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Abstract. The paper provides a review of the basics of financial engineering, with
a few examples. We emphasize connections with control theory in a broad sense rather
than with stochastic control theory in particular, and the reader is not assumed to be
versed in stochastic processes. After a discussion of the main methods of financial risk
management, a state-space framework for modeling financial markets is presented and
used to explain crucial concepts of financial engineering such as absence of arbitrage,
market completeness, hedging, and the Black-Scholes partial differential equation. Two
brief case studies are presented: the construction of an indexed bond, and the hedging
of long-term contracts for delivery of oil.
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1. Introduction. Financial engineering (in the sense of risk manage-
ment) is concerned with protecting economic activity against the adverse
effects of financial risk factors such as movements in exchange rates, inter-
est rates, and commodity prices. It has emerged in the past decades as
a model-based discipline that provides rules for decisions to be taken on
the basis of incoming observations. As such, financial engineering can be
considered a neighboring field of control engineering. It will be one of the
aims of this paper to highlight similarities both in purpose and in method
between the two fields.

Another aim is to provide some tempering of the occasionally strong
feelings, both positive and negative, that are provoked by the term “fi-
nance.” Although there have been cases where the allure of the new finan-
cial theory has been used to deceive credulous bank managers, financial
engineering cannot be compared with the countless schemes of playing the
stock market that have been proposed. The basis of financial engineering
is the insight that financial institutions, because of the access they have to
large and liquid financial markets, are able to absorb certain risks for their
customers. They can do this by balancing positions in such a way that
sensitivity to the relevant risk factors is eliminated or at least substantially
reduced. Key to this is the ability to determine the sensitivity of a given
position to the risk factors that apply to it. In general it may be noted
that risk is a major impediment to economic activity, so that there is a
real economic benefit in methods that allow the transfer of the effects of
uncertainties to parties that are able to implement effective risk-reducing
strategies.
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Uncertainty is central to finance, and therefore it is no surprise that
financial engineering studies are almost invariably based on on stochastic
models. In large parts of control theory on the other hand, noise is ignored
on the basis of the assumption that a control structure with good robustness
properties in a deterministic setting will also behave well when noise is
added, so that it doesn’t seem necessary to carry the weight of explicitly
introducing stochastic terms in the modeling phase. Of course, the classical
field of stochastic control theory is alive and well and–not unexpectedly–
has many applications in finance, which are reviewed elsewhere in this
volume. This paper however is addressed to control theorists who are not
necessarily au fait with stochastic processes. Although some of the models
used in finance do require close familiarity with, for instance, the subtleties
of Lévy processes, the essentials of financial engineering can be understood
on the basis of a rudimentary knowledge of stochastic calculus rules. This
paper includes a brief motivation of the stochastic calculus.

The paper is organized as follows. We begin in the next section with a
discussion in general terms of financial risk management and the modeling
of financial markets. Section 3 provides the most basic stochastic calculus
rules together with some motivation. A state-space framework for the
modeling of financial markets, akin to a standard model of control theory,
is presented in Section 4 along with some specific examples of well-known
models in finance. We emphasize similarities to the setting of control theory
but we also discuss the specific features of financial models. Two specific
examples of financial engineering are discussed in the following two sections.
In Section 5, we use a model of bond markets together with inflation to
investigate the possibility of constructing an inflation-indexed bond out
of nominal bonds, using the fact that nominal bond prices are inflation-
sensitive. Section 6 is concerned with the hedging of long-term contracts
for oil delivery by actively trading short-term contracts. This is a famous
case in finance due to the failure of an attempt by a US subsidiary of the
German firm Metallgesellschaft in the early nineties to set up a scheme
of this type, which resulted in a loss of well over a billion dollars for the
mother company. Some concluding remarks are in Section 7.

2. Financial risk management. Financial risk arises due to fluc-
tuations in markets (exchange rates, interest rates, energy prices, stock
prices, and so on) as well as from general economic factors such as inflation
and from other sources such as political developments. Our point of depar-
ture in this paper is not to try to predict such factors but rather to find
ways of protection against any adverse movements that may take place.
We shall concentrate on the effects of variables such as commodity prices
or inflation rates that are measured in terms of real numbers; so we will
not discuss the effects of political upheavals. Also, the models to be used in
this paper will always assume that the relevant variables follow continuous
paths, so that even small jumps do not occur. Continuous-time models in
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which real-valued variables follow continuous paths are typical for financial
engineering, although substantial work has also been done on discrete-time
models and on models that do allow jumps.

Two important methods of reducing risk are diversification and hedg-
ing. These two ideas are intertwined and it would be difficult to make a
sharp distinction, but nevertheless one may say that while diversification
focuses on the joint characteristics of assets, hedging concentrates on the
risk factors behind asset prices. Both methods may be developed in a
static as well as in a dynamic setting. Of course the dynamic settings are
more close to control theory; however, to illustrate the two notions, let us
consider some simple static examples.

First, let us consider a typical diversification scheme. Suppose that
capital can be invested in two assets, one of which is more risky than the
other, and suppose we try to minimize uncertainty. Is it then optimal to
invest all capital in the safest asset? To make this problem precise, suppose
that the values of the two assets at the end of the investment period (say,
X1 and X2) are jointly normally distributed stochastic variables. Let the
expected values of X1 and X2 be µ1 and µ2 respectively, and let their
variances be σ2

1 and σ
2
2, with σ1 < σ2; so the second asset is the more

risky one. Finally, let the correlation coefficient of X1 and X2 be ρ. In
this very simple setting, the investment problem may be formulated as the
problem of finding two real numbers α1 and α2, with α1 ≥ 0, α2 ≥ 0, and
α1 + α2 = 1, such that the variance of α1X1 + α2X2 is minimized. This is
a quadratic optimization problem that can readily be solved. It turns out
that the optimal solution is to invest everything in the safest asset if

ρ ≥ σ1

σ2
.

If the above inequality is not satisfied, then the minimum is reached for
a nontrivial combination of the two assets. In this case there is a diversi-
fication benefit from investing in both assets. Note that such a benefit is
always present when the two assets are negatively correlated, and even, as
long as σ1 is positive, when they are uncorrelated. To illustrate the size
of the effect in a numerical example, assume σ1 = 1, σ2 = 2, and ρ = 0.
With these parameter values, the optimal solution is to invest 80% in the
safe asset and 20% in the risky asset. The variance obtained with this
allocation is 0.82 · 1+0.22 · 4 = 0.64+0.16 = 0.8. If everything would have
been invested in the safest asset, the variance of the portfolio value would
have been 1.

There are many ways to take this simple story further, such as: con-
sider more than two asset categories; do not only take variance into ac-
count, but also expected value; allow non-normal distributions and use risk
measures other than variance; consider multiple periods or even continuous-
time models, and allow reallocation through time; drop the restriction that
portfolio weights should be nonnegative, so allow “short” positions; take
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liabilities into account; consider the model parameters such as expected
values and correlations as uncertain rather than as exact, and take this
into account in the optimization (robustness).

Now, for a simple example of “hedging”, consider a pension fund that
holds a bond portfolio to cover its future liabilities. Let r be the annual
interest rate (assumed to be the same for all maturities). By a standard
formula, the current value of the expected payments to be made is

P =
KX
k=1

(1+ r)−kPk

whereas the current value of the bond portfolio is

B =
KX
k=1

(1+ r)−kBk.

Here, of course, Pk is the sum of the anticipated pension payments in year
k, whereas Bk is the nominal amount received from the bond portfolio in
year k. We would like to have at least B = P . Note however that both the
current value of assets B and the current value of liabilities P are sensitive
to the interest rate r; so if the interest rate changes, the position of the
pension fund will be affected. The effect may be positive or negative, but
from a risk minimization point of view the trustees of the fund may prefer
a situation in which the sensitivity of the fund’s position to changes in the
interest rate is minimized. This can be achieved by taking Bk = Pk for all
k; however, such a specific portfolio prescription may not be practical. To
achieve first-order immunity, it is sufficient to have dB/dr = dP/dr, which
is expressed by saying that the two portfolios should be duration matched.
The terminology comes from the fact that the equality

1

C

dC

dr
= −

PK
k=1 k(1+ r)

−(k+1)CkPK
k=1(1+ r)

−kCk

expresses the relative derivative with respect to r of the current value C of
a series of cash flows {Ck}, up to a factor −1/(1+r), as a weighted average
of the times of payment.

This example, even if mathematically trivial, illustrates that hedging
aims at obtaining insensitivity to certain risk factors by finding suitable
combinations of assets that are all influenced by the same risk factors. This
is a model-based activity because the dependence of asset values on risk
factors needs to be modeled. For instance, it was assumed above that the
interest rate is the same for all maturities. More advanced hedging schemes
use models for the entire “term structure” of interest rates in which each
maturity has its own interest rate associated to it. Hedging becomes even
more powerful in a dynamic context, and the succes of the Black-Scholes
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model in finance is based in large part on its (idealized) assumption that
hedging positions may in fact be adapted continuously in time.

A general picture of the structure of financial risk management is
shown in Fig. 2. Observations typically include current asset prices; in-

noise

dynamical
system

observa-
tions

assets liabilities

inputs portfolio -
controlled
outputs

Fig. 1. Structure of a model for financial risk management

puts usually are portfolio weights. The controlled output is often a net
value.

Financial models have a number of peculiar properties, which distin-
guish them from general models of control theory. A simple rule says
that the value of a portfolio depends linearly on the portfolio weights. In
control-theoretic terms, this property relates to the effects of inputs (port-
folio weights) on controlled outputs. The rule must be satisfied in all cases
where the basis assets are freely traded, because, if a portfolio would be
worth more or less than the sum of the values of its parts, a simple profit
could be made by either buying the parts and selling the portfolio or vice
versa.1 In control theory, one finds such cases where linearity is a matter
of principle rather than of convenience also in certain physical systems, as
a result of the laws of nature (for instance, conservation of mass).

A second important principle may be formulated as follows: no control
strategy can produce a noise-free positive net value from a zero initial
investment. This is an economic principle known as absence of arbitrage. It
leads to a constraint on the way that asset prices depend on state variables;
this will be discussed in more detail below.

There is also a certain constraint on input functions that needs to be
imposed. This is most easily explained in discrete time. Let Yt denote a
vector2 of asset prices and let ut denote a vector of corresponding portfolio

1This is an example of an arbitrage argument; the validity (to a high extent) of such
arguments is a keystone of mathematical reasoning in finance.

2The scalar case is trivial: if there is only a single asset, no portfolio changes can
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weights. The control {ut} is said to be self-financing if for all t:

ut+1 · Yt+1 = ut · Yt+1 (2.1)

where the dot denotes vector product. This entails a single linear constraint
on the vector of control inputs at each time t. One can rewrite the above
using the forward difference operator:

∆(ut · Yt) = ut · (∆Yt).
This suggests the continuous-time version

d(ut · Yt) = ut · dYt (2.2)

where d is an “infinitesimal forward difference”–in a sense to be discussed
below.

One more specific feature of financial models concerns the way in
which the output (net portfolio value) is connected to the inputs (port-
folio weights). Let again Yt denote a vector of asset prices, and let ut be
a vector of corresponding portfolio weights. The value of the portfolio is
given by

Vt := ut · Yt.
In discrete time, and under the condition (2.1), the change in portfolio
value between time t and time t+ 1 is given by

Vt+1 − Vt = ut · (Yt+1 − Yt)
or in ∆ notation

∆Vt = ut ·∆Yt.
So the portfolio value at time T is given by

VT = V0 +
T−1X
t=0

ut ·∆Yt. (2.3)

This suggests that an analogous formula in continuous time should read

VT = V0 +

Z T

0

ut · dYt (2.4)

but this needs to be interpreted with care, in order to give due weight
to the observation that asset prices are highly irregular. The following
section presents some modifications to the usual calculus rules which serve
to express the effects of irregularity.

3. An ultrabrief introduction to stochastic calculus. We think
of the vector of asset prices Yt as dependent upon state variables and time,
say Yt = π(t,Xt), where π(t, x) is a smooth vector-valued function on (a
subset of) R1+n.3 State equations will be used to provide the dynamics of

take place.
3The letter π is used here as a mnemonic for “price.”
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the state variable Xt. To write the controlled output Vt =
R t

0
uτ · dYτ as a

function of inputs and states, it would be natural to use the chain rule

dYt =
∂π

∂t
dt+

∂π

∂x
dXt. (3.1)

Consider in general the relation y(t) = φ(x(t)). According to the usual
chain rule, we can compute y(t) approximately by

y(t) ≈ y(0) +
X

φ0(x(ti))(x(ti+1)− x(ti)). (3.2)

We evaluate the function φ0(x(·)) here at the left end of the interval [ti, ti+1]
rather than at any other point, because the intended application is to sums
of the form (2.3) where it is essential that evaluation of the integrand takes
place at the beginning of the time increment. Under this rule, the formula
(3.2) may not provide a good approximation if x(·) is a highly irregular
function of time. This is illustrated in Fig. 2, where the first panel shows
a continuous but fairly irregular function, and the last panel shows the
approximation error when the square of the given function is approximated
by a sum of first-order differences on the grid with step size 1, following
the formula (3.2). Actually, in this case where the function φ in (3.2) is

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1
Original function

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5
Square
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-1

0

1
Approximation by cumulative sum w.r.t. first order forward differences
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-1

-0.5

0
Approximation error

Fig. 2. The need for the Itô correction term

given by φ(x) = x2, the approximation error is easy to write down: the
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approximation is

ỹ(tj) = y(0) +

j−1X
i=0

2x(ti)(x(ti+1)− x(ti))

whereas the exact formula is

y(tj) = y(0) +

j−1X
i=0

(x2(ti+1)− x2(ti))

so that the approximation error is given by

y(t)− ỹ(tj) = −
j−1X
i=0

(x(ti+1)− x(ti))2. (3.3)

