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1. Introduction

This paper explores the intertemporal risk sharing in a multi-period setting

under the notion of Pareto efficiency and financial fairness (PEFF). Pareto

efficiency means that the utility of nobody can be improved without hurting the

utility of some others, while financial fairness indicates that the market values of5

the risk positions before and after risk sharing should be equal. A risk-sharing

system with respect to monetary uncertainties – the stochastic returns from the

financial market, for instance – can be viewed as a financial contract. On the

one hand, Pareto efficiency is fundamental in risk-sharing systems, while on the

other hand financial fairness is important in the design of financial contracts.10

The model is motivated and abstracted from systems that allow for intertem-

poral risk sharing. One example is the collective defined-contribution pension

systems which can be viewed as a multilateral financial contract among both

current and future cohorts. The possibility of intertemporal risk sharing with

respect to investment risk is due to the incompleteness of the market, i.e. the15

inability of generations to be exposed to risks outside their own (mature) lifes-

pan. A risk-sharing system tries to partly fix this problem by allowing later

generations to take risks before they become participants. Risk sharing shall re-

sult in welfare gains to the generations; meanwhile, the pension contract should

also be fair from a valuation perspective. Another example is the reinsurance20

market, in which insurance companies reallocate the risks by way of reinsur-

ance contracts among themselves. A multi-period contract is appropriate for

dealing with long-term risks, or simply when companies agree to make multi-

period arrangements. A similar example is the design of structured derivatives,

for instance, the practice of tranching. In these examples, Pareto efficiency is25

pertinent for designing the optimal allocation of risks, while financial fairness

guarantees that the contract is fairly priced.

The characterization of Pareto efficient solutions in a single-period setting

is well studied in a lot of papers, which date back to the 1960s with the focus

mainly on the field of insurance. For instance, Borch [1] gives a characterization30
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of the Pareto efficient solutions under the situation where expected utility is used

to describe the agents’ risk preferences, and later DuMouchel [2] gives proof to

these results. Similar work also includes Raviv [3] which takes into consideration

the existence of market frictions. The fairness criterion is first considered along-

side the Pareto efficiency by, amongst others, Gale [4], Bühlmann and Jewell [5]35

and Balasko [6] in different settings. In these literature, the risk sharing is built

over both a utility basis and a valuation basis.

The risk sharing problem in a multi-period setting is investigated by Barrieu

and Scandolo [7] in a general setting; they talk about risk exchanges between

two agents over more than one period without taking into consideration any40

fairness conditions. Other work has been mainly focused on the design of pension

systems and the space of intergenerational risk sharing, where risk redistribution

can be organized among both the existing and future cohorts. Pareto-efficient

risk sharing can be achieved by maximizing the aggregate expected utility of

all generations in the situation where a social planner is present (e.g. Gordon45

and Varian [8], Gollier [9], Bovenberg and Mehlkopf [10]) or by looking for an

equilibrium (see Ball and Mankiw [11], Krueger and Kubler [12]). Financial

fairness has been considered by Cui et al. [13]; however, the valuation approach

is only used to check afterwards whether the distribution rule is fair for the

participants. Kleinow and Schumacher [14] analyze the pension system with50

conditional indexation from the perspective of market value; they investigate

whether the pension contract is financially fair for existing and incoming cohorts

as well as the sponsor. Risk-neutral valuation becomes essential in Bovenberg

and Mehlkopf [10] to determine a unique risk sharing solution by setting the

ex-ante market values of the intergenerational transfers to zero.55

This paper explores the Pareto efficient and financially fair risk sharing in a

multi-period environment. Expected utility is adopted to evaluate the welfare,

and a risk-neutral measure works for the valuation purpose. We shall show the

existence and uniqueness of the PEFF solution, and give a numerical algorithm

to find it. This can be seen as a direct generalization of the research by Pazdera60

et al. [15], which explores the Pareto efficient and financially fair risk-sharing
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rule in a single-period case. Compared to Barrieu and Scandolo [7], we restrict

ourselves to the case of expected utility as the preference functional, and risk-

neutral valuation is built into the system to determine the uniqueness of the

solution. Different from Bovenberg and Mehlkopf [10], no parameterization on65

the risk-sharing rules is needed here; the rules are determined totally under the

notion of PEFF. Mathematically, our results resemble the famous consumption-

savings model for intertemporal substitution to some extent. The intertemporal

balance equation, as we call it, has a close relationship with the Euler equation

in the intertemporal substitution theory; see Hall [16]. The main difference is70

that the model here introduces no subjective discount factor for impatience. The

characterization of Pareto efficiency leads to a weighted optimization problem

where the weights are unknowns to be determined uniquely by the financial

fairness constraints, making use of a risk-neutral measure.

The rest of the paper is structured as follows. The model setting is set up in75

Section 2 and we formulate the problem of finding PEFF solutions mathemati-

cally. Next we establish the existence and uniqueness of the solution in Section

5. Explicit solution exists when we assume exponential utility functions to all

the agents and deterministic asset returns; other than that, there appears to be

no hope for an explicit solution in general. We then develop an iterative algo-80

rithm to numerically find the solution. The case of the explicit solution is dealt

with in Section 7; besides, we also give a simple example where the numerical

algorithm is implemented. Some remarks will conclude the paper in the end.

2. Model Framework

We assume a finite discrete-time system in which a finite number of agents85

gather to share their risks. As a result of the risk sharing, the agents expect to

receive contingent payments from the system. Each agent is assumed to get one

single contingent payment. The term “contingent payment” is general and can

have various interpretations in different circumstances. For instance, it can refer

to the risk exposure of a insurance company after risk sharing in the case of a90
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reinsurance contract, or the investment risk in the case of a collective pension

fund. Alongside there is also a long-lived buffer which makes the intertemporal

money transfer possible.

The system starts at time t0. Assume that altogether there are N contingent

payments happening at time t1 ≤ t2 ≤ · · · ≤ tN , where N is some positive95

integer. Cn will stand for the contingent payment paid out from the system at

time tn. Let Fn be the buffer size at time tn. Xn denotes the financial risk

coming into the system from the agents from time tn−1 to tn, that is, it is the

sum of all the stochastic cash inflows from the agents from time tn−1 to tn. The

risk stream X = (X1, · · · , XN ) is defined in a financial market in which prices100

are given exogenously. The buffer is invested in a risky asset R which produces

stochastic per-dollar gross return Rn from time tn−1 to tn. Here the Cn’s and

Fn’s are decision variables, and the Xn’s and Rn’s are the risks to be shared.

The Xn’s and Rn’s are random variables defined on a finite probability space

(Ω,F ,P) where P is the objective measure. F is the filtration generated by the

X’s and R’s:

F = {Fn|n = 1, · · ·N}, Fn = σ{(X1, R1), · · · , (Xn, Rn)}.

There is also a risk-neutral measure Q defined on the probability space be-

sides the objective measure P. There is no need to assume the completeness of

the market; any given risk-neutral measure Q will suffice. The only assumption

is that the agents have agreed to adopt some probability measures P and Q,

or the measures are simply specified in a situation where a social planner is

present. Let

En[ · ] = E[ · |Fn].

It is assumed that the process {(Xn, Rn)} is sequentially independent under

P and Q, that is, (Xt, Rt) and (Xs, Rs) are independent for t 6= s under P and Q.

For n = 1, · · · , N , the random variables Xn and Rn need not be independent,

and their joint distribution is known. As we are working on a finite probability

space, the total number of outcomes of (Xn, Rn) is finite for all n. Illustrated
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t0

↓
F0

↓
X1

t1

↑
C1

↓
X2

t2

↑
C2

↓
X3

t3 = t4

↑
C3, C4

tN

↑
CN , FN

Figure 1: The risk sharing system

It is assumed that the process {(Xn, Rn)} is sequentially independent under P

and Q, that is, (Xt, Rt) and (Xs, Rs) are independent for t 6= s under P and Q.

For n = 1, · · · , N , the random variables Xn and Rn need not be independent, and

their joint distribution is known. As we are working on a finite probability space,

the total number of outcomes of (Xn, Rn) is finite for all n. Illustrated by Figure

2, the risks can be seen as a multinomial tree and every pair (Xn, Rn) can then be

totally characterized by

{(
(Xjn

n , Rjnn ),P(jn),Q(jn)
) ∣∣∣jn = 1, · · ·mn

}

where (Xjn
n , Rjnn ) represents all the possible and distinct values of (Xn, Rn) and

P(jn),Q(jn) are the corresponding P- and Q-probabilities. A technical requirement

is that for any n = 1, · · · , N

Q ({ω ∈ Ω|Xn(ω) = maxXn, Rn(ω) = maxRn}) > 0, (2.1)

which means that Xn and Rn can attain their maximum under Q simultaneously.

Furthermore we assume that Rn > 0 for all n as the R’s have the interpretation as

the gross return of the asset R.

Write Jn = j1j2 · · · jn as the trajectory
(

(Xj1
1 , R

j1
1 ), · · · , (Xjn

n , Rjnn )
)

. Let Jn105

be the set of all the possible trajectories of (X,R) up to time tn. Jnjn+1 will

denote any trajectory whose up-to-time-tn part is Jn. In such a situation we write

jn+1 ∈ J n+1
n where J n+1

n denotes the set of all the possible cases of (Xn+1, Rn+1).

The risk-neutral measure Q is used to price the risks X as well as the investment

returns R. In this generic setting, write

xn := EQXn, 1 + rn := EQRn, n = 1, · · · , N.

The xn’s are the market prices of the risks X and the rn’s are the risk-free returns

implied by the pricing measure Q. Please note that now and later we directly work110

with future values for convenience.

Note that the time points {t0, t1, · · · , tN} need not be equidistant. As shown in

Figure 1, two or more time points can be equal if there are more than one contingent
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Write Jn = j1j2 · · · jn as the trajectory
(
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1 , R

j1
1 ), · · · , (Xjn
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)

. Let

Jn be the set of all the possible trajectories of (X,R) up to time tn. Jnjn+1

will denote any trajectory whose up-to-time-tn part is Jn. In such a situation

we write jn+1 ∈ J n+1
n where J n+1

n denotes the set of all the possible cases of110

(Xn+1, Rn+1).

The risk-neutral measure Q is used to price the risks X as well as the in-

vestment returns R. In this generic setting, write

xn := EQXn, 1 + rn := EQRn, n = 1, · · · , N.

The xn’s are the market prices of the risks X and the rn’s are the risk-free

returns implied by the pricing measure Q. Please note that now and later we

directly work with future values for convenience.

Note that the time points {t0, t1, · · · , tN} need not be equidistant. As shown115

in Figure 1, two or more time points can be equal if there are more than one
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J1 = j′1
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′
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2

2
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2
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...
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J1 = j1
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′
2

X j ′
2

2 , R j ′
2

2

...

J2 = j1j2
X
j2
2
, R
j2
2

X
j1
1
, R
j1
1

Figure 2: The first two periods of the multinomial tree for the risks

payment paid out at the same time. In that case, say tn−1 = tn for some n, we

shall have Xn ≡ 0 and Rn ≡ 1, because there will be no risks coming in and the115

buffer will not evolve with respect to asset return.

The utilities of the agents depend solely on the contingent payments they receive.

Utility function un(·) will be used to evaluate contingent payment Cn. The function

un(x) is defined on x ∈ (bn,+∞), where bn is a constant, either a finite real number

(e.g. shifted power utility) or −∞ (e.g. exponential utility). These utility functions120

are stereotype utility functions defined as follows:

1. it is continuous and differentiable;

2. it is strictly concave;

3. the marginal utility satisfies the Inada conditions

lim
x↓bn

u′n(x) = +∞, lim
x→∞

u′n(x) = 0.

