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Complementarity Modeling of Hybrid Systems

A. J. van der Schaftviember, IEEE and J. M. Schumachegenior Member, IEEE

Abstract—A complementarity framework is described for the respect to [18] in this paper is that we identify a number
modeling of certain classes of mixed continuous/discrete dynam- of algebraic problems that can be used to settle uniqueness
ical systems. The use of such a framework is well known for o eqtions. All these problems are related to the so-called

mechanical systems with inequality constraints, but we give a . . -
more general formulation which also applies, for instance, to linear complementarity problen{LCP) from mathematical

switching control systems. The main theoretical results in the prOQTamminQ [4]. _ . _ .
paper are concerned with uniqueness of smooth continuations; We begin in Section Il with an introduction on complemen-

the solution of this problem requires the construction of a map tarity modeling, in which we aim to show how the class of
from the continuous state to the discrete state. A crucial technical complementarity systems fits into the general class of hybrid

tool is the so-called linear complementarity problem (LCP) from t Section Il tains th . its of th
mathematical programming; we introduce various generaliza- SYS€MS. S€ction 1l contains theé main results or the paper

tions of this problem. on uniqueness of smooth continuations. Special techniques
for linear systems are briefly mentioned in Section IV, and

Index Terms—Hybrid systems, linear complementarity prob- . . )
y Y P y P conclusions follow in Section V.

lem, switching control, unilateral constraints, well-posedness.

Il. COMPLEMENTARITY MODELING
I. INTRODUCTION

T HE general description of hybrid systems as SystemsLet us start with a fairly general hybrid system description,

incorporating both continuous and discrete componenst ch as .the one given by Aligt al. in [1]. A hybrid system
IS specified in that paper as a graph whose edges represent

leaves room for a bewildering multitude of dynamical system . . .
iscretetransitions and whose vertices represent continuous

of which many are cumbersome to specify and difficult to aa_ctivities The vertices are calletbcations The continuous
alyze. In this paper we shall be concerned with a special clas

of hybrid systems, which we catbmplementarity systenfer Aclivities consist of sets of time functions which may be

. . . . S ecified, for instance, by differential equations; thus, there
which both specification and analysis should be considerab a dvnamical svstem associated to each location. Under
easier than for the general case. In particular, we shall Se y Y :

concerned withwell-posednesef complementarity systems. ome cond|t|0n§ tranS|t|ons_ may occur from one 'OCa“OT‘ _to
anPther. In particular, transitions are forced when the activity

The study of well-posedness (existence and uniqueness . ) . .
y P ( q Pa certain location would take the associated continuous state

solutions) is particularly relevant in connection with hybri . X : . T
X . . utside a designated region of the state space; this region is
systems. As is well known, hybrid dynamical systems of- . : ; . :

alled theinvariant associated with the location.

ten arise by the application of (idealized) switching contrdl The description given by Aluet al. is very general and at

schemes. When such switching schemes are considered, EI - . oo
\?é same time rather amorphous. In many situations, the set

posedness of the resulting closed-loop system may easily 'discrete states (locations) will actually be a product space
quite in contrast to the situation when smooth control 2 i L : y P P

o . gbtained by combining several switches. Also, in many cases,
applied; see Section Ill for an example. Also, well-posedness ; ) X : .
. . . i - ._the dynamical systems associated to different locations will not
is a crucial issue in checking the validity of mathematlc%

. . . . . e completely independent but will rather have many equations
models of physical hybrid systems and in setting up 5|mulat|(|)rr]1 common. A combination of these two observations gives
algorithms for such systems (cf. [2] and [18]). ' g

