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Mixed logical dynamical systems and lincar complementarity systems are
representations of switched systems, which under the conditions described
here are equivalent to the model used in Chapter 4. They are particularly use-
ful for model-predictive control. The equivalences of several hybrid system
models show that different models. which are suitable for specific analysis
and design problems and have been investigated in detail, cover the same
class of hybrid systems. The analysis of the well-posedness of the models
leads to conditions on the model equations under which a unique solution
eXisls.
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5.1 Model-predictive control of hybrid systems

Maodel-predictive control (MPC) is a widely used technology in industry for control
design of highly complex multivariable processes. The idea behind MPC is to start
with a model of the open-loop process that explains the dynamical relations among
system’s variables (command inputs. internal states. and measured outputs). Then,
constraint specifications on system variables are added, such as input limitations
(typically due to actuator saturation) and desired ranges where states and outputs
should remain. Desired performance specifications complete the control problem
setup and are expressed through different weights on tracking errors and actuator
efforts (as in classical linear quadratic regulation). At each sampling time. an open-
loop optimal control problem based on the given model. constraints, weights, and
with initial condition set at the current (measured or estimated) state. is repeatedly
solved through numerical optimization. The result of the optimization is an optimal
sequence of future control moves. Only the first sample of such a sequence is actu-
ally applied to the process; the remaining moves are discarded. At the next time step,
a new optimal control problem based on new measurements is solved over a shifted
prediction horizon.

Alter quickly reviewing the basics of MPC based on linear models, in this sec-
tion we introduce two hybrid model classes useful for MPC design, discrete hybrid
automata (DHA) and mixed logical dynamical systems. and review the main ideas
of hybrid MPC.

This section is based on the paper [58] for reviewing the basics of model-
prcdicli\rc control (MPC), and on [632] for DHA and MLD models used in MPC
ol hybrid systems.

5.1.1 Linear model-predictive control
The simplest MPC algorithm is based on the linear discrete-time prediction model
alk+ 1) = Ax(k) + Bulk) (5.1

of the open-loop process, where @(k) € R is the state vector at time k. and w(k) €
™ is the vector of manipulated variables to be determined by the controller, and on
the solution of the finite-time-optimal control problem

N1

n:iln NPz + Z a " ()Qm(k) + u" (k) Ru(k). (5.2a)
b=t

st. wk+1)= Az(k)+ Bu(k), k=0.....,N = 1. (5.2h)

xy = z'k). (5.2¢)

Umin < W(k) € s k=0,.... N =1, (5.2d)

Ymin S C2(k) < Ypux: k= Lo N, (5.2e)

where N is the prediction horizon, U £ [u) -~ w"(v-1)] € RV is the se-
quence of manipulated variables to be optimized. @ = Q" > 0. R = R" > 0. and
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P~ P" > 0 are weight matrices of appropriate dimensions defining the perfor-
mance indeX. i Wigne © B Wi Wne © BE.C € RP*Y define constraints
on input and state variables, respectively, and <™ denotes component-wise inequal-
ities. By substituting (k) = A'@(k)+ 331§ A’ Bu(k— 1 j).(5.2) can be recast
as the quadratic programming (QP) problem

U (@(k)) & argngn %U'HU F2"(NCTU + g2 Y a(k), (53

st. GU < W + Sz(k), (5.3b)

where U* ((k)) = [ oya(k)) .. " (N - 1)(RIk)) |'! is the optimal solution, H —
H'" - 0and €. Y. G. W, 8§ are matrices of appropriate dimensions [57, 67, 69],
Note that Y is not needed to compute U (@(k)). as it only affects the optimal value
ol (5.3a).

The MPC control algorithm is based on the following iterations: at time k., mea-
sure or estimate the current state a (k). solve the QP problem (5.3) o get the optimal
sequence of future input moves U™ (x(k)), apply

ul(k) = ui(x(k)) (54)

to the process. discard the remaining optimal moves, and repeat the procedure again
attime k4 1.

In the absence of constraints (5.2d)-(5.2¢). for N — »c (or, equivalently, for
N <~ and by choosing P as the solution of the algebraic Riccati equation associ-
ated with matrices (A, B) and weights (Q. R)). the MPC control law (5.3)—(.‘:.4lcn~
incides with the linear quadratic regulator (LQR) [67]. From a design viewpoint, the
MPC setup (5.2) can therefore be thought of as a way of bringing the LOR method-
ology to systems with constraints, . ‘

The basic MPC setup (5.2) can be extended in many ways. In particular in track-
ing problems usually one has to make a certain output vector y(k) = Ca(k) € RV
track a reference signal #(k) € B under constraints (5.2d)—(5.2¢). In order 1o do so,
the cost function (5.2a) is replaced by

N-1 .
3" k) = v (k)" Q, (w(k) ~ r(k)) + Au" (k) RAu(k), (5.5)
k=0

where Q= Q,’, = 0 ¢ RP s a matrix of ontput weights, and the increments of
command variables Aw (k) 2 w(k) — u(k — 1) are the new optimization vnriahtbes.
possibly further constrained by Aw,,, = Aulk) < dw_;,,.m. In the above tracking
setup vector [ (k) # 7 (k) w"(t — 1)]" replaces (k) in (5.3b) and the control
law (5.4) becomes u(k) = u(k — 1) + Auy(x(k), v(k). wlk —'l]]. o

The standard way of computing the linear MPC control action. which is |mp.lc-
mented in most commercial MPC packages, is to solve the QP problem (5.3) on-line
at each time & (for example in the MPC Toolbox for MATLARB [69]).
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a (k) .
udky

Fig. 5.1 Discrete hybrid automaton (DHA) as the connection of a finite-state
machine (FSM) and a switched affine system (SAS). through a mode selector
(MS) and an event generator (EG). The output signals are omiited for clarity.

Besides MPC schemes based on linear prediction models, several formulations
of MPC based on general smooth nonlinear prediction models (as well as on un-
certain linear models) exist. Most of them rely on nonlinear optimization methods
for generic nonlinear functions/constraints to compute the control actions, and are
therefore more rarely deployed in practical applications.

MPC based on hybrid dynamical models has emerged as a very promising ap-
proach to handle switching linear dynamics, on/off inputs, logic states, as well as
logic constraints on input and state variables [62]. Here below we review a modeling
framework for hybrid systems that is tailored to the synthesis of MPC controllers.

5.1.2 Discrete hybrid automata

Discrete hybrid automata (DHA) [632] are the interconnection of a finite-state ma-
chine and a switched linear dynamical system through a mode selector and an event
generator (Fig. 5.1).

In the following we will use the fact that any discrete variable o & (e T T
admits a Boolean encoding @ € {0,1}70), where d( ) is the number of bits used to
represent cvy, ..., ;. From now on we will refer to either the variable or its encoding
with the same name.

Switched affine system (SAS) A switched affine system is a collection of linear
alfine systems:
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T (k+ 1) = Ajr (k) + Byu(k) -I—_f,“_,. (5.6a)
Y. (k) = Cyye (k) + Dygguc (k) + @i (5.6b)

where f & 727 is the time indicator, &, © X, C IR" is the continuous state vee-
tor, u, © M, © B is the exogenous continuous input vector, i, ¢ ), © [R"
is the continuous output vector, { A;. By, f,. Ci. D,. g, }ic o is a collection of ma-
trices of opportune dimensions. and the mode i(k) € Q 2 {1.....s} is an input
signal that chooses the affine state update dynamics. An SAS can be rewritten as the
combination of linear terms and if-then-else rules: the state-update equation (5.6a) is
equivalent to

o A (k) + Byw (k) + Fy L (i(k) = 1), )
21 (k) { 0. otherwise, (5.7a)
v [ Asolk) + Bawi(k) 4 £, 08 (k) = #),
HR{“ - {I‘l. otherwise, (5.7b)
a (k4 1) =" z(k). (5.7¢)
=1

where z;(k) ¢ B" .1 = |.....s and (5.6b) admits a similar transformation.

Event generator (EG)  An event generator is a mathematical object that generates
a logic signal according to the satisfaction of a linear affine constraint

de(k) = Fulec(h) (k) k), (5.8)

where fi 0 Vo< U, = Zog — D C {01} is a vector of descriptive functions
of a linear hyperplane, and Z -, £ {0, 1....} is the set of nonnegative integers. In
particular threshold events are modeled as [8! (k) = 1] < a @, (k) +b" w.(k) < .
where the superseript # denotes the i-th component of a vector. Time events can be
also modeled as: [0 (k) = 1] = [t(k) > ty]. where t(k + 1) = t(k) + T, denotes
time, 7% is the sampling time, and #;, is a given time.

Finite state machine (FSM) A finite-state machine (or automaton) is a discrete
dynamical process that evolves according to a logic state update function:

xe(h + 1) = Fulae(h) e (k) 0.(k)), (5.9a)

where @ ¢ A C {01} is the Boolean state, w, € Uy C {0, 1}™7 is the ex-
ogenous Boolean input, 4, (%) is the endogenous input coming from the EG, and
T o Vo Uy » D — Ay is a deterministic logic function. (Here we will only re-
fer o synchronous finite-state machines, where the transitions may happen only at
sampling times. The adjective “synchronous™ will be omitted for brevity.) An FSM
can be conveniently represented using an oriented graph. An FSM may also have an
associated Boolean output
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Yilk) = gyl k) (k). 8. (k). (5.9b)
where gy, € Vo C {0, 1} and gyt X x U x P — M.

Mode selector (MS)  The logic state @ (k). the Boolean inputs wy (k). and the
evenls 4, (k) select the dynamical mode i (k) of the SAS through a Boolean function
Sa 2 Ay Uy D — Q, which is therefore called a mode selector. The output of
this function

i(k) = _;r“[;r;[’-'].‘ll;(;-‘].fi,“A']I (5.10)

is called the acrive mode. We say that a mode switch occurs at step kil o(k) #
ik — 1). Note that. in contrast to continuous-time hybrid models, where switches
can oceur at any time, in our discrete-time setting a mode switch can only occur at
sampling instants.

DHA are related to hvbrid automara (HA) [15], the main difference is in the
time model: DHA admit time in the natural numbers, while in HA the time is a
real number. Moreover, DHA maodels do not allow instantaneous transitions, and are
deterministic. as opposed to HA where any enabled transition may oceur in zero time.
This has two consequences: (1) DHA do not admit live-locks (infinite switches in zero
time). (i) DHA do not admit Zeno behaviors (infinite switches in finite time). Finally,
in DHA models, guards, reset maps. and continuous dynamics are limited to linear
affine functions. Moreover, contrarily to HA, in DHA the continuous dynamics is not
a property of the state of the automaton but is selected by the mode selector (MS)
according also to discrete inputs and events. For equivalence results between linear
hybrid automata and continuous-time piecewise affine systems see | 136]. Reset maps
in DHA can be dealt with as described in [632].

5.1.3 Mixed logical dynamical systems

This section describes how to transform a DHA into an equivalent hybrid model
described by linear mixed-integer equations and inequalities, by generalizing sev-
eral results that have already appeared in the literature [62, 331, 455, 553, 664].
The hybrid systems modeling language HYSDEL introduced in [632] and also de-
scribed in Chapter 10 was developed to deseribe DHA and to automatically operate
the transformations.

Logical functions  Boolean functions can be equivalently expressed by inequali-
ties [ 165].

In order 1o introduce our notation, we recall here some basic definitions of
Boolean algebra. A variable X' is a Boolean variable it X ¢ [0, 1}. A Boolean
expression s inductively defined (for the sake of simplicity. we will neglect prece-
dence) by the grammar

¢ = X|-dy|dy V -‘:'l—elf;'” Tl Al

(5.1
Q) + (.-'r_li(,‘n — |f,-:~_;|rﬂ| L f_.'}-'||l:r_-'||]'
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where X is a Boolean variable, and the logic operators = (not), V (or). A (and), —
(implied by), — (implies), <+ (iff) have the usual semantics. A Boolean expression is
in conjunctive normal form (CNF) or product of sums if it can be written according
to the following grammar:

o A (5.12)
Uy V| =X X, (5.13)

LR

Y

where ¢ are called the terms of the product, and X are the terms of the sum . A
CNF is minimal if it has the minimum number of terms of product and each term has
the minimum number of terms of sum. Every Boolean expression can be rewritten
as a minimal CNF,

A Boolean expression [ will be also called a Boolean function when is used to

define a literal X, as a lunctionof Xy, ..., Xy, :
X =F X Xz Xy-1): (5.14)
In general, we can define relations among Boolean variables Xy, ... X, through a
Boolean formula
o B CTR— Xa)=1, (5.15)
where X; € {0.1}i= 1..... 1. Note that each Boolean function is also a Boolean

formula, but not vice versa, Boolean formulas can be equivalently translated into a
set of integer linear inequalities, For instance, X'y vV X, = 1 is equivalent to Xy +
No = 1 ]664]. The translation can be performed either using an svinbaolical method
or a geometrical method (see details in [632]). In particular, the symbolical method
consists of first converting (5.14) or (5.15) into its CNF

"

AV %V

J=1 iy EN;

with Ny € {livon} Wi = doaosy 1. Then, the corresponding set of integer
linear inequalities is

VL Tien X+ en, (T —X5)
. (5.16)
1S Yien. Xi + Xien, (1 — X3)-

Continuous-logic interfaces By using the so-called “big-M™ technique. events of
the form (5.8) can be equivalently expressed as

Silea(B)ona (k) k) < M'(1 = 8}). (5.17a)
fiilac(k)ou (k). k) > m"s,. =1, Toins (5.17h)
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where Af".m' are upper and lower bounds. respectively. on fy (. (k). t,. (k). k). As
we will point out in Section 5.1.3, sometimes, from a computational point of view,
it may be convenient to have a system of inequalities without strict inequalities. In
this case we will follow the common practice [664] of replacing the strict inequal-
ity (5.17b) by

Fiee(k)ua(k). k) = e + (m' — €)d;, (5.17¢)

where ¢ is a small positive scalar, e.g. the machine precision, although the equiva-
lence does not hold for 0 < f) (. (k). u. (k). k) < ¢, as the numbers in the interval
(0, ¢} cannot be represented in a computer.

The most common logic to continuous interface is the if-then-else construct

IFGTHENz =alx+blu+t f[ELSE: =alsr + h:_:'n + fa. (5.18)

which can be translated into [66]

(my = M)+ 2 < aza 4 bou 4 fa. (5.19a)
(my — My)d — 2 < —agax — byu — fa. (5.19b)
(my — M) (1 =8)+ 2 <y + byu + fy. (5.19¢)
(my — M1 —8) = 2z < —agar — hyu — fi, (5.19d)

where M. ni; are upper and lower bounds on a4 by + fio 1 = 1.2, € {0, 1},
2 € R, e R", ue R™, Note that when ag. by, [o are zero, (5.18)=(5.19) coincide
with the product = = & < (e + bu + f) deseribed in [664].