For any agent, define In = (u′n)−1, which is the inverse function of the marginal

utility function. Since u′n satisfies the Inada conditions, we know that In is a strictly125

decreasing function mapping (0,+∞) into (bn,+∞) and is a bijection.

The budget constraints of the system are then straightforward: at each time

point, the invested capital will be distributed between the buffer and the current
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In is a strictly decreasing function mapping (0,+∞) into (bn,+∞) and is a

bijection.130

The budget constraints of the system are then straightforward: at each time

point, the invested capital will be distributed between the buffer and the current

contingent payment, i.e.

Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N. (2.2)

The key problem is to determine the decision variables Cn’s and Fn’s along each

trajectory. The interpretation is to divide the total amount of available asset in

the system between the current payment and the buffer for future payments.

It is assumed without loss of generality that

F0 = 0.

The budget constraint is

C1 + F1 = X1 + F0R1 := X̃1,

which suggests that the situation when F0 is nonzero or even a random variable

can always be dealt with by regarding X1 +F0R1 as a new random variable X̃1.135

The buffer size by the end of the system, FN , will be referred to as the end

buffer. Depending on whether the end buffer also takes the risks or not, we may

have the following two cases:

• Closed end buffer (CEB) case: FN will be a constant, that is, the buffer

will only make the intertemporal transfer possible, but it does not take

any risks by the end. Without loss of generality we assume

FN = 0.

In the situations where FN is supposed to be a nonzero constant, we can

then redefine a new random variable X̃N such that

CN = (XN − FN ) + FN−1RN := X̃N + FN−1RN .
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• Open end buffer (OEB) case: FN will be a decision variable just as the

C’s. This means that the buffer provider will also participate in the risk140

sharing besides acting as a vehicle for intertemporal transfer. In this case,

a stereotype utility function up will be employed to evaluate the utility of

FN . The function up(x) is defined on x ∈ (bp,+∞), and bp can be either

a finite constant or equal to −∞.

It is worth mentioning that there is no explicit constraint on the interim145

status of the buffer Fn, n = 1, · · · , N − 1, thus in general they can be positive

or negative.

It can be argued as follows that any OEB case can always be converted

into a CEB case. For any OEB case (C1, · · · , CN , FN ) with utility functions

(u1, · · · , uN , up), we define a new time point tN+1 := tN with XN+1 := 0 and

RN+1 := 1. The OEB setting is thus formulated into a CEB one with an extra

contingent payment CN+1 with utility up

CN+1 = XN+1 + FNRN+1 = FN .

On the other hand, any CEB setting can be turned into an OEB setting in the

sense of Pareto efficiency as we shall see later. In this paper we will proceed

mainly with the OEB setting. The utility of the end buffer FN will be evaluated150

according to the utility function up.

We will try to determine the C’s and the F ’s. For any n = 1, · · · , N , both

Fn and Cn are by nature Fn-measurable random variables. We then have the

following important definition.

Definition 2.1 (Risk-sharing rule.) A vector of random variables (C1, C2, · · ·CN ,155

FN ) is called a risk-sharing rule if it satisfies

• the measurability condition: Cn ∈ Fn for n = 1, · · · , N and FN ∈ FN ,

• the budget constraints (2.2), and

• the domain requirements of the utility functions, i.e. Cn > bn for all n

and FN > bp along any trajectory.160
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One last thing to mention in this section is that the budget constraints (2.2)

imply a single global budget constraint by eliminating the F ’s:

N−1∑

n=1

[
Cn

(
N∏

i=n+1

Ri

)]
+ CN + FN =

N−1∑

n=1

[
Xn

(
N∏

i=n+1

Ri

)]
+XN . (2.3)

This implies that in order to make the problem well-posed, one needs to have

that

N−1∑

n=1

[
bn

(
N∏

i=n+1

Ri

)]
+ bN + bp <

N−1∑

n=1

[
Xn

(
N∏

i=n+1

Ri

)]
+XN .

This should hold for any realizations of X and R as we now have a finite proba-

bility space. Otherwise there will be no possible risk-sharing rules as the domain

requirements of the utility functions can never be satisfied.

Example 2.2 (The autarky.) A trivial solution to the risk sharing problem is

the autarky where there is no risk-sharing effect: all agents will be on their own165

and the buffer will be left unused.

Example 2.3 (Possible variations of the model.) The budget constraint (2.2)

shows that the model is very general and can handle different risk sharing sys-

tems. Examples are

• if we let

t1 = t2 = · · · = tN

X2 = · · · = XN ≡ 0

R2 = · · · = RN ≡ 1

then the system degenerates to a single-period problem as in Pazdera et

al. [15] and the budget constraint becomes

N∑

n=1

Cn + FN = X1

where X1 represents the aggregate risk to be shared.170
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• If we only let

X2 = · · · = XN ≡ 0

then this represents a decumulation system where the only cash inflow X1

will be distributed into several contingent payments in the future.

• A defined-contribution pension fund in the form of a non-overlapping gen-

erations model can be modeled by modifying the budget constraint to

Fn + Cn = (Yn−1 + Fn−1)Rn n = 1, · · · , N,

where the Y ’s are the contributions paid into the system by the beginning

of each period, the C’s are the benefits paid out from the system by the

end of each period and the R’s now represent the returns from a fixed175

asset mix where the fund invest its capital.

3. Pareto Efficiency in the Multi-Period Setting

This section deals with the concept of Pareto efficiency in this multi-period

setting, which is the first step to look for a PEFF risk-sharing rule. We shall

characterize parametrically all the PE solutions, among which we look for the180

one that is also financially fair in the following sections.

It may be convenient to introduce first some notations. Let RN+1
+ be the

nonnegative cone in RN+1, i.e. RN+1
+ := {θ ∈ RN+1|θi ≥ 0}, and define

RN+1
++ := {θ ∈ RN+1|θi > 0} as the strictly positive cone. For two vectors

a = (a1, . . . , aN ), b = (b1, . . . , bN ), a, b ∈ RN , we write a 	 b if an ≥ bn for all185

n = 1, . . . , N and there exists some m = 1, . . . , N such that am > bm.

For simplicity we write X := (X1, · · · , XN ) and R := (R2, · · · , RN ) which

are vectors of random variables on Ω. Write ρ := (C1, C2, · · ·CN , FN ) as the

generic notation for a risk-sharing rule and the set of all the possible ρ’s is

denoted by RS. We will be particularly interested in the subset P ⊂ RS which190

is the set of all Pareto-efficient risk-sharing rules. First we need the following

definition.
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Definition 3.1 (Multi-period Pareto efficiency.) A risk-sharing rule (C1, C2, · · ·
CN , FN ) is called Pareto efficient, or Pareto optimal, if there does not exist an-

other risk-sharing rule (C̃1, C̃2, · · · C̃N , F̃N ) such that

(
EPu1(C̃1), · · · ,EPuN (C̃N ),EPup(F̃N )

)
	
(
EPu1(C1), · · · ,EPuN (CN ),EPup(FN )

)
.

We then have the following important theorem in this discrete probability

space, which can be seen as a generalization of the Borch-type characterization

of the Pareto efficiency: every Pareto-efficient risk-sharing rule can be totally195

characterized by optimizing a weighted time-additive aggregate utility.

Theorem 3.2 (Characterization of Pareto efficiency.) For a risk-sharing rule

(C1, C2, · · · , CN , FN ), the following statements are equivalent.

1. The risk-sharing rule is Pareto efficient.

2. The risk-sharing rule maximizes

EP
[
N∑

n=1

θnun(Cn) + θpup(FN )

]
(3.1)

for some positive constants θ1, · · · , θN , θp.200

3. The risk-sharing rule satisfies the following which are hereafter called

the intertemporal balance equations (IBEs) for some positive constants

θ1, · · · , θN , θp:

θnu
′
n(Cn) = θn+1EP

n

[
u′n+1(Cn+1)Rn+1

]
for n = 1, · · ·N − 1,

θNu
′
N (CN ) = θpu

′
p(FN ).

Proof See appendix. �

Remark 3.3 (Link to Borch [1].) Consider the case when tn = tn+1 for some

n. We must have that Xn+1 ≡ 0 and Rn+1 ≡ 1. Thus Fn = Fn+1 and the IBE

becomes

θnu
′
n(Cn) = θn+1EP

n

[
u′n+1(Cn+1)Rn+1

]
= θn+1u

′
n+1(Cn+1).

This means that in a single period setting, the IBEs will coincide with the

characterization of PE risk-sharing rules by Borch [1].
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Remark 3.4 (Comparison to the Euler equation.) The IBEs are very similar

to the famous Euler equation derived amongst others by Hall [16] for solving205

the consumption-savings model. In fact, the model setting in this paper can be

used as a life-cycle model. If we let the time points {tn} be equispaced and set

Rn = 1 + r and un = u for all n, then the model setting is also similar to Hall’s:

every period there is a stochastic earning and a consumption, which correspond

to the incoming “risk” and the “contingent payment” in this setting.210

The optimization targets are different regarding weighing intertemporally

the utilities: Hall assumed a single rate of subjective time preference δ while

the IBEs are parameterized by weight vector θ := (θ1, . . . , θN , θp).

Formula-wise, Hall gave

Enu′(Cn+1) =

(
1 + δ

1 + r

)
u′(Cn),

while the IBE gives

Enu′(Cn+1) =

(
θn
θn+1

1 + r

)
u′(Cn).

It is obvious that Hall adopts a specific set of weights in the scope of Theorem

3.2. As we shall see later, the weights θ can be seen as unknowns within the215

framework here and will be determined endogenously by the financial fairness

constraint. The interpretation is that, regarding the intertemporal substitution,

Hall adopts a single subjective discount factor while in the PEFF framework

the discount curve is determined by the market values of the consumption.

The theorem shows that it is equivalent to solve the optimization problem

(3.1) subject to the budget constraints when one wants to find the corresponding

PE risk-sharing rule given any θ ∈ RN+1
++ . We can then construct a mapping to

compute the PE solution given any θ ∈ RN+1
++ , which we will call Φ : RN+1

++ →
P. This can be done by solving the corresponding parameterized optimization

13



problem of time-additive utility functions:

max
C1,··· ,CN

EP
[
N∑

n=1

θnun(Cn) + θpup(FN )

]

such that Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N,

F0 = 0.

This optimization problem can be solved by dynamic programming. Add in a

new time point tN+1 = tN , and

XN+1 ≡ 0, RN+1 ≡ 1.

Define

An := Xn + Fn−1Rn n = 1, · · · , N + 1,

which has the interpretation as the total available asset at time tn to be divided

into the current payment and the buffer for later use. Note that by definition

AN+1 = FN . The A’s are the state variables, the C’s are the decision variables

and the X’s and R’s are the risks. Then we shall have the optimization problem

formulated as

max
C1,··· ,CN

EP
[
N∑

n=1

θnun(Cn) + θpup(AN+1)

]

such that An+1 = Xn+1 + (An − Cn)Rn+1, n = 1, · · · , N,

A1 = X1.

Proposition 1.3.1 in [17] shows that in order to solve the problem one needs

to define the value functions (indirect utility): first for the last period

VN+1(AN+1) = θpup(AN+1),

and then define backwards, for n = 1, · · · , N

Vn(An) = max
Cn

EP
n [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] . (3.2)

14



The final result is presented below. This mapping Φ gives an explicit expression220

of the risk-sharing rule ρ as a function of the weights θ, which makes it possible

to express the financial fairness condition in terms of the weights later in the

paper.

Theorem 3.5 (The construction of Φ.) For any given θ = (θ1, · · · , θN , θp) ∈
RN+1

++ , the corresponding PE solution ρ = (C1, · · · , CN , FN ) is given by

An = Xn + Fn−1Rn n = 1, · · · , N, (3.3)

Cn = In

(
gn(An)

θn

)
n = 1, · · · , N, (3.4)

Fn = Hn

(
gn(An)

θn+1

)
n = 1, · · · , N − 1, (3.5)

FN = Ip

(
gN (AN )

θp

)
, (3.6)

where the functions are defined recursively by

GN (x) := IN

(
x

θN

)
+ Ip

(
x

θp

)
,

gN (x) := G−1
N (x),

and for n = 1, · · · , N − 1

hn(x) = EP
n

[
1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
(3.7)

= EP
[

1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
, (3.8)

Hn = h−1
n ,

Gn(x) := In

(
x

θn

)
+Hn

(
x

θn+1

)
,

gn(x) := G−1
n .

The mapping (3.3) - (3.6) is denoted as Φ : θ 7→ ρ,RN+1
++ → P.

Proof See appendix. Please note that from expression (3.7) to (3.8) we utilized225

the assumption that the processes X and R are sequentially independent. �
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The functions above have the following interpretation. While u′n is the

marginal utility function of the contingent payment Cn, the function hn is the

implied marginal utility of the buffer Fn and gn the implied marginal utility

of the total available asset An. The capital-letter functions I,H,G are the

corresponding inverse functions. The following relationships hold:

gn(An) = θnu
′
n(Cn) = θn+1hn(Fn), n = 1, · · · , N − 1,

gN (AN ) = θNu
′
N (CN ) = θpu

′
p(FN ).

The function g’s are also the derivatives of the value functions. The proof

in the appendix shows that for any n

V ′n(An) = gn(An).

Write

Ln := gn(An),

which is interpreted as the weighted marginal utility of the contingent payments.

Furthermore, the IBE will be translated into

Ln = EP
n[Ln+1Rn+1].

The idea of dynamic programming indicates that in each period, the system

has to ponder how to distribute the risks between the current contingent pay-

ment and all the future contingent payments: for any n < N , it compares the

marginal utilities of paying out the money now (i.e. Cn) or saving it for the

future (i.e. Fn):

θnu
′
n(Cn) v.s. θn+1hn(Fn).

The hn function is calculated by “summarizing” the expectations over the fu-

ture. This property allows us to convert an n-period problem into an induced

(n − 1)-period one, by regarding the time tn−1 as the new end of the system

and Fn−1 as the new end buffer with utility hn−1.230

This perspective is essential for the proofs later. As a first application, it

can help us link the settings of CEB and OEB to each other. First, as we have
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discussed, any OEB problem can be converted into a CEB problem by regarding

FN as an extra contingent payment CN+1 at tN+1 = tN . The following result

shows that in the sense of Pareto efficiency, the OEB and CEB are equivalent,235

thus we can work with the two environments interchangeably.

Proposition 3.6 (Equivalence between CEB and OEB problems.) The CEB

and the OEB are equivalent in the sense that they can always be converted into

the form of the other which can produce the identical PE risk-sharing rule.

Proof We only need to consider the direction from CEB to OEB. Given a

CEB case with PE risk-sharing rule (C1, · · · , CN ), utility functions (u1, · · · , uN )

and weights (θ1, · · · , θN ), we can create a corresponding OEB problem that

replicates the original setting for n = 1, · · · , N − 1 and truncate the system at

time tN−1 by defining

h(x) := EP
N−1 [u′N (XN + xRN )RN ]

as the marginal utility function for the new end buffer FN−1 together with

weight θN . Then according to the IBE for the CEB problem we have

θN−1u
′
N−1(CN−1) = θNEP

N−1 [u′N (CN )RN ]

= θNEP
N−1 [u′N (XN + FN−1RN )RN ]

= θNh(FN−1)

which matches the final-period IBE in Theorem 3.2. Thus according to the240

theorem the two settings should produce the same PE risk-sharing rules. The

only thing left is to verify that the function h(x) defined in this way is indeed

a (stereotype) marginal utility function; this has been done in the proof of

Theorem 3.5. �

There is one degree of freedom extra in determining θ, as for any c ∈ R++, θ245

and c · θ will produce essentially the same optimization target. But if we choose

a way of normalizing the θ’s, e.g. restrict the θ’s to the open unit simplex in

RN+1
++ , then we will have the following theorem which indicates that every PE
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risk-sharing rule ρ ∈ P can be uniquely characterized by the weights θ, and the

function Φ is a meaningful bijection between all the PE risk-sharing rules ρ’s250

and the weights θ’s.

Theorem 3.7 Φ is a one-to-one mapping between the set of all the Pareto

efficient risk-sharing rules P and the open unit simplex in RN+1
++ , i.e. the set

U := {c ∈ RN+1
++ |c1 + · · · cN+1 = 1}.

Proof This can be seen as a corollary of Theorem 3.2. We discuss the two255

directions.

1. U → P: the mapping Φ maps any θ ∈ RN+1
++ into P. This mapping is not

injective. Consider some θ and θ′ such that Φ(θ) = Φ(θ′). Then we show

that there will exist some c ∈ R++ such that θ = cθ′ thus Φ is injective if

restricted on U .260

By the IBEs we know that

θn
θn+1

=
Enu′n+1(Cn+1)Rn+1

u′n(Cn)
for n = 1, · · ·N − 1

and
θN
θp

=
u′p(FN )

u′N (CN )
.

This indicates
θn
θn+1

=
θ′n
θ′n+1

for n = 1, · · ·N − 1

and
θN
θp

=
θ′N
θ′p

We then have

θ =
θ1

θ′1
θ′.

Φ will be an injective mapping if restricted on U .

2. P → U : Theorem 3.2 shows that for any element ρ ∈ P, there exists some

θ ∈ RN+1
++ such that Φ(θ) = ρ.
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We conclude from the above discussion that Φ is both injective and surjective.

It must be bijective. �265

We conclude this section by some useful properties of the PE risk sharing

system. First, we give the following result which seems quite intuitive: every

agent will be better off when the realization of the risks is (strictly) better. We

call this the monotonicity property of the system with respect to the risks.

Lemma 3.8 (Monotonicity property of the system with respect to the risks.)270

For any θ ∈ RN+1
++ , consider two trajectories J, J∗ ∈ JN such that (XJ , RJ) 	

(XJ∗ , RJ
∗
). Then we have ρJ 	 ρJ

∗
.

Proof See appendix. �

The following result illustrates the impact of the weight θ on the contingent

payments: if some weight increases while the others stay the same, then along275

any trajectory, the corresponding contingent payment will increase while the

other contingent payments will decrease.

Lemma 3.9 (Monotonicity property of the system with respect to the weights.)

Consider two weights θ = (θ1, · · · , θN , θp), θ′ = (θ′1, · · · , θ′N , θ′p) ∈ RN+1
++ such

that there exists some n = 1, · · · , N, p that

θn > θ′n, θi = θ′i ∀i 6= n.

Then we have that for any trajectory J ∈ JN , the corresponding PE risk-sharing

rules satisfy

CJn > C ′Jn , CJi < C ′Ji ∀i 6= n.

Here for convenience we let Cp = FN .

Proof See appendix. �
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4. Financial Fairness280

As we have discussed, the PE risk-sharing rules can be totally characterized

by the points on the open unit simplex in RN+1
++ and thus there will be infinitely

many such PE rules. We will see in the following that the concept of financial

fairness will help us narrow down our scope – finally we will arrive at a unique

risk-sharing rule that is both PE and FF.285

The concept of financial fairness means that when the system starts, for

each agent involved, the market value of the risks he contributes into the system

should be equal to that of the contingent payments he gets after risk sharing.

FF will work via the concept of value profile, which is the vector of the values

of the contingent payments under the risk-neutral measure Q, that is, for any

ρ = (C1, · · · , CN , FN ) ∈ RS

v = (v1, v2, · · · , vN , vp) := EQρ =
(
EQC1,EQC2, · · · ,EQCN ,EQFN

)
∈ RN+1.

(4.1)

As before we consider no discounting and we simply use the Q–expectation as

market values.

The set of all the possible value profiles V can only be a restricted subset of

RN+1. First note it is trivial that

vn > bn for n = 1, · · · , N ; vp > bp

according to the domain requirements of the utility functions. Next, according

to the global budget constraint (2.3) we shall have, by taking the expectation

under Q to both sides

N−1∑

n=1

[
vn

(
N∏

i=n+1

(1 + ri)

)]
+ vN + vp =

N−1∑

n=1

[
xn

(
N∏

i=n+1

(1 + ri)

)]
+ xN .

(4.2)

We can then write

V =
{
v ∈ RN

∣∣∣Eq (4.2) holds; vn > bn for n = 1, · · · , N ; vN+1 > bp

}

(4.3)
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as the set of all possible value profiles. Note that the set V is totally determined

by the market values of risks and the utility functions.

Remark 4.1 The global budget constraint suggests that for any given value

profile vector v := (v1, · · · , vN , vp), we only have to consider any N coefficients.

For instance, if the following hold

EQCn = vn n = 1, · · · , N

then

EQFN = vp

will automatically be satisfied.290

5. Existence and Uniqueness of the PEFF Risk Sharing Rule

The theorems in this section will show that the solution exists and is actually

unique if we combine the Pareto efficiency with financial fairness. We continue to

work with the general situation when there are N contingent payments alongside

the buffer, N ≥ 1. For any given value profile v := (v1, · · · , vN , vp) ∈ V, the295

corresponding PEFF risk-sharing rule is the solution to the following equation

system:

1. budget constraints (BCs):

Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N ; (5.1)

2. intertemporal balance equations (IBEs):

θnu
′
n(Cn) = θn+1EP

n

[
u′n+1(Cn+1)Rn+1

]
n = 1, · · ·N − 1,

θNu
′
N (CN ) = θpu

′
p(FN ); (5.2)

3. financial fairness constraints (FFs):

EQCn = vn n = 1, · · · , N. (5.3)
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Please note that the BC and IBE equations above are actually equations

between functions. The equations should hold for all possible trajectories.

The following theorem is one of the key results of this paper. It indicates300

that for the equation system above, the solution always exists and is unique,

thus it establishes the existence and uniqueness of the PEFF risk-sharing rule.

Theorem 5.1 (The existence and uniqueness of the PEFF risk-sharing rule.)

For any given value profile vector v ∈ V, the PEFF risk-sharing rule exists and

is unique. The corresponding θ is unique up to normalization.305

Proof See appendix. �

According to Theorem 3.2, the function sets BC and IBE characterize all

the possible PE risk-sharing rules by way of weights θ ∈ RN+1
++ . The theorem

above then shows that the value profile determines a unique θ.

Recall that in Theorem 3.5 Φ defines a bijective mapping from U to the set310

of all PE risk-sharing rules P. The mapping Φ then induces a natural mapping

Ψ from U to V: Ψ(θ) = EQΦ(θ). This Ψ links the set of all the possible weights

θ and the set of all the possible value profiles.

Theorem 5.2 Ψ is a one-to-one mapping between the set of all possible value

profiles V and the open unit simplex U in RN+1
++ .315

Proof Theorem 5.1 shows that Ψ is surjective: for any given v ∈ V there exists

a θ ∈ RN+1
++ such that Ψ(θ) = EQΦ(θ) = v.

This Ψ is also injective restricted on the open unit simplex U because of

the uniqueness of θ up to normalization. Suppose there are θ1, θ2 ∈ U such

that Ψ(θ1) = Ψ(θ2). Theorem 5.1 indicates that Φ(θ1) = Φ(θ2), as for each320

value profile, there will exist exactly one PE risk-sharing rule such that the FF

condition is satisfied. According to Theorem 3.7, it must be that θ1 = θ2 as

they both belong to the open unit simplex U . �

We can then say that the θ uniquely determines the value profile of any PE

risk-sharing rule, and also vice versa. Instead of talking about the weights θ we325
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can now talk about the value profiles which seem more tangible. However, we

cannot say more of the mapping Ψ; the structure of it can be very complicated

depending on the utility functions one uses.

6. A General Algorithm for Finding PEFF Solution

Looking for the PEFF risk-sharing rule will come down to solving a system of330

both linear and non-linear equations. In most cases there’s no hope for explicit

solutions; fortunately, we have a numerical algorithm that helps to find the

PEFF solution.

Recall that

Ln = θnu
′
n(Cn) n = 1, · · · , N

are the weighted marginal utilities of the contingent payments as determined by

the risk-sharing rule at time tn. According to the IBEs

Ln = EP
n[Ln+1Rn+1] n = 1, · · · , N − 1,

thus the whole sequence {Ln} is known once LN is known.

In Theorem 3.5 we constructed a mapping Φ : RN+1
++ → P from the sets of

functions BC and IBE. Given the mapping Φ, we can deduce another mapping

ϕ1 by

ϕ1(θ) = LN = θNu
′
N (CN ) = θNu

′
N (Φ(N)(θ)),

where Φ(N)(·) stands for the N -th coordinate of this vector-valued function. ϕ1

maps any θ ∈ RN+1
++ into some LN . For any LN , another mapping ϕ2 : LN 7→ θ

can be constructed based on the FF constraints: note that according to the

mapping Φ we have

Cn = In

(
Ln
θn

)
n = 1, · · · , N ;

FN = Ip

(
LN
θp

)
,

and

Ln = En[Ln+1Rn+1].
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This allows us to find a θ′ such that the FF conditions are satisfied for the

given LN :

EQCn = EQIn

(
Ln
θ′n

)
= vn for n = 1, · · · , N ; (6.1)

EQFN = EQIp

(
LN
θ′p

)
= vp. (6.2)

The function ϕ2 is well defined since

EQCn = EQIn

(
Ln
θn

)
=
∑

J∈Jn
Q(J)In

(
LJn
θn

)

is a strictly increasing and continuous function in θn with θn ∈ R++. Thus

ϕ2(n)(LN ) :=

[
EQIn

(
Ln
·

)]−1

(vn)

is well defined. This holds for all n = 1, · · · , N and also for FN , thus ϕ2 is335

well-defined. Please note that one and only one coordinate of the weight vector

θ is solved in every single equation (6.1) and (6.2).

Consider the composition of the two functions ϕ = ϕ2 ◦ ϕ1: it is a mapping

from RN+1
++ into itself. Theorem 5.1 indicates that there always exists a unique

fixed point of this mapping ϕ, which corresponds to the PEFF risk-sharing rule.340

The next theorem shows that ϕ suggests an iterative algorithm for finding the

PEFF solution.

Theorem 6.1 (Feasibility of an iterative algorithm by ϕ.) For any given start-

ing point θ ∈ RN+1
++ with any proper normalization, the sequence of iterates

{ϕ(n)(θ)|n ∈ N+} will converge to the fixed point of ϕ.345

Proof See Appendix. �

Theorem 6.1 suggests that starting with any given θ, one first finds the

corresponding LN by ϕ1 and then updates the value of θ by ϕ2. It is more

convenient, in fact, to use function Φ instead of ϕ1, i.e. we map θ to ρ directly

and in the second step we update the θ accordingly. In the first step, we need350

to calculate numerically the functions g’s and h’s backwards in time, and once

24



all the functions are ready, we then go forwards in time and calculate all the

C’s and F ’s from the starting distribution X1.

Algorithm 1 (Numerical algorithm for finding the PEFF solution.) The fol-

lowing gives a description of the numerical algorithm for finding the PEFF355

solution.

1. Start with some initial θ(0) ∈ RN+1
++ .

2. For any given θ(m) with m ∈ N, calculate backwards in time that

G
(m)
N (x) := IN

(
x

θ
(m)
N

)
+ Ip

(
x

θ
(m)
p

)
,

g
(m)
N (x) :=

(
G

(m)
N

)−1

(x),

and for n = 1, · · · , N − 1

h(m)
n (x) = EP

[
1

θ
(m)
n+1

g
(m)
n+1(Xn+1 + xRn+1)Rn+1

]
,

H(m)
n =

(
h(m)
n

)−1

,

G(m)
n (x) := In

(
x

θ
(m)
n

)
+H(m)

n

(
x

θ
(m)
n+1

)
,

g(m)
n (x) :=

(
G(m)
n

)−1

.

3. Calculate the decision variables forwards in time by

A(m)
n = Xn + F

(m)
n−1Rn n = 1, · · · , N,

C(m)
n = In

(
g

(m)
n (A

(m)
n )

θ
(m)
n

)
n = 1, · · · , N,

F (m)
n = H(m)

n

(
g

(m)
n (A

(m)
n )

θ
(m)
n+1

)
n = 1, · · · , N − 1,

F
(m)
N = Ip

(
g

(m)
N (A

(m)
N )

θ
(m)
p

)
.

25



4. Update the θ from θ(m) to θ(m+1) by solving

EQC(m)
n = EQIn

(
g

(m)
n (A

(m)
n )

θ
(m+1)
n

)
= vn n = 1, · · · , N ;

EQF (m)
N = EQIp

(
g

(m)
N (A

(m)
N )

θ
(m+1)
p

)
= vp.

5. Normalize θ(m+1).

6. If, for some pre-specified error tolerance ε

∣∣EQC(m)
n − vn

∣∣ < ε n = 1, · · · , N,
∣∣EQF (m)

N − vp
∣∣ < ε,

we conclude that ρ(m) =
(
C

(m)
1 , · · · , C(m)

N , F
(m)
N

)
is the PEFF risk-sharing

rule we are looking for. Otherwise, go to step 2 with θ(m+1).360

Remark 6.2 (Comparison to the algorithm proposed by Pazdera et al. [15].)

As has been mentioned, the framework introduced here can also deal with the

single-period situation, which has been investigated by Pazdera et al. [15].

There is a significant difference between the two numerical algorithms, though.

The algorithm here makes use of the induction technique that the number of365

contingent payments is reduced by one recursively, thus in each iteration the

algorithm always calculate the functions backwards and then the distributions

of the decision variables forwards. In contrast, the algorithm in [15] need not use

such an induction technique; functions and decision variables can be calculated

simultaneously in each iteration. The algorithm in [15] offers more efficiency for370

the single-period problem, while the algorithm here is more versatile and can

deal with multi-period problems.

7. Examples

In this section we give two examples of the PEFF risk sharing. In the

first example we implement Algorithm 1 in a simple case where each of the375

financial risks has only two possible outcomes. The second example deals with

exponential utility functions where we may have explicit PEFF solution.
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7.1. Implementing the Algorithm: the Case of Two-Valued Random Variables

We start with a 3-period setting where three agents gather to share their

risks. As shown in Figure 3, there are four time points t = 0, 1, 2, 3. For

n = 1, 2, 3, agent n exists between time points n − 1 and n. He receives a

stochastic income Xn as the risk and he gets Cn as the contingent payment.

The distributions of Xn are given by

P(Xn = 1.2) = 0.6, P(Xn = 0.8) = 0.4;

Q(Xn = 1.2) = 0.5, Q(Xn = 0.8) = 0.5.

In the autarky case where the agents are all on their own, agent n will get

Cn = Xn and there is no risk sharing among the agents.380

Remark 6.2 (Comparison to the algorithm proposed by Pazdera et al. [15].) As350

has been mentioned, the framework introduced here can also deal with the single-

period situation, which has been investigated by Pazdera et al. [15]. There is a

significant difference between the two numerical algorithms, though. The algorithm

here makes use of the induction technique that the number of contingent payments is

reduced by one recursively, thus in each iteration the algorithm always calculate the355

functions backwards and then the distributions of the decision variables forwards. In

contrast, the algorithm in [15] need not use such an induction technique; functions

and decision variables can be calculated simultaneously in each iteration. The

algorithm in [15] offers more efficiency for the single-period problem, while the

algorithm here is more versatile and can deal with multi-period problems.360

7. Examples

In this section we give two examples of the PEFF risk sharing. In the first

example we implement Algorithm 1 in a simple case where each of the financial

risks has only two possible outcomes. The second example deals with exponential

utility functions where we may have explicit PEFF solution.365

7.1. Implementing the Algorithm: the Case of Two-Valued Random Variables

We start with a 3-period setting where three agents gather to share their risks.

As shown in Figure 3, there are four time points t = 0, 1, 2, 3. For n = 1, 2, 3, agent

n exists between time points n − 1 and n. He receives a stochastic income Xn as

the risk and he gets Cn as the contingent payment. The distributions of Xn are

given by

P(Xn = 1.2) = 0.6, P(Xn = 0.8) = 0.4;

Q(Xn = 1.2) = 0.5, Q(Xn = 0.8) = 0.5.

In the autarky case where the agents are all on their own, agent n will get Cn = Xn

and there is no risk sharing among the agents.

t = 0

↓
F0

↓
X1

1

↑
C1

↓
X2

2

↑
C2

↓
X3

3

↑
C3, F3

Figure 3: Timeline for Section 7.1
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Figure 3: Timeline for Section 7.1

We consider the situation when the three agents gather to share their stochas-

tic incomes in a PEFF way. The capital in the buffer is always invested in asset

R with Rn ≡ 1 for n = 1, 2, 3 for simplicity. The budget constraints are then

Cn + Fn = Xn + Fn−1 n = 1, 2, 3.

The FF constraints are

EQCn = 1 n = 1, 2, 3

and

EQF3 = F0.

We assume that a buffer is available for the agents with initial capital F0 = 1.

The reason for starting with a positive buffer size is that we will later use power

utility for F3 and F3 is required to be strictly positive, and so is EQF3.
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Power utility functions are used to evaluate the utility. We assume that the

agents use

un(x) =
x1−γ

1− γ with γ = 3, n = 1, 2, 3.

We

We will consider both the OEB case where the end buffer is also a decision385

variable, and the CEB case where the end buffer will be a constant. In the OEB

case, power utility with γ = 3 is also used to evaluate the end buffer.

The IBEs in the OEB case are

θ1u
′
1(C1) = θ2EP

1 [u′2(C2)] ,

θ2u
′
2(C2) = θ3EP

2 [u′3(C3)] ,

θ3u
′
3(C3) = θpu

′
p(F3).

In the CEB case we only have the first two sets of IBEs since the end buffer size

is a constant. In any case, the IBEs have to hold along all the trajectories.

Figures 4 and 5 show the distributions of the risks, under both the PEFF390

case and the autarky case. The details of the distributions are shown in the

appendix.
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Figure 4: Payments to agents under P, CEB

The interpretation of the results. In both the CEB case and the OEB

case, agent 1 and 2 have effectively shifted some of the volatilities to the last

agent, which can be seen from the fact that C1 and C2 from the PEFF solution395

are less dispersed than the autarky situation. Agent 3 can be better off in the

28



0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

C
1

P
−

P
ro

b.

 

 
PEFF
Aut.

0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

C
2

P
−

P
ro

b.

0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

C
3
, F

3

P
−

P
ro

b.

Figure 5: Payments to agents under P, OEB

best-outcome scenario and worse off in the worst-outcome scenario compared

to the autarky case. As a compensation for higher volatility, he benefits from

a higher expected return. See Table 1. An important feature of the PEFF

solution is that by design, the PEFF solution satisfies the FF constraints.400

Expected return Standard deviation

PEFF,

CEB

PEFF,

OEB

Autarky PEFF,

CEB

PEFF,

OEB

Autarky

Agent 1 1.0141 1.0101 1.0400 0.0689 0.0497 0.1960

Agent 2 1.0349 1.0236 1.0400 0.1235 0.0826 0.1960

Agent 3 1.0711 1.0431 1.0400 0.2247 0.1271 0.1960

Table 1: Comparison of PEFF and autarky solutions: statistics

The difference between the CEB and the OEB case is that in the OEB case,

F3 can also absorb some risks. The results are lower expected returns under

P and smaller standard deviations for the payments Cn compared to the CEB

case. Note that C3 and F3 have identical distributions. This is because they

are assigned the same utility functions and the same ex-ante market values.405

The results also shed some light on the issue of individual rationality, which

says that if the agents are rational, they are willing to take part in the risk

sharing system only when the risk sharing gives welfare improvements. This
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is a different concept from Pareto efficiency, and in general the PEFF solution

does not necessarily result in larger expected utility for every agent. In this410

example, it is possible to compare the expected utility for each agent. Table

2 shows the comparison of expected utilities in terms of certainty equivalents.

It is clear that in both the CEB and the OEB cases, the agents all experience

welfare improvements and should be willing to participate in the risk sharing

system.415

PEFF, CEB PEFF, OEB Autarky

Agent 1 0.9905 1.0064 0.9798

Agent 2 1.0113 1.0132 0.9798

Agent 3 1.0068 1.0183 0.9798

Table 2: Certainty equivalents

Illustration of Algorithm 1. Algorithm 1 indicates that to find the PEFF

solution, one starts with some initial weights θ, calculates the functions gn and

hn, gets the distributions of the decision variables, and then updates the weights

until they converge to some θ∗. Setting the error tolerance ε = 10−6, the weight

usually converges in less than ten iterations and is not sensitive to the starting420

values.

Figure 6 shows the functions hn and gn. Recall that for n = 1, 2, hn can

be seen as the implied marginal utility function for the buffer size Fn, and for

n = 1, 2, 3, gn can be seen as the implied indirect marginal utility function for

the total asset An.425

7.2. Explicit PEFF Solution: the Case of Exponential Utility Function

This section discusses a special case when we assume the Rn’s are all con-

stants (thus only the risks X are stochastic) and exponential utility functions

(the constant-absolute-risk-aversion (CARA) utility) are used for all the contin-

gent payments

un(x) = 1− e−αnx, for n = 1, · · · , N,
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Figure 6: Functions hn and gn

and also for the end buffer

up(x) = 1− e−αpx.

Then we will have an explicit PEFF solution: the contingent payments are

actually linear functions of the risks.

Theorem 7.1 (PEFF solution under CARA utilities and deterministic asset

returns.) The PEFF solution to an N-period problem with exponential utility

functions and deterministic asset returns {Rn} is of the form

Cn = an [(Xn + Fn−1Rn)− wn] + vn = an(An − wn) + vn,

Fn = An − Cn = (1− an)An − (vn − anwn),

where

wn := EQAn

which can be calculated recursively from the budget constraints and the an’s are

defined recursively by

aN =
αp

αp + αN
, (7.1)

an =
an+1αn+1Rn+1

αn + an+1αn+1Rn+1
n = 1, · · · , N − 1. (7.2)

Proof See appendix. �
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Theorem 7.1 shows that under CARA utility, each contingent payment only430

takes a proportion an of An−wn which is the excess return from total available

asset, thus only takes part of the risk. The remaining part (1−an) is shifted into

the future. Under the CARA utility assumption, the risk-sharing rules don’t

depend on the distribution of the random variables.

Remark 7.2 Suppose Rn ≡ R = 1 + r for n = 1, · · · , N . Also, let αn ≡ α for

n = 1, · · · , N , that is, we assume the same risk aversion level for all the agents

except the buffer. The equations (7.2) become

an =
an+1R

1 + an+1R
.

If we let N →∞, then we shall have

an →
R− 1

R
≈ r,

that is, given a sufficiently long horizon, the proportion that each agent takes435

from the total excess return is approximately equal to the risk-free rate.

8. Concluding Remarks

In this paper we have explored solving a multi-period risk sharing problem

under the concept of Pareto efficiency and financial fairness. The important

results are:440

1. Theorem 3.2 characterizes the Pareto efficient risk-sharing rules: every PE

risk-sharing rule can be associated uniquely to an optimization problem

with the objective function being the weighted aggregate expected utility

of the contingent payments, which can be further translated into the in-

tertemporal balance equations. Theorem 3.5 shows how to compute the445

risk-sharing rule given the weights.

2. Theorem 5.1 establishes the existence and uniqueness of a PEFF risk-

sharing rule. Furthermore, Theorem 5.2 indicates that the value profile

will uniquely determine the weights.
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3. Theorem 6.1 guarantees the possibility to find unique the PEFF rule nu-450

merically by a universal algorithm.

We conclude this paper with some comments on further possibilities. First,

we have assumed that each agent can have only one contingent payment as a way

of simplification. As a result, the optimization target (3.1) is time-additive and

the value profile is straightforward to determine. If we make the generalization455

that each agent can have multiple contingent payments in different periods,

two issues need to be resolved. Utility-wise, one needs to choose a preference

functional for evaluating the welfare; value-wise, the fairness constraint in such

a setting needs to be formulated. Some cases are essentially different from the

setting in this paper, and the existence and uniqueness of the PEFF solution460

may have to be re-established.

In this paper the financial fairness is defined in an ex ante sense, i.e. the

market values of the contingent payments will match the given value profile only

at the time when the system starts. The FF will generally not hold ex interim,

as the contingent payments are by nature contingent claims and their market465

values will change after the system starts. For a collective pension system which

may include already the unborn cohorts at start, this issue may result in the

so-called discontinuity problem: some future cohort may find themselves in a

very disadvantageous position when they have to face a large deficit in the

buffer left by the previous generations because of some preceding bad financial470

performance. The later cohort may argue that they didn’t have a say when

the system was initiated, thus they may choose not to step into the system.

Strict ex-interim FF is meaningful, but leaves little space for intergenerational

risk sharing. One may then adopt some fairness condition that lies between the

two extremes as a compromise. These possibilities are beyond the scope of this475

paper and may be future topics of interest.
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AppendixA. Proofs for Section 3

For any risk sharing rule ρ = (C1, · · · , CN , FN ) ∈ RS, let

u(ρ) := (u1(C1), · · · , uN (CN ), up(FN ))

and

φ := EPu(ρ) = (EPu1(C1), · · · ,EPuN (CN ),EPup(FN )) ∈ RN+1.

First note that φ is a strictly concave and increasing function of ρ with

co-domain RN+1. The PE optimization target then becomes

EP
[
N∑

n=1

θnun(Cn) + θpup(FN )

]
= 〈θ, φ〉

where θ = (θ1, · · · , θN , θp) ∈ RN+1
++ .

We need the following definitions and results in preparation for the proof of

Theorem 3.2.

Lemma AppendixA.1 Consider n concave functions {fi|i = 1, · · · , n} from a525

common domain K to R ∪ {−∞}. Then F (K)−Rn+ := {x− y|∀x ∈ F (K), y ∈
Rn+} is convex where F := (f1, f2, · · · , fn).

Proof See the proof of Proposition 2.6 from Aubin [18]. �

We will use a separation theorem in the proof of Theorem 3.2. We then need

to introduce the following definitions. 1
530

Definition AppendixA.2 (Affine sets in Rn.) A subset M ∈ Rn is called an

affine set if (1− λ)x+ λy ∈M for any x, y ∈M and λ ∈ R.

Definition AppendixA.3 (Affine hull.) The affine hull of any subset M ∈
Rn, which is denoted as aff (M), is the smallest affine set that contains M .

1Interested readers are referred to Rockafeller [19] for more details.
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Definition AppendixA.4 (Relative interior and boundary.) The relative in-535

terior of a convex set C ⊂ R, which is denoted as ri(C), is defined as the interior

of C when it is regarded as a subset of aff (C). The relative boundary of C is

the difference of the closure of C and the relative interior of C.

The following lemma is crucial in proving Theorem 3.2.

Lemma AppendixA.5 Let C be a convex set. A point x ∈ C is a relative540

boundary point of C if and only if there exists a linear function not constant on

C such that it achieves its maximum over C at x.

Proof See Corollary 11.6.2 by Rockafellar [19]. �

Proof of Theorem 3.2.

1 ⇒ 2 : Let ρ = (C1, C2, · · ·CN , FN ) be PE. Then we have that φ(RS) −
RN+1

+ is convex by Lemma AppendixA.1. Note that an element ρ∗ is PE if and

only if

{φ(ρ∗)} ∩
(
φ(RS)− RN+1

+

)
= {φ(ρ∗)}

and

{φ(ρ∗)} ∩
(
φ(RS)− RN+1

+

)◦
= ∅.

Otherwise, if {φ(ρ∗)} ∈
(
φ(RS)− RN+1

+

)◦
, then there exist ρ′ ∈ RS and c ∈545

RN+1
+ with c 6= 0 such that φ(ρ∗) = φ(ρ′)−c, which means ρ′ results in a Pareto

improvement. This is in contradiction with the assumption that ρ∗ is PE.

φ(RS)−RN+1
+ is a full-dimensional set thus its relative interior is the same

as its interior. Write φ∗ = φ(ρ∗). Then φ∗ is a relative boundary point of

φ(RS)−RN+1
+ , as it belongs to φ(RS)−RN+1

+ , thus to its closure, but not its

relative interior. According to Lemma AppendixA.5, for this φ∗, there exists a

θ∗ 6= 0 such that

sup
φ∈φ(RS)−RN+1

+

〈θ∗, φ〉 ≤ 〈θ∗, φ∗〉.

First note that any coordinates of θ∗ cannot be negative as then

sup
φ∈φ(RS)−RN+1

+

〈θ∗, φ〉 = +∞.
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No coordinates of θ∗ can be zero. If this would be the case, suppose θ∗1 = 0

while θ∗2 > 0 without loss of generality. Then any ρ = (C1, C2, · · ·CN , FN )

cannot be optimal since for any small ε > 0 such that Cj11 − ε > b1 for all550

j1 ∈ J1, ρε = (C1 − ε, C2 +R2ε, · · ·CN , FN ) will result in a larger optimization

target because u2 is strictly increasing.

2 ⇒ 1 : consider a risk-sharing rule ρ that maximizes 〈θ, φ〉 for some θ ∈
RN+1

+ . If ρ is not PE, then there exists another ρ̃ such that φ̃ 	 φ and hence

〈θ, φ̃〉 > 〈θ, φ〉

which results in a contradiction.

2 ⇔ 3 : as we are working with a finite probability space, we may use the

Lagrangian multiplier method to solve the maximization problem.555

For n = 1, · · · , N , reorganize the budget constraint and we have

F Jn−1jn
n + CJn−1jn

n −Xjn
n − F Jn−1

n−1 Rjnn = 0.

Define

F Jn−1jn
n + CJn−1jn

n −Xjn
n − F Jn−1

n−1 Rjnn

as BCJn−1jn or BCJn .

We then maximize

N∑

n=1

{
θn

∑

Jn∈Jn
P(Jn)un(CJnn ) +

∑

Jn∈Jn
λJnBCJn

}
+ θp

∑

JN∈JN
P(JN )up(F

JN
N )

where the λ’s are the Lagrangian multipliers.

For any n < N , setting the first-order partial derivative with respect to CJnn

to zero will help us find a stationary point of the optimization problem. It gives

P(Jn)θnu
′
n(CJnn ) + λJn = 0 ∀Jn ∈ Jn.

For n+ 1 similarly we have, along the trajectory Jn

P(Jnjn+1)θn+1u
′
n+1(C

Jnjn+1

n+1 ) + λJnjn+1 = 0 ∀jn+1 ∈ J n+1
n .

Now take the partial derivative with respect to Fn and set to zero

λJn =
∑

jn+1∈Jn+1
n

λJnjn+1R
jn+1

n+1 .
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This will lead to

θnu
′
n(CJnn ) = θn

∑

jn+1∈Jn+1
n

u′n+1(C
Jnjn+1

n+1 )R
jn+1

n+1

P(Jnjn+1)

P(Jn)
.

By the assumption of sequential independence we have

P(Jnjn+1)

P(Jn)
= P(jn+1).

Then the equation can be further rewritten as

θnu
′
n(Cn) = θn+1EP

n

[
u′n+1(Cn+1)Rn+1

]
for n = 1, · · ·N − 1.

CN and FN are both FN -measurable and we have

θNu
′
N (CJNN ) = θpu

′
p(F

JN
N ) = −λJN

by taking partial derivatives with respect to CN and FN and setting them to

be zero.

We have arrived at a stationary point thanks to the Lagrangian multiplier560

method; this stationary point is the unique global optimum once we note that

the optimization target is a concave function with respect to the decision vari-

ables and the feasible set is convex. �

Proof of Theorem 3.5. The optimization target (3.1) is a parameterized

optimization problem of time-additive utility functions:

max
C1,··· ,CN

EP
[
N∑

n=1

θnun(Cn) + θpup(FN )

]

such that Fn + Cn = Xn + Fn−1Rn n = 1, · · · , N,

F0 = 0.

This optimization problem can be solved by dynamic programming. Add in a

new time point tN+1 = tN , and

XN+1 ≡ 0, RN+1 ≡ 1.

Define

An := Xn + Fn−1Rn n = 1, · · · , N + 1,
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which has the interpretation as the total available asset at time tn to be divided

into the current cash flow and the buffer for later use. Note that by definition

AN+1 = FN . The A’s are the state variables, the C’s are the decision variables

and the X’s and R’s are the risks. Then we shall have the optimization problem

formulated as

max
C1,··· ,CN

EP
[
N∑

n=1

θnun(Cn) + θpup(AN+1)

]

such that An+1 = Xn+1 + (An − Cn)Rn+1, n = 1, · · · , N,

A1 = X1.

Proposition 1.3.1 in [17] tells that in order to solve the problem one needs

to define first

VN+1(AN+1) = θpup(AN+1),

and then define backwards, for n = 1, · · · , N

Vn(An) = max
Cn

EP
n [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] . (A.1)

This can be solved by taking the derivative of

EP
n [θnun(Cn) + Vn+1(Xn+1 + (An − Cn)Rn+1)] (A.2)

with respect to Cn and setting it to zero. We will start from period N and go

backwards in time in order to verify the differentiability of the Vn’s. For period

N , note that the target (A.2) becomes

θNuN (CN ) + θpup(FN ) = θNuN (CN ) + θpup(AN − CN ).

The conditional expectation drops out because of the measurability of CN and

FN . It is continuous and differentiable with respect to CN . Take the derivative

and set it to zero; we get

θNu
′
N (C∗N ) = θpu

′
p(A

∗
N − C∗N ) := L∗N .

Here the star indicates that it is the optimal solution. Next, define

GN (x) := IN

(
x

θN

)
+ Ip

(
x

θp

)
,

gN (x) := G−1
N .
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Both GN and gN are well-defined. GN is the sum of two strictly decreas-

ing bijective functions thus it is strictly decreasing and bijective from R++ to

(max{bN , bp},+∞), and it follows that gN is also strictly decreasing and bijec-

tive from (max{bN , bp},+∞) to R++. The Inada conditions tell

lim
x→0

GN (x) = +∞, lim
x→+∞

GN (x) = max{bN , bp}

and thus

lim
x→max{bN ,bp}

gN (x) = +∞, lim
x→+∞

gN (x) = 0.

L∗N can then be calculated as

L∗N = gN (A∗N )

and

C∗N = IN

(
L∗N
θN

)
, F ∗N = Ip

(
L∗N
θp

)
.

The value function is

VN (A∗N ) = θNuN (C∗N ) + θpup(A
∗
N − C∗N ),

which is a differentiable function of A∗N when we regard A∗N as its argument:

V ′N (A∗N ) = θpu
′
p(A

∗
N − C∗N ) = θpu

′
p(F

∗
N ) = gN (A∗N ).

Going one period backwards, we have the value function

VN−1(AN−1) = max
CN−1

EP
N−1 [θN−1uN−1(CN−1) + VN (XN + (AN−1 − CN−1)RN )] .

The part

EP
N−1 [θN−1uN−1(CN−1) + VN (XN + (AN−1 − CN−1)RN )]

=
∑

j∈JNN−1

P(j)
[
θN−1uN−1(CN−1) + VN (Xj

N + (AN−1 − CN−1)RjN )
]

is a differentiable function of CN−1 when we regard CN−1 as its argument. We

then take the derivative with respect to CN−1 and set it to zero. Differentiation
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and conditional expectation can be interchanged, since we are working on a

finite probability space. We have

∑

j∈JNN−1

P(j)
[
θN−1u

′
N−1(CN−1) + V ′N (AjN )(−RjN )

]

=θN−1u
′
N−1(CN−1)− EP

N−1V
′
N (AN )RN = 0,

which leads us to

L∗N−1 = θN−1u
′
N−1(C∗N−1) = EP

N−1 [gN (A∗N )RN ] = EP
N−1[L∗NRN ].

We then define

hN−1(x) :=
1

θN
EP
N−1 [gN (XN + xRN )RN ] .

Due to the assumption of sequential independence, hN−1(x) can further be

written in the form of an unconditional expectation

hN−1(x) =
1

θN
EP [gN (XN + xRN )RN ]

since bothXN andRN are independent from FN−1. Note that hN−1 is invertible

since by definition it is a weighted sum of strictly decreasing functions; thus

hN−1 is also a strictly decreasing function with domain (dN−1,+∞), where

dN−1 is defined as

dN−1 = inf
{
d ∈ R

∣∣∣Xj
N + dRjN ≥ max{bN , bp} ∀j ∈ JNN−1

}
.

Furthermore, hN−1 can be viewed as the marginal utility of a stereotype

utility function since565

• it is continuous and strictly decreasing,

• it satisfies

lim
x→dN−1

hN−1(x) = +∞, lim
x→+∞

hN−1(x) = 0.

Write

HN−1 := h−1
N−1.
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Then once we combine

C∗N−1 + F ∗N−1 = XN−1 + F ∗N−2RN−1 = A∗N−1

with

L∗N−1 = θN−1u
′
N−1(C∗N−1) = θNhN−1(F ∗N−1),

we have

IN−1

(
L∗N−1

θN−1

)
+HN−1

(
L∗N−1

θN

)
= A∗N−1.

Next, define

GN−1(x) := IN−1

(
x

θN−1

)
+HN−1

(
x

θN

)
,

gN−1(x) := G−1
N−1.

GN−1 and gN−1 are well-defined just as GN and gN . LN−1 can then be calcu-

lated as

L∗N−1 = gN−1(A∗N−1)

and

C∗N−1 = IN−1

(
L∗N−1

θN−1

)
, F ∗N−1 = HN−1

(
L∗N−1

θN

)
.

For the value function

VN−1(A∗N−1) =θN−1uN−1(C∗N−1) + EP
N−1VN

[
XN + (A∗N−1 − C∗N−1)RN

]
,

it follows that VN−1 is differentiable when we regard A∗N−1 as the argument and

one can calculate V ′N−1(A∗N−1) as follows:

V ′N−1(A∗N−1) = EP
N−1[V ′N (A∗N ) ·RN ] = EP

N−1[L∗NRN ] = L∗N−1 = gN−1(A∗N−1).

Proceeding one period backwards, we then have the corresponding value

function

VN−2(AN−2) = max
CN−2

EP
N−2 [θN−2uN−2(CN−2) + VN−1(XN−1 + (AN−2 − CN−2)RN−1)] .

To solve the right hand side, note that the expression

θN−2uN−2(CN−2) + VN−1(XN−1 + (AN−2 − CN−2)RN−1)
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is a differentiable function of CN−2. We then take the derivative with regard to

CN−2 and set it to zero:

θN−2u
′
N−2(CN−2) + EP

N−2

[
V ′N−1(AN−1) · (−RN−1)

]

=θN−2u
′
N−2(CN−2)− EP

N−2 [gN−1(AN−1)RN−1]

=θN−2u
′
N−2(CN−2)− EP

N−2 [gN−1(XN−1 + (AN−2 − CN−2)RN−1)RN−1] = 0.

We can then repeat what has been done in period N − 1. This recursive pro-

cedure can be continued backwards in time until we arrive at the first period.

That is, we can always define recursively for n = 1, · · · , N − 2

hn(x) = EP
n

[
1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]

= EP
[

1

θn+1
gn+1(Xn+1 + xRn+1)Rn+1

]
,

Hn = h−1
n ,

Gn(x) := In

(
x

θn

)
+Hn

(
x

θn+1

)
,

gn(x) := G−1
n ,

and the decision variables are given by

C∗n = In

(
gn(A∗n)

θn

)
n = 1, · · · , N,

F ∗n = Hn

(
gn(A∗n)

θn+1

)
n = 1, · · · , N − 1,

F ∗N = Ip

(
gN (A∗N )

θp

)
.

This will be the unique solution of the optimization problem, as the optimization

target is concave with respect to the decision variables and the feasible set is

convex. �

Proof of Lemma 3.8. By definition the function g’s are all strictly decreasing.
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We have

Cn = In

(
gn(Xn + Fn−1Rn)

θn

)
for n = 1, · · · , N,

Fn = Hn

(
gn(Xn + Fn−1Rn)

θn+1

)
for n = 1, · · · , N − 1,

FN = Ip

(
gN (XN + FN−1RN )

θp

)
,

thus both Cn and Fn are increasing functions of An = Xn + Fn−1Rn.570

We only have to consider the case when only one coordinate of (X,R) =

(X1, · · · , XN , R2, · · · , RN ) increases. First consider two trajectories J, J∗ such

that there is a time point τ = 1, · · · , N such that XJ
τ > XJ∗

τ and other random

variables from (X,R) are equal. Since

Fn = Hn

(
gn(Xn + Fn−1Rn)

θn+1

)
for n = 1, · · · , N − 1

then F J1 = F J
∗

1 , and this will lead to F J2 = F J
∗

2 . Doing this recursively we

conclude that F Jn = F J
∗

n for any n < τ . Then as

XJ
τ + F Jτ−1R

J
τ > XJ∗

τ + F J
∗

τ−1R
J∗
τ

we have

CJτ > CJ
∗

τ , F Jτ > F J
∗

τ ,

and the latter will tell that CJn > CJ
∗

n for all n > τ . Also F JN > F J
∗

N . Then

ρJ 	 ρJ
∗
.

The cases when only RJτ > RJ
∗
τ follows analogously. �

It is convenient to have the following definition before we continue to the

proof of Lemma 3.9.575

Definition AppendixA.6 (N -PE Problem.) An N -PE problem refers to the

4-tuple ((X,R), ρ, u′, θ) and the corresponding equation systems BC (5.1) and

IBE (5.2), where (X,R) is a vector of random variables, ρ a vector of decision

variables, u′ an (N + 1)-tuple of stereotype marginal utility functions and θ a
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constant vector, i.e.

(X,R) = (X1, · · · , XN , R2, · · · , RN ) ∈ L2N+1,

ρ = (C1, · · · , CN , FN ) ∈ LN+1,

u′ = (u′1, · · · , u′N , u′p),

θ = (θ1, · · · , θN , θp) ∈ RN+1
++ ,

where L := RΩ is the space of random variables over the underlying probability

space.

Proof of Lemma 3.9. The key point of the proof is that otherwise, the IBE

and the BC cannot hold simultaneously.

We use mathematical induction to show this. First consider N = 1. For

a 1-PE problem this is true; we only have two agents including the buffer and

there will be only one family of IBE:

θ1u
′
1(C1) = θpu

′
p(F1),

and the budget constraints are

C1 + F1 = X1.

For any trajectory J ∈ J1, if θ1 increases, then we argue that CJ1 cannot580

decrease. Otherwise (i.e. CJ1 decreases), by the budget constaint F J1 will in-

crease, but according to the IBE it will decrease, which is a contradiction. For

the same reason CJ1 cannot stay the same. Thus CJ1 will increase and F J1 has

to decrease. As there is a symmetry between C1 and F1, we conclude that the

argument is true for single-period problems.585

Assume the statement holds true for an N -PE problem, N > 1. Then

consider the case of an (N +1)-PE problem with the the conventional notations

(X,R) = (X1, · · · , XN+1, R2, · · · , RN+1),

ρ = (C1, · · · , CN+1, FN+1),

u′ = (u′1, · · · , u′N+1, u
′
p),

θ = (θ1, · · · , θN+1, θp).
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First consider if some θn increases, n < N + 1. Then as we have discussed,

this (N + 1)-PE problem can be converted into an induced N -PE problem by

truncation at time point tN and define hN as has been defined in Theorem 3.5,

that is, the 4-tuple

(X,R)[N ] = (X1, · · · , XN , R2, · · · , RN ),

ρ[N ] = (C1, · · · , CN , FN ),

u′[N ] = (u′1, · · · , u′N , hN ),

θ[N ] = (θ1, · · · , θN , θN+1).

Consider this N -PE problem. According to the induction assumption, we590

will have that for any J ∈ JN+1, CJn will increase if θn increases, while other

cash outflows will decrease. So F JN will decrease and so is AJN+1. Note that by

definition the function gN+1 will stay the same if θn increases. Thus CJN+1 and

F JN+1 will both decrease as they are increasing functions of AJN+1.

Now consider the situation if θN+1 increases. We will show that F
JN+1

N+1 will

decrease. Otherwise (i.e. F
JN+1

N+1 either increases or stays the same), by the final

period IBE

θN+1u
′
N+1(C

JN+1

N+1 ) = θpu
′
p(F

JN+1

N+1 ) = L
JN+1

N+1

we have that C
JN+1

N+1 has to increase because of the monotonicity of u′N+1 and

u′p. Then by the budget constraint for that period

C
JN+1

N+1 + F
JN+1

N+1 = X
jN+1

N+1 + F JNN R
jN+1

N+1

F JNN also has to increase. This will lead to the fact that L
JN j

∗
N+1

N+1 will not increase

for any j∗N+1 ∈ JN+1
N . This is because we have

L
JN jN+1

N+1 = gN+1(X
jN+1

N+1 + F JNN R
jN+1

N+1 )

and

L
JN j

∗
N+1

N+1 = gN+1(X
j∗N+1

N+1 + F JNN R
j∗N+1

N+1 )
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which shows that L
JN jN+1

N+1 and L
JN j

∗
N+1

N+1 should have the same monotonicity595

property with respect to θN+1. The result is that EN (LJNN+1RN+1) will not

increase.

According to the global budget constraint along that trajectory, there has to

be at least one n such that CJnn will decrease. Let the set of such n’s be denoted

by T . Consider first the situation that max{T } = N . Then LJNN = θNu
′
N (CJNN )

will increase. On the other hand, EN (LJNN+1RN+1) will not increase. We then

arrive at a contradiction by noting that by IBE we should have

LJNN = EN (LJNN+1RN+1).

Then consider more generally that τ = max{T } < N . Then as F JNN will

increase and CJNN will not decrease, by budget constraint we know F
JN−1

N−1 will

increase. Repeat this reasoning until we get that F Jττ will have to increase.

Then by analogy as above we will have that Eτ (LJττ+1Rτ+1) will not increase.

However, Lτ = θτu
′
τ (CJττ ) will increase as CJττ decreases. The IBE will then not

hold. We conclude that F
JN+1

N+1 will decrease and L
JN+1

N+1 will increase. According

to

Ln = EP[Ln+1Rn+1]

we know that for any n < N + 1, along the trajectory Jn which is the up-to-

time-tn part of JN+1, LJnn will increase. Then CJnn will decrease since

LJnn = θnu
′
n(CJnn ).

Finally, consider the global budget constraint (2.3) along the trajectory JN+1.

It must be that C
JN+1

N+1 will have to increase since all the other C’s and FN+1

will decrease.600

The case when only θp increases follows analogously as there is symmetry

between CN+1 and FN+1. This completes the proof. �

AppendixB. Proofs for Section 5

Please note that some of the proofs in this section make use of the mapping

ϕ defined in Section 6.605
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Definition AppendixB.1 (N -PEFF Problem.) An N -PEFF problem refers

to the 4-tuple ((X,R), ρ, u′, v) and the corresponding equation systems (5.1),

(5.2) and (5.3), where (X,R) is a vector of random variables, ρ a vector of

decision variables, u′ an (N + 1)-tuple of stereotype marginal utility functions

and v a value profile vector, i.e.

(X,R) = (X1, · · · , XN , R2, · · · , RN ) ∈ L2N+1,

ρ = (C1, · · · , CN , FN ) ∈ LN+1,

u′ = (u′1, · · · , u′N , u′p),

v = (v1, · · · , vN , vp) ∈ V.

The set V is totally determined by (X,R) and u′ according to Expression (4.3).

Definition AppendixB.2 (Hilbert metric on Rn++.) The Hilbert metric de-

fines a distance as

d(x, y) = log
maxi{xi/yi}
mini{xi/yi}

for any x, y ∈ Rn++. It is not a real metric as

d(x, y) = 0 ⇔ ∃c ∈ R+ such that y = cx.

It will become a true metric if restricted on e.g. the open unit simplex in Rn++.

Lemma AppendixB.3 If φ : Rn++ → Rn++ is homogeneous and strongly mono-

tone, then φ is contractive with respect to the Hilbert metric.

Proof See for instance Lemma 4.5 in Pazdera et al [15]. �610

Any contractive mapping φ can only have one fixed point. Suppose there

are two, namely x and y with d(x, y) > 0. Then by contractiveness we have

d(x, y) = d(φ(x), φ(y)) < d(x, y)

which is contradictory. Then d(x, y) = 0. Note that the uniqueness is in the

sense of Hilbert metric.

The following lemma is the key part of proving the uniqueness of the PEFF

solution.
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Lemma AppendixB.4 The mapping ϕ1 defined in Section 6 is strictly increas-

ing, i.e. for any trajectory J ∈ JN , we have that

LJN (θ′) 	 LJN (θ′′) ∀θ′ 	 θ′′.

Proof To show this we only need to show that LJN is strictly increasing with615

respect to any one of the coordinates of θ. We can utilize Lemma 3.9.

Consider first that only θn increases while the other θ’s stay the same, n =

1, · · · , N . Then according to Lemma 3.9, F JN will decrease thus

LJN = θpu
′
p(F

J
N )

will increase. The case when only θp increases follows analogously as there is

symmetry between CN and FN . �

Lemma AppendixB.5 (The uniqueness of the PEFF rule.) For any given value

profile v = (v1, · · · , vN , vp) ∈ V, the corresponding PEFF risk-sharing rule will620

be unique if it exists.

Proof The main point of this proof is to show that ϕ defined in Section 6 is

homogeneous and strictly monotone thus by Lemma AppendixB.3 it can only

have one fixed point (up to normalization) if it has.

The mapping is homogeneous by definition thus we only have to consider

monotonicity. First, according to Lemma AppendixB.4 ϕ1 is strictly increasing

with respect to θ along all possible trajectories. Then LJn is also increasing since

Ln = EP
n[Ln+1Rn+1].

Now consider θ′ 	 θ′′. Then for any J ∈ JN we have that LJN (θ′) > LJN (θ′′).

For any possible n, the n-th coordinate of ϕ2: ϕ2(n)(LN ) =
[
EQIn

(
Ln
·
)]−1

(vn)

will lead to that ϕ2(n)(LN (θ′)) > ϕ2,n(LN (θ′′)). This is because ϕ2 will always

require that

EQCn = EQIn

(
Ln
θn

)
=
∑

J∈Jn
Q(J)In

(
LJn
θn

)
= vn.
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If LJn increases for all J ∈ Jn, then θn also will increase according to this ϕ2.

The result is that

ϕ(θ′) = ϕ2(LN (θ′)) > ϕ2(LN (θ′′)) = ϕ(θ′′),

i.e. ϕ is strictly increasing with respect to θ. �625

Proof of Theorem 5.1. The proof uses mathematical induction. Note that

we can always fix θp = 1 as a normalization to the θ’s unless specified otherwise.

For any 1-PEFF problem, there is only one random variable X1 to be shared.

One needs to solve

C1 + F1 = X1,

θ1u
′
1(C1) = θpu

′
p(F1),

EQC1 = v1.

For any given θ1, the equations of BC and IBE will jointly produce a certain

risk sharing rule according to the mapping Φ in Theorem 3.5. However, the

third FF equation may not hold. We need to show that there will exist some θ1

such that the FF equation will hold. We define

w(θ1) = EQC1 =
∑

J∈J1

Q(J)CJ1 .

It is a continuous function of θ1 which follows as a property of the mapping Φ.

Next we will show that the value of the function w can be both above and below

v1, so that there exists some θ∗1 such that w(θ∗1) = v1 since w is continuous. This630

will be done by taking θ1 to the limits.

First consider lim
θ1→0

w(θ1). Then along any trajectory J ∈ J1 it must be that

CJ1 → b1 < v1. Otherwise, suppose there exists some sequence of θ1, say {θ̂[m]}
with θ̂[m] → 0 as m→∞, such that

lim
m→∞

CJ1 (θ̂[m]) ≥ b1 + ε

for some trajectory J and some ε ∈ R++. If b1 = −∞ then this is interpreted

as bounded from below. Then according to the IBE

θ1u
′
1(CJ1 ) = θpu

′
p(F

J
1 )
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the left hand side will go to zero as u′1(CJ1 ) will be bounded. As a result, F J1

will have to go to +∞ which is not possible if we take into consideration the

budget constraint. We conclude that CJ1 → b1 < v1 along all the J ’s if we let

θ1 → 0.635

Next consider lim
θ1→∞

w(θ1). Now we drop the normalization constraint θp = 1.

Taking into consideration the freedom of choosing a way of normalization, it

follows that the following two statements are equivalent:

• fix θp and let θ1 → +∞;

• fix θ1 and let θp → 0.640

Then following the analogy above we have F J1 → bp for all J ∈ J1 as θp → 0.

Thus lim
θ1→∞

EQF1 = bp and according to the budget constraint

lim
θ1→∞

w(θ1) = lim
θ1→∞

EQC1 = v1 + vp − bp.

Then since

vp − bp > 0

must hold, we have

v1 < v1 + vp − bp.

By a simple intermediate value theorem we know that there will exist some θ∗1

such that w(θ∗1) = v1. Then we have found a weight vector θ (i.e. (θ∗1 , θp = 1))

that leads to a PEFF solution to the system. This indicates that the fixed

points of the mapping ϕ will exist; the fixed point must be unique according

to Lemma AppendixB.5, i.e. the vector θ is unique. The uniqueness is up to645

normalization.