Necessary and sufficient conditions for the weII—posedne%}%;;%V;hat might be calledroduct decompositioaf hybrid

of complementarity systems were given in [18], but only for Such a decomposition imposes the following additional

the case of complementarity systems with just two discret L .
s N S . ructure on the general scheme indicated above. There is
states (“bimodal systems”). Here we extend this discussion O“core dynamics” of the forme(z, 2) 0 which forms
complementarity systems with an arbitrary number of discrefe y . “Z ] N
e - i, art of the dynamics at each location; the vecitr) € R
states, limiting ourselves however, to sufficient conditions for_ . . . .
ntains all continuous variables in the system. Therekare

uniqueness of smooth continuations. Another advance wif- . . . o :
q switches, with a finite sef; of possible positions associated
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the description of the dynamics at a given location, and tfieedback lawu(t) = ¢, (x(t)) when the scalar variablg(t)
invariant corresponding to the location is obtained by takimdefined byy(¢) = h(z(t)) is positive and a feedback(t) =
all inequalities corresponding to the switch positions togethef:(x(¢)) wheny(t) is negative. Writingf;(z) = f(x, ¢;(z))

As long as no further statements are made concerning, for : = 1,2, we obtain a dynamical system that follows the
instance, the size of the core dynamics and the numberesfuation(t) = fi(x(¢)) on the subset of the state space
switch positions, the above format for specifying dynamioghereh(x) is positive, and that follows:(¢) = fo(z(t)) on
and invariants at each location is still quite general. Suppode subset wherg(x) is negative. Such a system is sometimes
now, however, that the following additional requirements aalled avariable-structure systenifo write the system as a
imposed. complementarity system, introduce new variablg§t) and

1) All switches are binary, i.e$; = {0, 1} for all <. yi(t) (1 = 1,2) and pose the following “core dynamics” of

2) All additional dynamic equations corresponding t&1€ formF(z,2) = 0, with z := (&, uy, u2, y1, y2)

switch positions are algebraic anq scalar, i..e., they are i(t) =ui(8) f1(z(8) + ua(t) fo(2(2)) (1)
of the form ¢g?(z) = 0 where g7 is a function from _
RN to R. UL (t) + u2(t) =1 ()

3) Also, the invariants corresponding to switch positions yi(t) — y2(t) =h(x(t)). 3)

are scalar, so they are of the fom(z) > 0 wherehf o variables:; (t) andy;(¢) are taken as complementary vari-

_ . e
Is a function fromR™ to R. _ ables, and so the complementarity conditions can be written
4) The functions defining the additional dynamics and thgS follows:

invariants associated with each switch position change

roles when the switch is turned; i.eg! = h! and u;(t) > 0, () >0 (i=1,2) 4)

gr = hY for all 4. y1(Hur(t) + yo(t)us(t) =0 for all ¢. (5)
We call the final condition of this list theomplementarity

condition and systems that can be described according to tRE'CE We have two binary switches, the complementarity
above rules will be calledomplementarity systenishe com- system above has four locations. One of the locations, how-

plementarity condition implies that the additional dynamicgver' combines the (_eq_uatlona . 0 andu, =0 W'th
and invariants at each switch position are specified by two +uz = 1and so it IS pot feasible. T\,NO other Iocf'mons
functions rather than by four. The two functions create tW%orresp_ond to the dynamias= f,(x) and& — F2(2) V\.'h'Ch
variables that are associated with the vee{@) of continuous are Va.“d for h(“f) >0 apd h(z) <0, respecuvely.. Fmally,.
variables and that may be denoted fy#) = ¢°(z(¢)) and t.here is a location which combines the_ dynamic equation
wi(t) = KO(x(#)): we call these variablesomplementary ©(t) = 11(O)fu(z(£))+(1—ua(#))f2(x(£)) with the constraint

variables Note that one switch position corresponds to th (x(t?). = 0 and the_ inequality co_nstra_lnﬁ; = u.l(t). =1 i
. I onditions may be given under which this combination defines
pair of conditionsy;(t) = 0 andw,(¢) > 0, whereas the other . . . L o
osition corresponds ta;(¢) = 0 andgi(£) > 0 a unique solution; whether this solution is “correct” in the
P ¢ Y= sense that it describes in good approximation the behavior

The above setting, limited as it may seem from a 9ENETE the actual control system depends on the implementation

hybrid system perspective, in fact applies to many SyStemﬁosen for the switching controller. It should be noted that

of interest. The reader may have already recognized t%e . : :
a_complementarity system as described above is not always

complementarity conditions as essentially the characterist{,\%”_posed in the sense that solutions are unique, as shown by
of an ideal diode; so, electrical networks with diodes m simple example in the next section '
S .

