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Abstract

The class of complementarity systems has been analyzed
in considerable detail as a special subclass of hybrid sys-
tems. The goal of this paper is to motivate the ongoing
research by showing that many physically relevant systems
�t in the framework of complementarity systems.

1 Introduction

Technological innovation leads to an increasing interest in
systems of a mixed continuous/discrete nature (called `hy-
brid systems'). Recently, hybrid systems receive a lot of
attention both from the control [2] and computer science
community [27]. A subclass of hybrid systems consists
of complementarity systems as introduced in [29]. In its
most general form a complementarity system is governed
by the di�erential and algebraic equations

0 = F ( _z(t); z(t)) (1a)

y(t) = g(z(t)) 2 Rk (1b)

u(t) = h(z(t)) 2 Rk (1c)

together with the complementarity conditions

fyi(t) = 0 or ui(t) = 0g; yi(t) > 0; ui(t) > 0 (1d)

for all i 2 f1; : : : ; kg. The complementarity conditions are
similar as those appearing in the linear complementarity
problem of mathematical programming [8].
A special complementarity system occurs when (1a),

(1b) and (1c) are replaced by an \input-output system"
of the form

_x(t) = f(x(t); u(t)) (2a)

y(t) = g(x(t); u(t)): (2b)

In this case we speak of \semi-explicit" complementarity
systems.
If the system is linear, i.e. f(x; u) = Ax+Bu, g(x; u) =

Cx +Du for constant matrices A, B, C, D, we speak of
a linear complementarity system (LCS).

The class of complementarity systems has been investi-
gated in [15{17, 23, 29, 30]. Several basic issues are stud-
ied in these papers: the introduction of a mathematically
precise solution concept, existence and uniqueness of solu-
tions, mode selection methods, simulation issues and the
study of the particular behaviour of these systems. Cur-
rent and future research will include stability analysis, de-
velopment of numerical algorithms to approximate solu-
tions and the inclusion of measurement and control vari-
ables. The purpose of this paper to show that the analysis
of the class of complementarity systems is motivated by a
wide range of applications.

2 Electrical networks with ideal

diodes

Consider a linear electrical network consisting of resis-
tors, inductors, capacitors, gyrators, transformers (RL-
CGT) and of k ideal diodes. To model this system as a
LCS, the network is viewed as the interconnection of an
RLCGT network with the diodes. More precisely, the RL-
CGT components form a multiport network described by
a state space representation _x = Ax + Bu, y = Cx +Du
[1] with state variable x representing voltages over capac-
itors and currents through inductors. The input/output
variables u and y represent the port variables: the pair
(ui; yi) denotes the voltage-current variables at the i-th
port. Interconnection of the i-th port to an (ideal) diode
results in the equations

ui = �Vi; yi = Ii or ui = Ii; yi = �Vi;

where Vi and Ii are the voltage across and current through
the i-th diode, respectively. Finally, the ideal diode char-
acteristic of the i-th diode is given by (see also �g. 1)

Vi 6 0; Ii > 0; fVi = 0 or Ii = 0g: (3)
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Figure 1: The i-th ideal diode characteristic.



3 Pipelines with one-way valves

Many chemical and hydraulic processes contain valves
that only allow 
ows in one direction. A lid in the pipe
can be opened to one side only, which prevents the 
uid or
gas from streaming back. The situation is shown in �g. 2.
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p

Figure 2: A pipeline with a one-way valve.

The 
ow in the pipe at time t is denoted by f(t) and
the pressure over the valve (lid) by p(t). Ideally, only
two situations can happen. The lid is either completely
closed (dotted situation) or completely open (solid situa-
tion). The closed case occurs only if the pressure on the
right is larger than the pressure on the left (p(t) > 0). The

ow is then equal to zero (f(t) = 0). In the other situa-
tion (valve open), the pressure over the valve is zero and
the 
uid streams in the positive direction (p(t) = 0 and
f(t) > 0). Hence, 
ow and pressure are complementarity
variables.

