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Abstract

We propose and test a new method for pricing American options in a high-dimensional setting. The method is centered around
the approximation of the associated complementarity problem on an irregular grid. We approximate the partial differential operator
on this grid by appealing to the SDE representation of the underlying process and computing the root of the transition probability
matrix of an approximating Markov chain. Experimental results in five-dimensions are presented for four different payoff functions.
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1. Introduction

The pricing of American options has always required numerical solution methods; in high-dimensional cases even
the most sophisticated methods have difficulty in providing accurate solutions. Given the practical importance of such
cases, it is of considerable interest to develop solution methods which are reliable and which provide accompanying
exercise and hedging strategies.

Barraquand and Martineau [2] are perhaps the first to consider pricing high-dimensional American options
specifically, proposing an algorithm based on the aggregation of paths with respect to the intrinsic value. The method is
difficult to analyze and has a possible lack of convergence; Boyle et al. [3] demonstrate this and propose a modification
of the algorithm which leads to a low-biased estimator.
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Broadie and Glasserman [4] use a stochastic tree algorithm to give both a low-biased and a high-biased estimator
of the price, both asymptotically unbiased. They also argue that there exists no nontrivial unbiased estimator for the
price. Their method requires an exponentially increasing amount of work in the number of exercise opportunities.
In subsequent work [5] they present a related method based on a stochastic mesh which does not suffer from this
problem, although this method has been found to be slow by several authors and to have a large finite-sample bias (see
e.g. Fuet al. [6]).

The least squares Monte Carlo (LSM) method presented in [7] attempts to approximate the price of an
American option using cross-sectional information from simulated paths. The optimal exercise strategy is successively
approximated backwards in time on the paths by comparing the intrinsic values to the continuation values projected
onto a number of basis functions over the states. Experimental success is reported for the LSM method, although
in high dimensions the basis functions must be chosen carefully. Recently Clément et al. [8] and Stentoft [9]
independently provided proofs of convergence for the LSM method, showing that the convergence rate is n~/2 in the
number of paths used. The convergence behavior in the number of basis functions however has not been determined.
Stentoft [9] and Glasserman and Yu [10] establish relationships between the paths and number of basis functions
which are necessary for convergence; Stentoft finds that the number of paths should be greater than cubic in the
number of basis functions to achieve convergence in probability, while Glasserman and Yu find the relationship should
be exponential in the square for convergence on a worst case basis. Stentoft [11] and Moreno and Navas [12] test the
LSM algorithm numerically. Stentoft suggests that basis functions up to order three are sufficient in five dimensions
for arithmetical and geometrical average options, but not for minimum or maximum options. Moreno and Navas find
that the method is sensitive to the choice of basis functions in five dimensions.

Tsitsiklis and Van Roy [13] propose a method similar to LSM where approximate value functions are projected
onto an orthogonal set of basis functions, the orthogonality being with respect to a suitably chosen inner product
which in general changes between time periods. They provide a proof of convergence but no empirical results. The
method differs from LSM in that the projection is used to determine an approximate value function rather than an
exercise rule.

Boyle et al. [14] recently extended the stochastic mesh method of Broadie and Glasserman [5] with their low
discrepancy mesh (LDM) method. This involves generating a set of low-discrepancy interconnected paths and using
a dynamic programming approach to find prices on the mesh.

An interesting alternative approach is proposed independently by Rogers [15] and Haugh and Kogan [16] and later
developed by Jamshidian [17] and Kolodko and Schoenmakers [18]. They use a dual formulation of the problem in
which a minimization is performed over martingales. The method is sensitive to the choice of basis martingales chosen
to perform the minimization, and so requires the basis to be well chosen in order to give an accurate solution. The
method gives a high-biased estimator.

In this paper, we propose a new approach to solving the American option pricing problem inspired by the success
of numerical integration in high dimensions and related to the method of lines for solving partial differential equations
(PDEs).

We first perform a discretization of the state space using quasi-Monte Carlo (QMC) points, the points being taken
with respect to an importance sampling distribution related to the transition density of the process at expiry. We
then propose an approximation to the partial differential operator on this grid by taking the logarithm of a transition
probability matrix P~ which approximates the joint density of the underlyings at the expiry of the option, T — ¢.
This approximation is then used to formulate linear complementarity problems (LCPs) at successive time points,
working back from the option expiry.

We propose an implementation of this method in which the matrix logarithm of P =" does not need to be
calculated explicitly, but instead a root of the matrix can be calculated. The root operation is cheaper than the
logarithm, although the logarithm allows variation of the time step without recalculation. The computational elements
of the method are thus the QMC trials, the generation of the matrix PT=1 _ the matrix root and solving an LCP at each
time step. For approximating the European option price this method amounts to performing a numerical integration
with importance sampling, which is known to be an efficient method in high dimensions as long as the importance
sampling distribution is chosen appropriately.