Continuous dynamics  As already mentioned. we will deal with dynamics de-
scribed by linear affine difference equations

~

rolk+1) = Z 5 (k). (5.20)

Mixed logical dynamical systems In [62] the authors proposed discrete-time hy-
brid systems denoted as mixed logical dynamical (MLD) systems. An MLD system
is described by the following relations:

a(k+ 1) = Ax(k) + Byulk) + B28(k) + Baz(k) + Bs. (5.21a)
y(k) = Ca(k) + Dyu(k) + Dy5(k) + Dyz(k) + Dy, (5.21b)
E0(k) + Esz(k) < Eyu(k) + Eya(k) + Bs, (5.21¢)

Bad(k) + Byz(k) < Byulk) + Eyalk) + Es. (5.21d)

where @ € B™ x {0, 1}" is a vector of continuous and bhinary states, u €
R™ x {0,1}™ are the inputs, y € RB™ x {0, 1}™ the outputs, & € {0.1}",
z € R represent auxiliary binary and continuous variables, respectively, and A,
B| 3 B;{. B:;., & D|. D-g. D:{. E| .,E,-‘.. and E|.. A Er. are matrices of suitable
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dimensions. Given the current state (k) and input w( k), the time-evolution of (5.21)
is determined hy solving (k) and z(k) from (5.21¢)~(5.21d). and then updating
' (k) and g(k) rom (5.21a)-(5.21h). Since the problems of synthesis and analysis
of MLD models are tackled using optimization techniques, we have replaced strict
inequalities as in (5.17h) by non-strict inequalities as in (5.17¢). (One may also ex-
plicitly include in (5.21) strict inequalities, as well as equalities.) A formal definition
of well-posedness for MLD systems and a test 1o assess the well-posedness have
been presented in [62].

For equivalence results between MLD systems and PWA systems, see Sec-
tion 5.3,

5.1.4 Hybrid model-predictive control

MPC based on hybrid dynamical models has emerged in recent years as a very
promising approach to operate switching linear dynamics. on/off inputs, and logic
states, subject 1o combinations of linear and logical constraints on input and state
variables [62]. Hybrid dynamies are often so complex that a satisfactory feedback
controller cannot be synthesized by using analytical tools, and heuristic design pro-
cedures usually require trial and error sessions and extensive testing, and are time
consuming. costly, and often inadequate to deal with the complexity of the hybrid
control problem properly.

As for the linear MPC case. hybrid MPC design is a systematic approach to meet
performance and constraint specifications in spite of the aforementioned switching
among different linear dynamics, logical state transitions, and more complex logical
constraints on system’s variables. The approach consists of modeling the switch-
ing open-loop process and constraints as a diserete hybrid automaton using the lan-
guage HYSDEL [632]. and then automatically transforming the model into the MLD
form (5.21).

The associated finite-horizon optimal control problem based on quadratic costs
takes the form (5.3) with

5 . - " I
l} = [ﬂ.'ul_l LN 1y 70y ATIN-1) 2y 2T(N 1|] *

subject to the further restriction that some of the components of U must be either (0
or 1. The problem is therefore a mixed-integer quadratic programming (MIQP) prob-
lem. for which both commercial | 198, 334] and public domain solvers (such as the
one in |61]) are available. When infinity norms [|Qax (k)| « . [[Ru(k) ||~ . | Pa(k)
are used in (5.2a) in place of quadratic costs, the optimization problem hecomes a
mixed-integer linear programming (MILP) problem [57. 63]. which can be also han-
died by efficient public domain solvers such as [434], as well as by commercial
solvers | 198, 334].

Unfortunately MIPs are NP-complete problems. However, the state of the art in
solving MIP problems is growing constantly, and problems of relatively large size
can be solved quite efficiently. While MIP problems can always be solved to the
elobal optimum. closed-loop stability properties can be guaranteed as long as the

l'x
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optimum value in (5.3) decreases at each time step. Usually, MIP solvers provide
good feasible solutions within a relatively short time compared to the total time re-
quired to find and certify the global optimum. In the worst-case the complexity of
optimally computing the control action (k) on-line at each time & depends expo-
nentially on the number of integer variables [553]. In principle, this limits the scope
of application of the proposed method to relatively slow systems, since the sampling
time should be large enough for real-time implementation to allow the worst-case
computation.

In general, an MIP solver provides the solution after solving a sequence of re-
laxed standard linear (or quadratic) problems (LP. QP). A potential drawback of MIF
is (1) the need for converting the discrete/logic part of the hybrid problem into mixed-
integer inequalities. therefore losing most of the original discrete structure, and (2]
the fact that its efficiency mainly relies upon the tightness of the continuous LP/QF
relaxations. Such drawbacks are not suffered by techniques for solving constraint sat-
isfaction problems (CSP). i.e. the problem of determining whether a set of constraints
over discrete variables can be satisfied. Under the class of CSP solvers we mentior
constraint logic programming (CLP) [439] and satisfiability (SAT) solvers [287]. the
latter specialized for the satishiability of Boolean formulas. The approach of [60]
combines MIP and CSP techniques in a co-operative way. In particular, convex pro-
gramming for optimization over real variables, and SAT solvers for determining the
satishability of Boolean formulas (or logic constraints). are combined in a single
branch and bound solver,

Another approach for reducing the complexity of on-line computations is to look
for suboptimal solutions. For instance in [337] the authors propose to suitably con-
strain the mode sequence over the prediction horizon, so that on-line optimizatior
is solved more quickly. Although closed-loop stability is still guaranteed by this ap-
proach, clearly in general the overall tracking performance of the feedback loop gets
deteriorated.

In the last decade, explicit model-predictive control has been proposed as a way
to completely get rid of the need of on-line solvers (see | 11] for a survey on explici
MPC).

For linear MPC, 1o get rid of on-line QP an approach to evaluate the MPC
law (5.4) was proposed in [67]. Rather then solving the QP problem (5.3) on-linc
for the current vector &( k). the idea is to solve (5.3) off-line for all vectors @ withir
a given range and make the dependence of w on @ explicir (rather than implicitly
defined by the optimization procedure (5.3)). The key idea is to treat (5.3) as a multi-
parametric quadratic programming problem, where (/) is the vector of parameters
It turns out that the optimizer U : R™ — BN s a piecewise affine and continuou:
function, and consequently the MPC controller defined hy (5.4) can be representec
explicitly as

Fix+ i lfH:T‘f‘ﬁ
u(a) - P
Fyz+ gy if Hyx < k.
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It turns also out that the set of states A" for which problem (5.3) admits a solution is
a polyhedron, and that the optimum value in (5.3) is a piecewise quadratic, convex,
and continuous function of &(k). The controller structure (5.22) is simply a look-up
table of lincar gains (F;.q,). where the i-th gain is selected according to the set of
linear inequalities H & < k; that the state vector satisfies. Hence. the evaluation
of the MPC controller (5.4), once put in the form (5.22). can be carried out by a
very simple piece of control code. In the most naive implementation, the number of
operations depends linearly in the worst case on the number Al of partitions, or even
logarithmically if the partitions are properly stored [630].

An alternative way of solving MIP problems on-line is to extend explicit MPC
ideas 10 the hybrid case. For hybrid MPC problems based on infinity norms, [63]
showed that an equivalent piecewise affine explicit reformulation—possibly discon-
tinuous, due to binary variables—can be obtained through off-line multiparametric
mixed-integer linear programming techniques,

Thanks 1o the possibility of converting hybrid models (such as those designed
through HYSDEL) to an equivalent piecewise affine (PWA) form [56]. an explicit hy-
brid MPC approach dealing with quadratic costs was proposed in [ 105], based on dy-
namical programming (DP) iterations, Multiparametric quadratic programs (mpQP)
are solved at each iteration, and quadratic value functions are compared to possi-
bly eliminate regions that are proved to never be optimal. A different approach still
exploiting the PWA structure of the hybrid model was proposed in [446], where all
possible switching sequences are enumerated, an mpQP is solved for each sequence,
and quadratic costs are compared on-line to determine the optimal input (in this re-
spect. one could define the approach semi-explicit). To overcome the problem of
enumerating all switching sequences and storing all the corresponding mpQP solu-
tions, backwards reachability analysis is exploited in [10] (and implemented in the
Hybrid Toolbox). A procedure to post-process the mpQP solutions and eliminate
all polyhedra (and their associated control gains) that never provide the lowest cost
was suggested in [10]. Typically the DP approach provides simpler explicit solu-
tions when long horizons N are chosen. but on the contrary tends to subdivide the
state space in a larger number of polyhedra than the enumeration approach for short
horizons.

For closed-loop convergence results of hybrid MPC the reader is referred to [62,
138, 386-388] and to the PhD thesis [385]. Extensions of hybrid MPC to stochastic
hybrid systems was proposed in [59], and to event-based continuous-time hybrid
systems in | 71].

The Hybrid Toolbox for MATLAB [57] provides a nice development environ-
ment for hybrid and explicit MPC design. Hybrid dynamical systems described
in HYSDEL are automatically converted to MATLAB MLD and PWA objects,
MLD and PWA ohjects can be validated in open-loop simulation, either from the
command line or through their corresponding Simulink blocks. Hybrid MPC con-
trollers based on MILP/MIQP optimization can be designed and simulated, either
from the command line or in Simulink, and can be converted to their explicit form
for deployment. Several demos are available in the Hybrid Toolbox distribution,
The toolbox can be freely downloaded from hup:/www.dii.unisi.it/hybrid/toolbox.
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Similar functionalities are also included in the Multi Parametric Toolbox [375]. The
reader is referred to Chapter 10 for a more detailed description of these tools.

In conclusion, hybrid MPC control can deal with very complex specifications
in terms of models and constraints by using mixed-integer programming solvers,
Explicit versions of hybrid MPC are possible, but still limited to small systems with
few binary variables. Examples of applications of hybrid MPC to industrial control
problems arising in the automotive domain are reported in Chapter 15.

5.2 Complementarity systems
5.2.1 Modeling aim

In many areas, especially in the domain of physical systems or in economic ap-
plications, continuous-time hybrid systems usually arise in specific forms. The
continuous-time dynamics corresponding to the different modes, as well as their lo-
cation invariants and guards, are often closely related. Indeed, in many cases the
dynamics corresponding to the different modes all share a part that can be called the
core dynamics of the system.

The theory of complementarity hybrid systems, as originally put forward in
[572. 573]. aims at providing a compact representation of many of such systems.
[t combines location invariants and guards in the form of complementarity condi-
tions such as 0 < z | w > (), where 2 and w are equal-dimensioned vectors. and
the inequalities hold componentwise. It is not without reason that many hybrid sys-
tems can be formulated in this manner, since complementarity conditions are closely
related with variational and optimal formulations, which are known to be underly-
ing many systems in physics and economical applications. Furthermore, it can be
shown that. roughly speaking. all piecewise-linear characteristics can be modeled by
complementarity conditions.

In addition to the rather broad applicability of complementarity modeling there
are two other important advantages of complementarity models. First, comple-
mentarity models often provide a very compact description of hybrid systems. es-
pecially in comparison with hybrid automata. Furthermore. the complementarity
model vsually remains to the physics of the system, and physical system prop-
erties (such as passivity) are naturally reflected in the representation. Secondly,
complementarity modeling offers powerful methods for analysis, Using the well-
developed theory of the linear complementarity problem (LCP) from optimiza-
tion theory [I89] one may prove strong results concerning well-posedness (ex-
istence and uniqueness of solutions), stability and controllability. Also the the-
ory of the LCP offers a wealth of computational methods, e.g. for the efficient
computation of the next location at an event time. We refer to, e.g., [149, 300]
for a detailed description of these results, especially for linear complementarity
systems.,

In this section we will mainly concentrate on indicating the modeling power of
complementarity hybrid systems by discussing a list of appealing examples from
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different application areas, including the running examples in this handhook. Fur-
thermore. we will briefly sketch some of the main results which have been obtained
on the well-posedness, stability. controllubility. and stabilizability of linear comple-
mentarity systems,

5.2.2 Definition

Complementarity systems can be constructed as follows [572, 573]. Start from a
nonlinear input/output system. with & imputs and & outputs:

'l—ll":m = flx(t).ult)). (5.23a)
w(t) = hix(t). u(t)). (5.23h)

where (1) is an y-dimensional state variable, w(/) ¢ B* is the input vector and
y(l) & BY is the output vector. To the system (5.231)-(5.23b), udd the relation

0<y(t) L u(l) =10 (5.23¢})

A relation of the form (5.23¢) are called a complementariry relation in mathematical
programming: whence the name complementariey systems for dynamical systems of
the form (5.23). Note that (5.23¢) 1s equivalent 1o the componentwise requirement
that, foreach i = 1...., ke, the following holds: g, (1) = 0, u, (1) = 0. and at least
one of these two inequalities is satisfied with equality.

In view of the particular role of the input and output variables in the formulation
of complementanty systems. the notations i and u are sometimes replaced by w
and z. to steer away from the interpretation of the input as a control and the output
as i observation and also to be in line with notational conventions in mathematical
programming. In addition. the formulation in (5.23) can be made more general by
allowing the functions f and h o depend directly on time.

Implicit in (3.23¢) is the choice of an “active index set™ a(/) © {1.....k} which
is such that (/) = O fori € aflf) and w, (1) = O fori & (7). Any such index set is
sardd to represent a mode of operation. In a fixed mode. the system above hehaves as
the dynamical system described by the differential equation (5.23a) and the algebraic
relations (5.23h) together with the equalities that follow from the choice of the active
index set in (5.23¢). A change of mode occurs when continvation within a given
mode would violate the nonnegativity constraints associated with this mode. The
deseription format ol complementarity systems s such that the nonsmoothness is
mile canonical. and specific properties, therefore. must be expressible in terms of
the functions f(-.-) and f(-.-) occurring in (5.23a) and (5.23b), and possibly in
terms of an initial condition.