be looked at as complementarity systems, with the diodes a:
switches and the voltage across and the current through the

diodes as complementary variables. Other physical exampleé”'
include mechanical systems with unilateral constraints, with As already noted in [18], it is not difficult to find examples

distance to contact point and reaction force as complement@fycomplementarity systems that exhibit nonuniqueness of
variables, and hydraulic systems with one-way valves, wheg@ooth continuations. For a simple example of this phenome-
pressure and flow can be taken as complementary variabR@) within a switching control framework, consider the plant

Outside physics, complementarity systems arise naturally in
the necessary conditions obtained from the maximum princi- .
ple for optimal control problems with inequality constraints. L2 =—22 (6)

F_urther_more_, it follows from results on the repre_sentation A closed loop with a switching control scheme of relay type
piecewise linear sets [8], [19] that systems with elements

W ELL-POSEDNESS OFCOMPLEMENTARITY SYSTEMS

T1 =x2 +u, Yy =21

having arbitrary piecewise linear characteristics can be written u(t) =1, if y(t) >0
as complementarity systems. -1 <u(t) <1, if y(t) =0
An example_ of how a complgmentamy system may arise in u(t) =1, if y(£) < 0. @)
a control application can be given as follows. Consider some
control system described by equations of the foit) = It was shown in the previous section that such a variable-

flz(t),u(t)) wherew(t) is the scalar control input. Supposestructure system can be modeled as a complementarity sys-
that a switching control scheme is employed which uses a st&ten. Note that from any initial (continuous) stat€0) =
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(x1(0),22(0)) = (0,¢), with |¢| < 1, there are three possiblecoincides with that of (8) and (9) is called theode selection
smooth continuations fot > 0 that are allowed by the problem the index sefl represents thenode(location) of the

equations and inequalities above system.
1) z1(t) = 0,22(t) = cetu(t) = —ce™t, -1 < u(t) < One approach to solving the mode selection problem would
Ly(t) = z1(t) = 0 simply be to try all possibilities: solve (8) together with

2) z1(t) = (1 —et) + t,22(t) = ce™t,u(t) = 1,y(t) = (10) for some chosen candidate index $eind see whether
z1(£)>0 the computed solution is such that the inequality constraints
3) z1(t) = c(l—e™t)—t,ma(t) = ce ™t u(t) = —1,y(t) = ¥(t) = 0 andu(t) > 0 are satisfied on some intervil, ¢].
71(t) <0 Under the assumption that smooth continuation is possible
So the above closed-loop system is not well-posed asT@M %o, there must at least be one index set for which
dynamical system. If the sign of the feedback coupling fbe constraints will indeed be satisfied. This method requires
reversed, however, there is only one smooth continuation frdfh the worst case the integration af systems ofn + k
each initial state. This shows that well-posedness is a nontrividiferential/algebraic equations im + & unknowns.
issue to decide upon in a hybrid system, and in particular is/n order_to develop an alte_rnatlve approac_h which leads to
a meaningful performance characteristic for hybrid systerfi @/gebraicproblem formulation, let us note first that we can
arising from switching control schemes. Depending on ﬂ{garlve frqm _(8) a number of relations between the successive
actual implementation of the controller that is represented i’e derivatives ofy(.), evaluated at = 0, and the same

idealized form in (7), lack of well-posedness may manifeguantities der?ved fronz.x(-)..By differentiating the second line
itself in some form of instability. of (8) and using the first line, we get

For simplicity we shall assume throughout that there are noy(t) = h(x(¢), u(t))
external (continuous or discrete) inputs applied to the system. oh ah
In the context of switching control schemes this assumption isy(t) = = (z(t), w(t)) f(z(t), u(t)) + = (x(t), u(t))i(t)

. . ) . dr du
natural, since we consider a closed-loop configuration. — Py ((8), ult), (t)
Recall that a general complementarity system has been ) ’ ’
represented by a “core dynamics” having pairs of externahd in general
variablesu; andy; (functions ofz), in “closed loop with” or Doy )
“terminated by” the complementarity conditiops > 0,u; > y () = F(a(t),u(t), -, u (1)) (11)

0,y;u; = 0. This “closed-loop” point of view will mn here i s a function that can be specified explicitly in
out to be very fruitful in the analysis of complementaritys s of f and . From the complementarity conditions (9), it
systems. This becomes especially clear for skeni-explicit follows, moreover, that for each indexeither
complementarity systemahich will be treated in the rest of

this paper. These systems can be written as an “input—outputy;(0),7;(0),---) =0 and (u;(0),%;(0),---) <0 (12)
system”

(t) = flx(t),ult)), z € R", u € R
y(t) =hz(t),u(t), yeR* ®)

with the additionalcomplementarity conditions

or
(%:(0),%:(0),---) 20 and (w;(0),%;(0),---) =0 (13)

(or both), where we use the symbslto denote lexicographic
nonnegativity. (A sequencéug,ay,---) of real numbers is
y(t) >0, u(t) >0, y* (t)u(t) = 0. (9) said to belexicographically nonnegativé either all a; are
zero or the first nonzero element is positive.) This suggests

The inequalities here are taken in the componentwise Sen$& formulation of the following “dynamic complementarity
Because of the nonnegativity constraints, the vanishing of tBF'obIem” (DCP).

inner product means that for each indeand each time we Problem DCP: Given smooth functiong: RAHGADE
must have eithey;(#) = 0 or u;(#) = 0 (or both). The vectors i (; _ g 1 ... ) that are constructed from smooth functions

y(t) and u(t) denotecomplementary variablesrather than (. prn _, gn 'a’nd h: R* — R* via (11), find, for given
outputs and inputs. Nevertheless, we keep the symbols thate pn sequences,®, y?,- ) and (u?, u! ’___) of k-vectors
are customarily used for outputs and inputs, because we Wllch that for allj we have T

extensively use tools from the theory of input—output systems

(8). The functionsf and h will always be assumed to be y = Fj(zo,u’, -, w) (14)
smooth. . ] .
The complementarity conditions (9) imply that for somé"‘nd for. eachindex € {1,---,k} atleast one of the following
index set/ C {1,---,k} one has the algebraic constraints 'S fU€:
0o 1 0 1
u)=0@Gel), wt)=0(@gI. (10) (s yi,-)=0 and (u;,u;,--+) 30 (15)
(y?,y},)jO and (U,?,U,Zl,):o (16)

Note that (10) always represeritsonstraints which are to be
taken in conjunction with the system ofdifferential equations We shall also consider truncated versions whgreonly
in n—+k variables appearing in (8). The problem of determiningikes on the values from zero up to some integethe
which index sefl has the property that the solution of (8)—(10¢orresponding problem will be denoted by DER It
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follows from the triangular structure of the equations that To get a reduction to a sequence of LCP’s, assume that the
if (0,9, (1w -, u)) is a solution of DCFY), then, dynamics (8) can be written in theffine form

for any £/ <4, ((4°,---,y%),(u0,---,u’)) is a solution of y
DCP(¢"). We call this thenesting propertyof solutions. We () = ; (s (1
define theactive index set at stagé denoted byl,, as the it) = /) + ;gz(x( Nuilt)
[ ~ ' 0 ... 4t i i B
set of indexeg for which (u/, - -+, ;) > 0 in all solutions of y(t) = h(z(t)). (18)

DCP(¢), so that necessarily] = 0 for all j in any solution
of DCP (if one exists). Likewise, we define timactive index Extensive information on systems of this type is given for
set at stagée, denoted by/,, as the set of indexesfor which instance in [15]. In particular, we need the following termi-
(y?,--+,y5) > 0in all solutions of DCR?), so that necessarily nology. Therelative degreeof the ith outputy; is the number
u] = 0 for all j in any solution of DCP. Finally, we define of times one has to differentiaig to get a result that depends
K, as the complementary index sgt,---,k}\(I, U J;). It explicitly on the inputss. The system is said to hawmiform
follows from the nesting property of solutions that the indeselative degreeif the relative degrees of all outputs are the
setsl, and J, are nondecreasing as functionsfofSince both same.
sequences are obviously bounded above, there must exist afiheorem 3.1:Consider the system of equations (18) to-
index ¢* such thatl/, = I, andJ, = