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Abstract

Models of complex dynamical systems are often built by connecting submodels
of smaller parts. The key to this method is the operation of “interconnection”
or “composition” which serves to define the whole in terms of its parts. In
the setting of smooth differential equations the composition operation has
often been regarded as trivial, but a quite different attitude is found in the
discrete domain where several definitions of composition have been proposed
and different semantics have been developed. The nontriviality of composition
carries over from discrete systems to hybrid systems. The paper discusses
the compositionality issue in the context of discrete, continuous, and hybrid
systems, mainly on the basis of a number of examples.

Keywords: modularity, non-deterministic systems, multitime seman-
tics, jump rules

1 Introduction

It is by now widely accepted that the modeling of complex technical systems requires
some form of object orientation. To model a complex system, one needs to break
it up into parts, which again may be broken up into smaller parts, until a level is
reached where elements are simple enough to be described directly. The element
models are then combined into a system model by stagewise composition. The
importance of modularity and hierarchy as tools for managing complexity has long
been recognized in computer science; but also in the modeling of continuous systems
the concept of “network modeling” has become a standard, as is seen for instance
from the popularity of simulation languages such as Simulink and Modelica which
allow the user to put together a system model by connecting elements taken from
a library provided by the software. The role of composition is expected to be
emphasized even more in the modeling of realistic-size hybrid systems.

The aim of network modeling may be summarized as: inferring relevant proper-
ties of a system as a whole from information provided by subsystems. The operation
of composition that is applied should be strong enough to support this process but



should not needlessly limit flexibility in subsystem descriptions. In principle there-
fore the question must be posed what operation of composition is most suitable,
given a specification of what properties of the system as a whole are of interest and
what information can be provided by subsystems. Questions of this type have been
studied much more intensely in the domain of discrete systems than in the domain
of continuous systems. In computer science, several different notions of composition
are used and are related to various notions of subsystem behavior. To continuous-
system analysts working with differential equations however, system interconnection
simply means joining the equations of all subsystems together.

In this paper we discuss notions of composition in the context of discrete-event
systems, continuous systems and hybrid systems. With some abuse of notation, the
composition operator will in each case be denoted by the symbol ||. The foremost
properties that should be satisfied by the composition operator are commutativ-
ity and associativity, i.e. for all A, B, C one should have A | B = B || A and
(A B) | C=A| (B C). The symbols A, B, and C that appear here denote
subsystem descriptions in some specified format, and the notion of equality that is
used is interpreted in the sense of equivalence with respect to some semantics that
is specified along with the description format. Usually one associates to a given
subsystem description a set of associated solutions, which may be referred to by
various names such as “traces”, “trajectories”, or “executions”’, depending on the
context. Again depending on the context, the collection of all solutions correspond-
ing to a given subsystem description may be called for instance a “language” or a
“behavior”. These objects are sets and in particular we can apply the operation of
intersection to them. Denoting the collection of solutions corresponding to a given
description A by L(A), we say that the rule of modular behavior holds if for all A
and B we have

L(A || B) = L(A)N L(B). (1.1)

In many applications it is important to consider also an inclusion or implementation
relation. Such a relation may be used to express that a given system satisfies certain
requirements. These requirements are often referred to as specifications; they may
be expressed in the same format as is used for subsystem descriptions, or in a
format of their own (a specification language). The notion of composition may be
also applied to specifications. If the implication

A C Sl, Ay T Sy = A H A C S H Sy (1.2)

holds, where the symbol C denotes an implementation relation, then we say that the
rule of modular control applies. This rule guarantees that controlled subsystems not
only satisfy their control specifications when disconnected from each other, but also
when they are in actual interconnection with each other. For example, it guarantees
that whenever the composition of an uncontrolled system P with a controller (or
supervisor) system C' is such that P || C C S for a certain specification process S,
then P || C may actually replace the specification process S in any larger system
(see e.g. [1, 2, 3] for further motivation and background).

The formal consideration of implementation relations is well developed in com-
puter science but has received less attention in continuous system theory. Only
recently, fundamental studies of interconnection of continuous systems have been
performed in the behavioral framework, see e.g. [4, 5].

The fact that composition is a major motive in the discrete world suggests that
the relatively low profile of this issue in the continuous setting will not be maintained
in the context of hybrid systems. Quite to the contrary, it is to be expected that the
richness of the study of compositionality in the discrete domain will be inherited
and perhaps even enhanced in the domain of hybrid systems. In this paper we
make some comparisons between compositionality issues in discrete, continuous,



and hybrid systems. We do not attempt to present any definitive theory; instead
we present a number of illustrative examples which may help to focus ideas. Our
main purpose is to formulate some concrete questions for research. Furthermore, we
present a multitime semantics for event-flow formulas (as introduced for a modular
description of hybrid systems in [6]), allowing composition of hybrid systems by
simple conjunction without imposing global synchronization. The focus of the paper
is on modeling rather than on control.

The paper is structured as follows. We first illustrate the nontriviality of com-
position in a discrete context (Section 2). Then, in Section 3, we turn to continuous
systems. Compositionality in hybrid systems is investigated in Sections 4 and 5,
with Section 4 presenting the multitime semantics of event-flow formulas, and Sec-
tion 5 discussing compositionality of jump rules. Conclusions follow in Section 6.