A subclass of particular interest arises when the functions f and /i in (5.23) are re-
quired to be lincar: the resulting linear complementarity systems | 304] are described
by relations of the form
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z(t) = Ax(l) + Bult). (5.24a)
() = Cax(1) + Dull), (5.24h)
0 < ylt) L u(t) =0, (5.24¢)

where A, B, C, a_md D are linear mappings. In some applications it is natural to
allow an external input (forcing term) in a complementarity system. The equations
(5.23a) and (5.23b) are then replaced by equations of the form

@(1) = (1), ult). v(1)). (5.25a)
y(t) = hiz(t). u(t). v(t)). (5.25h)

where »(f) denotes the forcing term: the equation (5.23¢) is unchanged. In linear
complementarity systems we require that the forcing term also enters linearly. so
that the system (5.24) is replaced by

@(l) = A=z(l) + Bu(l) + Ev(1). (5.26a)
ylt) = Cwx(l) + Dult) + Fuo(l). (5.26b)
0 < yt) L u(t) > 0, (5.26¢)

w?xere A, B.C, D. E, and F are linear mappings. Another useful generalization
of (5.23) is obtained when the complementarity relation (5.23¢) is replaced by the
relation

Caylt) Lu(t)ecC, (5.27)

where (' is a conc in ¥ and C* is the dual cone defined hy

C"={u|(y.u) > 0forally & C}.
In particular. this format allows the incorporation of both equality and inequality
constraints: a typical choice of the cone C is R*! {0}, which implies C* = BY' x
RE:, *

5.2.3 Examples

This section shows by means of several examples how complementarity relations can
be obtained when modeling physical systems of different nature.

Example 5.1  DC-DC converter

The DC-DC converter shown in Fig. 1.17 consists of an inductor 7., a capacitor 7, resis-
tances [ty e, and a resistance load 17, together with a diode 12 and an ideal switch S, The
diode is modeled as an ideal diode, and its constitutive relation can be suceinetly expressed
by the complementarity condition

D<up Lip =10, (5.28)
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with i, respectively 1p. the current through the diode and the voltage across the diode.
Furthermore. the constitutive relation of the ideal switch S can be simply expressed as

ns L isg, (5.29)

with 25, 05 the current through the switch and the voltage across the switch.

Taking as continuous state variables the voltage v across the capacitor and the cur-
rent 1 through the inductor, we obtain the following dynamical equations of the DC-DC
converter:

4121~ ) [ g o

o] Pl e

is L

Here. F is the voltage of the inpul source.
Defining the switching funetion m as
w(l) = =1 if the switch S is off at time 1.
Bl if the switch S 1s on at time £,

and the cones
C_i =R, x {0} Ci=R; xR,

one can represent the relations (5.28) and (5.29) as
Cany 3 ['.'”] 1 ['”] €Cany- (5.30c)
15 rs

Systems of the form (5.30) are called switched cone complementarity systems. As shown
in [157. 158, 3071, this class provides a compact representation of any type of power
converters,

Note that certain properties of the DC-DC converter are immediately obtained as a direct
consequence of the complementarity modeling. For example, it is readily verified that the
wtal energy 1 (v.ip) == SC07 + S Li7 stored in the circuit satisfies

i H=—-Rpit = Revige — RI* 4 Elyg,

where | denotes the current though the resistive load I, and Tg is the current through the
voltage source with voltage /7. Hence passiviry of the obtained model is directly established.

(In fact. this becomes even more transparant by writing (5.30) into a port-Hamiltonian form,
thus obtaining a port-Hamiltonian complementarity system.) [

Example 5.2 Two-tank system

The discrete states of the two-tank system. introduced in Section .31 are determined by
incqualities involving the continuous states and by external switches, The system can be
mexdeled in a switched complementarity framework. The main issues are: (i) modeling of
the mode-dependent Alow through the valve Vi, and (i) modeling of the opening and closing
of the valves.
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Consider first item (i). The flow equations can be described in terms of the positive-part
aperator which is defined, for o € |, by

¥ = max(ax, 0).
Indeed, we cun write
Qi3 (1) = wi (T ((ha (8) — ha)* — (hat) — ha)*). (5.31)
where T'(;r) is the Torricelli characteristic
T(x) = esen(r)\/29]7], (5.32)
which may be considered to be a smooth function even though its derivative at + = 0 is
infinity. The positive-part operator in its turn can be deseribed in terms of a complementary
characteristic, since the relations
w=ax%, s=a =(=mr)

are equivalent to
r=w-=z, 0<wlz>10

Therefore, the relation (5.31) can alternatively be formulated as
V2 (0) = wy (1) T (1) — wal1)), (533)

together with the complementarity relations

0<uy(t) L z(8) =0, (5.34)
0< wa(t) L za(t) >0, (5.35)
and the algebraic relations
wy(t) = hy(t) = ho + 2 (1), (5.36)
wa(t) = ha(t) — Iy + 2a(1). (5.37)

The Torricelli characteristic (5.32) could be replaced by a nonsmooth function; for instance
a relay characteristic might be an alternative. Complementarity modeling is then still possi-
ble by using the techniques described below in the discussion of relay systems.

The switching of the valves can be modeled as in (5.31) by means of a multiplicative
factor, but an altermnative is 1o use the setting of switched cone complementarity systems as
proposed in [157]. One then introduces to the flow variable (3 another variable A2, which
relates to pressure drop across the valve V. The modeling (5.31) (or equivalently (5.33)) is
then replaced hy

QY1) = Ty (1) — walt)) + Mis(t). (5.38)

together with the complementarity relation
Covitr 2 A2(t) L Qialt) €Cyiiys (5.39)
where (7 is the cone-valued function defined by
Co={0}, Ci=R

This models an on/off switch. One could also describe switches that admit flow in one
direction only by making use of the cones B, and B, [
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Example 5.3  Relay systems
Consider a dynamical system of the form
(1) = fla(t). n(l)), (5.40)

together with the following nonsmooth relation that specifies the dependence of the mput
variable (1) on the state ®(1):

u(t) = 1if hiz(1)) > 0O, (5.41a)
0< u(t) < il hix(t)) =0, (5.41b)
w(t) = 0if hx(t)) < 0. (541¢)

Such a system is called a differential equation with discontinuous right-hand side or u relay
system. The latter terminology is derived from the fact that, if one introduces an output
variable y(t) = h(z(1)). the relation between u(t) and y(t) given by (5.41) is known as a
relav chavacteristic. The system can of course also be viewed as a hybrid system with three

different modes. ) i N .
Relay systems can be modeled as cone complementarity systems, For this purpose,

introduce two input variables, say (1) and =(1), in addition 1o u(f). Corresponding to the
three input variables u(1), »(1), and =(#). introduce three output variables p(f). ¢{f). and
#(t). which are defined in terms of the state and input variables by
plt) = =(1).
q(1) = =(t) + h{x(1)),
r(t) = u(t) + oft) = L.
A cone complementarity system is formed by taking the equation (5.40) together with the
following cone complementarity relations:
0< p(t) Loult) =0,
0<g(t) La(t)=0,
0=r(t) L =z(r)eR.
This is of the form (5.27) with ¢ = B x {0}. The third relation is rquivuicn? o !hl:
requirement that () + w(1) = | for all 1. As a consequence. the number of modes lnllplll:!d
by the first two relations is reduced from four to three, since the mode currespun!.lsng 1o
u(f) = 0 and v(1) = 0 is eliminated. The three remaining voles can be described as

follows: }
1oult) = 0.p(1) = 0,q(t) = 0, 0(1) = 0. The relations p(t) = O and q(f) = 0 imply

that in this case we must have h(a(t)) < (L

[

Cult) = 0. p(t) = 0.q(t) = 0. n(t) > 0. The relations p(t) = 0 and ¢(t) = 0 imply
that h{x(1)) = 0. From the relations «(f) > 0, v(t) > 0. and u(t) + o(f) = 10t
follows that 0 < u(t) < L

3oult) = 0, p() = 0.qlt) = 0, 0(t) = 0. The relations p(t)y = Oand g{f) =0 impl_y
that in this case we must have h(z(t)) = 0. From #(t) = 0 and u(1) + w(t) = 1it
follows that nit) = 1. )
It is seen that the cone complementarity system describes the same dynamics as the u-.‘lay
system. In this specific case, where we have a single relay characteristic, the reformulation
in cone complementarity form may appear to be artificial and perlmm even awkwar_&l. Hf““"
ever, the cone complementarity form simplifies substantially the description of multi-regime
dynamics in more complicated situations. This is demonstrated below, [
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Example 5.4 Fi]ipgov'-gystm

Consider the dynamics

k
&(t) = Y MOfilx(t),  wlt) = H(z(1)). (5.42a)

where I is a smooth mapping from B” 1o B, together with the linear constraint

;—
ST =1 (5.42b)
=1

and the complementarity conditions

0<A(t) L w(t) — alt)n =0, (5.42¢c)

where a(f) is an additional unknown. and where Il denotes the k-vector whose entries are
all equal to 1. To explain the meaning of these equations, consider a time £ at which the state
vector (1) is located in the open set M, defined hy

H, = {x | Hi(z) < H,(x), forall j # i). (5.43)

To ensure that the i-th component of w(t) — a(f) 1 is nonnegative, we must have a(t) <
wil) = Hi(x()). If the strict inequality a(t) < w, (1) was valid, then all components of
the vector w (1) —a(f) Il would be strictly positive, which by the complementarity condition
would imply that all coefficients of the vector A would be zero. This would contradict the
constraint (5.42h). It follows that, for 2(1) & M., we must have a(t) = wy(t). Since
wy(t) —a(t) > 0for j # 1 the complementarity conditions implies then that A, = 0 for
4 # toand from the constraint (5,42b) it follows that A, = 1. Therefore, we find that for all
P= Taugk;

(1) = filz(t)), ilx(t)eMH,. (5.44)
In this way we see that the equations (5.42) describe a multi-regime system with state-
dependent switching. Moreover, the equations define a convex relaxation on the boundaries
between these regions, Systems of this type have been studied extensively [237].

To write the system in the cone complementarity form (5.230)-(5.23b)-(5.27), define

C=Rix {0}, u= m - [".{f;__':'] .a (5.45)

Example 5.5 A Leontiev economy

A madel for a continuous-time Leontiev economy may be constructed as follows. Letr, ().
tig (1), and i () respectively denote the inventory, production rate, and net exogenous de-
mand associated with commodity » at time f. Furthermore, let ¢, denote the amount of
commaodity 7 required for the production of one unit of commadity j. A balance equation
for the evolution of the inventory may then be written in the form

@(t) = (I — Q)ull) — w(t), (5.46a)

where @ is the matrix formed from the elements ¢, ;. It is natural 1o impose that inventory
should be nonnegative, but this is by no means sufficient to determine a solution uniquely.
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However, if we furthermore impose that the economy is efficient in the sense that it produces
the Towest amounts of commodities that are sufficient to meet demand, then commodities
are not produced when there is still a positive inventory, and are otherwise produced in
Just sufficient amounts 1o prevent inventory from hecoming negative. In other words, the
complementarity relation

O<a(t) Lult)=>0 (5.46h)

must hold for all 1. The system (5.46) is in the form of the forced linear complementarity
system (5.26) with A =0, B=1-Q.C=1.D=0.E=~-1,and F = 0.0]

Example 5.6 A user-resource model

Many maodels for network usage can be described in terms of users who have access 1o
several resources. For instance, users may be origin-destination pairs in a traffic network
maodlel. and in this case resources are the links between crossings. In the context of produc-
tion planning, users may he products and resources may be machines. The use of a given
resource generates a certain cost for the user, for instance in terms of incurred delay; this
cost depends in general on the load that is placed on the resource by all users. A typical
purpose of madeling is to describe the behavior of users in determining their demand for
services from the resources available to them.

To set up a general model in mathematical terms, suppose that we have p users and m
resources. Introduce the following quantities:
o (1) = load per unit of time placed by user ¢ on resource j at time f:

® ¢y, (1) = cost incurred at time # by user ¢ when applying 1o resource j:
o (1) = ro1al demand of user 1 at time f:

o (1) =cost accepted by user i at ime £,

The above quantities are summarized in a load marrix L(1) € B}™™ (load is taken to be
nonnegative), a cost matrix Q(1) € B a demeand vector d(t) € ", and an accepted
cost vector all) € R, Moreover we introduce a state vector (1) € B" in terms of which
the dynamics of the system is described. and which moreover determines the cost matrix:

"—:]{ﬂ — f(a(t). (1)), (5.47a)

Q(t) = hix(1). L(1)). (5.47h)

To deseribe the behavior of users, we assume that the Wardrop principle holds at every time
instant £. In other words, given a demand level, each user distributes its load over resources
in such a way that all resources that are used generate the same cost (this is the accepted
cost), and there is no resource that is not used and that would generate a lesser cost. This
behavioral principle. together with the nonnegativity of the load, can be expressed in matrix
terms by -

O< L) LQ(t) —a(t)- 1" >0, (5.47c)
where the “perp™ relation is understood in the sense of the inner product (A, B) =
w(A"B) for A. B € B"™. To close the model, we furthermore need the accounting

relation
L)l = d(t) (5.47d)
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as well as a “constitutive relation™ between the demand and the accepted cost, which we
take 1o be of the form

I(d.a) =0, (5.47¢)
where Risa mapping from R x B" to B”. The system (5.47) can be rendered as u cone
complementarity system (5.23a) - (5.23h) - (5.27) hy means of the identifications

u=(L.,a),
y=(h(x.L)—a-1",R(LL,a)), {(5.48)
C = R;l;:u.‘m x {n} C R;lkim |.1i‘
' As a specific case, consider a situation where the resources consist of m noninteract-
ing queues and the state variables are the queue lengths. Ignoring the situations in which

buffers are empty or full (which in fact could be naturally modeled in a complementarity
framework), we write simple queue dynamics

i,

di

rherc ] is a constant that represents the processing speed of queue j. A possible expression
OF COSt is

()= (1"L), e (5.49)

Qij = kyimi +myy,
where £; is a proportionality constant, and the constants 1, ; represent a fixed cost that may

be user-specific. Finally assume that demand is constant, say, d(t) = dy irrespective of the
actual cost a(f). We then arrive at the following dynamical model:

(1) = LT ()1 — e, (5.50a)
Q) =1-(Kz(t)" + M, (5.50b)
L)l = dy, (5.50¢)
0< L) LQ()—a(t)-17 > 0. (5.50d)

This is a linear (actually affine) cone complementarity system. The constant terms can be
treated as external inputs, analogously to (5.26). [

.5.24 Preliminaries

For the sake of completeness, we review the linear complementarity problem of
mathematical programming and the notion of passivity of systems theory.

Linear c_l)mplementarity problem  Given an m-vector q and an m x 1 matrix
M. the linear complementarity problem LCP(g, M) is to find an m-vector = such
that

z>10, (5.51a)
q+ Mz =0, {5.51b)
2" (g 4+ Mz) = 0. (5.51¢)

If such a vector z exists, we say that = solves (is a solution of ) LC P(g, M ). We say
that the LCP(q, M) is feasible if there exists = satisfying (5.51a) and (5.51b).