Asymptotically, if the function x(t) has finite total variation, the sum at the
right hand side of (3.3) must converge to zero when it is computed over finer
and finer grids. However, if the function x(t) remains irregular, in the sense
that the sum at the right hand side of (3.3) is not small, at scales at which
the approximation is computed (in the finance application: time scales
corresponding to trading frequencies), then a second-order term should be
included to get a good approximation.4 Taking this down to infinitesimal
scales, one is led to a new form of the chain rule: if y(t) = φ(x(t)), then

dy = φ0(x) dx+ 1
2 φ

00(x) d[x, x] (3.4)

where the term “d[x, x]” is an infinitesimal version of

∆[x, x](t) := (x(t+∆t)− x(t))2.
We will also need a vector version:

dy =
∂φ

∂x
(x) dx+ 1

2 tr

µ
∂2φ

∂x2
(x) d[x, x]

¶
(3.5)

where now d[x, x] is a matrix with entries of the form d[xi, xj ].
It is convenient to use functions that are “highly irregular up to any

scale,” since these make it unnecessary to use scales explicitly in argu-
ments. On the other hand, it does require a rather extensive mathematical
framework to create a supply of such functions. The standard method is
to use a probabilistic construction. To get a function that is irregular on
a scale characterized by time step ∆t, draw an independent random vari-
able with distribution N(0,σ2∆t) (normal with expectation 0 and variance
σ2∆t, where σ is a constant) for each time step, form the cumulative sums,

4Whether the second-order approximation is good enough for a particular application
is an empirical matter. For applications in finance it seems to work well.
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and use linear interpolation to get a continuous function, say on an in-
terval [0, T ].5 The sum of the squared ∆t-increments of this function on
the interval [0, T ] will be approximately equal to σ2T (the sum’s expected
value), and as the construction is repeated with smaller and smaller ∆t,
the approximation becomes better as a result of the law of large numbers.
Consequently, repeating the exercise in Fig. 2 at smaller time scales will
make the curve in the bottom panel look more and more like a straight
line. In the limit, one arrives at what is called Brownian motion.

The development above is manifestly heuristic; for a complete account,
see for instance [6]. The key property that we will be concerned with is that
the infinitesimal second-order correction term corresponding to a Brownian
motion Wt as constructed above (with σ = 1, i.e. a “standard” Brownian
motion) is given by

d[Wt,Wt] = dt. (3.6)

So, for instance (applying (3.4) with φ(x) = x2 and x =W ):

d(W 2
t ) = 2WtdWt + dt (3.7)

so that we can write

W 2
t =W

2
0 + 2

Z t

0

WsdWs + t. (3.8)

The paths of Brownian motions are “highly irregular functions” in a
sense that has turned out to be useful in finance. By construction the
collection of paths comes with a probability structure, so that we have a
stochastic process rather than just a collection of functions. Moreover, one
can form new processes with specific dynamic characteristics by using the
Brownian motion as an “input” in stochastic differential equations of the
type

dXt = µ(Xt)dt+ σ(Xt)dWt. (3.9)

Here, Wt denotes a vector of mutually independent standard Brownian
motions, µ is a smooth vector-valued function, and σ is a smooth matrix-
valued function; both µ and σ are defined on an appropriate domain of Rn.
The equation (3.9) is understood in the sense of

Xt = X0 +

Z t

0

µ(Xs) ds+

Z t

0

σ(Xs) dWs

where the rightmost integral is defined analytically (rather than formally
as in (3.8)) as the limit in an appropriate sense6 of sums of the form

5As the reader may have surmised, this is the way in which the function in the top
panel of Fig. 2 was obtained.

6See for instance [8] for much more detailed information.
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σ(ti,X(ti))(W (ti+1)−W (ti)). Solutions of equations of the above form

provide a rich source of processes that are useful in financial modeling.
An important theoretical use of the probabilistic structure is the fol-

lowing. Let f be a function defined on the vector space Rn, and let X be
a vector-valued process given by the stochastic differential equation (3.9).
One can then define for each T ≥ 0 a new function EXT f on Rn defined by

(EXT f)(x) = E[f(XT ) | X0 = x]. (3.10)

A straightforward way to compute an approximation of the value of this
function at a given point x ∈ Rn it to compute a large number of discrete-
time approximations of the sample paths of (3.9), note the value of f at the
point reached at time T , and average the results. Clearly the operation will
have a diffusive effect on the function that one starts with. Such behavior
might also be described by means of a partial differential equation. For the
process Yt := f(Xt) with Xt given by (3.9), the Itô formula (3.5) can be
written in the form

dY =

µ
∂f

∂x
µ+ 1

2 tr

µ
∂2f

∂x2
σσ>

¶¶
dt+

∂f

∂x
σdW

which suggests that for the function φ(t, x) defined by

φ(t, x) = E[f(Xt) | X0 = x] (3.11)

one should have

∂φ

∂t
(t, x) =

∂φ

∂x
(t, x)µ(x) + 1

2 tr

µ
∂2φ

∂x2
(t, x)σ(x)σ>(x)

¶
. (3.12)

This can be indeed shown to hold; it is a classical relation between condi-
tional expectations and partial differential equations. The stochastic repre-
sentation (3.11) of solutions of PDEs of the form (3.12) that is obtained in
this way is useful both analytically and numerically (Monte Carlo method).

4. Financial models.

4.1. State equations. Our basic model will be the following:

dXt = µX(Xt)dt+ σX(Xt)dWt (4.1a)

Yt = πY (t,Xt). (4.1b)

In this model, all stochasticity derives from the driving Brownian motion
processWt, and we will consider the above equation typically on an interval
[0, T ]. The state process Xt takes values in an open subset D of Rn. The
symbols µX and σX denote functions from D to Rn and to Rn×k, respec-
tively. They should be such that the stochastic differential equation (4.1a)
has a unique solution in the domain D given an initial condition X0; these
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properties hold under fairly mild conditions (see for instance [7]). Prices of
assets in the market are collected in them-vector Yt, which is related to the
state vector Xt by the function πY (t, x) from [0, T ]×D to Rm. It will be
a standing assumption that πY (t, x) 6= 0 ∈ Rm for all (t, x) ∈ [0, T ]×D; in
other words, it cannot happen that all asset prices are zero simultaneously.

On the basis of Itô’s rule, we can write

dYt = µY (t,Xt)dt+ σY (t,Xt)dWt (4.2)

where the functions µY (t, x) and σY (t, x) can be expressed in terms of the
data in (4.1). Specifically, each component Y` of the vector Y has associated
to it a “drift function” µ`(t, x) and a “volatility function” σ`(t, x) which
are given by

µ` =
∂π`
∂t

+
∂π`
∂x
µX +

1
2tr

∂2π`
∂x2

σXσ
>
X (4.3a)

σ` =
∂π`
∂x
σX . (4.3b)

Here, the arguments t and x have been suppressed to alleviate the notation;
this will also often been done below. The gradient vector ∂π`/∂x is defined
as a row vector, and superscript T denotes transposition. The formula in
(4.3a) may be written more explicitly as

µ` =
∂π`
∂t

+
nX
i=1

∂π`
∂xi

(µX)i +
1
2

nX
i=1

nX
j=1

∂2π`
∂xi∂xj

(σXσ
>
X)ij .

To simplify notation further, not only arguments of functions but also
subscripts t for stochastic processes will be omitted, so that for instance
(4.2) may be written as dY = µY dt+σY dW where it is understood that Y
and W should have subscripts t and that µY and σY should be evaluated
at (t,Xt).

It will be a standing assumption that all assets considered are “pure”
assets, net of all costs and dividends. Moreover, it will be assumed that
trading can take place continuously without transactions costs, that there
is no restriction in taking short positions, and that lending and borrowing
take place at the same interest rate. These are strong idealizations and it
is certainly worthwile to investigate what happens when these assumptions
are not met; however, by making these assumptions one is able to create a
powerful theory which often serves well in practice as a first approximation.

4.2. Basic properties.

4.2.1. Conditions for absence of arbitrage. We want our model
(4.1) to be such that it allows no arbitrage; that is, the model will be an
equilibrium model in the sense that we assume that any occurring arbi-
trage opportunities have already been eliminated by market forces. The
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intuitive notion of absence of arbitrage has been formulated above as the
nonexistence of any trading strategies that produce a riskless profit. One of
the possible ways of formalizing this notion for the continuous-time model
(4.1) is the following.

Definition 4.1. The model (4.1) is said to admit no arbitrage if
there exists a scalar-valued function ρ(t, x) such that for all (t, x) ∈ D the
following holds: for all φ ∈ Rm such that φ>σY (t, x) = 0,

φ>µY (t, x) = ρ(t, x)φ>πY (t, x). (4.4)

The interpretation of the function ρ(t, x) is that it represents the rate of
return (at time t and in state x) on a riskless asset. Under absence of
arbitrage there can be at most one such function, because if there would be
two riskless assets with different returns, then an easy arbitrage opportunity
would exist (borrow from one and lend to the other). The above definition
extends this idea to combinations of risky assets that are constructed in
such a way that, at least at the point (t, x), all risk is eliminated. The
definition may be rephrased as: “any instantaneously riskless combination
of assets generates the riskless return.” Note that, indeed, the left hand
side of (4.4) represents the absolute growth rate of the portfolio φ>Y while
the right hand side is the riskless interest rate times the value of the same
portfolio.

The above notion of absence of arbitrage was used in the original
paper by Black and Scholes [1]. Actually this notion may be considered
somewhat debatable, since it only refers to an arbitrage opportunity that
exists at a single moment in time; one may wonder whether such short-
lived opportunities can really be exploited. Fortunately it has turned out
that if the above assumption is not satisfied it is in fact possible to devise
strategies that operate on a nontrivial time interval and that still bring a
riskless profit. The notion of absence of arbitrage can indeed be defined
in various ways. One reformulation that is particularly useful in the state-
space context is the following.

Theorem 4.1. The model (4.1) admits no arbitrage if and only if
there exist a k-vector valued function λ(t, x) and a scalar function ρ(t, x)
such that

µY − ρπY = σY λ. (4.5)

Proof. If the relation (4.5) holds, then absence of arbitrage follows
immediately from Def. 4.1. Conversely, let ρ(t, x) be as in Def 4.1. Suppose
that for a certain t and x the vector µY (t, x)−ρ(t, x)πY (t, x) would not be
in the range space of the matrix σY (t, x); then there would be an m-vector
φ such that φ>(µY (t, x)−ρ(t, x)πY (t, x)) = 1 while φ>σY (t, x) = 0, so that
our model would not be arbitrage-free according to Def. 4.1. Therefore we
can conclude that for all (t, x) there must be a k-vector λ(t, x) such that
µY (t, x)− ρ(t, x)πY (t, x) = σY (t, x)λ(t, x).
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Given the interpretation of ρ as the riskless interest rate, the left hand
side of equation (4.5) can be viewed as a vector of excess returns. Corre-
spondingly, the components of the vector λ can be viewed as market prices
of risk which express the excess return, depending on t and x, that is re-
quired by the market per unit of volatility as represented by the components
of the driving process Wt.

4.2.2. Market completeness. Theorem 4.1 states that absence of
arbitrage holds in the model (4.1) if there exist functions ρ and λ that
satisfy (4.5). In general there may be several such functions. If the equation
(4.5) has a unique solution (ρ,λ), then the model (4.1) is said to constitute
a complete market. Under the standing assumption that πY (t, x) 6= 0 ∈ Rm
for all (t, x) ∈ [0, T ]×D, it is equivalent to require only that the market price
of risk λ is determined uniquely by (4.5). Another equivalent condition is
that the matrix [σY (t, x) πY (t, x)] ∈ Rm×(k+1) has full column rank for
all (t, x). Obviously a necessary condition for this to happen is that the
number of assets m exceeds the number of driving Brownian motions k.
As will be seen below, market completeness is related to the problem of
eliminating the risk associated with any liability that may be formulated
in terms of the model (4.1).

4.2.3. Pricing. Suppose that the market described by (4.1) is free of
arbitrage, and let us consider a fixed solution (λ, ρ) of (4.5). If C denotes
an asset whose price can be expressed as a function of the time t and the
state x in our model, then this function, which we denote by πC(t, x), must
satisfy the equation

µC − ρπC = σCλ (4.6)

where µC and σC are determined from πC as in (4.3). This is (a general
form of) the Black-Scholes equation. More explicitly, by Itô’s rule the
equation (4.6) can be written as

∂πC
∂t

+
∂πC
∂x

(µX − σXλ) + 1
2tr

∂2πC
∂x2

σXσ
>
X = ρπC . (4.7)

In the frequently occurring situation in which the claim C concerns a con-
tract that expires at a given time T and the value at time T is given by
a formula in terms of the state variables, the above PDE may be used to
compute its value at times preceding T .

Clearly there is a close similarity between equations (4.7) and (3.12),
although there are some extra terms in (4.7), and there is a time reversal
in the sense that T − t rather than t is the relevant time variable for (4.7).
In fact, a straightforward calculation shows that if one adds a new state
Kt with initial value K0 = 1 and dynamics given by

dK = −K(ρdt+ λ>dW ) (4.8)
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and a new output function defined by

π̃C(t, x, k) = kπC(t, x) (4.9)

then the equation analogous to (3.12) for the new output is exactly (4.7),
up to a change of sign for the time derivative which is due to the time
reversal mentioned above. Consequently, we can write

πC(0, x) = E[KTCT | X0 = x, K0 = 1]. (4.10)

The variable Kt is referred to as the pricing kernel.

4.2.4. Replication. Suppose that we have an arbitrage-free and com-
plete market described by (4.1); so [σY πY ] has full column rank, and we
have

µY = [σY πY ]

·
λ
ρ

¸
.

Now introduce a new asset C with pricing function πC(t, x). Because the
matrix [σY (t, x) πY (t, x)] has full column rank for all (t, x) ∈ D, it follows
from linear algebra that there exists an vector-valued function φ(t, x) such
that

[σC(t, x) πC(t, x)] = φ>(t, x)[σY (t, x) πY (t, x)] (4.11)

Under absence of arbitrage, we have

µC = [σC πC ]

·
λ
ρ

¸
= φ>[σY πY ]

·
λ
ρ

¸
= φ>µY . (4.12)

Let Vt denote the value of the portfolio that is formed from the assets in
Y by using the portfolio weights φ. Then

Vt = φ
>(t,Xt)πY (t,Xt) = πC(t,Xt) = Ct

so the portfolio with weights φ “replicates” the asset C. Moreover, we have

dV = dC = µCdt+ σCdW =

= φ>(µY dt+ σY dW ) = φ>dY

which shows that the portfolio with weights φ is self-financing (see (2.2)).

4.3. Examples.

4.3.1. The Black-Scholes model. Consider the following model
which has one state variable, one uncertainty factor, and two assets de-
noted by S and B:

dXt = µXtdt+ σXtdWt (4.13a)

St = Xt (4.13b)

Bt = cert. (4.13c)
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Here, µ, σ, and c are constants; both σ and c are supposed to be nonzero.
The domain of the variable x is taken to be the set of positive numbers.
In terms of the notation used earlier we have D = {x ∈ R | x > 0}, n = 1,
k = 1, m = 2, and

µX(t, x) = µx, σX(t, x) = σx, Y =

·
S
B

¸
, πY (t, x) =

·
x
cert

¸
.

Furthermore, one easily computes

µY (t, x) =

·
µx
crert

¸
, σY (t, x) =

·
σx
0

¸
.

In particular, the matrix [σY πY ] is given by

[σY (t, x) πY (t, x)] =

·
σx x
0 cert

¸
. (4.14)

Clearly, the matrix that appears here is invertible for all t ≥ 0 and x > 0,
and so the equation (4.5) has a unique solution which is given by

ρ = r, λ =
µ− r
σ

.

The pricing equation for an asset C that is added to this model becomes

∂πC
∂t

+ rx
∂πC
∂x

+ 1
2σ

2x2 ∂
2πC
∂x2

= rπC. (4.15)

This is the standard Black-Scholes equation. In the market defined by
(4.13), the equation holds for any asset C whose value can be expressed
in terms of the variables t and x. The standard example is of course the
European call option with maturity T and strike price a, which satisfies
πC(T, x) = max(x − a, 0). Solving the PDE (4.15) with this boundary
condition leads to the Black-Scholes formula for a call option.

In general, if sufficient boundary conditions for a derivative are sup-
plied to determine the price function uniquely, a replication scheme can be
set up as follows. The required portfolio weights are obtained from (4.11),
which in the case at hand becomes

[
∂πC
∂x

σx πC ] = [φS φB ]

·
σx x
0 cert

¸
. (4.16)

In particular, it follows that

φS =
∂πC
∂x

. (4.17)

The component φB is then determined by the requirement that the portfolio
should be self-financing, and it can be computed explicitly from (4.16).
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4.3.2. An Asian option. The model of the previous subsection may
have to be extended for other types of options, in particular for path-
dependent options. As an example, consider a continuously sampled Asian
option. Since such an option depends on the integral of the asset price over
a certain period, a state variable has to be added to the model which will
provide the information needed to determine the option price at expiry.
The extended model may be written down as follows:

dX1 = µX1dt+ σX1dW (4.18a)

dX2 = X1dt (4.18b)

S = X1 (4.18c)

Bt = cert. (4.18d)

Eqn. (4.18b) implies that

(X2)T =

Z T

0

(X1)t dt

if (X2)0 is taken to be zero. In terms of the model above, the Asian option
with time of expiry T and strike a is defined by

πC(T, x) = max(x2 − a, 0). (4.19)

In our new model, we have the following data (letting Y consist of S and
B as before): D = {x ∈ R2 | x1 > 0}, n = 2, k = 1, m = 2, and

µX(t, x) =

·
µx1

x1

¸
, σX(t, x) =

·
σx1

0

¸
,

Y =

·
S
B

¸
, πY (t, x) =

·
x1

cert

¸
.

We find

µY (t, x) =

·
µx1

crert

¸
, [σY (t, x) πY (t, x)] =

·
σx1 x1

0 cert

¸
(4.20)

and so we obtain ρ = r, λ = (µ−r)/σ as before. In fact it is easy to show in
general that when state variables are added to a model for the purpose of
pricing derivatives, and the original model already determined a complete
market, then the riskless interest rate ρ and the market price of risk λ will
be unchanged.

The partial differential equation for the pricing function of the Asian
option C may now be written down from (4.6). After some minor manip-
ulation, we find

∂πC
∂t

+ rx1
∂πC
∂x1

+ x1
∂πC
∂x2

+ 1
2σ

2x2
1

∂2πC
∂x2

1

= rπC . (4.21)
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This equation holds for any derivative whose price can be determined in
terms of x1 (the price of the underlying asset S), x2 (the continuous average
of the asset price), and t. For the Asian option with expiry T and strike
a one should apply the boundary condition (4.19). It is possible to solve
the resulting equations analytically, but the solution is quite a bit more
complicated than in the case of a standard call option.

4.3.3. The Vasicek model. It is a well-known fact that interest
rates depend on the period to which they apply–the ten-year rate is usu-
ally not the same as the six-month rate. This fact is expressed by saying
that interest rates have a term structure. Interest rates are not themselves
traded assets, but of course there is a one-to-one connection between the
interest rate for period T and the price of a contract that will pay one unit
of currency after period T (a zero-coupon bond).

A relatively simple model for interest rates may be constructed as
follows. Consider the equations

dX1 = a(b−X1)dt+ σdW (4.22a)

dX2 = X1X2dt (4.22b)

Y = X2 (4.22c)

where a and b are constant parameters. The interpretation of the model
is that the variable X1 represents the “short rate” (the interest rate that
applies to loans of very short maturities), andX2 is the value of the “money
market account,” which is a portfolio that is continually reinvested in short-
maturity bonds. The parameter b represents a mean level of the short rate,
and a determines the speed of mean reversion.

The model above does not define a complete market since the price of
only one asset is given in terms of the state variables. Nevertheless, the
riskless interest rate ρ is already determined; since πY (t, x) = x2, µY (t, x) =
x1x2, and σY (t, x) = 0, it follows from (4.5) that ρ(t, x) = x1, in line with
the interpretation of the model that was just given. One way to make the
model complete would be to provide another traded asset together with
a formula for its price in terms of t and x, but another way is to simply
specify the market price of risk λ(t, x). Assume for instance that λ(t, x) is
in fact constant; this constant λ then becomes a model parameter just like
a, b, and σ.

The term structure of interest rates is determined by the prices of
bonds of all maturities. There is no guarantee that bond prices can be
written in terms of the state variable x1 in the model above, since bonds
are not defined in terms of the short rate. If one nevertheless assumes that
the prices of bonds are functions of t and x1 (this essentially comes down to
the assumption that the movements of interest rates of all maturities can
be described in terms of a model with a one-dimensional state variable),
then one obtains what is commonly known as the Vasicek model [10] for the
term structure of interest rates. To summarize, the Vasicek model consists
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of the equations (4.22) together with the assumptions that the market price
of risk is constant and that bond prices can be written as functions of the
time and of the short rate x1.