4 Constrained mechanical systems

Consider a conservative mechanical system in which q de-
notes the generalised coordinates and p the generalised
momenta. The free motion dynamics can be expressed in
terms of the Hamiltonian H(q; p), which has the interpre-
tation of the total energy in the system. The equations
are

_q =
@H

@p
(q; p) (4a)

_p = �
@H

@q
(q; p): (4b)

The system is subject to the geometric inequality con-
straints given by

C(q) > 0: (4c)

Friction e�ects are not modelled here. We refer to subsec-
tion 5.3 for phenomena like Coulomb friction.
To obtain a complementarity formulation, we introduce

(see also [15, 24, 26, 29, 30]) the Lagrange multiplier u gen-
erating the constraint forces needed to satisfy the unilat-
eral constraints (4c). According to the rules of classical
mechanics, the system can then be written as

_q =
@H

@p
(q; p) (5a)

_p = �
@H

@q
(q; p) +

@C>

@q
(q)u (5b)

y = C(q) (5c)

together with the complementarity conditions (1d). The
conditions (1d) express that the Lagrange multiplier ui

is only nonzero, if the corresponding constraint is active
(yi = 0). Vice versa, if the constraint is inactive (yi > 0),
the corresponding multiplier ui is necessarily equal to zero.
The control of these systems is a major research topic.

Since most control theories are model-based, adequate
modelling of dynamical discontinuities and impact phe-
nomena are necessary. Control applications can be found
for instance in the �eld of robotics [4, 9, 21].

5 Piecewise linear characteristics

In this section we consider a dynamical system in which
certain variables are coupled by means of a static piecewise
linear (PL) characteristic. The situation is depicted in
�g. 3. The variables v, z appear in the dynamics of the
system �. These variables are related \in closed loop"
through a PL relation. As an example one could think of a
mechanical system with Coulomb friction or an electrical
circuit containing a resistor having a PL behaviour (see
e.g. [22]).
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Figure 3: System with a PL relation.

5.1 A simple max-relation

Let v and z be related through v = max(0; z). See �g. 4.
We introduce two auxiliary variables u, y and the algebraic
equation z = u � y. It is easily veri�ed that adding the
complementarity conditions u > 0, y > 0 and fy = 0 or
u = 0g, results in u = v. Hence, the relation v = max(0; z)
can be replaced by

z = u� y (6a)

v = u (6b)

u > 0; y > 0; fy = 0 or u = 0g (6c)

resulting in a complementarity system. Hence, any system
that can be formulated in terms of `max' operations (think
of `max-plus systems'), can be cast into a complementarity
framework due to the fact that v = max(w; z) = w +
max(0; z � w).
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Figure 4: A simple max-relation.

Direct applications of this simple relation are one-sided
springs. In �g. 5 a linear spring is attached to a wall, but
not to the cart. Let q denote the position of the cart with



respect to the equilibrium of the spring. The spring force
F (q) is a nonlinear function of q:

F (q) =

�
�kq; if q < 0

0; if q > 0
(7)

with k > 0 denoting the spring constant. The interpre-
tation is clear. Only when the spring is pressed (q < 0),
the spring exerts a nonzero force �kq on the cart. In the
other situation where the cart is on the right of the equi-
librium (q > 0), the spring is at rest and the force F (q) is
equal to zero. The relation (7) can compactly be written
as F (q) = max(�kq; 0). Systems with one-sided springs
are studied in e.g. [19].

q

Figure 5: One-sided spring.

As a second example consider the following single input
control system _x = Ax+Bu where the control input u is
restricted to take nonnegative values only. In [18] one is
interested in the existence of a nonnegative state feedback
of the form u = max(0; Fx) where F is a constant row
vector resulting in a stable closed loop system _x = Ax +
Bmax(0; Fx).
A max-relation also occurs in application of Pontrya-

gin's maximum principle to optimal control problems with
control restraint sets being convex polyhedra. The maxi-
mum principle yields a two-point boundary problem con-
taining max-relations as shown in [14].