160 A. Bemporad. M. K. Cambibel, W. P.M. H. Heemels, et al.

We detline the sets

LOP — (M) := {q € B" | LC'P(q. M) admits a solution } (5.52)

and
LOP — ker(M) ;= {z € R | z solves LC'P(0, M)}. (5.53)

The LCP is a well-studied subject of mathematical programming. An excellent
survey of the topic can be found in the hook [ 189]. For the sake of completeness, we
quote the following two theorems. The first one can be considered as 1I1c_ﬁfm.-'nnw.n.ra!
theorem of LCP theory, It states necessary and sufficient conditions for the unique
solvability of the LCP for all vectors q.

Theorem 5.1 [189] The LCP(q, M ) has a unique solution for all q if and
only if all the principal minors of the matrix M are positive.

Matrices with the above-mentioned property are known as P-matrices. It is well-
known that every positive definite matrix is in this class. Besides positive definite
matrices, the nonnegative definite matrices will appear in the LCP context in the
sequel. If the M matrix is nonnegative definite then the LCP does not necessarily_
have solutions for all vectors g. For example, the LCP(q. 0) admits solutions only if
q =
The following theorem characterizes the conditions under which an LCP with a
nonnegative definite matrix M has solutions:

Theorem 5.2 [189] Let M be a nonnegative definite matrix. Then,

LOCP = Im(M) = (LCP — ker(M))". (5.54)

Linear passive systems  Having roots in circuit theory, passivity is a concept that
has always played a central role in systems theory. A system is passive il for any
time interval the difference hetween the stored energy at the end of the interval and
at the heginning is less than or equal to the supplied energy during the interval.
Definition 5.1 (Passive system) [663] A linear system Y(A.B.C.D)
given by
&(l) = Azx(t) + Bz(t). (5.55a)
w(l) = Ca(t) + Dz(1) (5.55h)

is called passive if there exists a nonnegative function V i R" — Ry such
that for all to < t, and all trajectories (z.x,w) of the system (5.55) the
following inequality holds:

1
1'(.1:(:.1);.;./ 2T (Hw(h) dt > V(). (5.56)

ty

If it exists the function V' is called a storage function.
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Passivity property can be characterized in terms of the state space representation or
the transfer matrix of the system as follows.

Proposition 5.1 Consider the following statements:
1. The system Y (A, B,C. D) is passive.
2. The linear matrix inequalities

e o
K=K"20 aa (4 EITKAKB-C. <0 657
have a solution K.
. The function V (x) = La" K defines a storage function.
4. The transfer matrix G(s) = D + C(sI — A) "' B is positive real, i.e..
W |G(A) + GT(MN|u = 0 for all complex vectors w and all complex
numbers X such that Re(A) = 0 and X is not an eigenvalie of A.
5. The triple (A, B.C) is minimal.
6. The pair (C., A) is observable.
7. The matrvix K is positive definite.
The following implications hold:
(i) 1253
(ii). 2 = 4.
(iii). 4 and 5 = 2.
(iv). 2 and 6 =5 7.

e

5.2.5 Existence and uniqueness of solutions

Consider the system

x(t) = Axz(t) + Bz(t) + Eu(l), (5.58a)
w(t) = Ca(t) + Dz(1) + Fult), (5.58b)
0<z(t) Lw(t) >0, (5.58¢)

where the state @ takes values from ", the input u from R*, the complemen-
tarity variables (z,w) from R™ 7. We call these systems linear complemen-
tarity systemns and denote (5.58) by LCS(A, B.C. D, E, F). When the sextuple
(A, B.C.D, E.F)is clear from the context., we use only LCS.

We say that a triple (z,x. w), where @ is absolutely continuous and (z. w) is
locally integrable:

e is a Carathéodory solution of (5.58) for the initial state @y, and the input w if
x(()) = @ and (5.58a) is satisfied for almost all 1 > 0 and (5.58b)-(5.58¢) are
satisfied for all £ = 0

o isa forward solution of (5.58) for the initial state &, and the input w if (z, =, w)
is a solution and for each 1 > 0 there exist an index set a(f) C {1.2...., mn},
and a positive number =; such that
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@(l) = Ax(l) + Bz(1) + BEu(t), (5.59a)
w(t) = Cax(t) + Dz(t) + Fu(l), (5.59h)
zan(t) =0 wap(t) =10, (5.59¢)
Zooiy(D) =0 2w,y (1) = 0 (5.59d)

holds for all + € (f,1 + =). Here o denotes the complement of the set «v in
3

Throughout the chapter, we will be mainly interested in Bohl-type inputs. A func-
tion [ : B, — 7 is said to be a Bohl function if f(t) = Z exp(X )Y holds for all
{ = 0 and for some matrices X, Y, and Z with appropriate sizes.

Existence and uniqueness of forward solutions  The following theorem provides
sufficient conditions for the existence and uniqueness of forward solutions:
Theorem 5.3 [153] Let G(s) = D + C(sI — A) ' B. Suppose that
o forallw C {1,2...., b, Grr(8) is invertible as a rational matrix and
s1G e (8) is proper; and
o Gla)isa P-matrix for all sufficiently large real numbers o,
Then, the following statements are equivalent:
1. There exists a forward solution of the LCS (5.58) for the initial state
and the Bohl inpuit .
2. Cxy + Fu(0) € LCP — Im(D).

Moreover, if a forward solution exists it is unique.

Existence and uniqueness of Carathéodory solutions Theorem 5.3 presents con-
ditions for the existence and uniqueness of forward solutions, However, the unique-
ness of Carathéodory solutions is not guaranteed by those conditions in general as
illustrated by the following example.

Example 5.7 Complementarity system with multiple solutions
The LCS(A, B, C.0,0,0) with

nonn -1 130

3 1000
Ao (OO0 MO AL B (e300
anao-—1 301 0010
aonn o nnao
has multiple Carathéodory solutions for the initial state @y = col(0.0,0, 1) [78, 584].

Note that C' B is a P-matrix and hence all the conditions of Theorem 5.3 are satisfied.
Consequently. there exists a unique forward solution. [

The following theorem provides conditions for uniqueness of Carathéodory so-
lutions. It follows from the standard existence and uniqueness results of ordinary
differential equations with Lipschitzian right-hand sides.
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Theorem 5.4 Suppose that D is a P-matrix. Then, the following statements
are equivalent:
1. There exists a Carathéodory solution of the LCS (5.58) for any initial
state @ and any locally integrable input u.
2. There exists a forward solution of the LCS (5.58) for any initial state
and any locally integrable input u.
Moaoreover, if (2", @', w') i = 1.2 are solutions with the initial state xq, and
the input w, then (z'. 2" w') = (22, 2%, w?).

The P-matrix condition of this theorem is somewhat restrictive. It turns out that
passivity of the underlying linear system is sufficient in order to guarantee unique-
ness of Carathéodory solutions as stated next.

Theorem 5.5 [161] Suppose that the svstem (A, B, C, D) is passive and
the LMIs (5.57) have a positive definite solution. Then, the following state-
ments are equivalent for a given positive real number T, an initial state @,
and an input w:
1. There exists a Carathéodory solution of the LCS (5.58) for the initial
state xq and the Bohl inpurt .
2. There exists a forward solution of the LCS (5.58) for the initial state
and the Bohl input w.
3. The relations

Fu(t) € (LCP — ker(D))" +1m C, forallt > (. {5.60a)
Cay+ Ful(0) € (LOP — ker(D))* {5.60b)

hold.

Moreover, if (2", @', w') i = 1,2 are solutions with the initial state @, and
the input w, then the relations

La'—x*=0;

. 2.2[—22*51«‘]'{ s ];

D+D"
2w —w? e Dker [
hold.

B
D+ DT

Zeno phenomena  Consider the input-free LCS

&(1) = Az(l) + Bz(1), (5.61a)
w(t) = Ca(t) + Dz(1). (5.61b)
0< z(t) L w(t) > 0. (5.61¢)

Let (z, 2. w) be a Carathéodory solution of the LCS (5.61). Define the index sets
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all) = {i | zi(t) >0 =w(H)}. (5.62)
Ay = {i | z:(t) =0 =w;(t)}. (5.63)
A1) = {i | z(1) = 0 < w, ()} (5.64)

for t = ). We say that a time instant £* > 0 is:

o o nonswitching time instant with respect to the solution (=2, @, m) if there exist a
positive real number = and index sets (v, [Je, 72 ) such that (1), A1), (1)) =
(tva.fe.7.) forall b € (1* —£,47) U (1*,1* +€);

o aswirtching time instant if it is not a nonswitching time instant.

Let I” be the set of all switching time instants with respect to the solution (2, @, w).
We say that the solution (2. 2. w) is

e lefi-Zeno free if the set 1" has no left accumulation points, i.e. for each £ = 0
there exists a positive real number = such that ro(.d+e) =

o right-Zeno free if the set " has no right accumulation points, i.e. foreach > 0
there exists a positive real number £ such that 7" (t —=,8)=10;

o Zenofree if it is both left- and right-Zeno free.

Four theorems that provide sufficient conditions that exclude certain types of Zeno
behavior are in order, The first one rules out both left and right Zeno behavior under

a restrictive condition:

Theorem 5.6 [ 583] Suppose that D is a P-matrix. Then, all solutions of
the LCS (5.61) are Zenao free.

The second rules out only left-Zenoness under a less restrictive condition, namely
the passivity assumption:

Theorem 5.7 | 306] Suppose that the system X( A, B, C. D) is passive and

col( B. D+ D) is of full calumn rank. Then, all solutions of the LCS (5.61)

are left-Zeno free.

The third result rules out Zeno behavior in case the underlying system is passive and
D matrix satisfies certain conditions:

Theorem 5.8 [ /49, 152] Suppose that the system X (A, B. C, D) is passive

and col(B. D + DY is of full column rank. If there exists an index set

8 = [ O . 1} such that

e D, is positive definite;

e D, =0andD,-,, = O:and

o D, ixskew-svmmetric.

Then all solutions of the LCS (5.61) are Zeno free.
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The final result relaxes the passivity requirement:

Theorem 5.9 [ 162] Suppose that mi = 1, D = O, and CB > (), Then, all
solutions of the LCS (5.61) are Zeno free.

Stability To study stability, we introduce a stronger version of passivity:

Definition 5.2 (Strictly passive system) The system Y(A.B.C. D) is
called strictly passive, if the matrix inequalities

A"K + KA+:K KB-C"

=K" > = o
K=K ) and B'K - C —(D-LD‘)

] <0 (5.65)
have a solution K for some = > ().

Lyapunov stability of linear complementarity systems is established by the following
theorem under the passivity assumption:

Theorem 5.10 [/55] Consider the LCS (5.61). Suppose that the linear sys-
tem Y(A. B, C. D) is strictly passive. Then the LCS (5.61) is globally ex-
ponentially stable. In case X (A, B, C, D) is passive only, then the system
is Lyapunov stable.

In general, obtaining necessary and sufficient conditions for stability is a hard task.
Only in the planar case, one can provide such conditions as stated in the next
theorem:

Theorem 5.11 [156] Consider the LCS (5.61) with m = |, n = 2, and
(C, A) is an observable pair. The following statements hold:
1. Suppose thar D > 0. The LCS (5.61) is asymptotically stable if and
only if
(a) neither A nor A — BD ' C has a real nonnegative eigenvalue,
and
(h) ifboth Aand A—~ BD~ 'C have nonreal eigenvalues then o) [w) +
aaJwy < O where my + iwy (wy > 0) are the eigenvalues of A and
s+ iwa (wa > 0) are the eigenvalues of A — BD'C.
2. Suppose that D > ). The LCS (5.61) has a nonconstant periodic solu-
tion if and only if both A and A — BD ' C have nonreal eigenvalues,
and ay [w + oy /we = 0 where @y + iw, are the eigenvalues of A and
s + iwy are the eigenvalues of A — BD ™' C. Moreover, if there iy
one periodic solution, then all other solutions are also periodic. And,
w/wy + w/wy is the period of any solution.

. Suppose that D = O and CB > (). The LCS (5.61) is asvmpitoti-
cally stable if and only if A has no real nonnegative eigenvalue and
[I — B(CB) 'C|A has a real negative eigenvalue (note thar one
eigenvalue is already zer).

-
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Controllability and stabilizability Let (2% % z%0% 4pT0. %) denote the solu-
tion of the LCS (5.58) for the initial state @ and the input w. We say that the LCS
(5.58) is

& controllable if for any pair of states (g, @p) € R"*™ there exists a locally inte-
grable input u such that the trajectory @™ satisfies ™"*(T') = a for some
T30

o stabilizable if for any initial state @, there exists a locally integrable input u such
that ﬁlll;; o m“?‘..u =y

The following theorem presents algebraic necessary and sufficient conditions for
the controllability of an LCS:

Theorem 5.12 [150] Suppose that D is a P-matrix and the transfer matrix
F 4 C(sI — A) 'E is invertible as a rational matrix. Then, the LCS (5.58)
is controllable if, and only if, the following two conditions hold:

1. The pair (A. [B E)) is controllable.

2. The svstem of inequalities

n >0, (5.66a)

o [A=AT E
¥ 0’ = 5.66b
[€"n"] | o F] 0, (5.66b)
[T "] [g] <0 (5.66¢)

admits no solution X € & and 0 # (€.n) € BT,
It turns out that stabilizability can also be characterized in the same way:

Theorem 5.13 Suppose that D is a P-matrix and the transfer matrix F +
C(sI — A) 'E is invertible as a rational matrix. Then, the LCS (5.58) is
stabilizable if, and only if. the following two conditions hold:

1. The pair (A. [B E}) is stabilizable.

2. The svstem of inequalities

n >0, (5.67a)
€7 ") [A -Cu ﬂ _0. (5.67b)
(€ ") [g] <0 (5.67c)

admits no solution ) < X\ € Rand 0 # (€.m) € BR"™.
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5.3 Equivalence of piecewise affine systems, mixed logical
dynamical systems, and linear complementarity systems

In this section we discuss equivalences among five classes of discrete-time hybrid
systems, viz. mixed logical dynamical (MLD) systems, linear complementarity (LC)
systems, extended linear complementarity (ELC) systems, piecewise affine (PWA)
systems, and max-min-plus-scaling (MMPS) systems. Some of the equivalences
can be established under (rather mild) additional assumptions. These results are of
paramount importance for transferring theoretical properties and tools from one class
to another, with the consequence that for the study of a particular hybrid system that
belongs to any of these classes, one can choose the most convenient hybrid modeling
framework. The proofs of all the equivalence results reported in this section can be
found in [305].

5.3.1 Summary of the five classes of hybrid models

In the previous chapters of this handbook it has already been indicated that, as
tractable methods to analyze general hybrid systems are not available, several au-
thors have focussed on special subclasses of hybrid dynamical systems for which
analysis and/or control design techniques are currently being developed. Some ex-
amples of such subclasses are: linear complementarity (LC) systems, mixed logi-
cal dynamical (MLD) systems, first-order linear hybrid systems with saturation, and
piecewise affine (PWA) systems. Each subclass has its own advantages over the oth-
ers. For instance, stability criteria were proposed for PWA systems (Section 4.4),
control and verification techniques for MLD hybrid models (Section 5.1), and con-
ditions of existence and uniqueness of solution trajectories (well-posedness) for LC
systems (Section 5.4).

In this section we will show that several of such subclasses of hybrid systems are
equivalent when considered in their discrete-time formulation. Some of the equiv-
alences are obtained under additional assumptions related to well-posedness and
boundedness of input, state, output, or auxiliary variables. These results allow to
transfer all the above analysis and synthesis tools to any of the equivalent subclasses
of hybrid systems.

First we briefly recapitulate the five classes of hybrid systems considered in this
section. The variables u(k) € R™, &(k) € R" and y(k) € IR" denote the input,
state and output, respectively, at time k.

Piecewise affine (PWA) systems PWA systems are described by

x(k+1) = Ae(k) + Byu(k) + f; fo [:r:{!r)

ylk) = Cix(k) + Du(k) + g u{!.-]} € 4%, (5.68)

where (2; are convex polyhedra (i.e. given by a finite number of linear inequalities) in
the input/state space. PWA systems form the “simplest™ extension of linear systems
that can still model nonlinear and non-smooth processes with arbitrary accuracy and
are capable of handling hybrid phenomena.
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Mixed logical dynamical (MLD) systems  As introduced in Section 5.1.3, an inte-
gration of logic, dynamics, and constraints results in the description

@k +1) = Ax(k) + Byu(k) + Bad(k) + Baz(k), (5.69)
y(k) = Ce(k) + Dyu(k) + Dad(k) + Dyz(k). (5.70)
Ey8(k) + Eyz(k) < Eyu(k) + Eye(k) + Es, (5.71)

where 2(k) = [ (k) = (k)]" with 2. (k) € IR™ and @y,(k) € {0.1}™. 2(k) €
R and &(k) € {0. 1} are auxiliary variables. The inequalities (5.71) have to be
interpreted componentwise.

Remark 5.1 1t is assumed that for all 2(k) with 2, (k) € {0, 1}, all w(k) with
wy(k) € {0, 1}70 all z(k) € IR and all 8(k) € {0.1}™ satisfying (5.71) it
holds that @ (k + 1) and (k) determined from (5.69) — (5.70) are such that &y, (k +
1) & {0, 1) and (k) € {0, 1}/, This is without loss of generality, as we can
take hinary components of states and outputs (if any) to be auxiliary variables as well
(see the proof of Proposition | of [65]). Indeed, if, for instance, y,(k) € {0, I}*"
is not directly implied by the (injequalities, we introduce an additional binary vector
variable 8, (k) € {0.1 }"' and the inequalities
[Cx(k) 4+ Dyulk) + D28(k) + Daz(k), — 8, (k) < 0,
[~Cx(k) — Diu(k) — Dabd(k) = Daz(k)), + d,(k) <0,
which sets 8, (k) equal to g.(k). The notation [ |i, is used to select the rows of

the expression (5.70) that correspond to the binary part of y(k). Hence, (k) =
&, (k) € {01} Similarly, we can deal with wy, (k) and @, (k + 1).

Linear complementarity (LC) systems In discrete time these systems are given
by the equations

wlh 4+ 1) = Azx(k) + Biu(k) + Baw(k), (5.72)
ylk) = Ca(k) + Dyu(k) + Dow(k), (5.73)
v(k) = E\x(k) + Exu(k) + Exw(k) + g4, (5.74)

0 < v(k) Lw(k) > 0. (5.75)

with »(k),w(k) € R* and where L denotes the orthogonality of vectors (i.e.
v(k) L w(k) means that o7 (k)w(k) = 0). We call v(k) and w(k) the comple-
mentarity variables.

Extended linear complementarity (ELC) systems  Several types of hybrid sys-
tems can be modeled as extended linear complementarity (ELC) systems:

xlk+ 1) = Ax(k) + Biu(k) + Bad(k). (5.76)
y(k) = Cxlk) + Dyu(k) + Dad(k), (5.77)
E\x(k) + Esu(k) + Ed(k) < aga. (5.78)

P
Y 11 (9: - Bi(k) - Epu(k) - Esd(k)), = 0, (5.79)

=1 jEb,
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where d(k) € IR" is an auxiliary variable. Condition (5.79) is equivalent to

H (91— E (k) — Esu(k) — Exd(k)), =0 foreachie {1.2,.... pto (5.80)

JED

due to the inequality conditions (5.78). This implies that (5.78)-(5.79) can be con-
sidered as a system of linear inequalities (i.e. (5.78)). where there are p groups of
linear inequalities (one group for each index set ;) such that in each group at least
one inequality should hold with equality.

Max-min-plus-scaling (MMPS) systems In [578] a class of discrete-event sys-
tems has been introduced that can be modeled using the operations maximization.
minimization, addition, and scalar multiplication. Expressions that are built using
these operations are called max-min-plus-scaling (MMPS) expressions.

Definition 5.3 (Max-min-plus-scaling expression) A max-min-plus-scaling
expression [ of the variables vy ... ... vy, 1 defined by the gremmar

f = wolwax(fe. i) min(fu, B)fi + filBfi.  (5.81)

withi € {1,2,..., nh, ooy 1€ IR, and where [y, [ are again MMPS ex-
pressions. (The symbol | stands for OR and the definition is recursive.)

An MMPS expression is, for example
oy = Bap + T+ max(min( 2y, —8ra ), a0 — Jig).

Consider now systems that can be described by

ok + 1) = M, (k). u(k). d(k)). (5.82)
ylh) = M, (x(k).wlk). d(k)), (5.83)
M (x(k).u(k).d(k)) < e, (5.84)

where M. M,,. and M, are MMPS expressions in terms of the components of
(k). the input 2(k), and the auxiliary variables d(k), which are all real-valued.
Such systems will be called MMPS systems.

5.3.2 Systems equivalence

In this section we prove that MLD, LC. ELC, PWA and MMPS systems are equiv-
alent (although in some cases additional assumptions are required). The relations
between the models are depicted in Fig. 5.2.

MLD and LC systems

Proposition 5.2 Every MLD system can be written as an 1.C system,
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Fig. 5.2 Graphical representation of the links among the classes of hybrid sys-
tems considered in this paper. An arrow going from class A to class B means
that A is a subset of B. The number next to each arrow corresponds o the
proposition that states this relation. Moreover, arrows with a star (+) require
conditions to establish the indicated inclusion.

As mentioned before, all proofs of the equivalence results presented here can be
found in [305].

Proposition 5.3 Every LC system can be written as an MLD system, pro-
vided that the variables w(k) and v(k) are (componentwise) bounded.

Proposition 5.3 assumes that upper bounds on a and @ are known. This hypothesis
is not restrictive in practice, as these quantities are related to continuous inputs and
states of the system, which are usually bounded for physical reasons.

LC and ELC systems

Proposition 5.4 Every LC system can be written as an ELC system.

PWA and MLD systems

A PWA system of the form (5.68) is called well-posed, if (5.68) is uniquely solvable
in(k + 1) and y(k). once (k) and w(k) are specified. The following proposition
has been stated in [65] and is an easy extension of the corresponding result in [62]
for piecewise linear (PWL) systems (i.e. PWA systems with f; = g; = 0):

Proposition 5.5 Every well-posed PWA system can be rewritten as an MLD
svstem assuming that the set of feasible states and inputs is bounded.

Remark 5.2 As MLD models only allow for nonstrict inequalities in (5.71). in rewrit-
ing a discontinuous PWA system as an MLD model strict inequalities like n(k)<0
(where assume here for the sake of simplicity of the exposition and without
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loss of generality that (k) is a scalar) must be approximated by x:(k) < —= for some
= = 0 (typically the machine precision), with the assumption that —¢ < x(k) < 0
cannot oceur due to the finite number of bits used for representing real numbers
(no problem exists when the PWA system is continuous, where the strict inequality
can be equivalently rewritten as nonstrict, or £ = ()). See [62] for more details and
Section 5.8 for an example. From a strictly theoretical point of view, the inclusion
stated in Proposition 5.5 is therefore not exact for discontinuous PWA systems, and
the same clearly holds for an LC, ELC or MMPS reformulation of a discontinuous
PWA system when the route via MLD is taken, One way to circumvent such an
inexactness is to allow part of the inequalities in (5.71) to be strict. On the other
hand, from a numerical point of view this issue is not relevant. The equivalence of
LC and MLD systems (cf. Propositions 5.2 and 5.3) implies that all continuous PWA
can be exactly written as LC systems as well. A similar result for continuous PWA
systems can be derived from |217].

The MLD system (5.69) is called completely well-posed. if @(k+ 1), y(k), (&) and
z(k) are uniquely defined in their domain, once (k) and w( k) are assigned [62]. The
reverse statement of Proposition 5.5 has been established in [65] under the condition
that the MLD system is completely well-posed:

Proposition 5.6 A completely well-posed MLD system can be rewritten as a
PWA svstem.

Constructive procedures for converting MLD systems into PWA form were pro-
vided in [55. 56] (and implemented in the Hybrid Toolbox [57]. see Chapter 10) and
in [265]. Equivalences between PWA systems and other hybrid model classes have
been also investigated in [ 136], where the authors examine a relationship existing
among linear hybrid automata (LHA) and piecewise affine (PWA) systems, showing
in a constructive way that a LHA can be equivalently represented as a continuous-
time PWA system.

MMPS and ELC systems
Proposition 5.7 The classes of MMPS and ELC systems coincide.

MLD and ELC systems

Proposition 5.8 Every MLD svstem can be rewritten as an ELC system.

Remark 5.3 Note that the condition 4, (k) € {0, 1} is also equivalent to the MMPS
constraint max(—48; (k), &: (k) — 1) = 0or min(d; (k), 1 — 4§, (k)) = 0.

Proposition 5.9 Every ELC system can be written as an MLD system, pro-
vided that the quantity gy — E @ (k) — Eyw(k)— Eqd(k) is (componentwise)
bounded.

Note that (just as for Proposition 5.3) the boundedness hypothesis in Proposition
5.9 is not restrictive in practice, since the inputs and states of the system are usually
bounded for physical reasons.
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Example 5.8 Equivalent hybrid systems

To demaonstrate the equivalences proven above, we consider the example [62]

08x(k) 4 ul(k).  ifr(k) = 0. (5.85)
w(k+1)= { 0.8x(k) + u(k), ilr(k) <0,

with m < (k) < M. In |62] it is shown that (5.85) can be written as

rlk + 1) = =0.8x(k) + u(k) + 1.62(k),

—md(k) < w(k) —m, x(k) < (M +e)d(k) — e, (5.86)
(k) < MK, =(k) = ma(k),
2(k) < (k) — m(1 — (k). 2(k) = ax(k) — M(1 - 6(k)),

and the condition 4(k) £ {0. 1}. Note that the strict inequality ‘r”‘.'} <D hd\ been re[)]nccd
by x(k) < —=.where = > () is a small number (typically the machine precision). In view of
Remark 5.2 ohserve that = = 0 results in a mathematically exact MLD maodel. In this case
the model is well-posed, but not completely well-posed as (k) = O allows both a(a»l) =1
and (k) = 1. (An MLD model is called well-posed, if @(k + 1) ‘“fd y(k) are uniquely
determined, once x(k) and w (k) are given. Note that there are no requirements on 8 (k) and
(k)
One can verify that (5.85) can be rewritten as the MMPS model
alk 4 1) = =08x0(k) + Lomax(0,e(k)) + u(k). (5.87)

as the LC formulation

ok + 1) = =0800k) + nlk) + 1.62(k). (5.88)
0 < wik) = —x(k) + (k) L 2(k) > 0, (5.:89)

and as the FLC representation

(k4 1) = —08r(k) + ul(k) + LGd(k),
~d(k) <0,

alk) = d(k) <0,

0= (k) — d(k))(—d(k)).

While the MLD representation (5.86) requires bounds on ok}, ulk) 1o be specified (al-
though such hounds can be arbitrarily large), the PWA, MMPS, LC. and ELC expressions
do not require such a specification. . me o

Note that we only need one max-operator in (5.87) and one complementarity pair in
(5.88)-(5.89). If we would transform the MLD system (5.86) nto. e.g., I_I:c IJC' model as
indicated by the equivalence proof, this would require nine complementarity pairs. Hence.
it is elear that the proofs only show the conceptual equivalence. but do not result in the most
compact models. [

Outlook  In this section we have discussed the equivalence of five classes of
discrete-time hybrid systems: MLD, LC. ELC, PWA, and MMPS systems. For some
of the transformations additional conditions like boundedness of the state and in-
put variables or well-posedness had to be made. These results allow one to transfer
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properties and tools from one class to another. So for the study of a particular hy-
brid system that belongs to any of these classes, one can choose the most convenient
modeling framework.

In the continuous-time framework, which is the natural habitat for most of the
applications for LC systems, such broad equivalence relations are out of the question.
There are relations though of LC systems to other specific classes of nonsmooth
systems such as specific differential inclusions based on the normal cones of convex
analysis and so-called projected dynamical systems. The reader may consult [ 124,
303] for these relationships.

5.4 Solution concepts and well-posedness

This section considers the fundamental system-theoretic property of well-posedness
for hybrid dynamical systems. We intend to provide an overview on the available
results on existence and uniqueness of solutions for given initial conditions in the
context of various description formats for hybrid systems and their corresponding
solution concepts.

5.4.1 Problem statement

On an abstract level, scientific modeling may be defined as the process of finding
common descriptions for groups of observed phenomena. Often, several descri ption
forms are possible.

Example 5.9  Flying ball

To take an example from not very recent technology. suppose we wanl to describe the flight
of iron balls fired from a cannon, One description can be obtained by noting that such balls
approximately follow parabolas, which may be parametrized in terms of firing angle, cannon
ball weight, and amount of gun powder used. Another possible description characterizes
the trajectories of the cannon balls as solutions of certain differential equations. The later
description may be viewed as being fairly indirece; after all it represents trajectories only
as solutions to some problem. rather than expressing directly what the trajectories. are. as
the first description form does. On the other hand, the description hy means of differential
equations is applicable (o wider range of phenomena, and one may, therefore, feel that it
represents a deeper insight. Besides, interconnection (composition) becomes much easier
since it is in general much easier to write down equations than 1o determine the solutions of
the interconnected system, [

There are many examples in science where, as above, an implicit description
(that is, a description in terms of a mathematical problem to be solved) is useful and
possibly more powerful than explicit descriptions, Whenever an implicit description
is used. however, one has to show that the description is a “good” one in the sense
that the stated problem has a well-defined solution. This is essentially the issue of
well-posedness.
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Many different description formats have been proposed n recent years.l'ur‘ hy-
brid systems. Some proposed forms are quite direct, nthers‘ fead 1o rather I“dll‘Cf:l
descriptions. The direct forms have advantages from the point of view o!’ {ll!d!_\'.\‘i..“.
but the indirect forms are often preferable from the perspective ol.' m.odﬂ‘mg (speci-
fication); examples will be seen below. The more indirect a dcs..crtptnqn I'f!nn is, the
harder it becomes o show that solutions are well-defined. This section tnlf:nds 10
provide a survey on the available results on existence and uniqueness of sn}mmus for
aiven initial conditions in the context of the description formats for hybrid systems
as considered in this handbook.

5.4.2 Model classes

This seetion summarizes the models of hybrid systems that will be investigated later
with respeet to the existence and well-posedness of a solution.

Hybrid automata  Hybrid automata were already defined in Section 1.2 and Sec-
tion 2.1 and we refer to the formal definition of this model class based on the 8-tuple

H = (Q.X. f.Init, Inn. £,G. R) given there.

Differential equations with discontinuous right-hand sides D?ring the Past
decades. extensive studies have been made of differential equations \wr.h discontinu-
ous right-hand sides (cf. in particular [237] and [639, 640]). For a typical example,
consider the following specification:

fi(z),  when h(x) >0, (5.90)
falr),  when hx) <0,

where [t is a real-valued function. A system of this form can be looked at either as
a discontinuous dynamical system or as a hybrid system of a p::?‘liculnr form. The
specification above is obviously incomplete since no slatgmcnt is mm.le about the
sitwation in which li{x) = 0. One way to arrive at a solution concept 1s to a‘dnpl.a
suitable relaxation. Specifically, Filippov [237] proposed rewriting the equations in

a convex relaxation (5.90) as
& € Flr) (5.91)

where the set-valued function F () is defined by

{fi(x)} when hi(x) = 0,
i) = ¢ {fala)}y when h(x) < 0,
{| a0, 1]s.ty=afi(r)+ (1 - a)fo(x)},  when h(z) TS{_:J'Z)

where it is assumed (for simplicity) that f and fa are given as continuous functions

defined on {x | h{x) > 0} and {= | A(x) < 0}, respectively. ‘ '
The discontinuous dynamical system has now been reformulated as a d:ﬂ?renrm."

inclusion. and so solution concepts and well-posedness results can be applied that
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have been developed for systems of this type [26]. Other methods to obtain differen-
tial inclusions are proposed by Utkin (“control equivalent definition”) and Aizerman
and Pyatnitskii (Sect. 5.4.4). In case the vector fields f,(a) are linear (i.e. of the form
A,z for some matrix A;) and the switching surface is given by a linear function h,
then the system (5.90) is called a piecewise linear system. These systems will receive
special attention below.

Hybrid inclusions A conceptually simple model, but still powerful to model many
classes of interest, was developed recently in [133, 271, 273]. It extends the differen-
tial inclusion (5.91) by restricting its “flow region™ to a set C and including resets of
the state variable in the “jump set” D. As such, the model consists of the data of two
subsets C and D of R", and two set-valued mappings F and G, from C, respectively
from D, to B™. The hybrid system is written as

& e Flx) ifeel, (5.93a)
at e Ga) ifm e D, (5.93b)

The state variable is now given by ®(1) € R" for time / € R, but some parts of the
state vector are also allowed to take only integer values.

Complementarity systems Complementarity systems have been discussed already
in detail in Section 5.2. The reader is referred to that section for an exposition on this
class of hybrid systems.

5.4.3 Solution concepts

A description format for a class of dynamical systems only specifies a collection of
trajectories if one provides a notion of solution. Actually the term “solution” already
more or less suggests an implicit description format: in computer science terms, one
may also say that a definition should be given of what is understood by a run (or
an execurion) of a system description. Formally speaking, description formats are
a matter of syntax: they specify what is a well-formed expression. The notion of
solution provides semantics: to each well-formed expression it associates a collection
of functions of time. In the presentation of description formats above, the syntactic
and semantic aspects have not been strictly separated, for reasons of readability. Here
we review in a more formal way solution concepts for several of the description
formats that were introduced.

Solution concepts for hybrid automata  We will use the (autonomous) hybrid
automata formulation as in Section 1.2 and Section 2.1 based on the 8-tuple H =
(Q. X, f, Init, Inu. £, G, R). To formalize the solution concept based on this model
syntax, we will use the following definitions.

Definition 5.4 (Hybrid time trajectory) [427] A hvbrid time trajectory
7= {L}Y is afinite (N < 00) or infinite (N = ) sequence of intervals
of the real line, such that:
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o Ii=[r.7]lwithn, <7/=Tip1for0<i<N;

o ifN < x,cither In = [tn.7h]or In = [7a Ty with T~ < T~ < 00

A hybrid time trajectory does not allow left accumulation points . Indeed. the
event times set £ := {0} U {L | n € N} and the corresponding sequence of intervals
cannot be rewritten in terms of a hybrid time trajectory. Hence. the above definition
excludes implicitly specific Zeno behavior and that this concept has a “preferred di-
rection of time.” This is caused by the fact that it assumes that the set of event times
is well-ordered by the usual order of the reals, but not necessarily by the reverse
order: in other words, event times may accumulate to the right, but not to the lefi.
(An ordered set & is said to be well-ordered if each nonempty subsel of S has a least
clement.) This lack of symmetry with respect to time can be removed by allowing
the st of event times & to be of a more general type. Similar asymmetries in time
are also the case for the solutions of hybrid inclusions and the forward solutions of
complementarity systems as discussed below. Interestingly. Filippov solutions for
discontinuous dynamical systems do have a more symmetric notion of time. which
cuarantees that time-reversed solutions remain to he solutions of the time-reversed
system. This property is lost for the executions of hybrid automata, solutions to hy-
brid inclusions and forward solutions to complementarity systems (see also |532] for
a further discussion).

We say that the hybrid time trajectory 7 = {1}, is a prefix of 7/ = EEIM,
and write 7 < 7', if they are identical or 7 is finite. AT > N, I, = J; fori =
O; Basmigd N - L.and Iy C Jx. Incase 7 is a prefix of 7 and they are not identical,
7 is a strict prefix of 77,

Definition 5.5 (Execution) An execution \ of a hybrid awtomaton is a col-
lection \ = (7. X&) with:
o 7 = {1} N, ahybrid time trajectory;
o A= (NN, with) 11, — Q:and
6 = {.{.}l'\'" with&, : I, = X
satisfving
o initial condition (M0). (7)) € ful;
e continuous evolution forall i:
e A\, is constant, i.e., A (1) = Nlm) forallt € I,_-.'
o &, is the solution to the differential equation £ = fIN).E(1)) on
the interval 1; with initial condition & (i) at 7
o forallt € [r,,7]) it holds that &() € Inv(A; (1))
o discrete evolution for all i, ¢ = (Ni(7]). N1 (7ig1)) € £ (7)) € G(e)
and {f.l'[f:}- Eivi(Tig1)) € Rir).

Solution concepts for differential equations with discontinuous right-hand side
As we have seen above. some differential equations with discontinuous right-hand
side can be considered from the perspective of differential inclusions. The standard
solution concept for differential inclusions is the following. A vector function x(f)
defined on an interval [a.b] is said to be a solution of the differential inclusion
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& £ F(x). where F(-) is a set-valued function, if x(-) is absolutely continuous
and ?;ati:sﬁes ®(t) € Flx(t)) for almost all t & |a, b]. The requirement of absolute
continuity guarantees the existence of the derivative almost everywhere. One may
n:.xlc l?ml the solution concept for differential inclusions does not have a preferred
direction of time. as opposed to the notion of an execution for hybrid automata.

Solulion concepts for hybrid inclusions  For the hybrid inclusions (5.93) a solu-
tion concept (cf. [133, 271. 273]) is used that shows similarities with the one adopted
‘fnr‘me hybrid automata. It is based upon the notion of a hybrid time domain, which
is tightly connected to hybrid time trajectory as in Definition 5.4, because the hybrid
time trajectory includes the “event counter 5™ into the hybrid time domain.

Definition 5.6 (Hybrid time domain) A compact hvbrid time domain is a
set D C R x N given by :

=1

D= U!’_a-":l]] X {}}'

=0

where J € Mand 0 = 1y < ty -+ < ty. A hvbrid time domain is a set
D R x Nsuch that, for each (T.J) € D, DO([0,T] % {0,...,.J}) is
a compact hvbrid time domain.

A!sn the hybrid time domains have a “preferred direction of time” as left accu-
mulations of the reset times {/,} are not allowed.

Definition 5.7 (Hybrid trajectory) A hybrid trajectory is a pair (dom . :x)
consisting of hybrid time domain dom x and a function @ defined on dom
@ that is locally absolutely continuous in t on (dom x) 0 (R_-," x {j}) for
each j € M. _

Now we are ready to formally introduce a solution to (5.93).

Definition 5.8 (Hybrid arc) A hvbrid trajectory @ : dom x — RE" is a
solution sometimes called a hyvbrid are 10 (5.93) if;
I forall j € Mand for almost all 1 € 1; := dom @ 0 (R=g x {j}), we
have x(t. j) € Cand &(t.j) € Flax(t, 1)) _ .
2. forall (1, 7) € dom x such that (1, j + 1) € dom @, we have (1, j) € D
and (1, j + 1) € G(x(t, j)). '

Solution concept for complementarity systems  Section 5.2 introduced the con-
cepts of Carathéodory and forward solutions for complementarity systems. These
l\\:'n notions are only valid for absolute continuous solutions implying that the @-part
of the solutions cannot jump across events (mode switches). For (linear) comple-
mentarity systems of a higher index such as mechanical systems with unilateral con-
straints that induce impacts, this requirement is too strong and one has to add jump
rules that connect continuous states before and after an event has taken place. Under
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suitable conditions (specifically, in the case of linear complementarity systems and
in the case of Hamiltonian complementarity systems), a general jump rule may be
given [302, 304, 572].

5.4.4 Well-posedness notions

In the context of systems of differential equations, the term well-posedness roughly
means that there is a nice relation between trajectories and initial conditions (or,
more generally, boundary conditions). There are various ways in which this idea can
be made more precise, so the meaning of the term may in fact be adapted to the
particular problem class at hand. Typically it is required that solutions exist and are
unique for any given initial condition. Both for the existence and for the uniqueness
statement, one has to specify a function class in which solutions are considered. The
function class used for existence may be the same as the one used for uniqueness,
or they may be different: for instance. one might prove that solutions exist in some
function class and that uniqueness holds in a larger function class. In the latter situa-
tion one is able to show specific properties (the ones satisfied by the smaller function
class) of solution trajectories in the larger class, In case one is dealing with a system
deseription that includes equality and/or inequality constraints, it may be reasonable
1o limit the set of initial conditions to a suitably chosen set of “feasible™ or “consis-
tent™ initial conditions.

IT solutions exist and are unique, a given system description defines a mapping
from the set of initial conditions to trajectory set. In the theory of smooth dynam-
ical systems, it is usually taken as part of the definition of well-posedness that this
mapping is continuous with respect to suitably chosen topologies. In the case of non-
smooth and hybrid dynamical systems, it frequently happens that there are certain
boundaries in the continuous stale space separating regions of initial conditions that
generate widely different trajectories. Therefore. continuous dependence of solutions
on initial conditions (at least in the sense of the topologies that are commonly used
for smooth dynamical systems) may be a requirement too strong for hybrid systems.
See, for instance, the mechanical example in [304] consisting of two carts connected
by a hook and a spring, where the motion of the first cart is constrained by a block.
This simple example illustrates the discontinuous dependence on initial conditions
nicely.

One may also distinguish between various notions of well-posedness on the basis
of the time interval that is involved. For instance, in the context of hybrid automata,
one may say that a given automaton is nonblocking [427] if for each initial con-
dition either at least one transition is enabled or an a smooth evolution according
to the dynamics of one of the modes is possible on an interval of positive length.
If the continuation is unique (the automaton is deterministic [427]). one may then
say that the automaton is initially well-posed. This definition allows a situation in
which a transition from location | to location 2 is immediately followed by a tran-
sition back to location | and so on in an infinite loop, so that 7/ = 7; for all i in
the hybrid time trajectory corresponding to this execution indicating that this solu-
tion does not make progress in the continuous time direction # (live-lock). A stronger

5 Further switched systems 179

notion is obtained by requiring that a solution exists at least on an interval [0, =) with
€ > 0 system descriptions for which such solutions exist and are unigue ar‘eh called
locally well-posed. In computer science terminology, such systems “allow time to
progress.” Finally, if solutions exist and are unique on the whole half-line [0, )
then one speaks of global well-posedness. Local and global well-posedness can bc.
iecn to be asymmetric in their consideration of time in the sense that it considers

cnn.nm'mus" time ¢ to be dominant over the “discrete time" J (in the terminology of
hyhrld time domains). For “physical™ hybrid systems this asymmetry is useful as we
are interested in the actual progress of real time ¢ and less interested in the number
of events. Initial well-posedness is from this point of view more symmetric,

Well-posedness of hybrid automata Necessary and sufficient conditions for well-
posedness of hybrid automata have been stated in [427]. Basically these conditions
mean that transitions with non-trivial reset relations are enabled whenever contin‘-
uou,-a.e‘volulinu is impossible (this property is called nonblocking) and that discrete
ll‘:ﬂﬂsﬂl(mS must he forced by the continuous flow exiting the invariant set, no two
discrete transitions can be enabled simultancously, and no point z can be mapped
onto two different points @* # @” by the reset relation R(q.4') - this property is
called determinism. We will formally state the results of [427] after introducing SOI‘II(‘:
necessary concepts and definitions.