Within the Vasicek model one can write down equations for bonds of
different maturities. Let πT (t, x) denote the price, at time t and state x, of
a bond that pays one unit of currency at time T ≥ t. The general equation
(4.5) becomes in the present case:

∂πT
∂t

+
∂πT
∂x1

[a(b− x1)− λσ] + 1
2

∂2πT
∂x2

1

σ2 = πTx1 (4.23)

with the boundary condition

πT (T, x) = 1. (4.24)

This equation can be solved analytically.

5. Constructing an indexed bond.

5.1. A Gaussian market. More generally than (4.22a), one may
consider equations of the “affine” form

dX = (FX + f)dt+GdW (5.1a)

where F and G are constant matrices of sizes n×n and n×k respectively,
and f is a constant n-vector. Models of this form are often used to describe
the dynamic behavior of the term structure of interest rates, together with
the assumptions that the riskless instantaneous return ρ and the market
price of risk λ that arise in the Black-Scholes equation (4.6) are given by

ρ(t, x) = h>x, λ(t, x) = λ (5.1b)

where h is a constant vector of length n and λ is a constant vector of
length k. So it is assumed that the riskless rate depends linearly on the
state variables, and the risk premia are constant. In this section we adopt
the affine model.

According to formula (4.10), the price of a zero-coupon bond that pays
one unit of currency at time T is given by

P (0, T ) = EKT (5.2)

where Kt is the pricing kernel process, which is determined by

dK = −K(ρdt+ λ>dW ), K0 = 1. (5.3)

By the Itô formula (3.4), we have

d(logK) = −(ρ+ 1
2λ

>λ)dt− λ>dW. (5.4)
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Since it has been assumed that λ is constant and that ρ depends linearly
on the state variable x, it follows that for any given T the random variable
logKT follows a normal distribution. Let mT and vT denote the mean
and the variance, respectively, of logKT ; then, according to a well-known
formula,

EKT = exp(mT +
1
2vT ). (5.5)

To compute the quantities mT and vT we proceed as follows. Define ma-
trices F̃ and G̃ of sizes (n+ 1)× (n+ 1) and (n+ 1)× k respectively, and
vectors f̃ and vector h̃ both of length n+ 1, as follows:

F̃ =

·
0 −h>
0 F

¸
, G̃ =

· −λ>
G

¸
,

f̃ =

· −1
2λ

>λ
f

¸
, h̃ = [ 1 0 · · · 0 ]>. (5.6)

Then we can write

d

·
logK
X

¸
= F̃

·
logK
X

¸
dt+ f̃dt+ G̃dW. (5.7)

The quantities mT and vT are given by standard formulas:

mT = h̃>
Ã
eF̃T

·
0
X0

¸
+

Z T

0

eF̃ (T−t)f̃dt

!
(5.8)

vT = h̃>
ÃZ T

0

eF̃ (T−t)G̃G̃>eF̃
>(T−t)dt

!
h̃. (5.9)

Denoting the pricing function of the bond with maturity T by πT , we find
that this function is of the form

πT (0, x) = exp(a(T ) + b(T )x) (5.10)

where the scalar function a(·) and the row vector function b(·) can be
inferred from (5.8) and (5.9). More generally we can write

πT (t, x) = exp(a(T − t) + b(T − t)x). (5.11)

5.2. A sufficient condition for completeness. The volatility of
the price of the T -bond can be computed from the general formula

σT (t, x) =
∂πT
∂x

(t, x)σX(t, x). (5.12)
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In our present case we have

∂πT
∂x

(t, x) = πT (t, x)b(T − t)

and σX = G. Moreover, the function b(t) can be expressed in terms of the
original parameters of the model (5.1) by

b(t) = −h>
Z t

0

eFsds. (5.13)

Therefore we find

σT (t, x) = −πT (t, x)h>
ÃZ T−t

0

eFs ds

!
G. (5.14)

The given market is complete in terms of bonds if we can find k+ 1 matu-
rities T1, . . . , Tk+1 such that the matrix of size (k+ 1)× (k+ 1) with rows
[πTi σTi ] (i = 1, . . . , k+ 1) is invertible. Because of the relation (5.14) and
the fact that, for all T , t, and x, the number πT (t, x) is positive (as is seen
from (5.11)), the invertibility condition holds if and only if the matrix

1 −h>
³R T1−t

0 eFs ds
´
G

...
...

1 −h>
³R Tk+1−t

0
eFs ds

´
G


is invertible for each t ∈ [0, T ]. This in turn is true if and only if the matrix
above has no nonzero null vectors, that is, if the relation

1 −h>
³R T1−t

0
eFs ds

´
G

...
...

1 −h>
³R Tk+1−t

0 eFs ds
´
G


 w0

...
wk

 = 0 (5.15)

(in which w0, . . . , wk are real numbers) implies that w0 = · · · = wk = 0. If
we write w := [w1 · · · wk]>, the above relation can also be written

h>
ÃZ Ti−t

0

eFs ds

!
Gw = w0 (i = 1, · · · , k + 1). (5.16)

This means that the function of time defined by c(τ) = h>(
R τ

0 e
Fs ds)Gw

takes the same value w0 at the k + 1 different instants T1 − t, . . . , Tk+1 −
t. Since c(·) is a continuously differentiable function, this implies that
the derivative ċ(τ) = h>eFτGw is 0 at k different instants. Therefore, a
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sufficient condition for the market (5.1) to be complete in terms of bonds
is that for any set of k different time instants t1, . . . , tk the k × k matrix

M(t1, . . . , tk) :=


h>eFt1
...

h>eFtk

G (5.17)

is invertible.

5.3. A model for inflation. As a specific case of (5.1), consider the
following model in which the state space dimension n is 3 and the number
of sources of uncertainty k is 2:

dX1 = X2dt (5.18a)

dX2 = α(X2 −X2)dt+ σ2dW (5.18b)

dX3 = β(X3 −X3)dt+ σ3dW (5.18c)

with

ρ(t, x) = x2 + x3, λ(t, x) = λ (5.18d)

where X2, X3, α, and β are positive constants, W is a 2-dimensional stan-
dard Brownian motion, σ2 and σ3 are constant row vectors of length 2, and
λ is a constant column vector of the same length. This is a simplified ver-
sion of a model used by Brennan and Xia [3]. It will be assumed that the
vectors σ2 and σ3 are independent; otherwise the model could be rewritten
in a form in which there is only one driving Brownian motion. The inter-
pretation of the state variables is as follows: X1 denotes the logarithm of
inflation; X2 is the rate of inflation; and X3 is the real interest rate (that
is, the interest rate after correction for inflation).