5.2 Piecewise linear (PL) functions

A dynamical system described by an ordinary di�erential
equation and one or more continuous static PL functions
can be modelled as a complementarity system. To make
this plausible, consider the function between v and z as
given by �g. 6. The function consists of three connected
branches with slopes ri, i = 1; 2; 3. The o�set at z = 0
is equal to g and the slope changes at z = ai, i = 1; 2.
A description of this function in terms of max-relations is
given by (8), as is easily veri�ed.
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Figure 6: An arbitrary PL characteristic.

v = g + r1z + (r2 � r1)max(z � a1; 0) +

(r3 � r2)max(z � a2; 0) (8)

Since the max-relation can be rewritten as a comple-
mentarity system, it is obvious that this PL characteristic
can be rephrased in terms of a complementarity descrip-
tion.
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Figure 7: Saturation and deadzone characteristic

Applications are for instance saturation and deadzone
characteristics (�g. 7) which occur in many control sys-
tems. Furthermore, devices as bipolar transistors, MOS-
FET's and p-n junction diodes in electrical network theory
are often modelled by PL functions [3, 6, 22].
Finally, it is clear that many continuous nonlinear

(static) relation can be suitably approximated by PL func-
tions.

5.3 PL relations

Besides the examples given in the previous subsection,
there exist many physically relevant models that are given
by PL relations, but not by PL functions. Examples are
mechanical systems with Coulomb friction or relay sys-
tems (see �g. 8). However, also these systems can be put
in a complementarity framework by using an alternative
approach. The approach is not given in full detail here,
but is sketched by applying it to the example of a Coulomb
friction/relay characteristic (see also [20, 23, 26]).
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Figure 8: Relay or sgn-relation.

The relay characteristic in �g. 8 can be described by

v = 1; if z > 0

�1 6 v 6 1; if z = 0 (9)

v = �1; if z < 0;

which is sometimes denoted by v = sgn(z).

Lemma 5.1 The PL relation as given in �g. 8 can be
described by the equations

u1 + u2 = 2 (10a)

y1 � y2 = z (10b)

v = 1
2 (u2 � u1) (10c)

together with the complementarity conditions

fu1 = 0 or y1 = 0g; u1 > 0; y1 > 0 (11)

fu2 = 0 or y2 = 0g; u2 > 0; y2 > 0: (12)



Proof Due to the complementarity conditions there are
22 = 4 possibilities.

u1 = u2 = 0 : since (10a) implies that 2 = 0, this mode is
not feasible.

u1 = y2 = 0 : (10a) and (10c) give v = 1
2u2 = 1. Eq.

(10b) implies z = y1 > 0. This mode corresponds to
the right branch in �g. 8.

u2 = y1 = 0 : Similar to the previous case, we can derive
that this mode corresponds to the left branch.

y1 = y2 = 0 : Eq. (10b) implies z = 0 and due to (10a)
and (10c) it follows that �1 6 v 6 1. This corre-
sponds to the middle branch.

Note that in the last mode (y1 = y2 = 0) the causality
between v and z is di�erent then in the other two feasible
modes.
The above modelling leads to a complementarity system

of the form (1), because the algebraic equations (10a)-
(10b) are used. Alternative modelling may lead to a semi-
explicit form in case the system � (see �g. 3) is represented
by _x = f(x; v) and z = g(x; v). Indeed, take

u1 = 1
2 (1� v) (13a)

y2 = 1
2 (1 + v) (13b)

z = y1 � u2 (13c)

together with the complementarity conditions on (ui; yi).
Similarly as in the previous proof, one can check all the
four possibilities to verify that the above equations de-
scribe the relay characteristic. By suitable substitutions
one gets the semi-explicit form

_x = f(x; 1� 2u1) (14a)

y1 = g(x; 1� 2u1) + u2 (14b)

y2 = 1� u1 (14c)

Other approaches to PL modelling use absolute value
functions [7], extended and generalised complementarity
problems [5, 10] or state variables [3, 22]. More compli-
cated examples can also be modelled as complementarity
systems. Examples can be found in [22], where a \reversed
Z-characteristic" has been put in a complementarity sys-
tem (left picture in �g. 9) and in [10], where a model has
been derived whose characteristic consists of the edges of
a square (right picture).
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Figure 9: Reversed Z-curve and square

Existence and uniqueness of solutions to dynamical sys-
tems with PL characteristics are nontrivial. Such well-
posedness issues are studied in [5].

6 Variable structure systems

6.1 Convex de�nition

Consider a system that switches between two dynamics
as a result of inequalities. In �g. 10 the state space is
separated into two parts by a hypersurface de�ned by
�(x) = 0. On one side of the surface C+ := fx 2 R

n j
�(x) > 0g the dynamics _x = f+(x) holds, on the opposite
side C� := fx 2 R

n j �(x) < 0g the dynamics _x = f�(x)
is valid.

C+

C-

x' = f (x)+

x' = f (x)-

φ(x)=0

Figure 10: Switching dynamics.

A sliding mode occurs when in a state x0, lying on the
hypersurface �(x) = 0, f+(x0) points in the direction of
C� and f�(x0) points in the direction of C+ (�g. 11).
Hence, from the initial state x0 it is impossible to go to
C� or C+, because the dynamics immediately steers you
back to the hypersurface satisfying �(x) = 0. A kind
of sliding solution has been formalized by Filippov [12]
by the convex de�nition which corresponds to in�nitely
fast switching. In brief, it states that the sliding mode is
given by taking a convex combination of both dynamics
_x = �f+(x) + (1� �)f�(x), 0 6 � 6 1 such that x moves
along �(x) = 0.

C+

C-

f (x )+ 0

x0

f (x )- 0

φ(x)=0

Figure 11: Sliding mode.

Proposition 6.1 The variable structure system with so-
lutions according to the convex de�nition can be modelled
by

_x = �f+(x) + (1� �)f�(x) (15)

and

� = 1; if �(x) > 0 (16a)

0 6 � 6 1; if �(x) = 0 (16b)

� = 0; if �(x) < 0; (16c)

i.e. � = 1
2 + 1

2sgn(�(x)) with `sgn' the relation described
by (9). As seen before, this PL relation allows several
complementarity reformulations.

Similar techniques as for a single surface, apply to mul-
tiple surfaces splitting up the state space.



6.2 Equivalent control de�nition

Another solution concept introduced by Filippov is based
on the equivalent control de�nition of sliding modes [12].
This de�nition is related to \switching control systems."
The system given by _x = f(x; u) with x the state vari-
able is controlled by the discontinuous feedback (called
the \equivalent control")

u =

�
g+(x); �(x) > 0

g�(x); �(x) < 0
(17)

with the function � : Rn ! R modelling the switch-
ing surface. Similar to the previous subsection, a slid-
ing mode occurs when the dynamics f+(x) := f(x; g+(x))
and f�(x) := f(x; g�(x)) point outwards C+ and C�, re-
spectively. The equivalent control de�nition of a sliding
mode picks a convex combination of the control laws in-
stead of a convex combination of f+(x) and f�(x) (note
that the de�nitions are equivalent when f(x; u) is a�ne in
u). Formally, the sliding mode is given by the di�erential
and algebraic equations _x = f(x; �g+(x) + (1� �)g�(x)),
�(x) = 0 and valid as long as � 2 [0; 1] is satis�ed. Ob-
viously, this system can also be modelled as a system
_x = f(x; �g+(x) + (1� �)g�(x)) with a characteristic be-
tween � and �(x) as in (16).

Proposition 6.2 A variable structure system as above
with solutions according to the equivalent control de�nition
can be rewritten in terms of a complementarity system.

7 Optimal control problems with

state constraints

An important class of optimal control problems consists

of maximizing the criterion J(x0; v) :=
R T
0 [F (x; v; t)]dt +

S(x(T ); T ) by choosing an appropriate control function v
subject to the dynamics _x = f(x; v; t) with initial condi-
tion x(0) = x0 and the state constraint h(x; t) > 0 for all
t 2 [0; T ]. Additional requirements like control constraints
g(x; v; t) > 0 and end-point conditions a(x(T ); T ) > 0
and b(x(T ); T ) = 0 could be included, but are omitted for
brevity.
In the survey [13] Pontryagin's maximum principle [28]

is used to obtain necessary conditions for a control input
to be optimal.
Introduce the Hamiltonian H(x; v; �; t) := F (x; v; t) +

�>f(x; v; t). The optimal control vopt satis�es

vopt = arg maxvH(xopt; v; t) (18a)