2 Composition in discrete systems

The theory of modelling and control of discrete-event systems has been a vital re-
search area in systems and control theory over the last fifteen years. An informative
survey, including many references to the extensive literature, can be found in [7].
Since we wish to highlight compositionality issues we confine ourselves in this sec-
tion to basic notions of composition and implementation of (non-deterministic) au-
tomata and processes, which are well-known in computer science; see e.g. [8, 9, 10].
A treatment of non-deterministic discrete-event systems which emphasizes compo-
sitionality issues can be found in [2, 3]; see also [11, 12] for other developments in
the control of non-deterministic systems. Here we summarize the main line of de-
velopment in the theory of automata as it can be found for instance in [13, 10, 8, 3].
An automaton is defined in the usual way by a triple (X, X, F). Here X is the
state space of the automaton (the set of nodes in a graph representation of the
automaton), ¥ is the alphabet whose elements are called event labels of symbols,
and F C X x ¥ x X is the transition rule (the set of edges). Often X and ¥ are
assumed to be finite sets.
The set E determines a (possibly partial) transition function § : X x ¥ — P(X)
by
8(z,0) = {y € X | (2,0,1) € E}. (2.3)

where P(X) denotes the collection of all subsets of X. Furthermore, usually a
subset Xg C X is identified as the set of initial states of the automaton. The
language L(A) generated by an automaton A = (X, X, E) is the set of all possible
finite strings of symbols (¢races) corresponding to the transition rule E and initial
states X, that is, all sequences

§= 0001 0On (2.4)
for which there exists a state space sequence xg, z1,- - - , Ty, such that xo € Xg, and
(xi,Oi,IEi+1)EE, 1=0,1,--- ,n— 1. (25)

The automaton (X, X, F) is called deterministic if for every (x, o) the set 6(x, o)
is at most a singleton. Furthermore, it is often required that Xy, the set of initial
states, is a singleton. Two deterministic automata are considered equivalent if they
generate the same language, cf. [8].

In the non-deterministic case, however, automata that generate the same lan-
guage may have different properties, especially with respect to deadlock behavior.
One way to characterize such properties of non-deterministic automata is provided
by the notion of failure semantics, as introduced in [10]. An automaton A is said
to refuse a symbol subset R C ¥ after a string s € L(A) if it can reach a state x



by executing string s, and it cannot execute any symbol in the set R in this state.
The subset R is called a refusal, and the collection of refusals is called the refusal
set ref(A4,s) C P(X). For a deterministic automaton A the following equivalence
holds:

Reref(A;s) & RC{oe€X|so ¢ L(A)} (2.6)

for all s € L(A). Conversely, any automaton with this equivalence property is
deterministic. However, for a non-deterministic automaton the implication = need
not hold. For instance, it may happen that by executing a certain string s the
automaton ends up in a deadlock state, while there is another path in the automaton
that generates the same string s but that leads to another state (node) not exhibiting
deadlock behavior. Clearly, in this case the observation of the generated trace does
not uniquely determine the state of the automaton after execution of this trace, and
in this sense non-determinism is related to a lack of observability in the sense of
behavioral theory [14]: the paths of the external variables (symbols) do not uniquely
determine the paths of the internal variables (states).

Non-deterministic automata can be considered to be equivalent if they generate
the same language and their refusal sets are the same. The corresponding semantics
is known as failure semantics. Let us add here that apart from failure semantics
there are other (and stronger) semantics that can be used to reason about non-
deterministic systems, such as bisimulation semantics [9].

Given two automata A = (X4, X4, E4) and B = (Xp, Xp, Ep) with ¥4 = Xp,
the synchronous (parallel) composition A || B is defined as the automaton with
state space X4 X Xp, alphabet ¥ := ¥4 = X and transition rule E given by

E = {((=z,27),0,(25,2F)) € Xax Xp x ¥ x X4 x X |
(ac‘f‘,a,acf) € Eq, (acjlg,a,acQB) € Eg} (2.7)

It follows readily that the language generated by the composition A || B satisfies
the rule of modular behavior (1.1)

L(A | B) = L(A) N L(B). (2.8)

For deterministic automata this property can alternatively be taken as the definition
of composition, in the sense that the canonical deterministic automaton determined
by the language L(A) N L(B) (using Nerode equivalence) is equivalent to A || B.
However, for non-deterministic automata the situation becomes different. It is easy
to see that the synchronous composition A || B of two non-deterministic automata
A and B has the following property with respect to its refusal sets

ref(A || B,s) = {Rs URp | R, € ref(A, s), Ry € ref(B, s)} (2.9)

This property should be explicitly taken into account, in addition to the intersection
property (2.8), when defining composition of non-deterministic automata on the
process level (that is, on the level of the generation of the symbols).

The same issues apply to the inclusion condition A C B of two automata A and
B (sometimes called an implementation relation, cf. [10]). In the deterministic case
it makes sense to define A C B by the condition

L(A) C L(B), (2.10)

implying that A T B together with B T A yields L(A) = L(B), so that A and
B are equivalent. In the non-deterministic case, however, condition (2.10) is not
strongh enough for A C B, since we should also require that

ref(4, s) C ref(B,s), for all s € L(A). (2.11)



Indeed, if we define the inclusion A C B by conditions (2.10) and (2.11), then
A C B and B C A imply that L(A) = L(B) and ref(4,s) = ref(B,s) for all
s € L(A) = L(B), so that A and B are equivalent non-deterministic automata (in
the sense of failure semantics).

With respect to the rule of modular control (1.2) this discussion implies the
following. In the deterministic case the property P C S for automata P, S easily
implies that G || P C G || S for any other automaton G, by the simple set-theoretic
inclusion condition (2.10). For the non-deterministic case the rule of modular con-
trol (1.2) still can be shown to hold, see e.g. [13], if we let as above the inclusion C
be defined by (2.10) and (2.11).

