 

ln1mduc11on' to model -predictive control arc given in 15R. 140. 412. -17~. 5.5.51: . 
A 1utrni:1l merv1cw on the mathermuical a.~pcct' of di~conlinuou' d1fferen11al equ;i11ons 

i' given in ( 188(. lmpul,ivc 'Y~tcm~ :ll"c ccm,idercd in the monograph 12921. 

6 

Hybrid systems: quantization and abstraction 

J. Lun1c, A. Bicchi. T. Moor. L. Palopoli. B. Picas~o. J. Rai~ch. and A. Schild 

Several control and supervi~ion problem~ for hybrid ~y~rcms are po~ed in 
rerm~ orahstmct infonnarion. If the reduction or the measurement resolution 
lead.~ to quanrhed signals. the problem to s1:1hili11c a co111inuous or hybrid 
.~ystcms hy q1111111i1ed feedback ha.~ to he solved. ,..nr prncess supervi.,ion 
wirh ah.~tract design .~pecificntions. it ;,, rca.~011ahle to reduce the complexity 
or 11n11lysis and design Lash by u~ing ah\lmct model~ thar ignore rhc con­
tinuous movement or the hybrid .~ystems. Thi.~ clurpter ~hows how ah.<.lrnct 
model.~ like nuto11w1a or embedded map.~ c1111 he .~cl up 11nc/ 11.~ec/ for r/1e 
<liugno.~i.~ and ~upcrvisory control of hyhrid .~y.~tcm.~. 

Chapter content!; 

6.1 Quanti1.ation and mod el ahs tract.ion page 

6.2 Stahili7.a tion of quantized systems 

6.2. I Systems with quantized feedback 
6.2.2 Issues on 1he s1abili1.a1ion problem for quanti1ed ~y~1em~ 
6.2.3 Control under communica1ion con~trainl~ 
6.2.4 Comrol wi1h quantized ~ensor~ and ac1ua1ors 
6.2.5 Channel sharing for sys1ems with inpu1 cons1rain1s 

6.3 Discr ete-event modeling a nd diagno!i is 

6.3. I Diagnos1ic problem 
6.3.2 Hyhrid model of quanti1,ed systems 
6.3.3 Properties of quantized systems 
6.3.4 Discre1e-cvc11t mode ling of quanti1.ed syslems 
6.3.5 Diagnosis of quantized ~ystcm~ 
6.3.6 Example: Diagnosi!> of 1hc air path of a dic.~el e ngine 

6.4 Ahstraction-based supervisory cont r ol d esign 

6.4.1 Motivation of abstraction-based de!\ign 
6.4.2 Control problem 

l·/(llu/hook rif Nylirid Sy.llt'm.• Co111m/: The11rn Tool.<. Applimtim1.<. ed. Jan I .11111..e and 
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