One has to verify that these interpretations are consistent with each
other and with the definition of ρ. First, if we write L := exp(X1) for the
inflation index, then

dL = (expX1)dX1 = X2Ldt (5.19)

so that indeed X2 is the rate of inflation. Moreover, the value of a money
market account in nominal terms is equal to Mt = LtRt where Rt satisfies
dR = X3Rdt; therefore, by Itô’s formula (3.5),

dM = LdR+RdL = (X2 +X3)LRdt = (X2 +X3)Mdt (5.20)

which confirms the interpretation of M . The model is of the form (5.1)
with

F =

 0 1 0
0 −α 0
0 0 −β

 , f =

 0
αX2

βX3

 , G =

 0
σ2

σ3

 , h =

 0
1
1

 .
(5.21)
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The constants X2 and X3 denote long-term equilibrium levels for inflation
rate and real interest rate respectively; the speed at which the actual infla-
tion and interest rates tend to return to these levels is determined by the
constants α and β.

Within the model (5.18) one can define a contract that will pay LT =
exp(X1)T units of currency at time T . This product may be called an
indexed bond ; it is a bond that is protected against inflation. Can we
replicate such an indexed bond by means of ordinary bonds? This will
certainly be the case if our market is complete in terms of bonds. To check
this, compute the matrix M(t1, t2) as in (5.17):

M(t1, t2) =

·
0 e−αt1 e−βt1
0 e−αt2 e−βt2

¸ 0
σ2

σ3

 = · e−αt1 e−βt1
e−αt2 e−βt2

¸·
σ2

σ3

¸
.

(5.22)

By assumption, the 2× 2 matrix formed from σ2 and σ3 is invertible. It is
easily verified that the 2×2 matrix of exponentials is invertible if and only
if α is not equal to β. So we find that, if α 6= β, the model (5.1) allows
the construction of an indexed bond out of ordinary bonds. One can in
fact use any three bonds of different maturities as long as these maturities
exceed that of the indexed bond; alternatively, one can use bonds of shorter
maturity and replace them by new bonds at the time of expiry (“rolling
over”).

6. The story of Metallgesellschaft. Metallgesellschaft AG, based
in Frankfurt, is a large corporation doing business in metal, mining, and
engineering. It has owned a US-based oil business known as MGRM (Met-
allgesellschaft Refining and Marketing). In 1992, MGRM set up a scheme
in which it granted long-term contracts for delivery of oil to customers for a
fixed price, covering periods up to ten years. The exposure to oil price risk
was hedged by the purchase of short-term contracts (“futures”) for which
a liquid market exists. Under market conditions of 1993, the strategy re-
quired an enormous amount of cash input with no substantial income yet
from oil deliveries. MG decided to stop the hedging scheme and wrote off
about $ 1.5 billion.

The Metallgesellschaft case may be viewed as the Tacoma Narrows
story of financial engineering.7 The causes of the failure have been ex-
tensively discussed in the literature. Here we provide a brief discussion
drawing upon the analysis by W. Bühler et al. in a recent paper [4].

7In 1940, construction was completed of a suspension bridge across the Narrows
near Tacoma, WA, USA. Built according to a new and particularly elegant design, the
bridge became known as “galloping Gertie” because of the tendency of the bridge deck
to oscillate under the influence of the wind. On November 7, 1940, a strong and steady
wind caused the bridge to collapse completely, at a cost of presumably less than $ 1.5
billion. Footage of the event can be found on the internet.
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We start with formulating a model for the most important variable in
our situation, namely the oil price. In a model with a single state variable,
one may in fact use the oil price itself as the state variable and write the
state equation in the form

dXt = µX(Xt) dt+ σX(Xt) dWt (6.1)

where Xt denotes the oil price. It is natural to let the drift function µX(x)
be positive when x is low, and negative when x is high, so as to express the
empirical observation of the past decades that the oil price, while subject
to continual changes, never strays very far from the historical average level.
For instance one might take µX(x) = a(b−x) where b denotes a long-term
average and a is a parameter expressing “speed of mean reversion.” Under
this model however there is a positive probability for the oil price to become
negative. The following equation is suggested in [4]:

dXt = γ(Θ− logXt)Xtdt+ σXtdWt (6.2)

where γ, Θ, and σ are constants.
Oil may be used for direct use as well as for investment. The Black-

Scholes equation has been developed for financial assets rather than for
consumption goods, and actually does not apply as such to the latter.
A more general formulation which covers both the “investment” and the
“consumption” case is the following (r is the interest rate, c represents
storage cost per barrel per year):

µX(x)− rπX(x)− c ≤ σX(x)λ(x) (6.3a)

λ(x) ≥ 0 (6.3b)

where for all x at least one of the inequalities is satisfied with equality. The
above equations may be solved to find the market price of the risk of oil as
an investment good:

λ(x) = max

µ
µX(x)− rπX(x)− c

σX(x)
, 0

¶
. (6.4)

This expression is due to Bühler et al. [4], who obtained it from an equi-
librium argument.

On the basis of the above model we can now discuss the price of con-
tracts for oil delivery. In general, a futures contract with maturity T is
a contract to deliver a given commodity, for instance one barrel of oil, at
time T for a price FT to be paid when delivery is made. So, in our present
context where we assume a fixed interest rate, the market value at time t
of a contract to deliver a barrel of oil at time T is e−r(T−t)FT . This value
should satisfy the Black-Scholes equation. After some algebra, we find that
the Black-Scholes equation for the T -futures price FT (x) becomes:

µT (t, x) = σT (t, x)λ(x) (6.5)
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where

µT =
∂FT
∂t

+
∂FT
∂x

µX +
1
2

∂2FT
∂x2

σ2
X (6.6a)

σT =
∂FT
∂x

σX (6.6b)

with the final condition FT (T, x) = x. This may be solved numerically in
a straightforward way, for instance using a finite-difference approximation.

Various alternative models for oil futures have been formulated in the
literature; see for instance [2, 9]. Depending on the model, one finds dif-
ferent pricing rules. Two alternatives to the rule implicit in (6.4—6.5) are
obtained by replacing (6.4) by either

λ(x) = 0 (6.7)

or

λ(x) =
µX(x)− rπX(x)− c

σX(x)
. (6.8)

The first option corresponds to considering oil purely as a commodity rather
than as an investment good. Under this assumption, the futures price is
determined simply by the expected price at expiration of the contract,
which can be computed on the basis of the assumed dynamics. One may
therefore refer to the price obtained from (6.7) as the expectation-based
price. On the other hand, assumption (6.8) results from viewing oil purely
as an investment good; the futures price of a barrel of oil is determined by
the cost of buying the barrel now and storing it until maturity. The cost
of storage is easily computed:Z T

0

ce−rtdt =
c

r
(1− e−rT )

where T is the time of expiration of the futures contract. Therefore the
futures price at time t according to the arbitrage-based model is (taking
into account that this is a price to be paid at time T )

FT (t, x) = e
r(T−t)x+

c

r
(er(T−t) − 1). (6.9)

One may indeed verify that this solves the partial differential equation
obtained by inserting (6.8) and (6.6) into (6.5). The price (6.9) may be
referred to as the arbitrage-based price. Obviously the pricing rule ob-
tained from (6.4) is sort of a combination of the expectation-based and the
arbitrage-based price; this is also evident if prices are computed in a par-
ticular case (see Fig. 6).8 When oil prices are low the futures price is close