3 Composition in continuous systems

A central idea in systems theory is to view a dynamical system as the “intercon-
nection” or “composition” of subsystems, and to relate the properties of the overall
system to the properties of the individual subsystems. Notwithstanding this central
role a formalization of the notion of composition or interconnection in continuous
systems and control theory has been somewhat lacking. Instead, the definition of
interconnection has been often taken for granted, by relying on standard feedback in-
terconnections and well-established interconnection structures like Kirchhoff’s laws.
As we have seen in the previous section this is in contrast with the situation in au-
tomata theory and communicating processes where the notion of composition has
received wide attention.

Recently, a formalization of the notion of composition or interconnection of
continuous systems has been elaborated within the behavioral approach to systems
theory as advocated by Willems and co-workers, see e.g. [4, 5, 14]. In this set-up
the variables used in the description of a system are split into two classes: the
manifest or external variables w € W, and the latent or internal variables A € A.
The behavior B of a system is then defined as the set of all possible time trajectories
of the external variables w, where in the continuous time case the time-axis is equal
to the whole real line R (or e.g. the interval [0, 00)). Note that this definition of the
behavior of a continuous time system is very similar to the notion of the language
generated by an automaton, if we identify the symbol (event labels) with the values
taken by the external variables.

The notion of interconnection of two continuous systems >; and Yo with shared
space of external variables W, and behaviors Bi, respectively Bs, is then simply
defined as the system with behavior B given by the intersection

B=B,nB,, (3.12)

just as in the case of the composition of two deterministic automata, as treated
in the previous section. Hence, by definition, the rule of modular behavior (1.1)
holds. Similarly, the inclusion or implementation relation between two continuous
systems ¥; and X5 with shared space of external variables W is simply given by
the inclusion of their behaviors: ¥; implements X5 (X7 C Xo) if

By C Bs. (313)

As in the case of deterministic automata, it immediately follows from basic set-
theoretic operations that for the above composition (interconnection) and imple-
mentation (inclusion) rules the rule of modular control (1.2) is valid. The paper [5]
then continues with interesting developments concerning possible feedback interpre-
tations of interconnection.

Nevertheless, also for continuous systems it is quite possible to encounter sit-
uations where the above implementation and composition rule has unsatisfactory



features, as was the case for non-deterministic automata or processes. As a simple
mathematical example consider the following continuous system:

T = M

w o= g (3.14)

with external variable w and internal variables A1, Ay and = (regarded as a state
variable). Clearly, the behavior B of this system is equal to the behavior of the
trivial system with external variable w where we do not impose any restrictions on
w. On the other hand, we would like to distinguish, certainly for interconnection
purposes, this system from the trivial system, since if the state z happens to be
driven to zero by the latent variable A1, then the system can only generate the zero
trajectory w(t) = 0. Note that this situation is very similar to the situation that
may arise in non-deterministic automata, for instance when it possible to arrive at a
state from which deadlock occurs, while the same trace can be also generated while
ending up in a different state. Also note that in the above example the internal
variables A1, A2 and x are clearly not observable from the external variable w. These
considerations strongly suggest to develop also for continuous systems a certain no-
tion of failure semantics (or, bisimulation semantics), together with a corresponding
notion of implementation and composition, such that the rules of modular control
and modular behavior remain valid in this context. This would entail a refinement
and extension of behavioral systems theory, by not only considering the ensemble of
all possible traces (the behavior B in the sense of Willems, cf. [5]), but B endowed
with an additional “refusal” structure. It goes without saying that these considera-
tions become even more pressing in the study of hybrid systems, as discussed in the
next section. Note that it is not immediate how to properly generalize the definition
of refusal sets for discrete systems to the realm of continuous-time systems. In this
context we remark, without going into details, that for linear systems as studied
in [5, 14] such a refusal structure does not add any information. Indeed, a notion
of failure semantics for continuous systems seems tied up with nonlinearity, as is
already suggested by the simple example given above.

Finally we mention that in the theory of interconnection of continuous systems
initialization of the state variables may play an important role. Indeed, intercon-
nection constraints on the shared external variables w will often induce algebraic
constraints on the state or internal variables of the connected systems. This is
the reason that a proper framework for the modular representation of continuous
systems is given by DAE’s (differential and algebraic equations). It means that
for interconnecting continuous systems the state variables of the connected systems
have to be (re-)initialized. Although similar considerations hold for discrete systems
the situation in the continuous case seems more complex.

4 Event-flow formulas

Many formalisms for the description of hybrid systems have been proposed in the
literature; see for instance [15, 16, 17, 18, 19, 20, 21]. A description format for
hybrid systems that is close to the usual modeling of continuous systems by means
of differential equations was proposed in [6]. In this format a hybrid system is
represented by a so-called “event-flow formula” (EFF) which consists of a set of
equations connected by Boolean operators. The equations in an EFF may include
differential equations, update equations, and algebraic equations and inequalities.
An operation of composition is defined in [6] by which a new EFF can be formed
from two or more given ones. This composition makes use of so-called “empty
events” to express the non-synchronicity of events in different subsystems. Here we
present an alternative approach which makes non-synchronicity more explicit. The



somewhat artificial device of empty events is removed in this way, at the expense
of introducing a more complicated notion of time.

One should distinguish between the syntax of a description format (the rules that
determine what is to be considered as a well-formed description) and its semantics,
which in the case of dynamical systems can be interpreted as the notion of solution.
In principle different semantics can be attached to the same syntax. We now first
describe the syntax of EFFs.