The remainder of the paper is organized as follows. In Section 2 we present a mathematical formulation of the
problems to be solved numerically and in Section 3 we show how an irregular grid method can be used to solve the
problem. We then present the experimental setup in Section 4, results in Section 5 and concluding remarks in Section 6.
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2. Formulation

We consider a complete and arbitrage-free market described by state variable X (s) € R? for s € [z, T] which
follows a Markov diffusion process

dX(s) = u(X(s),s)ds + (X (s), s)dW(s) 2.1

with initial condition X (¢) = x;, and a derivative product on X (s) with intrinsic value ¥ (X (s), s) at time s and value
V(s) = v(X(s), s) for some pricing function v(x, s). The process V (s) satisfies

dV(s) = py (X (s), s)ds + oy (X (s), s)dW (s) 2.2)

where 1y and oy can be expressed in terms of p and o by means of Itd’s lemma. The terminal value is given by
U(', T) = I#(s T)

In such a market there exists a unique equivalent martingale measure under which all price processes are
martingales. The risk-neutral process in this case is given by

dX (s) = urn (X (s), s)ds + o (X (s), s)dW (s) (2.3)

where gy is the risk-neutral drift.
Our objective is to provide approximations for the current value v(x;,t) of the derivative product and the
corresponding optimal exercise and hedging strategies t and H:

T:RYx[1, T — {0,1) (24)
H:RYx[t,T] - Re. (2.5)
In the following, we appeal to the complementarity formulation of the American option price which is presented,
for example, in [19]. Let £ be the related diffusion operator
L 1t i + 0 (2.6)
=-troo'—5 — = .
2077 gz THRN Gy

where r is the risk-free rate and the prime denotes transpose. Then the option value is found by solving the
complementarity problem

at

v—y¢ > 0 (2.7)
v, ~ 0
8t+ v)(v—vyY) =

for (x,s) € RY x [, T] with the terminal condition v(-, T) = ¥ (-, T). In fact it turns out to be simpler in terms
of the following discretization to work with the forward-price version w(x,t) = e” (T=Dy(x, 1), which satisfies the
complementarity problem

0 ~
—w+£w <0
ar
e T Dy —y >0 (2.8)

|
o

()
ot

where £ = L +r, again for (x, s) € R? x [¢, T] and with the terminal condition w(-, T) = ¥ (-, T).
3. Methodology

To solve the complementarity problem (2.8) we first form a semidiscrete complementarity problem by discretizing
the state space but leaving time continuous. This involves sampling the state space using QMC trials and finding a
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suitable approximation of L. We then use standard time-stepping techniques to form a system of fully discrete LCPs.
There are many methods for solving LCPs; examples include projected successive overrelaxation (PSOR) and linear
programming.

We first present and motivate each step of the algorithm separately, and then summarize by providing a concise
statement of the algorithm.

3.1. State space discretization

We first consider a semidiscrete approximation to the complementarity problem (2.8) in which the state space is
discretized and time left continuous. This is often called the method of lines. In the pricing problem this amounts to
approximating (2.8) by a system of ordinary differential equations with complementarity conditions.

The choice of a constant grid in the state space has the advantage that Crank—Nicolson and implicit solutions
can be easily considered. This seems advantageous since, in the case of solving PDEs without complementarity
conditions, the Crank—Nicolson method is known to have a convergence rate of 8t2 rather than 8¢ for other first
order schemes. Furthermore, when solving discretized complementarity problems, the implicit scheme is the only
time-stepping method known to be unconditionally stable (see [20]).

The choice of grid begs importance sampling considerations. That is, in order to obtain a more accurate
approximation, more grid points should be placed at states which are more likely to be visited by the process, and at
locations where the value function has greater magnitude.

We denote the grid by X = {x1,...,x,} € RY, and the corresponding operator approximation by A. The
construction of A will be considered in Section 3.2.

Assuming that X and A are given, we form the corresponding semidiscrete complementarity problem

IA

dw A 0
E(S) + Aw(s)

IV

e—r(T—S)w(s) _ 1//
((il—'f(s) + Aw(s)) (e_r(T_s)w(s) — w)

for s € [¢, T] with terminal condition w;(T) = ¥ (x;) foreachi = 1, ..., n. Note that w(s) is now a time-dependent
vector in R” where n is the number of grid points.

It is also instructive to view the semi-discrete setting as a continuous-time Markov chain approximation to the
optimal stopping problem. That is, the process X (s) is approximated by a process restricted to the grid X with the
operator A giving transition intensities on this grid. The latter can be seen as follows: since the stopped process
w(X;, t) is a martingale, the vector p(¢) giving the probability of being in each state at time ¢ must satisfy

0 3.1
0

d !
3 (P0'w®) =0.

Substituting ‘L—lf(t) = —Aw(t), we have
d /
(d—’t’(r) - A/p(t)) w(t) =0.

Since this equation must hold for all w in the continuation region, we must have i—’l’ = A’p. This connection between
the differential operator and the evolution of probability densities will be used in Section 3.2 to specify transition
intensities in the approximating Markov chain.

3.2. Approximating the partial differential operator

We now propose a method for specifying A in (3.1) for a given grid X. The method is inspired by numerical
integration, and in the European case the resulting method will reduce to numerical integration with importance
sampling. This property is emphasized in [21] as a favorable property of the stochastic mesh method presented
in [5].
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Our approximation method proceeds via the stochastic representation of the pricing problem. Since we want to
approximate the Black—Scholes partial differential operator £ (or its forward-price version ﬁ), we may consider the
European case. Suppose that we determine a continuous-time Markov chain that uses the grid X as a state space and
that approximates the continuous-state process (2.1). Let A be the matrix of transition intensities of the chain, and
let p;(t) denote the probability of finding the chain in state i at time . As is well known, the vector of probabilities
p(t) satisfies the forward differential equation (dp/dr)(r) = A’p(z). Let w(x, r) be a solution of the forward-price
Black—Scholes equation da—’:’ + Lw = 0. We know that such solutions are characterized in stochastic terms by the
martingale property of the process w(X,, ). We therefore require that the approximating Markov chain should satisfy

L (pywn) =0

dr

where, as above, w(t) denotes the state-discretized version of the function w(x, ). Substituting ((ll—f(t) = A'p(t), we
have

, (dw A _0
p) <E(t)+ w(t)> =0.

Since this equation must hold in particular for all deterministic initial conditions, we must have %—’;’ = —Aw. This

shows that the matrix A may be taken as an approximation of the forward-price Black—Scholes operator L.

We assume that the grid X has been generated using random or QMC draws with respect to a certain density g(x).
We also assume that the joint density fy 7—; of the stochastic process is available for arbitrary initial points x and time
horizons T — ¢, although in principle one could adapt the following construction to the case where the density is not
known explicitly, but for example the process can be simulated.

Denote by PT—" the matrix with entries

_ 1 -
pi = farax)) (3.2)

i Xi,T—t(xk)

where the weights are given by

f xi, T—t (.X )
g(x)
The matrix PT~" is a stochastic matrix, that is, a matrix with nonnegative entries and unit row sums. We think of

the entries as giving transition probabilities between points in the grid over the horizon T — ¢. The matrix P =" thus
gives us access to an approximation A to £ on X" as follows:

for—t(x) = (3.3)

AL

(T-1)
i log P . (3.4
The matrix logarithm of P(T " certainly exists and is unique if the matrix is diagonalizable and has positive
eigenvalues. We find these two properties hold in our experiments; note however that P~ is in general not
symmetrical. We shall see in Section 3.3 that instead of computing the matrix logarithm, one may alternatively
compute the matrix root corresponding to the required time step. A direct method to construct an approximative
transition intensity matrix, based on second-order matching of local transition densities, has been suggested in [22].

3.3. Time discretization

Let us now discretize (3.1) with respect to time. We denote the approximation at state x; and time step #; by
w; k. We use the §-method, standard in the numerical solution to PDEs, to discretize (3.1). For PDE solutions,
6 = 0 corresponds to the explicit method, 6 = 1 corresponds to the implicit method and 6 = % corresponds to
the Crank—Nicolson method. The latter has 81> convergence for European problems, whereas the explicit and implicit

methods exhibit §¢ convergence.
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To implement the #-method, we consider the vector w® of values at our grid points each at time 7, and discretize
the first line of (3.1) as
*k+1) _ (k)
% +A ((1 — gywkD 4 Ow(k)) <0 3.5)
k

where 8t; £ 1 — t;. Thus (3.1) becomes

I+ (1—0)Asr) w*™D — (1 —0Ast) w® <
e_r(T_tk)w(k) _ w Z (36)
/
((1 + (1= 0)Ast) whHD — (1 — 9 AsH) w(k)) (e—’”—fk)w(k) - w) -
Now note that I + Adty = exp(Adty) + o(Str). We thus define the matrices
My = exp{—0Adt;} (3.7
Mp = exp{(1 — 0)Ast}. (3.8)

The approximating complementarity problem to solve is then

MRw(k-H) _MLw(k) < 0

e Ty ® _y > 0 (3.9)

(MLw(k) _MRw(k+1)>’(e—r(T—zk)w<k> _ W) -0

fork = K — 1, ..., 0 where the inequalities are componentwise and w®) = /.

Numerically we must solve an LCP at each time step, for which the PSOR method of Cryer [23] has been used
with much success in the past. Since the solution does not change greatly between time steps, a good starting guess
for PSOR is the solution at the previous time step. Various other methods may be used for solving (3.9); for example,
see [24] for American option pricing using linear programming in the one-dimensional case.

An error analysis of the discretization in (3.5) may be undertaken along the lines of Glowinski et al. [20] on
variational inequalities or that of Kushner and Dupuis [25] on stochastic control.

It turns out that the matrix logarithm does not have to be calculated explicitly in our method; instead we may
calculate roots of the matrix P~ corresponding to the time step and implicitness parameters. In particular we have

—081,/(T—1)
M, = (P(T_’)) ‘ (3.10)

(1-0)éty /(T —t)
) _ (3.11)

Mg = (PT

We prefer to use the matrix root because we have found it to be a quicker and more robust operation in Matlab than
the matrix logarithm. If one would choose to compute the logarithm, however, one would have access to a varying
time step without performing any extra computations.

There are many methods available for evaluating matrix functions, as detailed in [26]. The general method
suggested involves Schur decomposition in combination with Parlett’s algorithm, which computes general functions
of an upper triangular matrix. Matrix functions can also be computed using eigendecomposition, which is the method
used by Matlab to compute general matrix powers. We note that the structure of the matrix P ") may mean that
more efficient methods are available for computing matrix roots and logarithms; it is not the purpose of the current
research to investigate such methods however.

We now highlight the importance of using the matrix logarithm or root, as opposed to constructing P®? directly
(the latter being more attractive computationally). The intuition for this importance is that P®") does not produce
consistent transition probabilities over longer time horizons as in (3.12). We demonstrate the difference between the
two constructions in Fig. 3.1 for a one-dimensional example and a random grid. In particular, when §7 is too small
compared to the separation of grid points, the solutions become distorted. This problem is more pronounced in higher
dimensions due to the larger average separation between grid points.



100 S.J. Berridge, J.M. Schumacher / Journal of Computational and Applied Mathematics 222 (2008) 94-111

1

1

0.9 09t
0.8 08}
0.7 0.7}
0.6 06}
£ 05 L 05}
0.4 04r¢
0.3 03¢
0.2 02f
0.1 01F
0 " n " " 0 - " " "
-4 -3 -2 -1 0 1 2 -4 -3 -2 =1 0 1 2
log(Sy) log(Sy)

Fig. 3.1. Random grid valuation of an American put option on a single asset with expiry 1, strike 1 and 100 asset points, using transition matrices
PO gpq (p(1)0.01 respectively (dots). The plots are in the log domain. Also plotted are values computed to high accuracy (solid lines) using a
standard finite difference method.

Remark 3.1. It is clearly more efficient if the matrices My and Mg need be calculated only once; hence the choice
of a constant time step & = 6t seems convenient. We also note that, given a small enough §¢, My and Mg should be
approximately sparse in that most elements can be set to zero without affecting the solution significantly. Using this
observation can dramatically improve the efficiency of the solution procedure.

Remark 3.2. As already noted above, an important property of this construction in the European setting is that the
time stepping reconstructs numerical integration with importance sampling function g. The reconstruction is realized
as follows:

K
Vi) =e 7T Dy(r) = e TD (]_[ M;‘MR> w®
k=1

= e"T D exp(A)y
< T
= "T-D prj y(x)) (3.12)
j=I

where v; (¢) is the value in state x; at initial time ¢ and pij_t) is defined in (3.2). The last line of the equation is

precisely QMC integration of the payoff v with importance sampling function equal to the grid density g. Note that
in case My and My are constructed from the matrix logarithm, (3.12) holds only asymptotically as §¢ — 0.
Eq. (3.12) also shows that the calculation of the European price on the grid may be carried out without time
. . .. eqe,e (T—t)
stepping, given that the transition probabilities p; 7
is a faster operation than would normally be expected.

are available. Thus, using the European price as control variate

3.4. Randomization

The QMC grids we have proposed are deterministic; however, perturbing these points randomly allow us to observe
the behavior of solutions for a random selection of QMC grids, and thus to obtain estimates of the bias and standard
error of solutions. The use of such methods is surveyed in [27] for integration problems. The importance of randomized
QMC is also emphasized in [21].

When using Sobol’ points and a normal density for example, one first generates the Sobol’ points, then applies the
inverse normal distribution function to the points. In order to realize randomized QMC points, one perturbs the Sobol’
points modulo one by a random factor before applying the inverse normal distribution function.

Suppose S = (s;) is our sequence of n Sobol’ points, and U; is a sequence of random variables uniformly
distributed on the unit cube [0, 1]¢. We then realize the jth randomized Sobol’ sequence as

Sj = (sj,i)ieN = (Si + Uj mod l)ieN . (3.13)
We refer to grids obtained in this way as randomized QMC (RQMC) grids.
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3.5. Summary of procedure

We now present a concise statement of the proposed procedure as Algorithm 1. We let v; ; denote the solution at
initial time ¢ and state x; in the jth RQMC experiment. For the statement of the algorithm we assume a fixed number
of grid points n and a constant time step §t = (T — t)/K where K is the number of time steps.

Algorithm 1 The proposed irregular grid algorithm
forj=1,...,Jdo
Generate a RQMC grid X
Compute the transition matrix for expiry P~

Compute the matrix root (P(T_’ ))1/2K (Crank—Nicolson)

Solve the LCPs (3.9) to obtain o; ;

Let ; j = e -1 w;, ; be the solution at initial time ¢ for state x;
end for
for initial states of interest x; do

Estimate the solution as v; = % 2 i

1/
Estimate the standard error as €; = (ﬁ Zj(vi,j — vi)2> .
end for

4. Experimental setup and details

We now use the algorithm presented in Section 3.5 to estimate prices of multiasset options. We first present a
detailed exposition of the setting, experimental procedure and various considerations. Numerical results are presented
in the next section.

4.1. Specification of dynamics

Suppose our American option is based on d assets following a correlated geometrical Brownian motion where the
risk-neutral dynamics in the log domain are given by

1
dX = <r11 —5— Ediag(Z)) dt + R'dW .1

and r is the risk-free rate, 1 is the d-vector of ones, § = (41, ..., 84) is the vector of dividend rates, X' = (p,' ;0 j) is
the covariance matrix of the Brownian motions and R is any matrix such that R’R = X, determined for instance by
Cholesky decomposition or principal vector decomposition. The operator £ in this setting is just the multidimensional
Black—Scholes operator given by

, 1Xd: 92 +i 5 L2) 2 (4.2)
= — ij0;0 ] ——— r—0; — =<0, | — —1r. .
21.].:]'0” ! /8xi8xj 1 ! 2! 8xi

4.2. Elimination of drift

In order to facilitate reuse of the matrix roots, we first reformulate the problem so that the process has zero drift.
We introduce the change of variables

Xo(s) = X(s) — (s — D, (4.3)

where p is the risk-neutral drift; for example, in (4.1) we have p = rll — 6 — %diag(Z). The new process X has zero
drift and the covariance X' is unchanged:

dXo(s) = R'dAW(s). (4.4)
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3 .

Fig. 4.1. Example of normal QMC grid in 2-dimensions with 500 points.

The payoff under the reformulation is
Yo(xi, s) = ¥ (xi + (s —)p). (4.5)

One may also eliminate a deterministic, time-dependent risk-neutral drift by subtracting fts u(u)du in (4.3).
4.3. Grid specification

We consider normal RQMC grids as suggested in Section 3.4; thus the grid density is multivariate normal. We now
discuss parameter selection for the grid density.

Importance sampling considerations tell us that the most efficient sampling is given by the density of the process
itself; thus using a constant grid we cannot provide the most efficient importance sampling at all times. However,
given the restriction to a constant grid, we can still provide an acceptable importance sampling.

As outlined in [28], the rate of convergence for importance sampling of normal densities using normal importance
sampling functions is most damaged when the variance of the importance sampling function is less than that of the
true density. Conversely, convergence rates are not greatly affected when the variance of the importance sampling
function is greater than that of the true density.

The situation we should try to avoid is that the process has a significant probability of lying in the “tails” of the
grid density. A further consideration is the minimization of boundary effects on the solution. This suggests that the
grid covariance should be larger than the covariance of the process.

These considerations lead us to set the grid mean to the initial state x; and the grid covariance to be a multiple o of
the grid density at expiry for some trial values @ = 1.0, 1.5, 2.0. Owing to the reformulation (4.3), this ensures that
the grids are centered at the process mean for all times. We further ensure that the initial state is included in the grid.

Summarizing, we suggest the parameters

e = X (4.6)
Sy =aX(T —1). @7

The first grid point in the jth RQMC experiment is x; = u, and the (i + 1)th grid point is generated as

/ -1 -1 !
Xit1 = g + R, (!P (sji0) - ¥ (Sj,i,a’)) (4.8)

where ¥~! is the standard normal inverse function, Rg, Ry is the Cholesky decomposition of Y, and s; ; « is the kth
component of s; ;.

An example of a normal Sobol’ grid in two-dimensions is shown in Fig. 4.1. It should be noted, however, that the
advantage of using an irregular grid is realized in dimensions of at least three.
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4.4. Reuse of roots for similar processes

Given that generating matrix roots is an expensive operation compared to the final time-stepping procedure; it is of
interest to know under which conditions these matrix roots can be reused for related problems; for example, problems
with different parameters.

Clearly a single matrix root can be reused for as many different payoff functions as required, but we also show how
it can be reused for processes with different risk-neutral drifts and covariances. To answer this question for diffusion
processes with zero drift we provide the following result.

Lemma 4.1. Suppose that PT=" is the transition matrix corresponding, through (3.2) and (3.3), to the grid

= {x1, ..., X}, respective importance sampling weights g1, .. ., gn, horizon T —t and an d-dimensional Brownian
motion with covariance 1. Suppose further that PT =" is the transition matrix corresponding to the grid
={y1, ..., ={R'x1,..., R'x,}, 4.9)
importance sampling weights g1, ..., g, horizon T —t and an d-dimensional Brownian motion with positive definite
covariance ) = R'R.
Then
pI-n _ p(T-n (4.10)

Proof. Let f, r—; and hy 7—; be the densities at expiry from starting point x, expiry 7 — ¢ and corresponding to
covariance / and X' respectively. The densities from x; to x; in grid X’ and from y; = R'x; to y; = R'x; in grid ) are
respectively

1
far—i(xj) = 127(T = ) 1a| ™" exp ~3a =& @) x»}
1
By, 7—1(y;) = 20(T — ) 2| exp { — 2T _t)( —x)RET'R (x; —xl)}
= 27(T — )| exp{— 1 —(xj —x) (xj — x1)
2(T Z) i J i ’

which are equal up to the constant factor | %|'/2. Given the latter observation and that the weights are equal in both

cases, we conclude that the normalized entries p.(. 57~ obtained through (3.2) and (3.3) are also equal. O

)

and Pij

Remark 4.1. One may ask whether the weights g; specified in Lemma 4.1 are indeed appropriate for the grid ). That
is, whether (3.3) leads to a standard importance sampling procedure for ) with these weights. We answer this question
by comparing the grid densities.

Suppose that the density gy was used to generate the grid X’ using random sampling. So that for every S ¢ R?,

Pxel) = / gx(x)dx.
N

Applying the transformation x — y = R’x leads us to conclude that the grid ) consists of points generated randomly
from some density gy satisfying, for each § C R9,

P(yeR'S) = / gy (y)dy
R'S

= fsgy(R’x)IIRlldx 4.11)

by the multivariate substitution formula where R’S = {R’x : x € S} and ||R|| = abs(det R). But since y = R'x,
P(y € R'S) = P(x € S), and since (4.11) holds for all § C R4, we conclude that

gx(x) = [[R]|gy (Rx). (4.12)
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Finally, note that the averaging taking place in (3.3) implies that the weights gy (x), being proportional to gy (R'x),
are appropriate for importance sampling with respect to the grid ).

Remark 4.2. A time-dependent scaling of the covariance can also be incorporated by using the matrix logarithm, and
constructing the time stepping matrices through (3.7) and (3.8) rather than (3.10) and (3.11).

4.5. Low-biased estimate

As is common practice in the American option pricing literature, a low-biased estimate may be obtained by taking
an exercise rule implied by the pricing method and determining the expected value of using this rule using out-of-
sample paths.

A natural approximation to the optimal exercise rule using the pricing results of the irregular grid method is to take
the implied rule of the nearest neighbor in the grid at the closest time. Specifically one may define the exercise rule
for grid points to be

1 ifo® =y,
1) = i - 4.13
v hin ) {O otherwise (4.13)
and for general points x € R?
1 ifo® =y,
1) £ P 4.14
o0 {O otherwise (+14)

where k = argmin;;|¢ — ;] and i = argmin; {|lx — x;| : x; € X }.

This rule is easily implemented and can also be adapted to the case where we have several different grids. In this
case we could base the exercise rule on a vote between grids. We could also implement weighted schemes with respect
to x and 7 rather than using nearest neighbor rules.

4.6. High-biased estimate

Whereas applying an exercise rule to out-of-sample paths leads to a low-biased estimate of the option value,
simulating the cost of a hedging strategy leads to a high-biased estimate. The latter may be seen as follows: the
optimal hedging strategy enables the seller of the option, given a cash amount equal to the value of the option at the
initial time 7, to perfectly reproduce the payoff. A suboptimal strategy, however, will on average require a larger initial
cash amount, thus the cost of a suboptimal hedging strategy is on average higher than the true option value.

A formal demonstration can be given in terms of the dual formulation for American option pricing (see [15,16])
in which one minimizes the cost of hedging by minimizing an objective function over martingales. Since the value
of our hedging strategy is a martingale, it corresponds in general to a suboptimal martingale, and thus a high-biased
estimate.

In practice, obtaining an upper bound in the way we suggest requires knowledge of the optimal exercise rule. Since
we only have an estimate of this, the cost of the hedging strategy may not be purely upward biased. We find however
that one can approximate the optimal exercise strategy far more accurately than one can approximate the optimal
hedging strategy. We shall see in Section 5 that experimental results support this statement.

In the literature on American options there is little said about the practicalities of hedging in a high dimensional
setting. The difficulty with using an approach such as LSM is that the method does not naturally form approximations
to the value function from which derivatives can be estimated. One can form a hedging strategy by evaluating prices
at states perturbed in each underlying; this demands the calculation of many additional option prices at each time step,
each calculation being expensive in a high-dimensional setting. Furthermore one must be very careful with partial
derivative estimates obtained from differencing stochastic point estimates; in particular the point estimates must be
sufficiently accurate and the perturbations must be well chosen with respect to the (unknown) curvature of the value
function.

A solution provided by the irregular grid method involves estimates of the price not only at the current state, but
at all states in the grid. This allows one to extract derivative estimates using value information from nearby points in
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the grid; for example, using partial derivatives implied by a local linear regression. Indeed the irregular grid method
provides derivative information as a by-product.

4.7. Benchmarks

There are few benchmark results for high-dimensional American options. Broadie and Glasserman [5] provide
90% confidence intervals for American call options on the maximum of five assets with nine exercise opportunities
and the geometric average of five and seven assets with ten exercise opportunities using their stochastic mesh method.
Longstaff and Schwartz [7] price the Broadie and Glasserman maximum options using the LSM method.

Stentoft [11] uses the binomial method of Boyle et al. [29] and the LSM method to price put options on
the arithmetical average, geometrical average, maximum and minimum of three and five assets. Broadie and
Glasserman [4] and Fu et al. [6] provide benchmark results for options over five assets with three exercise
opportunities. Finally, Rogers [15] and Haugh and Kogan [16] use the dual formulation to price a number of different
American options.

A useful result involving options on the geometrical average of several assets is that this problem can be easily
reduced to an option pricing problem in one dimension. Suppose that the risk-neutral dynamics in the log domain are
given by (4.1), and the payoff function

Y(s) = <K - (]_[si)l/d>+ 4.15)

where K is the strike price and d is the number of assets. Then using It6’s lemma one finds that the price is the same
as that of a vanilla put on the asset with log price Y where Y (¢) = é Z;jzl X;(t) and

1 d
dy(s) = i ; dX;(s) (4.16)
= fids + GdW(s). (4.17)

The parameters of the diffusion are given by

d
> o} (4.18)

i=1

| [ 2
52:51_2(2 ) (4.19)

j=1

ll:

§|~

Using this we find that an accurate price for the geometric average European option in the Stentoft setting is 1.159,
and the Bermudan and American prices are 1.342 and 1.355 respectively. Note that the difference in early exercise
premium between the Bermudan, which allows ten exercise opportunities, and American prices is about 6%.

5. Experimental results

Our experiments are conducted in a Matlab environment and are based on the five-dimensional examples of
Stentoft [11]. Specifically we consider five stock processes driven by correlated Brownian motions for put options
with four different payoff functions. The method we use for valuation is that of Section 3. Our programs are mostly
script-based but some computationally intensive routines, for example, the PSOR code, have been implemented in C.

We are given initial stock prices S;(0) = 40 for each i, the correlations between log stock prices are p;; = 0.25,
i # j,and volatilities are o; = 0.2 for all i, the risk-free interest rate is fixed at r = 0.06, the expiry is T = 1 and we
use K = 10 time steps.

We generate S0 RQMC normal grids as detailed in Section 3.4 using the parameter values @ = 1, 1.5, 2 respectively
(these were found to give the best rates of convergence). The number of grids need not be so high in practice,
depending on the accuracy required. The vector of initial stock prices xo was always included in the grid.
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Fig. 5.1. Average QMC grid valuation over 50 normal grids with « = 1.0 (circles), @ = 1.5 (squares), « = 2.0 (diamonds) of European (solid
lines) and American (dotted lines) put options over five assets using the explicit method (¢ = 0.0) and ten time steps. Stentoft’s Bermudan LSM
solutions are drawn as horizontal lines.

The payoff functions considered correspond to put options on the arithmetical mean, geometrical mean, maximum
and minimum respectively,

1 + 1/d\*
Yi(s) = (K - Zs,-) Yals) = (K - ([T=) ) 5.
Ya(s) = (K —max(s)) " Ya(s) = (K — min(s)*

where x denotes the positive part of x.

Figs. 5.1-5.3 show the convergence behavior of the irregular grid method where the implicitness parameter is
6 =0, % 1 respectively, and for grid sizes up to 1000. For the constrained solutions, we see that convergence is
usually fastest for o = 1.5, the algorithm reaching a fairly stable value for n = 1000 for all but the maximum option.

The solutions for the arithmetical and geometrical average options appear to converge to Stentoft’s solutions for
Bermudan options with ten exercise opportunities in the explicit case. For the Crank—Nicolson and implicit cases, the
solutions appear to converge to a higher value.

The previous observation may be explained as follows. In the explicit case, our method calculates the price of a
Bermudan option with ten exercise opportunities, just as in the case of Stentoft (provided we use ten equal time steps).
This is because the explicit formulation takes the maximum of the intrinsic and continuation values at each exercise
opportunity, and because we use exactly ten time steps. One can still see this Bermudan price as an approximation to
the true American price, which we calculated previously to have an early exercise premium approximately 6% higher
than the Bermudan price in the case of the geometrical average put option over five assets.

In the Crank—Nicolson and implicit cases, however, we cannot interpret the solution as approximating a Bermudan
option due to the implicitness of the formulation. We can only say that as §t — 0, the solution should converge to
the American price. In the Crank—Nicolson case we suspect that the convergence is faster than in the implicit case
(drawing a parallel with the unconstrained problem), and so we can think of our Crank—Nicolson solution as being
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Fig. 5.2. Average QMC grid valuation over 50 normal grids with &« = 1.0 (circles), « = 1.5 (squares), @ = 2.0 (diamonds) of European (solid
lines) and American (dotted lines) put options over five assets using the Crank—Nicolson method (6 = 0.5) and ten time steps. Stentoft’s Bermudan
LSM solutions are drawn as horizontal lines.

close to our best-possible approximation to the true American option value, given that we use ten equal time steps. We
thus stress that the convergence of the Bermudan price does not require 8¢ — 0, but the convergence of the American
price does.

The fastest convergence rate in Figs. 5.1-5.3 is achieved with « (the ratio of grid density to process density) being
1.5. We thus present in Tables 5.1 and 5.2 some results and comparisons for Bermudan and American option prices
respectively using the irregular grid method with a normal grid and @ = 1.5. Given the previous discussion, we
take our explicit solutions to be approximations to the Bermudan problem, and the Crank—Nicolson solutions to be
approximations for the American problem.

Tables 5.1 and 5.2 also show out-of-sample results for LSM and the irregular grid methods. These are estimates
of the expected value, under the risk-neutral measure, of using the implied exercise strategy. We implement the LSM
method ourselves, as specified in [11], to obtain out-of-sample values for the LSM algorithm (these results are not
given in [11]). Our LSM implementation also reproduced (up to a statistically insignificant difference) the in-sample
LSM results given in [11]. For details of how out-of-sample paths are used in the LSM method to obtain low-biased
estimators, we refer the reader to [7].

We remark that the values obtained from the irregular grid method are higher than those produced by the LSM
algorithm, although this is not statistically significant except in the case of the minimum option. The OS (out-of-
sample) results are also higher for all but the maximum option.

For the more problematic cases of the maximum and minimum options, we see that convergence is slower. In the
case of the maximum it is not clear with 1000 grid points what an appropriate estimate should be. It is also not clear
whether the convergence in our case for the explicit method agrees with the value obtained by Stentoft. These are
cases where the grid could be adapted to the payoff function as well as to the process itself; such extensions are left
for future investigation.
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Fig. 5.3. Average QMC grid valuation over 50 normal grids with « = 1.0 (circles), @ = 1.5 (squares), « = 2.0 (diamonds) of European (solid
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solutions are drawn as horizontal lines.

Table 5.1
Comparison of Bermudan price estimates (¢ = 0) with ten exercise opportunities
Option Exact Binomial LSM LSM OS Normal Normal
type (low- erid grid OS
biased) (low-biased)
Arith. - 1.235 1.241 1.231 1.246 1.238
average (0.0006) (0.0006) (0.004) (0.005)
Geom. 1.342 1.340 1.348 1.335 1.350 1.345
average (0.0006) (0.0007) (0.004) (0.005)
Maximum - 0.230 0.275 0.268 0.276 0.233
(0.0004) (0.0004) (0.008) (0.002)
Minimum - 5.841 5.815 5.816 5.847 5.821
(0.0012) (0.0014) (0.009) (0.013)

The grid estimates are the average price taken over 50 normal RQMC grids with size 1000, with « = 1.5 and using ten time steps. The binomial
method of Boyle et al. [29] was used with Richardson extrapolation. The OS (out-of-sample) columns give the value of the exercise strategy implied
by the 50 grid solutions, calculated by taking the mean value over 100,000 simulated paths. The binomial and LSM prices are given in [11] and the
OS prices for LSM are computed by running the LSM method 20-times each with 100,000 out-of-sample paths. The exact price given in the first
column is the numerical solution to the equivalent one-dimensional problem. Standard errors are shown in brackets.

In Table 5.1 it is encouraging to see that the irregular grid prediction for the geometrical average option is very
accurate as compared to the benchmark. The exercise strategy performs well for the arithmetical and geometrical
average options, but not for the more problematic maximum and minimum payoffs.
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Table 5.2

Comparison of American price estimates (6 = 0.5)

Option Exact Normal grid Normal grid Hedged

type American American American OS American OS

(low-biased) (high-biased)

Arith. - 1.257 1.243 1.363

average (0.004) (0.004) (0.004)

Geom. 1.355 1.360 1.348 1.462

average (0.004) (0.005) (0.004)

Maximum - 0.295 0.267 0.504
(0.009) (0.002) (0.006)

Minimum - 5.862 5.789 6.355
(0.009) (0.012) (0.010)

The grid estimates in the third and fourth columns are the average price taken over 50 normal RQMC grids with size 1000, with « = 1.5 and
using ten time steps. The OS (out-of-sample) column gives the estimated value of the implied exercise strategy, calculated by taking the mean value
over 100,000 simulated paths and using 50 time steps. The hedged column gives the average cost of the hedging strategy obtained as a by-product
of a single price computation; it is implemented using the results of a single grid solution, 50 time steps and computes the hedge as detailed in
Section 4.6. In particular note that we have used a different time step in the OS exercise and hedging simulations than in computing the grid
solutions. The exact price given in the first column is the numerical solution to the equivalent one-dimensional problem. Standard errors are shown
in brackets.

Table 5.3
Timings and storage requirements for the irregular-grid method using Matlab 6.1 with a PIII 866 MHz processor with 512 MB RAM, matrix entries
stored in double precision (8 bytes per entry)

Size Memory Memory Time Time Prop Time-
P full sparse for P for p1/10 pl/10 stepping
(n) (MB) (MB) (s) (s) nonzero (s)

500 2.0 0.6 1 22 0.190 0.5
1000 8.0 1.8 5 200 0.147 1.3
1500 16.0 33 12 750 0.123 2.0
2000 32.0 5.1 22 2000 0.106 2.9
2500 50.0 7.1 37 4000 0.094 3.8
3000 72.0 9.1 55 7200 0.084 4.9

The sparse matrices are formed by eliminating all entries smaller than 5 x 10~* and renormalizing. The time stepping column gives the total time to
complete 10 time steps, using the sparse matrix and the explicit method. Note that sparse matrices were not used for any experiments in this paper,
the information provided rather serves to illustrate the complexity of the method as n increases. The second-to-last column gives the proportion of
nonzero entries in the sparse matrices, an important consideration for computational complexity. Note that MB denotes 100 bytes in this context.

As detailed in Section 4.6, our method yields a hedging strategy as a by-product; thus simulation of a hedging
strategy can be done quickly and efficiently. Using the implied hedging strategy of a single grid, and taking 20 nearest
neighbors for the delta estimation, we obtain the results shown in the last column of Table 5.2. It is clear that the
hedging errors are much larger than the exercise errors; this may be expected given that the exercise rule is a function
having only two possible values, whereas the hedging rule takes values in R?. The hedging strategy used is naive
in that the results of only a single-grid solution are used. It could probably be improved by using information from
different grid solutions.

The most time-consuming operation in the irregular-grid method is the computation of the matrix root. Some
timings for computing matrix roots in Matlab 6.1 on a PIII 866 MHz machine are presented in Table 5.3. It should be
noted that the time does not depend strongly on the order of the root, so that square root and tenth root operations, for
example, take about the same amount of time. The time taken for the construction of the matrix P =" is seen to be
small compared to the root operation.

Although the matrix root operation is time consuming for large values of n, it should be noted that once a root has
been computed for a single normally distributed grid, it can subsequently be used for valuing options on a large class
of diffusion processes with arbitrary payoff functions without the need for recomputation.
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6. Conclusions

We have proposed a new method for finding the value of American and Bermudan options in a high-dimensional
setting. Central to this method is the use of an irregular grid over the state space and an approximation of the partial
differential operator on this grid.

In our analysis we allow any grid which is generated using MC or QMC trials with respect to a known density
function. Once the Markov chain approximation has been obtained, we use the transition probability matrix to form
a semidiscrete approximation to the partial differential operator corresponding to this Markov chain. This is done
through taking a logarithm of the transition probability matrix; however solving the fully discrete problem only
requires computing a certain root of the matrix related to the time step and implicitness parameters, at the cost of
an extra approximation error.

An important aspect of the proposed method is the absence of any requirement to specify basis functions for
approximating the value function or exercise strategy. Indeed the only specification needed is a grid density, although
asymptotically even this choice is not critical. Furthermore, convergence in the Bermudan case should require
asymptotics in only one parameter, namely the number of grid points. In the American case one also requires §t — 0.
These aspects set the root method aside from the LSM method where the specification of basis functions plays a
critical role in the success of the method, and convergence involves asymptotics in two parameters in the Bermudan
case, namely the number of basis functions and the number of paths, these two parameters producing opposite biases.

The irregular grid solution gives price estimates at all points in the grid. This is useful if one requires partial
derivative information, for example, when hedging. Partial derivatives can be easily estimated from the solution by
preforming a linear regression using values from neighboring points.

Our experiments suggest that the irregular grid method has very good convergence properties, especially when the
grid density is related to the density of the process itself. In particular, the grid density should have a larger variance
than the process; for a geometric Brownian motion process in five dimensions it was found that a ratio of 1.5 gave a
good rate of convergence, although (slower) convergence was also observed for ratios of 1.0 and 2.0. Convergence of
estimates for the maximum option was not clear with grids of up to 1000 points.

The numerical results obtained largely agree with those of Stentoft [11]. We find that the early exercise premium
is increased by about 6% for the examples he considers when allowing a continuum of exercise opportunities rather
than only ten. We also find that the exercise strategies implied by the LSM method produce significantly lower values
(statistically) than the LSM price implies, except in the case of the minimum option; this is an indication that out-
of-sample paths should be used in simulation methods — in this way the price obtained corresponds directly to the
average value of the implied exercise strategy. This suggests that one should be careful in higher dimensions when
applying the recommendation of Longstaff and Schwartz [7] to save time by only using in-sample paths.

A possible variance reduction technique is to adjust the transition probabilities according to the empirical density
of the grid points rather than the density used for generation of the grid. Adjustment may be done after constructing
the transition matrix, for example, using quadratic programming to improve local consistency in the sense of Kushner
and Dupuis [25], but may also take inspiration from the literature on nonparametric analysis. These and other possible
refinements are reserved for future investigation.

For further reading
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