Let’s assume that there always exists a unique solution for an N -PEFF

problem, N > 1. Consider an (N + 1)-PEFF problem using our conventional
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notations

(X,R) = (X1, · · · , XN+1, R2, · · · , RN+1),

ρ = (C1, · · · , CN+1, FN+1),

u′ = (u′1, · · · , u′N+1, u
′
p),

v = (v1, · · · , vN , vN+1, vp)

Consider the corresponding (N + 1)-PE problem with some given weight θ. Use

θp = 1 as a normalization. As we have discussed, the whole system will degrade

to an induced N -PEFF problem with FN now being the “final” buffer whose

risk aversion is characterized by hN given by Theorem 3.5. That is,

(X,R)[N ] = (X1, · · · , XN , R2, · · · , RN ),

ρ[N ] = (C1, · · · , CN , FN ),

u′[N ] = (u′1, · · · , u′N , hN ),

v[N ] = (v1, · · · , vN ,EQFN )

where EQFN can be calculated according to the global budget constraint of the

induced N -PEFF problem.

For any given θN+1, according to the assumption, the degraded system has

a unique PEFF solution with coefficients (θ1, · · · , θN ). This solution, together

with the θN+1 and θp = 1, satisfies all the equations except the following one2

EQCN+1 =
∑

J∈JN+1

Q(J)CJN+1 = vN+1.

Next we will show that there exists θN+1 such that the equation above will hold.

Then by Theorem AppendixB.5 the solution θN+1 will be unique.650

Define

w(θN+1) = EQCN+1 =
∑

JN+1∈JN+1

Q(JN+1)C
JN+1

N+1 .

2The equation EQFN+1 = vp will also not hold. However, as we have discussed, we don’t

have to consider this equation, since it will be automatically satisfied if other FF conditions

hold.
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Note that C
JN+1

N+1 is a continuous function of θN+1 for any J which follows

from Theorem 3.5 and so is w itself. Next we will show that the value of the

function w can be both above and below vN+1, so that there exists θ∗N+1 such

that w(θ∗N+1) = vN+1 since w is continuous. This will be done by taking θN+1

to the limits.655

First consider lim
θN+1→0

w(θN+1). We will distinguish between the following

two cases.

A. The lower bounds of the utility functions bn are all finite. We will then

have

lim
θN+1→0

C
JN+1

N+1 = bN+1 ∀JN+1 ∈ JN+1.

Otherwise, suppose there exists a sequence of θN+1, say {θ̂[m]} with θ̂[m] → 0

as m→∞, such that

lim
m→∞

C
JN+1

N+1 (θ̂[m]) ≥ bN+1 + ε

for some trajectory JN+1 and some ε ∈ R++. Then according to the final period

IBE

θN+1u
′
N+1(C

JN+1

N+1 ) = θpu
′
p(F

JN+1

N+1 )

the left hand side will go to zero as u′N+1(C
JN+1

N+1 ) will be bounded. As a result,

F
JN+1

N+1 will have to go to +∞ which is not possible when all the C’s can only

be finite.660

B. Consider when bn = −∞ for some n. T denotes the set of all such n’s.

We will show that still

lim
θN+1→0

C
JN+1

N+1 = bN+1 ∀JN+1 ∈ JN+1.

We then only have to show this for a special J ′ which satisfies that for any n,

XJ′
n = maxJ∈JN+1

XJ
n and RJ

′
n = maxJ∈JN+1

RJn, i.e. (XJ′ , RJ
′
) is the attain-

able “upper bound” of all trajectories. This is possible because the number of

trajectories is finite, the condition (2.1) holds and the risk stream is sequentially

independent. Once we show that lim
θN+1→0

CJ
′

N+1 = bN+1, by Lemma 3.8, the limit665
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of CN+1 of all other trajectories cannot be larger than bN+1, and also cannot

be smaller than bN+1.

Otherwise, suppose there exist a sequence of θN+1, say {θ̂[m]} with θ̂[m] → 0

as m→∞, and ε > 0, such that

lim
m→∞

CJ
′

N+1(θ̂[m]) ≥ bN+1 + ε.

If bN+1 = −∞ then the equation above is interpreted as that the sequence

{CJ′N+1(θ̂[m])} is bounded from below.

Then by final period IBE

θN+1u
′
N+1(CJ

′
N+1) = θpu

′
p(F

J′
N+1)

we have that F J
′

N+1 will have to go to +∞ since u′N+1(CJ
′

N+1) will be bounded.670

Consider the global budget constraint: now since CJ
′

N+1 + F J
′

N+1 → +∞, there

will exist τ ∈ T such that CJ
′

τ → −∞. By the definition of J ′, we have that

CJτ → −∞ for any other possible J ∈ JN+1, thus the value profile condition for

Cτ will not hold. This is a contradiction.

To conclude: we have shown that

lim
θN+1→0

CJN+1 = bN+1 ∀J ∈ JN+1

whatever the value of bN+1 is. Thus

w(θN+1) = EQCN+1 =
∑

J∈JN+1

Q(J)CJN+1 → bN+1.

Next consider lim
θN+1→∞

w(θN+1). Now we drop the normalization constraint675

θp = 1. Taking into consideration the freedom of choosing a way of normaliza-

tion, we can conclude that the following two statements are equivalent:

• fix θp and let θN+1 → +∞;

• fix θN+1 and let θp → 0.

Then following the analogy we have F JN+1 → bp for all J ∈ JN+1 as θp → 0.

Thus according to the budget constraint for the last period, we conclude that

lim
θN+1→∞

w(θN+1) = lim
θN+1→∞

∑

J∈JN+1

Q(J)CJN+1 = vN+1 + vp − bp.
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Then since

vp − bp > 0

must hold, we have

vN+1 < vN+1 + vp − bp.

By a simple intermediate value theorem we know that there will exist some θ∗N+1680

such that w(θ∗N+1) = vN+1. Then we have found a weight vector θ that leads to a

PEFF solution to the system. This indicates that the fixed points of the mapping

ϕ will exist; the fixed point must be unique according to Theorem AppendixB.5,

i.e. the solution θ is unique. The uniqueness is up to normalization. This finishes

the proof. �685

AppendixC. Proofs for Section 6

Lemma AppendixC.1 When (X , d) is a locally compact and connected metric

space, and f : X → X is a contractive mapping with fixed point x∗ ∈ X , then

for every x ∈ X the sequence of iterates {f (n)(x)|n ∈ N+} converges to x∗.

Proof See Thm. 1 by Nadler [20]. �690

Proof of Theorem 6.1. Lemma AppendixB.5 has shown that the mapping

ϕ is contractive with respect to the Hilbert metric. The theorem then is a direct

result of Lemma AppendixC.1. �

AppendixD. Proofs for Section 7.2

Proof of Theorem 7.1. The proof of the theorem is actually a process of

calculation. First we need the following preparations. By Theorem 3.5, for any

given θ we can define fn(·) such that

Cn = fn(Xn + Fn−1Rn).

By the IBE for the last period we have

θpu
′
p(XN + FN−1RN − CN ) = θNu

′
N (CN ),
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which will translate into

θpαp exp[−αp(XN + FN−1RN − CN )] = θNαN exp[−αNCN ].

Take the logarithm on both sides and after rearranging the items we get

CN =
αp

αp + αN
(XN + FN−1RN ) +

1

αp + αN
ln
θNαN
θpαp

.

Take the Q-expectation and we shall have

EQCN = vN

which gives us

CN =
αp

αp + αN
[XN + FN−1RN ] + (vN −

αp
αp + αN

wN ),

where

wN := EQAN = EQ(CN + FN ) = vN + vp.

Next we show that for any possible n, fn should be linear. We will show695

this by first showing that if fn+1 is linear with positive slope, then so is fn.

By IBE

θnu
′
n(Cn) = θn+1EP

n

[
u′n+1(Cn+1)Rn+1

]

we have

θn
Rn+1θn+1

u′n(fn(x)) =
∑

j∈Jn+1
n

P(j)u′n+1

[
fn+1(Xj

n+1 + (x− fn(x))Rn+1)
]

where x is the variable standing for the available assets. Assume that fn+1(x) =

an+1x+ en+1 with an+1 > 0. We have

θn
Rn+1θn+1

exp(−αnfn(x)) =
∑

j∈Jn+1
n

P(j) exp
{
−αn+1[an+1(Xj

n+1 + (x− fn(x))Rn+1) + en+1]
}

= exp{−αn+1an+1Rn+1(x− fn)} ·





∑

j∈Jn+1
n

P(j) exp
[
−αn+1(an+1X

j
n+1 + en+1)

]




Take the logarithm on both sides:

ln

(
θn

Rn+1θn+1

)
− αn · fn = lnκn+1 − αn+1an+1Rn+1(x− fn),
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finally

fn(x) =
an+1αn+1Rn+1

αn + an+1αn+1Rn+1
x+

1

αn + an+1αn+1Rn+1
ln

(
θn

Rn+1θn+1

1

κn+1

)

where

κn+1 =
Eu′n+1(fn+1(Xn+1))

αn+1
.

It follows that all fn should be linear with positive slope since fN is. The

slope satisfies

an =
an+1αn+1Rn+1

αn + αn+1an+1Rn+1
.

By recursion we know that if we start with aN =
αp

αp+αN
, then all the an’s can

be calculated. Hence

Cn = fn(Xn + Fn−1Rn) = an(Xn + Fn−1Rn) + constant.

Taking the expectation under Q immediately gives the constant part and

finally we have

Cn = an(Xn + Fn−1Rn) + (vn − anwn),

where wn = EQAn can be recursively calculated according to the relationship

An+1 = Xn+1 + (An − Cn)Rn+1.

�

AppendixE. Tables for Section 7

Tables E.3 – E.6 shows the distributions of the decision variables for Section

7.1.700
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X1 P-prob. Q-prob. C1: OEB C1: CEB C1: au-

tarky

1.2 0.6 0.5 1.0507 1.0704 1.2

0.8 0.4 0.5 0.9493 0.9296 0.8

Table E.3: Distributions of payments for agent 1

X1 X2 P-prob. Q-prob. C2:

OEB

C2:

CEB

C1: au-

tarky

1.2 1.2 0.36 0.25 1.1197 1.1741 1.2

0.8 1.2 0.24 0.25 1.0181 1.0376 1.2

1.2 0.8 0.24 0.25 0.9818 0.9632 0.8

0.8 0.8 0.16 0.25 0.8801 0.8251 0.8

Table E.4: Distributions of payments for agent 2

X1 X2 X3 P-

prob.

Q-

prob.

C3:

OEB

C3:

CEB

C1:

au-

tarky

1.2 1.2 1.2 0.216 0.125 1.2157 1.3556 1.2

0.8 1.2 1.2 0.144 0.125 1.1167 1.2327 1.2

1.2 0.8 1.2 0.144 0.125 1.0832 1.1665 1.2

0.8 0.8 1.2 0.096 0.125 0.9844 1.0452 1.2

1.2 1.2 0.8 0.144 0.125 1.0157 0.9556 0.8

0.8 1.2 0.8 0.096 0.125 0.9167 0.8327 0.8

1.2 0.8 0.8 0.096 0.125 0.8832 0.7665 0.8

0.8 0.8 0.8 0.064 0.125 0.7844 0.6452 0.8

Table E.5: Distributions of payments for agent 3
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X1 X2 X3 P-prob. Q-prob. F3:

OEB

F3:

CEB

1.2 1.2 1.2 0.216 0.125 1.2157 1

0.8 1.2 1.2 0.144 0.125 1.1167 1

1.2 0.8 1.2 0.144 0.125 1.0832 1

0.8 0.8 1.2 0.096 0.125 0.9844 1

1.2 1.2 0.8 0.144 0.125 1.0157 1

0.8 1.2 0.8 0.096 0.125 0.9167 1

1.2 0.8 0.8 0.096 0.125 0.8832 1

0.8 0.8 0.8 0.064 0.125 0.7844 1

Table E.6: Distributions of end buffer
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