4.1 Definition of EFF's

We start with a finite index set V' whose elements are called variables. The set V is
the disjoint union of four subsets denoted by X, P, W, and S. The variables in X
are called continuous state variables, those in P are called discrete state variables,
those in W are continuous communication variables, and those in S are discrete
communication variables. To each of the variables there is an associated range
space. For the continuous variables we let this space be the real line; it would not
be difficult to generalize to the case of differentiable manifolds but we do not aim
here for the greatest possible generality. The range spaces of the discrete variables
are finite sets which are denoted by L; (i = 1,...,k) in the case of state variables
and by 4; (i = 1,...,r) in the case of communication variables. The sets L; are
sometimes referred to as sets of locations, whereas the sets A; are usually called
alphabets.

For each continuous state variable z € X we introduce a new variable denoted
by & which also has the real line as its range space; as the notation suggests, the
symbol will be used in the semantics to express differentiation with respect to time.
The set of new variables that is obtained in this way will be denoted by X. Likewise,
for each continuous state variable x € X and each discrete state variable p € P we
introduce new variables 2! and p! which will be used to express update operations.
Both new variables have the same range space as the variables from which they are
derived. The new sets of variables that are thus obtained will be denoted by X*
and P?. We write V/:= VU X U X?U P!,

Let Vi be a subset of V'. A waluation of Vj is a mapping that assigns to each
element of V) an element of its associated range space. If the elements of Vj are
given a fixed order, then valuations of Vj can be written as vectors whose length is
the number of elements of ;.

A clause over Vj is a mapping that assigns to each valuation of Vj the value
TRUE or FALSE. In applications, a clause is typically given by an arithmetic or
logical expression. As a trivial example, if Vy = {x, 2} (taken in this order), then
a clause over Vj is for instance given by the expression zf = z + 1, which returns
TRUE for the valuation (0, 1) and FALSE for the valuation (0,0). The semantics to
be developed below is based in particular on clauses over variables in X UPUW UX
(flow clauses) and clauses over variables in X U P US U X% U P* (event clauses).
If ¢ is a clause over V| then we also say that V{ is the span of ¢, and we write

span(¢)=Vp.
Finally we can express the notion of an event-flow formula.

Definition 4.1 An event-flow formula, or EFF, is a Boolean formula whose terms
are clauses.

4.2 A multitime semantics for EFF's

Event-flow formulas are intended to represent the set of possible evolutions of sys-
tems that are partly described by differential equations and partly by update op-
erations. Updates will take place at event times that may be different for different



evolutions. Moreover, not all variables in a hybrid system need to be updated at
the same time; it may happen that an event is local to some subsystem. As a conse-
quence, we need a concept of time that is considerably more complicated than the
usual model based on the real line. We shall take a fairly radical point of view here
and equip each variable with its own time axis. Therefore we begin with defining a
suitable notion of time axis for a single variable. Then we proceed to joint evolu-
tions of all variables that occur in a given EFF and we define in what sense an EFF
can be satisfied by such a joint evolution. In the process we obtain an overall time
axis which however is not in general a totally ordered set; this reflects the idea of
partial synchronization.

4.2.1 Time axes for single variables

To model the events that affect a certain variable, we need time axes in which certain
points may have multiplicity in a suitable sense. For this we use the following model.
Given an interval T of the real line, an enrichment of T' is a combination ((T, <), )
satisfying the following axioms:

(i) T is a totally ordered set with order relation <;
(ii) = is a surjective and order-preserving mapping from T to T}

(iii) for each t € T, the set {7 € T | m(7) = t} is well-ordered with respect to the
order < and has a maximum.

By abuse of notation, we shall also write (T, 7) or even just T instead of ((T, <), 7);
in these cases the order relation < and the mapping 7 are taken to be understood.
An enriched time interval will also sometimes be called a rich time axis.

To explain the definition, we note that the mapping 7 serves to establish contact
between the enrichment T and the “physical time” expressed through 7. The
interval T' may be the whole real line, a finite interval, or even just a single point
in R. The latter case may be thought of as being degenerate in the sense that it
leaves no room for continuous dynamics.

The order preservation property of the mapping 7 is taken in the sense that, for
all 71 and 72 in T, 71 < 79 implies 7(71) < 7(72) where the latter inequality refers,
of course, to the usual ordering of the real line. In particular the mapping 7 need
not be one-to-one. If t € T is such that the set 7= 1[{t}] := {7 € T | n(7) =t} (the
fibre of t) contains more than one point, then ¢ is said to be an event time with
respect to T. The set of event times of T, which is a subset of T', will be denoted
by E(T).

In axiom (iii) it is required that fibres are well-ordered; this means that every
nonempty subset of 77 1[{¢}] must have a minimal element. In particular the fibre
7~ 1[{t}] itself has a minimum, which we shall denote by ¢t~. The maximum of the
fibre, whose existence is required by axiom (iii) as well, will be denoted by ¢. From
the well-ordering it also follows that each element 7 of the fibre of ¢, except ¢T, has
a successor; the successor of 7 will be denoted by 7.

We equip the rich time axis T with the order topology. That is to say, a basis for
the topology of T is given by the open intervals, i.e. subsets of the form (71, 72) :=
{r € T| 7 <7 < 72} The surjectivity and monotonicity of the mapping 7 ensure
its continuity with respect to this topology on T and the usual topology on the
interval T'.