. .A" execution y = (7,A,£) as defined in Definition 5.5 is called finite, if 7 is a
.hmtc sequence ending with a closed interval; infinite, if 7 is an infinite sequence or
if 3,(7) = 7i) = oo and maximal if it is not a strict prefix of any other execution of
the hybrid automaton. We denote the set of all maximal and infinite executions of the

automaton with initial state (gq, @) € Init by Hﬁ:‘ @) A HE o respectively
pallyy i sy T

Delinitial_i 5.? fNo.ubIoeking awtomaton) A hyvbrid automaron is called
I‘Inn}‘fk)'ck.mg if ::-5 () 18 nonempry for all (qo, x0) € Init. It is called de-
terministic jf qu...a:“ ) contains at most one element for all ( Gu. iy} € Init.

These well-posedness concepts are similar to what we called initial well-posed-
ness as ﬂyey do not say anything about live-lock or the continuation beyond accumu-
lation points of event times,

‘ To .simplif ¥ the characterization of nonblocking and deterministic automata, the
following assumption has been introduced in [427]:

Assumption 5.1 The vector field Flq.-) is globally Lipschitz continuous for
allg € Q, Th(" edge (q,q') is contained in £ if and only if Glq.¢') # 0 and
x € Gla.q') if and only if there is an @' € X such that (z.2') € Riq.q').

.T‘he first part of the assumption is standard to guarantee global existence and
uniqueness of solutions within each location given a continuous initial state. The
latter part is without loss of generality as can easily be seen [427].

A state (q. .'r) is called reachable if there exists a finite execution (T, A. &) with
T =4[, r,'}};‘__n and (An(ry )€ (TN )) = (4. &). The set Reach C Q x X denotes
the collection of reachable states of the automaton. -
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The set of states from which continuous evolution is impossible is defined as
Out = {(qny o) € @ x X' | Ve > 03t € [0.8) ®q, 20(1) & Inviqgn)}.

in which @, a, (-) denotes the unique solution to & = F(qao. 2) with 2(0) = ;.

Theorem 5.14 [427] Let Assumption 5.1 be satisfied.

1. A hvbrid automaton is nonblocking if, for all (q. @) € Reach L) Out,
there exists (q.q') € € with @ € G(q.¢"). In case the automaton is
deterministic, this condition is also necessary.

2. A hybrid awtomaton is deterministic if and only if for all (q.x) €
Reach
o ifx e Glq.q') forsome (q.q') € E, then (q.x) € Out;

o iflq.q) € Eand (q.q") € Ewithy' # 4", then® ¢ Glg.q' )0
Glg.q"): and

o if(g.q") € Eand x € Glq.q'), then there is at most one eX
with (x.2') € Riq.q').

As a consequence of the hroad class of systems covered by the results in this
section, the conditions are rather implicit in the sense that for a particular example
the conditions cannot be verified by direct calculations (i.e. are not in an algorithmic
form). Especially, if the model description itself is implicit (e.g. piecewisce affine sys-
tems or complementarity models) these results are only a start of the well-posedness
analysis as the hybrid automaton model and the corresponding sets Reach and Out
have to be determined first. In the next sections, we will present results that can be
checked by direct computations.

The extension of the initial well-posedness results for hybrid automata to local or
global existence of executions are awkward as Zeno behavior is hard to characterize
or exclude, and continuation beyond Zeno times is not easy to show. This is one of the
motivation to derive conditions that guarantee the existence or absence of Zeno be-
havior (see, e.g., [19, 159, 272, 341, 532, 583, 619, 680]) To guarantee continuation
beyond Zeno times the hybrid model is sometimes extended or maodified by using,
e.g.. relaxations |341]. As another example of an extension. consider the the bounc-
ing ball model (Section 2.3.3) in which “global solutions™ defined for all ¢ in [0, ~0)
can be obtained by adding the “constrained mode™ ity = iz = (0. Note that in case of
complementarity modelling of the bouncing ballby iy = —g+w, 0 < wlay =20
(completed with the elastic reset map), where w represents the constraint force ex-
erted by the ground on the ball, this constrained mode with ;=0 follows naturally.
For complementarity systems, but also for differential equations with discontinuous
right-hand sides such as piecewise affine systems or other switched systems, one has
the advantage that the location or mode can be described as a function of the con-
tinuous state. OF course, in this case one is able to define an evolution beyond the
Zeno time by proving that the (left-)limit of the continuous state exists at the Zeno
point (e.g. show for the bouncing ball as in Section 2.3.3 that limy gy (8) = 0
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and limizy-- #2(#) = 0, and that from (0,0)" continuation in the constrained mode

is Flcnrly possible). Continuation from this limit follows then from initial or local
existence.

m\\::zll—pnwd. | ﬁne:s of piecewis; linear systems A problem of considerable impor-

ce 18 to find necessary and sufficient conditions fi - ] fecewis

okt i s for well-posedness of piecewise
Az, whena e (0,

o Ayre, whenz € (s,
T = : (5.94)

A.x. whenz e (C,,

where C; are certain subsets of R" having the property that

CUCU--UC. =R"

o (5.95)
G nNimC; =0, i#j.

Tim sifllatif)n may naturally arise from modeling, as well as from the application of a
switching linear feedback scheme (with different feedback laws corresponding to the
suhstfif C;). Of course, even more general cases may he considered, or, instead, extra
.cundllmns may bhe imposed on the subsets C,. Note that the first condition in ;5 95)
is a necessary (but not sufficient) condition for existence of solutions for all inili-al
conditions and the second one is necessary (but again not sufficient) for uniqueness
(unless the vector fields are equal on the overlapping parts of the regions C; ). ‘
A particular case of the above problem, which has been investigated in depth, is
the bimodal linear case -

Asxe, whenCax < (), (5.96)

. {A,x. when Czx > 0,
under the a(ld?timmnl assumption that both pairs (C'. Ay ) and (C, As) are observable.
. The .R()|I:Illnl1 concept that will be employed is the extended Carathéodory solu-
tion. which is a function a : [tg. ;] — R". which is absolutely continuous on {f 4]
satisfies . e

x(t) = x(ly) +/ Flz(7))dr, (5.97)

where f(a) is the (discontinuous) vector field given by the right-hand side of (5.96)
and there are no lefi-accumulation points of event times on [f. 1, ]. o

Note that Filippov solutions involving sliding modes are not extended Carathéo-
f]ory solutions. Moreover, note that if f(x) is continuous then necessarily there ex-
ists a K such that A, = A, + K C. and f is automatically Lipschitz continuous,
|mply.mg local uniqueness of solutions by classical results on ordinary diﬂt:remiﬁl‘
equations,



182 A. Bemporad, M. K. Camlibel. W. .M. H. Heemels, et al.

Before stating the main result we introduce some notation, First we define the
1 % 1 observability matrices corresponding to (C.A,), respectively (C. Ayl

(&4 (8]
CA, CA,
W= : N : (5.98)
(o e A

(hy assumption they both have rank 7). Furthermore we define the following subsets
of the state space B":

S ={z e R"|Wz = 0}
i=1,2, (5.99)
S = {x € R"|W;x 20}
where = denotes lexicographic ordering. that is @ = O or & = 0 if the first com-
ponent of & that is nonzero is positive. Furthermore, & = () iff — = . Then the
following result from [335] can be stated:

Theorem 5.15 The bimaodal linear system ( 5.96) is well-posed if and only
if one of the following equivalent conditions are satisfied:

(a) ST US; =R™

(h) S n&; = {0}

(c) WaW, Uis a lower-triangular matrix with positive diagonal ele-

ments.

Possible extensions to noninvertible observability matrices, the situation of more
than two modes, as well as to modification of the sets Cz = 0, Czx < (), are

discussed in [335. 336].

Complementarity systems Several well-posedness results were already presented
in Section 5.2. These results focussed on Carathéodory and forward solutions that
applied to absolutely continuous trajectories only. However, in various application
domains of complementarity systems the restriction to continuous trajectory is oo
stringent, This is the case in the context of unilaterally constrained mechanical sys-
tems (cf. 1122, 123, 302, 413, 462]) in which impacts cause discontinuities in the
velocities of the impacting bodies. In this section we will provide a result that ap-
plies to linear complementarity systems of the form

(1) = Ax(t) + Bult), (5.100a)
y(t) = Cax(t) + Du(t). (5.100b)
0 < u(t) Ly(t) =0, (5.100c)

in which impacts are allowed. Before doing so, we will present a result for a class
of nonsmooth dynamical systems consisting of finear saturation systems and linear
relay systems. which are based on “complementarity reasoning.” see [149. 151].
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Iflnear sal‘uralinn and linear relay systems  As is well-known [217], piecewise
[meal.‘ rclfmnns may be described in terms of the linear complementarit ~r|;b]ﬁ:3W";b
l!w circuits and systems community (cf. [395, 641]) the cnmplcmcnta{‘i]s f()nm.l']1
tion hz?s already hBCI:l used for staric piecewise linear systems; this suhsecli{m m:u I‘:;
viewed as an extension of the cited work in the sense that we consider dynami J’ ;

tems. For the sake of simplicity, we will focus on a specific type of piecéwi«e ; -‘*)’:‘"
systems, namely linear saturation systems, i.e. linear systems coupled to a }RF‘U
characteristics. They are of the form ‘ e

x(t) = Ax(t) + Bu(l), (5.101a)
y(t) = Ca(l) + Dult), (5.101b)
(ae(t). y(t)) € saturation,, (5.101¢)

where‘ m(!! e R", wu(t) e R™, y(t) € R™, A, B, C and D are matrices of a
propriate sizes, and saturation, is the curve depicted in Fig. 5.3 with ¢, — I(-' - pl]l
and fi = f5. We denote the overall system (5.101) by SA'F{"A B Cf D) : N)
that relay characteristics can be obtained from saturation charm:lc':ris{iu.-:.by HEII::;

fi = 1.

Fig. 5.3 Saturation characteristic.

‘ One may argue that the saturation characteristic is a Lipschitz continuous func
tion !prnvndcd that f{ — fj = 0) and hence the existence and Llniquenew‘t f lhl
solutions follow from the theory of ordinary differential equations. The fnllc;\;ri e
ample shows that this is not correct in general if the feedthrough L;:rm Dis nonr;isi:_

Example 5.10  Linear saturation system
Consider the single-input single-output system

=1 (5.102)
y=umx—2u, (5.103)
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where u and y restricted by a saturation charactenistic withey = —fi = —ea = fa=1/2
as shown in Fig. 5.3, Let the periodic function it : &, — R be defined by

12, ifo<t<l,
a(t)={ -1/2, if1<t<3d,
1/2, if3<i<a.

and ii(l — 1) = u(1) whenever i > A. By using this function define 7 : B, — R as
]
) = / it(s) s,
J0

and jj: Ry — Ras

jj =& — 211

It can be verified that (=i, =i, —j). (0,0,0), and (it, . i) are all solutions of SAT(0, 1,

1. —2) with the zero initial state, L]

As illustrated in the example, the Lipschitz continuity argument does not work
> fi. Also in the case, where fi = [3 this reasoning does not

in general when [
well-posedness of

apply. The following theorem gives a sulficient condition for the
linear systems with saturation characteristics. Recall that a P-matrix is a matrix with

all its principal minors being positive.

Theorem 5.16 [ 149, 151] Consider SAT(A. B. C. D). Let R =
ding(ely — ¢}) and S = ding(fs — [1). Suppose that Gla)R — S is
a P-matrix for all sufficiently large o€ &, where

Gla)=Clol - A) 'B+ D.

Then. there exists a unique forward solution of SAT(A, B. C, D) for all

initial states.

Linear complementarity systems with jumps  Up to this point, the results on
well-posedness for complementarity systems concerned solutions of which the -
part is continuous. As mentioned before, for applications such as constrained me-
chanical systems (e.g. the bouncing ball) discontinuities in the state variables are re-
quired. For lincar complementarity systems as in (5.100) a distributional framework
was used to obtain an extension of the forward solution concept (see |304] for de-
tails). The work [304] presented also sufficient conditions for local well-posedness.
In case of one complementarity pair, these conditions are also sufficient for global
well-posedness.

Consider the LCS( A, B. €. D) as in (5.100) with Markov parameters H" =D
and H' = CA' 'B.i = 1.2,...and define the leading row and column indices by

pyi=infli e N| Hy #0}, n;:= inf{i e N| H,; # 0},
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:Vherje § €4 me k.} .ill‘ld inf @ := nc. The leading row coefficient matrix M and
‘eat'img column coefficient matrix N are then given for finite leading row and column
indices by
H,
M:= : and N := (HY ...H}).
H,

Theorem 5.17 [304] If the leading column coefficient matrix N and the
Im:diﬂg row coefficient matrix M are both defined and P-matrices, then
L(_S‘ (A.B.C.D) has a unique local forward solution (with jumps) on
fm‘mmnwf of the form [0.¢) for some = > 0. Maoreover, live-lock (an
infinite number of events at one time instant) does not occur,

Differential equations with discontinuous right-h i iffi i
ek ght-hand sides  Differential equa-
@(l) = f(t, (1)) (5.104)

‘w:th f being piecewise continuous in a domain G and with the set M of discontinu-
ity points having measure zero. received quite some attention in the literature. Major
roles have been played in this context by Filippov [237] and Utkin [640]. An example
“"f such a system with two “modes™ was given in (5.90). As mentioned in Subsec-
tion 5.4.2. solution concepts have been defined by replacing the basic differer;liul
equation (5.104) by a differential inclusion of the form

@(t) € F(l.x(1)), (5.105)

whe'rc Fis Fon‘slruclcd from f. The solution concept is then inherited from the realm
of differential inclusions [26].

D:ﬁ.niliou 5.10 (Solution of differential inclusion) The function @ - 2 —
R is called a solution of the differential inclusion (5.105) if x is absolutely
('?;Hi'nu;;u‘ on the time-interval £2 and satisfies a(1) € F(L.a(1)) for tdmm.'f
allt € 12, ‘ .

There are several ways to transform [ into F and we will restrict ourselves to the
two most famous ones and briefly discuss an alternative transformation proposed by
Aizerman and Pyatnitskii [6]. For further details see |237].

In the convex definition [237], as already briefly mentioned in Section 5.4.2 the
set F,(1,x) is taken to be the smallest convex closed set containing all lhe.limit
values of the function f(f. ) for # — x. f =t and (I,5) & M.