8The following parameter values were used: Θ = log 20.5, γ = 2.5, σ = 0.35,
r = 0.05, c = 4 (dollars per barrel per year). These values have been suggested in [4].
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to the arbitrage-based price, when oil prices are high the expectation-price
dominates. Where the transition from one regime to the other takes place
depends on the length of the futures contract; the results shown in Fig. 6
are for six-month futures. The rule based on (6.4) will be referred to as the
two-regime pricing rule. In the concrete case of oil futures, the two-regime
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Fig. 3. Six-month futures price of oil as a function of the price for immediate
delivery according to three different models

rule may be justified as follows. When oil prices are low with respect to
the long-term average, the price is expected to rise and so the expectation-
based model predicts that futures prices should be high. If that would
indeed happen however, then market parties could make a riskless profit
by selling futures contracts and storing the required oil until maturity.
Therefore in this situation the arbitrage-based pricing rule dominates. If
oil prices are higher than average, then according to the expectation-based
theory the futures price is relatively low. An upward pressure on prices
could be derived from an inversion of the arbitrage scheme used earlier,
namely, buy futures contracts and sell stored oil. There is a physical limit
to this scheme, however, due to the fact that at any time there is only so
much oil that can be delivered immediately; also, companies may prefer to
keep some oil in stock in order to meet fluctuations in demand. Therefore
the proposed scheme does not push up prices and the futures price follows
the expectation-based scheme. Empirical data are in fairly good agreement
with the pattern shown by the two-regime rule, although there is certainly
not an exact fit; this is indeed not to be expected from a model that is still
quite simple.

The idea of the hedging scheme used by MGRM was that the prices
of both long-term and short-term futures contracts are both sensitive to
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the spot price of oil. The value of a portfolio consisting of both short-
term and long-term contracts can therefore be made insensitive to changes
in the oil price if the two types of contracts are combined in appropriate
proportions. The existing liquidity of the market for contracts for delivery
of oil in three or six months can in this way be transferred to contracts
for delivery in eight or ten years. The scheme developed by MGRM was
successful in the sense that many customers were happy to enter into long-
term contracts that guaranteed delivery of oil for a fixed price. Once the
contracts were agreed upon, MGRM hedged them by short-term futures.
Of course the short-term contracts used for hedging expire after some time,
and then they need to be “rolled over” (replaced by new contracts). If the
futures price is higher than the spot price, which is not usually the case
but does happen sometimes, it is expensive to roll over a futures contract.
Theoretically the required cash input is counterbalanced by the gain in
value of the long-term contracts. It requires a strong belief in the theory
however to maintain such a scheme when in the short run it drains the
liquid assets of a company. In any case, at the end of 1993 the central
board of Metallgesellschaft in Frankfurt decided to stop the cash outflow
and to close all contracts at considerably less than the theoretical price.
MG lost about 10% of its value in the operation.

Some noted economists blamed the MG board for lack of faith. How-
ever, even when in general one has confidence in the principles of financial
mathematics, one may still debate which model to choose in a particular
situation. The choice of a model may in fact have very significant con-
sequences for the ensuing strategy. In the particular case of oil futures,
the “hedge ratio” of a ten-year future (the number of short-term, say six-
month, futures that should be bought for every long-term future sold in
order to keep a position that is theoretically insensitive to oil price changes)
depends strongly on whether one uses the arbitrage-based, expectation-
based, or two-regime model; see Fig. 6.9 Apparently the actions of MGRM
were based on the arbitrage-based model, which calls for a hedge ratio of
1 irrespective of the maturities of the futures that are to be hedged and of
the futures that are used for hedging. According to both the expectation-
based and the two-regime model, the value of a ten-year future is not at all
sensitive to changes of the current oil price; it is in fact completely deter-
mined by the model parameters10 and neither of the two models suggests
any hedging action for, say, about five years. So according to both alterna-
tive models MGRM should not have bought any short-term futures at all
in 1993 to hedge its long-term commitments.

It should be noted that the use of an incorrect hedging strategy does
not necessarily lead to a loss; it may actually produce a gain. This is

9The parameter values used here are the same as before.
10This implies, of course, that there are further robustness issues which however we

do not discuss here.
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Fig. 4. Ratios for hedging futures of several maturities by means of six-month
futures as a function of the current oil price, according to three different models (dotted:
arbitrage-based, drawn: two-regime, dashed: expectation-based)

due to the fact that incorrect hedging creates a position that is specu-
lative rather than risk-limited. Such positions can, under certain reward
structures for company executives, be attractive to managers who see a
possibility for large bonuses at limited risk for themselves. Therefore, the
Metallgesellschaft case may have been one of those in which a company was
punished heavily for lack of sophistication at the top level. These remarks
aside, the question remains whether in principle one can transfer the liq-
uidity of short-term oil futures to long-term futures by means of a hedging
scheme. Experience has shown that it takes time for markets to mature,
and innovations must take place in a stepwise manner. The attempt in
1992 by MGRM was a bridge too far.

7. Conclusions. During the 1980s and 1990s, in a gradual but not
always smooth learning process, model-based thinking has gained accep-
tance in the finance industry. Academia has responded by the institution
of programs in financial mathematics, which in turn have facilitated further
developments in industry. While the origins of the new financial theory lie
in the pricing of option contracts on stocks, the theory has been extended
to contracts involving interest rates, commodities, and credit risk. The
process continues as liquidity is transferred across markets, and in partic-
ular the interaction between financial and insurance markets is of current
interest.

The new financial theory is based on the systematic investigation of
actions that may be taken by the provider of a given contract to keep the
ensuing liabilities in check. Taking decisions in the course of time on the
basis of incoming information is therefore as central to financial engineer-
ing as it is to control engineering; dynamic modeling is the key to both
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fields. Financial models do have some specific features which distinguish
them from models used in electrical or mechanical engineering; also, they
are nearly always stochastic models, unlike many models used in control
theory. Nevertheless, there is sufficient overlap in themes to think of con-
trol engineering and financial engineering as close neighbors. One of these
themes that should be specifically mentioned here is the idea of robustness.
Systematic thinking about robustness is fairly new in financial theory and
is now developing along lines that are not unfamiliar to control theorists.
Among other issues in finance where ideas from control theory could be
helpful, one might mention noisy observations and the effects or regulatory
constraints on financial markets.

In this paper we have focused attention on “complete markets,” where
the noise cancellation problem can be solved exactly, or in other words all
risk generated by a specific liability can be eliminated. In such models the
problem of valuation of contracts can be completely divorced from consid-
erations concerning the risk preferences of market participants. Financial
theory however has increasingly moved towards incomplete market models
in which risk profiles may be changed by hedging, but always some risk re-
mains; this is for instance a setting that has to be chosen in order to allow a
discussion of interaction between financial markets and insurance markets.
Valuation of contracts under such circumstances calls for a specification of
the “acceptability” of positions. This may be done in a classical way by
making use of utility functions, but the expected utility paradigm is not al-
ways able to explain empirical data and so it may be important to take into
account “model uncertainty” as well. How to describe model uncertainty
is a subject of current debate in financial mathematics, and not surpris-
ingly some of the proposed frameworks are reminiscent of what has been
developed in robust control theory (see for instance [5]). Developments in
this area hold much promise for the future.
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