In addition to continuity we will also need a notion of differentiability. Given
a rich time axis (T, n), we denote by T¢ (the continuous part of T) the set of all
points of T that have no neighborhood on which the mapping 7 is constant. We
equip this set with the toplogy that it inherits from T. A real-valued function z



defined on T is said to be differentiable in 79 € T, with derivative & (7o) if for all
positive € there is a neighborhood N of 7y in T such that for all 7 € N we have

(1) = 2(70) = @(70)(7(7) = 7(10))| < e[n(7) —7(70)]. (4.15)

The function z is said to be differentiable if it is differentiable for all 7 € T¢; if
the resulting function #(-) is continuous on T¢, then x is said to be continuously
differentiable.

A rich time axis T having the property that the interval (¢=,¢") is empty for all
t € £(T) will be called a simply punctuated time axis. A timed event set defined on
a given interval T' of the real line is a collection of well-ordered sets parametrized
by a the points in a subset £ of T'.

4.2.2 Evolutions

An evolution of a discrete or continuous state variable v is a pair consisting of a rich
time axis T and a mapping from T to the range space associated with v. Evolutions
of continuous communication variables are defined similarly, with the additional
condition that the time domain T should be a simply punctuated time axis. For
discrete communication variables, evolutions are again defined in the same way, but
replacing the rich time axis by a timed event set. So evolutions can be thought of
as time-trajectory pairs. By abuse of notation, trajectories will be indicated by the
same symbol as the variable to which they refer; context will make clear whether
a symbol, say, v denotes an element of the index set V' or a mapping from a time
axis T to the range space associated with v.

A global evolution is a mapping that assigns to each v € V' an evolution (T,,v)
which is such that all time domains T correspond to the same interval T of the
real axis. Discrete communication variables are in fact only defined on part of 1.
Actually the framework presented here might easily be extended to allow also other
variables to be defined only on part of T, in the spirit of Benveniste’s “presences”
[20]. Although such a feature is certainly useful in some applications, we shall
refrain here from extending the framework in this way.

4.2.3 Multitimes

Let a global evolution v over V' be given, with physical time domain 7T". This provides
us in particular with a collection of time axes {(T,,m,) | v € V'}. A multitime is a
pair (Vp,T) where V} is a subset of V and 7 is a mapping from Vj to the product
space IL,ev;, T, such that there exists a point ¢t € T" such that for all v € V we have
7y (7(v)) = t. Since Vj is a finite set, we can think of the mapping 7 as a vector of
times (7y,, ..., Ty, ) indexed by the variables appearing in V. With slight abuse of
notation we shall denote a multitime usually by the vector 7. We say that 7 is a
multitime over Vj, or also that the set Vj is the span of the multitime 7.

4.2.4 FEvaluation of clauses

Let ¢ be a clause defined over a subset V; of V’; recall that V' is the original set
of variables V' extended with symbols of the form ¢ (for continuous state variables
v) and v* (for continuous or discrete state variables v). Let VJ denote the set of
variables v € V for which one or more of the variables v, ©, v¥ appear in Vi, and
write V* := V1 UV]". Given a global evolution ¥ and given a multitime 7 whose span
contains V", we can, under some conditions to be specified below, define valuations
of all variables in the span of ¢. This is done as follows. In the spirit of the
abuse of notation that was already announced before, we denote by v the trajectory
associated to the variable v by the global evolution v.



1. For variables v € V N V", the valuation of v at 7 determined by v is v(7y).

2. For variables v# € V4, the valuation of v* at 7 determined by © is v(7), if 7,
has a successor; otherwise the valuation of v¥ is not defined.

3. For variables © € V4, the valuation of ¢ at 7 determined by ¥ is 0(7,), if v is
differentiable at 7,; otherwise the valuation of v is not defined.

If all variables are valuated, then we say that the given clause can be evaluated at
the multitime 7 in the evolution .

4.2.5 The solution concept

From single clauses, we now go to collections of clauses. Recall that event-flow
formulas have been defined as Boolean combinations of clauses. We denote by C(¢)
the set of clauses that appear in a given EFF ¢. Every assignment of values TRUE
or FALSE to the clauses in C(¢) will generate a value TRUE or FALSE for the EFF as
a whole. As we think of EFF's as representing systems consisting of subsystems that
evolve partly independently, we will often want to draw conclusions about the truth
value of an EFF based on only partial information from the constituent clauses. We
shall say that an EFF ¢ is validated by a given evaluation of a subset Cy of C(¢)
(so an assignment of the value TRUE or FALSE to all clauses in Cp) if the value of ¢
is TRUE for the given values of the clauses in Cy and for all values of the clauses in
C(¢) \ Co. We shall say that Cy C C(¢) is supporting for a global evolution v at a
multitime 7 if all clauses in Cj can be evaluated in the given evolution at the given
multitime, and ¢ is validated by the resulting evaluation.

We need a few more definitions before we arrive at the final solution concept.
Let a global evolution v be given. Recall that a multitime 7 assigns to each variable
v in a given subset Vj of V an element of the time axis T, that is associated to v
by the global evolution ©. If 7y and 75 are multitimes defined over the same set of
variables V), then we say that 7, precedes T2, and we write 7| < Ty, if for all v € V}
we have 7; (v) < T2(v) where in the latter expression the ordering is derived from
the ordering of T,. We shall say that a collection T of multitimes over a fixed set
of variables Vj is strictly ordered if for all 7y # To € T we have either 7| < 7» or
To < 7. If 7is a multitime over Vy and Vi C V;, then the restriction of 7 to V; is
denoted by 7|y, .

Given an EFF ¢, a ¢-certificate for an evolution o is a pair (T, C) consisting of
a collection T of multitimes and a mapping C' from T to the collection of subsets of

C(¢), such that the following conditions are satisfied:
(i) for each 7 € T, the set of clauses C(7) is supporting for v at 7

(ii) for each ¢ € C(@), the set of multitimes T, := {7 | 37 € Ts.t. ¢ €
C(7) and T = Tlspan(e) } (the set of multitimes at which ¢ is called) is strictly
ordered

(iii) for all variables v € V' and for all 7 € T, there exists exactly one multitime
7 € T such that 7, = 7.

Finally, we say that the evolution v is a solution (or an evecution) of the EFF ¢ if

it allows a ¢-certificate.

4.3 Regularity classes

In the study of continuous dynamical systems it is common to work with various
function classes in which solutions are considered. These classes are sometimes

10



called regularity classes. Similarly, it seems reasonable to distinguish several regu-
larity classes for solutions of EFFs, which may be useful in particular contexts. The
following notions may play a role in defining such regularity classes.

In connection with the nature of fibres, we say that T has finite multiplicity if
all fibres have finite cardinality, and that it has mazimal multiplicity m if none of
the fibres contains more than m + 1 points. The rich time axis T is said to have
w-bounded multiplicity if the ordinal number of fibres is at most w + 1. Concerning
event times, the rich time axis T is said to have positive minimum dwell-time if
there exists 6 > 0 such that |t; — ta| > ¢ for all t1,t2 € E(T) with 1 # to; T is said
to be non-Zeno if £(T) has no limit points; T is said to be left-Zeno if for every ¢
in the closure of £(T) there is a ¢’ € T with ¢’ > ¢ such that (¢,¢')NE = 0.

Regularity constraints on trajectories may for instance require that continuous
state trajectories are continuously differentiable on T¢ and continuous on T; in case
there are events of multiplicity w (corresponding to a fibre of order type w+ 1), the
latter requirement implies that the values of the state variable at successive events
taking place at physical time ¢ must converge to the value of the state variable at
time ¢*. Continuity is also a natural requirement to put on trajectories of contin-
uous communication variables as well as on trajectories of discrete state variables.
Because the discrete state variables map to sets that carry the discrete topology,
requiring contintuity for the trajectories of these variables implies that the discrete
variables must be constant between events.

An EFF does not directly provide a recipe for generating solutions; it is rather
a testing device that determines whether a proposed solution is valid or not. In fact
an EFF is just a list of all the laws satisfied by a given system. In the terminology of
[4], EFFs are kernel representations rather than image representations. Descriptions
of this form are user-friendly in the sense that they facilitate specification, but they
do pose a challenge to the developers of simulation software.

4.4 Composition of EFFs

The solution concept that was proposed above is more complicated than the one in
[6] because here we chose to work with different time axes for each variable rather
than with a uniform time axis. The benefit is that we can now define composition
in a simpler way than in [6].

Definition 4.2 The parallel composition of two EFFs ¢1 and ¢o is defined by
b1 || 2 := ¢1 A @a.

Clearly, in this way one may in fact unambiguously define the parallel composi-
tion of an arbitrary number of EFFs.

As a simple example of a hybrid system specification by means of compositions
of EFFs, consider the standard example of a hybrid system, namely the thermostat.
The behavior of room temperature § may be given by an equation of the form

where x is a suitable physical state variable through which the thermal properties
of the room are expressed, H denotes the mode of the heater (on or off), and w
represents external variables such as the outdoor temperature. Assuming that the
thermostat is supposed to switch on when the room temperature goes down to 19
degrees and switches off when the room temperature has reached 20 degrees, the
behavior of the thermostat may be described by a disjunction of the flow condition

({6 < 20} A {H = on}} v {{0 > 19} A {H = of£}} (4.17)
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and the event condition
{0 =193 A{H" =on}} V{{ =20} A{H" = off}}. (4.18)

The equation (4.16) can be read as an EFF with an empty event condition; note
that the comma is a notational device indicating conjunction. The behavior of
the system as a whole may now be described by a composition of the subsystem
“room” described by (4.16) and the subsystem “thermostat” given by (4.17) and
(4.18). Note for instance that any trajectory in which the temperature drops below
19 degrees but the heating doesn’t switch on cannot be a solution because the flow
condition (4.17) would be violated. In this way the flow condition may force an
event to take place. On the other hand the event condition (4.18) specifies the
situation in which a certain event may take place; in this sense the event conditions
may be seen as enabling conditions.

The above example is too small to show the full power of EFFs; for instance
no use is made of discrete communication variables. Also it would be easy to
write a description for the system as a whole directly, without making use of the
operation of composition. For a complex system, however, the notion of composition
is indispensible.

For a more extensive example of an EFF, consider the class of linear comple-
mentarity systems that has been described for instance in [22, 23]. Systems in this
class are obtained by imposing complementarity characteristics as are well-known
for instance in the Karush-Kuhn-Tucker conditions of mathematical programming
to each input-output pair of a standard input-state-output system with equal num-
bers of inputs and outputs. A complementarity system with & inputs and outputs
has 2¥ modes which are most easily labeled by the subsets of the set {1,..., k}.
The mode corresponding to I C {1,...,k} is characterized by the conditions

yi=0 (ie€l), y>0 (&I, wu=0 (i¢l), w=>0 (Giel). (4.19)

To obtain a complete description, one needs a mechanism governing changes of
modes and a mechanism governing resets of the continuous state. The latter can
be based on the observation that the linear constraints in (4.19) constitute, to-
gether with the given linear dynamics, a differential-algebraic system for which
“fast modes” and “slow modes” have been discussed extensively in the literature
(see for instance [24]). In particular, if there is a unique solution for each initial
condition then the impulsive part of the solution has the effect of projecting the
given initial condition to the subspace of consistent states along a complementary
subspace of jump directions; for details see for instance [25] or [6]. The projection
corresponding to mode I will be denoted by P;. Concerning the rule for changing
modes one can use the so-called rational complementarity problem (RCP) that is
extensively discussed in [26]. The RCP determines admissible modes for a given
initial condition by requiring that the Laplace transforms of the inputs and outputs
in a candidate mode should be nonnegative for sufficiently large real values of the
transform parameter. A general description for the dynamics of a linear comple-
mentarity system can now be given in the form of an EFF by the flow conditions

t=Ax+ Bu, y=Czx+ Du, yy =0, yjc >0, uye =0, uy >0 (4.20)

(where y; is short for the vector with components y; (i € I), I¢ denotes the set
{1,2,...,k}\ I, and the inequalities are understood componentwise) and the event
condition

I'e S(z), a'=Ppx (4.21)
where S(z) denotes the collection of modes that are selected by the rational com-
plementarity problem. For conditions under which the above EFF has unique solu-
tions, see for instance [25, 26, 6]. A system of the form (4.20—4.21) would be quite
awkward to describe in terms of a “flat” hybrid automaton.
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5 Modularity and jump rules

In this section we consider some of the problems that may arise when state-dependent
switching is combined with modeling according to the principle of modularity. In
particular we focus on the question if and how the jump rules for a physical hybrid
system may be derived from the jump rules for its constitutive parts. We do not
ailm at presenting a general theory; instead we illustrate the questions on a very
simple example (taken from [27]): an integrator coupled to a complementarity char-
acteristic. The integrator may be described in standard state space notation by the
equations

T =u Y=z (5.22)

whereas the complementarity characteristic is given by the disjunction
{y>0, u=0} Vv {y=0, u>0} (5.23)

A physical example of such a coupling is provided by an electrical circuit in which
a capacitor is connected to an ideal diode; the variable y is then interpreted as the
voltage drop across the capacitor, which is equal to minus the voltage drop across
the diode, and w is the current through the capacitor and the diode.

We consider the above system with an initial condition zy at time ¢ = 0, and
we shall be interested in solutions defined from that time point on. From physical
considerations, the solution that one would hope to obtain from an appropriately
defined solution concept is the following. If x( is nonnegative, no event occurs at
time 0 and the solution is given by

y(t) = zo, u() =0 (0<t< o). (5.24)

If zy is negative, an event takes place at time 0 which causes the state z to jump
to zero immediately; after that we have the zero solution

yt) =0, wut) =0 (0<t<o0). (5.25)

In the capacitor-diode interpretation, the first situation corresponds to the blocking
mode of the diode, while in the second situation the diode is conducting and the
capacitor discharges instantly. The problem that we wish to consider is to find a
formal specification that (i) produces the above solutions, and (ii) is modular in
nature. The modularity requirement means that we are looking for a specification
that can be written as the parallel composition of two subspecifications, which refer
to the capacitor (5.22) and the diode (5.23) respectively.

The capacitor-diode example belongs to the class of linear complementarity sys-
tems as treated at the end of the previous subsection. In this example we only have
two modes, corresponding to the conditions “y = 0” and “u = 0”; we shall refer
to these modes simply as mode 0 and mode 1 respectively. The only consistent
initial state for mode 0 is the zero state and so the projection corresponding to
this mode maps any state to zero. On the other hand, in mode 1 all initial states
are consistent and so the corresponding projection is the identity mapping. The
following formal specification of our capacitor-diode system as the composition of
the following EFFs results:

t=u, y=z, {P=0,y=0,u>0}VvV{P=1,u=0,y>0} (5.26)

90 <0, P=0, zf=0. (5.27)

Solutions of the composed EFF (5.26)|[(5.27) can be sought for instance in the
space NZ/1/C1/C? of evolutions with non-Zeno simply punctuated time axes and
trajectories that are continuous for all variables and continuously differentiable for
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the continuous state variables. In this space (as well as in spaces with richer time)
there is a unique solution, which is the one that we already described above. So we
obtain the “right” solution. However, although our description uses composition of
two EFF's, the separate terms (5.26) and (5.27) do not correspond to the separate
elements “capacitor” and “diode” in our system. Hence this specification is not
modular.

Therefore, let us now discuss an alternative method which starts from modeling
the two elements separately. The behavioral approach (see for instance [4]) would
suggest to determine behaviors (that is, sets of compatible trajectories for the ex-
ternal variables) for each of the elements and then to take intersection in order to
obtain the behavior of the system as a whole. To carry out this program, one first
has to specify the function spaces from which the trajectories will be taken. The
simplest choice is to look at smooth (say, C*°) solutions. However the intersection
of the smooth behaviors of the capacitor equation (5.22) and the diode equation
(5.23 contains only the trajectories y(t) = ¢, u(t) = 0, where ¢ is a nonnegative
constant; and none of these trajectories are compatible with a negative value of the
initial condition.

Such a negative result might be expected since we need solutions with jump
components. So, instead of behaviors in C*°, let us look at solutions in the space
of distributions of the form aé + f where a is a constant, § is the Dirac delta
distribution with support at time 0 and f is a smooth function defined on (0, c0).
The nonnegativity constraint can be imposed on the smooth parts in the usual way;
for the distributional part it seems natural to require that the constant a multiplying
6 should be nonnegative. In this space, the behavior corresponding to the capacitor
equation (5.22) is

Bp = {(y,u) |y € C*, 1tilnoqy(t) =x0+a, u=ad+y} (5.28)
and the behavior corresponding to the diode equation (5.23) is

BC = {(yvu)|y:a16+f17 u:a25+f2, 0120, a2205 a1a2:05
fl € 000(0700)7 f2 € 000(0700)7
f1 (t) >0, fg(t) >0, fl (t)fg(t) =0 for all ¢t > 0} (529)

The intersection of the two behaviors is

Bep = {(y,u) [y € €%, limy(t) =z +a, u=ab+y, a0} (5.30)

Unfortunately this intersection contains more solutions than we want; a condition is
missing that would specify that the constant a can only be nonzero if x is negative,
and in that case it must be equal to —xg.