_xopt =
@H

@�
(xopt; vopt; t) (18b)

_� = �
@H

@x
(xopt; vopt; t)�

@h

@x

>

(xopt; t)u (18c)

y = h(xopt; t) (18d)

with complementarity conditions holding between the
multiplier u and constraint variables y. The variable � is
called the adjoint or costate variable. There are additional
boundary conditions such that the maximum principle re-
sults in a two-point boundary problem. It is possible that

jumps occur in the adjoint variable �. Also for these jumps
additional relations are available. We do not specify all
the available conditions, but only illustrate that this kind
of optimal control problems �t in the class of complemen-
tarity systems.
The formulation in [13] is called an informal theorem,

because the result is not rigorously established for the gen-
eral case. It is presented as a kind of recipe to �nd possible
candidates for the optimal controls.

8 Projected dynamical systems

Projected dynamical systems (PDS) have been studied in
[11, 25]. These systems are described by di�erential equa-
tions of the form

_x(t) = �K(x(t);�F (x(t))); (19)

where F is a vector �eld, K is a closed convex set, and �K

is a projection operator that prevents the solution from
moving outside the constraint set K. Loosely speaking, a
PDS obeys an equation of the form _x = �F (x) as long as
x is contained in the interior of K or �F (x) is \pointing
inwards K." When �F (x) is pointing outwards and x is
at the boundary of K, the operator �K projects �F (x)
into the direction of K such that the solution stays inside
K.
To be precise, the cone of inward normals at x 2 K is

de�ned by

n(x) = f
 j h
; x� ki 6 0 for all k 2 Kg: (20)

Given x 2 K and v 2 R
n , de�ne the projection of the

vector v at x with respect to K by

�K(x; v) = v � hv; n�(x)in�(x); (21a)

where

n�(x) 2 arg max
n2n(x); knk61

hv;�ni: (21b)

De�nition 8.1 The PDS(K;F ) is given by

_x = �K(x;�F (x)): (22)

We consider convex sets K that can be given by �nitely
many inequalities, i.e. K = Kh := fx 2 R

n j h(x) >
0g with h : Rn ! R

p a real-analytic function such that
the component functions hi are convex. rhi denotes the
gradient of hi and is considered to be a row vector. The
Jacobian H(x) denotes the matrix in which the i-th row
is equal to rhi(x), i.e. the ij-th element of H(x) is equal

to @hi

@xj
(x). Moreover, F is assumed to be real-analytic as

well. Under suitable assumptions (like a rank condition on
the Jacobian H(x) and growth conditions on the vector
�eld F (x), see [16] for the details) the following result can
be proven.

Proposition 8.2 [16] For all initial states x0 both
PDS(Kh; F ) and the complementarity system given by

_x(t) = �F (x(t)) +H>(x(t))u(t) (23a)

y(t) = h(x(t)) (23b)



and the complementarity conditions (1d), have a unique
solution de�ned on [0;1). Moreover, the solutions coin-
cide.

PDS are used for studying equilibria of oligopolistic
markets, urban transportation networks, tra�c systems,
international trade, agricultural and energy markets (spa-
tial price equilibria).

9 Conclusions

The class of complementarity systems may seem quite re-
strictive at �rst sight. The goal of this paper has been
to show that this is not the case: a wide variety of inter-
esting discontinuous dynamical systems can be rewritten
in a complementarity formalism. Among the applications
of complementarity systems are many examples relevant
to the systems and control community. We mentioned
the switching control systems (variable structure systems),
optimal control problems with state and/or control con-
straints, systems with discontinuous positive feedback and
control systems with relays. Furthermore, many challeng-
ing questions are still open in the �eld of control of comple-
mentarity systems. These include characterization of sta-
bility, controllability, state/output feedback stabilizability
and the development of simulation tools. An incentive to
continue this line of research is the range of possible appli-
cations: control of mechanical systems with Coulomb fric-
tion, unilateral constraints and one-sided springs; control
of robots; simulations of crash-tests; regulating landing
manoeuvres of spacecraft; feedback control of dynamical
systems with saturating actuators or deadzones; control
of tra�c systems and economical markets; control, design
and veri�cation of switching circuits.
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