The control equivalent definition proposed by Utkin [640] (see also page 54 in
[237]) applies to equations of the form

&(t) = f(t.2) m(tx),... u (@), (5.106)
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where f is continuous in its arguments, but 1 (f, &) is a scalar-valued function being
discontinuous only on a smooth surface S; given by ¢:(x) = 0. We define Fhe sets
U(t,®) as {m(l,x)} when & & S, and in case & € S; by the flnscd interval
with end-points u, (f,®) and u; (1,@). The values u/ (t.x) n:nd uy (t,x) are the
limiting values of the function ,; on both sides of the surface S; Wh.ICI'l we assume
to exist. The differential equation (5.106) is replaced by (5.105) with Flt.x) =

flt.z . Ui(t.x).....Ustl.x)).

Remark 5.4 In case F.(t, @) is chosen as the smallest convex th'l‘-Ed \cl unrf(mmng
Falt.x). then the general definition of Aizerman and Pyatnitskii [6] is obtained. In
case [ is affine in wyo..., u, and the surfaces Si,. .. .IS,- are all different and at
the point of intersection the normal vectors are linearly independent, all the before
mentioned definitions coincide, i.e. F, = Fi, = F..

The well-posedness results of the differential equation (5.104) or (5.106) can
now be based on the theory available for differential inclusions (cf. [26,237] and ﬂz.c
references therein). A set-valued function F is called upper semicontinuous at po. if
forall # > O thereisad > 0 such that F(p+dB) C F(po)+eB, where Bdcnulles the
unit ball. F is called upper semicontinuous on a set D, if F is upper semicontinuous
in each point of the set D,

Definition 5.11 (Basic condition) We say that the set-valued map Flt,x)
satisfies the basic conditions, if?
o forall (l.e) € G the set F(i.x) is nonempry, hounded, closed, and

conmvex
e Fis upper semicontinuous in 1, .

The following result is described on page 77 of the monograph [237].

Theorem 5.18 (Theorems 2.7.1 and 2.7.2 in [237]) If F(f.x) Sﬂff.fﬁt’f
the basic conditions in the domain G, then for any point (ty.To) € &
there exists a solution of the problem

x(t) € f{-‘.-’ﬂ“)}. I“—[)} = 0. (5.107)

If the basic conditions are satisfied in a closed and bounded domain G,
then each solution can be continued on both sides up to the boundary of

the domain G.

In combination with the following result Theorem 5.18 proves the existence of
solutions for the differential inclusions related to JF,,, Fy. and Fo:

Theorem 5.19 (Page 67 in [237]) The sets Fao(t. ). Fu(t.x) and F.(t.x)
are nonempty, bounded, and closed. F,(t, x) and Folt.x) are a_fxu convex,
F, is upper semicontinuous in x, and Fy, and F, are upper semicontinuous

inl, x.
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Theorems 5.18 and 5.19 together show the existence of solutions when Filippov’s
convex definition is used under the condition that f is time-invariant. In case f is
not time-invariant, additional assumptions are needed to arrive at F being upper
semicontinuous in f as well (cf. page 68 in [237]). For the definition of Aizerman
and Pyatnitskii (i.e. using F,) existence of solutions is guaranteed. In case F3(1, z)
is convex for all relevant (f, &) (e.g. if the conditions mentioned in Remark 5.4 are
satisfied), then existence follows as well. If the convexity assumption is not satisfied,
the existence result still holds if upper semicontinuity is replaced by continuity (cf,
page 79 in [237]). In fact, the two major cases studied in Chapter 3 of [26] are related
to these two situations: (i) the values of F are compact and convex and F is upper
semicontinuous: and (ii) the values of F are compact, but not necessarily convex and
J is continuous.

Now we will discuss the issue of uniqueness. Right uniqueness (in the Filippov
sense) holds for the differential equation (5.104) at the point (1. @q). if there exists
Ly >ty such that each two solutions of this equation satisfying the initial condition
#(ln) = @ coincide on the interval [fy, £,] or on the interval on which they are both
defined. Right uniqueness holds for a domain D if from each point (1g. @) € D
right uniqueness holds.

Not too many uniqueness results are available in the literature. The most useful
result given in [237] is related to the following situation. Let the domain & ¢ R”
be separated by a smooth surface § into domains (7~ and G, Let f and O.f /i,
be continuous in the domains ¢~ and ' up to the boundary such that [~ (1. z)
and f*(t.a) denote the limit values of the function f at (1, &), # € & from the
regions G~ and G, respectively. We define h(t.@) = f'(t.@) — f(t.x) as the
discontinuity vector over the surface S. Moreover, let n(zx) be the normal vector to
S at point & directed from G~ o G

Theorem 5.20 Consider the differential equation (5.104) with [ as
above. Let § be a twice continuously differentiable surface and suppose
that the function h is continuously differentiable. If for each t € (a.b)
and each point © € 8 art least one of the inequalities n(=)" [~ (t,x) > 0
orn(z)" f*(t.x) < 0 (possibly different inequalities for different & and
t) is fulfilled. then right uniqueness holds for (5.104) in the domain G for
t € (a.h) in the sense of Filippov.

The criterion above clearly holds for general nonlinear systems, but needs to be
verified on a point-by-point basis. Alternatively, the results on complementarity sys-
tems, piecewise affine systems or linear saturation systems are more straightforward
to check as it requires. for instance, the computation of the determinants of all princi-
pal minors of the transfer function of the underlying linear system, or determine the
signs of the leading Markov parameters. However, the latter theory applies to specific
classes of hybrid systems and uses a different solution concept. Hence, uniqueness is
not proved in the Filippov sense, but in a forward sense.
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Hybrid inclusions  Adding reset maps and restricting the “flow region™ for the
above differential inclusions (5.105) leads to the hybrid inclusions (5.93). In [271]
the following basic conditions are adopted:

C and D are closed sets:
F is outer semicontinuous in the sense that for all @ € R" and all sequences
{@;) withe, — .y € F(xi) such that y;, — y. it holds that y € F(x):

o Fis locally bounded (i.e. for any compact set K € R" there exists m > 0 such
that for all @ € K it holds that F(x) © R, where [ is the unit ball) and Flz)
is nonempty and convex for all & € ('

e G is outer semicontinuous and and G(a) is nonempty for all @ € D.

Note that in the case of locally bounded set-valued mappings with closed values.
outer semicontinuity agrees with upper semicontinuity. In general this is not true
[271].

Based on these basic conditions. Proposition 2.4 in [271] states existence resulls
for these hybrid inclusions. Actually, [271] follows here closely the lines of [27],
where a similar result was obtained for so-called impulse differential inclusions, To
formulate the existence result we will use the following concepts. The tangent cone
Te-() to a set € at the point & € C consists of all v € R" for which there exist
real numbers ;= 0 with oy — 0 and vectors v; — v such that for i = 1.2....
2+ ey € C. A solution (in the form of a hybrid arc as defined in Definition 5.8) to
(5.93) is called maximal if it cannot be extended and is called complete if its domain
is unbounded (either in the *j and/or “1"* directions). The notions of maximal and
complete solutions are similar in nature as maximal and infinite executions of hybrid

automata in Section 5.4.4,

Theorem 5.21 Consider the svstem (5.93) with the above hasic condi-
tions are fulfilled. If gy € D or xy € C and for some neighborhood
17 of wq it holds that

a’ e U N C implies that Te(a') N Fla') # 0, (5.108)

then there exists a hybrid are @ of the hybrid inclusion with x(0,0) =@y

and dom @ # (0,0), If (5.108) holds for any xo € C\ D, then for any

mavimal solution @ at least one of the following is true:

(i) @ is complete:

(ii) @ eventually leaves every compact subset of ™

(iii) for some (T.,.J) € dom x with (T..J) # (0,0) we have x(T,.J) &
cubD.

Case (iii) does not occur if additionally we have for all @y & D that

Glxyg) CCUD.

This result can be considered as an initial well-posedness result. In particular, it
does not give any guarantees that a solution can be defined on a domain containing
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some (t,.J) with f > 0 (as live-lock is not excluded) nor for  — oo (due to finite
escape times or right-accumulations of reset times). Uniqueness of trajectories is not
considered in the context of hybrid inclusions. Note that statement (ii) above ex-
presses a kind of “finite escape time™ condition, which is similar as in Theorem 5.18
for differential inclusions only.

5.4.5 Comparison of some solution concepts

Tl.w.‘ difference between Filippov and forward and extended Carathéodory solutions
will be discussed in the context of the class of systems for which all these concepts
apply. In particular, we will study the plant

@(t) = Ax(t) + Bu(l); y(t) = Cx(1), (5.109)
in a closed loop with the relay feedback
u(t) = —sgn(u(f)). (5.110)

Note that, in the context of Theorem 5.16, we are dealing with the situation in which
1 = 2] and S = (). Note also that F, = F,, = F, for such linear relay systems and
1ha}t the corresponding solution concepts coincide and will therefore be referred to as
“Filippov solutions™ from now on.

Example 5.11  Difference between Filippov and forward concepts

Thc nlifff:ren_cc between the forward solutions and Filippov solution is related to Zeno behav-
ior and is nicely demonstrated by an example constructed by Filippov (page 116 in [237])
which is given by '

Fy = —uy + 2ug, (5.111a)
T = —2uy — g, (S.111b)
Y =y, (5.111¢)
yi = ia, (5.111dy
wy = —sgn(y ), (5.111e)
s = —sgn(ya). (5,111

T'hi‘s system has. besides the zero solution (which is both a Filippov and a forward solution),
an infinite ttmmhcr of other trajectories (being Filippov, but not forward solutions) starting
from the origin. The nonzero solutions (Fig. 5.4) leave the origin due to lcl‘l-accumulatitm:
of the re‘.'lay switching times and are Filippov solutions, but are not forward solutions. How-
ever, this example does not satisfy the conditions for uniqueness given in Theorem 5.16
in :‘ieclinn 5.4.4. Hence, it is not clear if the conditions in Section 5.4.4 are sufficient for
Filippov uniqueness as well. [J

The latter ;:fmblem mentioned in the example is studied in [532] for the case
where (5.109) is a single-input-single-output (SISO) system. Theorem 5.16 states
that the positivity of the leading Markov parameter H” with H' = CA''B, i =
1.2,,..and p = min{i | H' # 0} implies existence uniqueness in forward sense.
What about uniqueness in Filippov's sense?
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Fig. 5.4 Trajectory in the phase plane of (5.111).

Theorem 5.22 |532] Consider the system (5.109)~(5.110). The following

statements hold for the relative degree p being 1 or2:

p = 1: The system (5.109)~(5.110) has a unique Filippov solution j&:r. all
initial conditions if and only if the leading Markov parameter H " s
pasitive.

p = 2: The system (5.109)~(5.110) has a unique Filippov solution for initial
condition () = 0 if and only if the leading Markov parameter H" is
positive.

Moreover. in the case H' = CB = 0, Filippov solutions do not have left-

aceumulations of relay switching times.

Interestingly, the above theorem presents conditions that exclude particular types of
Zeno hehavior,

Up to this point. one might hope that the positivity of the leading Markov param-
eler is also sufficient for Filippov unigueness for higher relative degrees. However,
in [532] a counter-example is presented of the form (5.109)=(5.110), with (5.109)
being a triple integrator.

Example 5.12  Linear relay example

This relay system has one forward solution (heing identically zcrlm‘slgning in Ih(?. (}ri Zin
(as expected, as the leading Markov parameter is positive), but has 1|.1hmlely many [“I]'I]‘)]“H}\f
solutions of which one is the zero solution and the other starts with a left-accumulation
point of relay switching times [532], This example can also be clnnsidcrcd in the light of the
piecewise linear systems (5.96) considered in Section 5.4.4. which are of the form

model: &= Az, if y=Cx 210, (5.112)
mode?2: #=Aaz, if y=Czx <0,
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with
010 0 n1ron
o010 an10
Ay = 000 —1 |1 Az = noon1 | C=(1000). (5.113)
noo o noon

An extended Carathéodory solution concept (5.97) for this type of systems and necessary
and sufficient conditions for existence and uniqueness are presented in [335] (see Theo-
rem 5.15). As this solution concept does not allow for sliding modes and left-accumulation
points of event times, the above system does not have any extended Carathéodory solution
starting from the initial state (0,0,0, 1)" as can easily be seen (cf. also Theorem 5.15).

In summary. the triple integrator connected to a (negative) relay forms a nice comparison
between the three mentioned solution concepts; for the system (5.112) with (5.113) and
xo = (0,0,0,1)7, there exist [532]

e no extended Carathéodory solution:
e one forward solution; and
o infinitely many Filippov solutions. ]

For specific applications in discontinuous feedback control the Filippov solution
concept allows trajectories, which are not practically relevant for the stabilization
problem at hand. So-called Euler (or sampling) solutions seem to be more appropri-
ate in this context [ 176, 178]. Also in this case the discontinuous dynamical system is
replaced by a differential inclusion with the difference that a particular choice of the
controller is made at the switching surface. This choice determines which trajecto-
ries are actually Euler solutions by forming the limits of certain numerical integration
routines (cf. [ 176, 178] for more details).

In Section 2.4.2 of [237] some further results can be found on uniqueness. The
most general result in [237] for uniqueness in the setting of Filippov's convex defini-
tion uses the exclusion of left-accumulation points as one of the conditions to prove
uniqueness. Unfortunately, it is not clear how such assumptions should be verified.
As a consequence. Theorem 5.22 is quite useful. In Section 2.4.2 of [237] one can
also find some results on continuous dependence of solutions on initial data. See also
the recent survey of [ 188] on discontinuous dynamical systems.

5.4.6 Zenoness

The above examples, and also the discussion in Chapter 2, indicate that the Zeno
phenomenon in all its forms complicates simulation and many analysis and design
problems, including the well-posedness issue. Depending on which type of Zenoness
is allowed in the solution concept, the answer to the well-posedness problem differs.
So. conditions stating the existence or absence of certain variants of Zenoness are of
interest. Such conditions are generally hard to come by, but some rather recent works
provide some interesting insights in this difficult problem. The reader might want to
consult [19, 159, 272, 341, 532, 583, 619, 680] and the references therein. Some of
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these works also indicate possibilities on how to proceed (define solutions) beyond
Zeno points.
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6

Hybrid systems: quantization and abstraction

1. Lunze, A. Bicchi, T. Moor., L. Palopoli. B. Picasso, J. Raisch, and A. Schild

Several control and supervision problems for hybrid systems are posed in
terms of abstract information. If the reduction of the measurement resolution
leads to quantized signals, the problem to stabilize a continuous or hybrid
systems by quantized feedback has to be solved. For process supervision
with abstract design specifications, it is reasonable to reduce the complexity
of analysis and design tasks by using abstract models that ignore the con-
tinuous movement of the hybrid systems. This chapter shows how abstract
models like automata or embedded maps can be set up and used for the
diagnosis and supervisory control of hybrid systems.
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