We find ourselves therefore in a situation in which we have on the one hand a
description that produces the “right” solutions but that does not have the desired
modular structure, and on the other hand a description that does have modularity as
desired but that doesn’t lead to the solution set that we would like to see. How can
we resolve this dilemma? Of course, the diode as we described it is an idealization.
The mode switching that is implied by the diode equations could be described on
another level of representation as a smooth process that takes a little time to go
from a situation in which the current is approximately zero to one in which the
voltage vanishes approximately. The ideal diode is a simplified description of these
phenomena. It is received wisdom, however, that such neglect of details (coupled
to appropriate robustness considerations) is actually a key factor in building useful
models of physical systems. Indeed, an important way of constructing manageable
models is to identify a time scale of interest so that variables that change on a slower
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time scale can be treated as constants (i. e. as parameters rather than as variables)
and changes that take place on a faster time scale can be described as occurring
instantaneously, that is, as jumps.

The idea of replacing fast motions by jumps, attractive as it may be from a
computational point of view, is not without difficulties. First of all it may not be
possible to take limits in an unequivocal way, and secondly it is not clear a priori
that such a jump rule can be formulated on a modular level. To argue this last point,
consider first the situation on a slow timescale where motion is described in terms of
differential equations. The differential equations may well be described in a modular
way; one might say that there is “infinitesimal modularity”. This modularity still
holds approximately for time steps of the order that would typically be used in
integration routines (or, conversely, the time step in an integration routine is taken
sufficiently small so that modularity approximately holds.) However, on larger time
intervals one cannot simulate each subsystem separately and combine the results
to obtain a simulation of the system as a whole. Nevertheless, a modular jump
rule attempts to do just that. In fact, the time interval connected to a jump may
be small with respect to the chosen time scale of interest, but it is not small with
respect to the fast motion that the jump rule is aiming to represent. This argument
suggests that in general it will not be possible to represent a global jump rule by a
set of local rules.

Let us now return to our example. It has been argued above that we should
extend the description of the capacitor (5.22) with a jump rule for the short-circuit
condition y = 0, leading to the EFF model

{t =uc, yc=x} Vv {yé = 0}. (5.31)

Furthermore, in the specific example at hand, the following EFF description of the
diode element (5.23), including a local jump rule, can be postulated:

{{up >0, yp =0}V {yp >0, up = 0}} V {v& > yp}. (5.32)

For the connection we may write a separate EFF:

{yp = yc} A {up = uc}. (5.33)

The composition of the capacitor model, the diode model, and the connection then
leads to an EFF which has the “right” solutions, and satisfies the rule of modular
behavior (1.1), i.e., the behavior of the system as a whole is the intersection of the
behaviors of the components.

While for this specific example it is thus possible to give a completely modular
description of the system behavior (including jump rules), it remains to be seen
whether this is possible in more general contexts. Specifically, it seems to be an
open question whether general electrical networks with ideal diodes, switches, and
linear capacitors, inductors, and resistors can be modeled on a modular basis with
the electrical elements as modules. It should certainly be expected that the two
variables in the ideal diode description (5.23) need to be treated symmetrically.
The simple rule

v >y, Wb >, (5.34)

extending the jump rule in (5.32), suggests itself and it would be nice to find condi-
tions under which such a rule does indeed agree with the global rule (4.21). Similar
questions can be posed in the context of mechanical systems subject to (multiple)
collisions. In general, it is known that event handling in hybrid systems may involve
“loops” in the application of local jump rules, see e.g. [28].

In summary, a research program on modularity in hybrid systems should include
the identification of system classes for which either of the following holds.
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(i) A jump rule can be only formulated at the global level.
(ii) The global jump rule can be derived from (a subset of) the local jump rules.
(ii) The global jump rule is equivalent to the combination of the local jump rules.

As a final remark, we note that the fast dynamics of a system may sometimes be
decomposable even when the slow dynamics does not decompose. For instance, it
is intuitively clear that in a mechanical systems shocks cannot propagate instantly
over non-rigid interconnections. In such situations the reinitialization decision can
be taken on the basis of data from only part of the system. It may be possible to
set up a general theory of decompositions of this type on the basis of the theory of
structured systems as presented for instance in the recent book by Murota [29].

6 Conclusions

The purpose of this paper has been to emphasize the importance of compositionality
in hybrid system theory, and to identify some concrete questions for research in this
area. The following specific problems have been formulated: (i) to develop a notion
of “refusal sets” in continuous system theory, and to investigate its implications
for hybrid systems theory, (ii) to determine classes of systems that allow a global
rule equivalent to, or derivable from, local jump rules, and (iii) to investigate the
possibility of computing reinitializations on an intermediate (between local and
global) level by making use of structured system theory.

In this paper we have also presented a multitime semantics for event-flow for-
mulas, which gives expression to the notion of partial synchronicity. As a result
of the introduction of this semantics it becomes possible to define the operation of
composition for hybrid system descriptions by means of conjunction, similar to the
way in which traditionally continuous system descriptions are composed, without
imposing global synchronization.
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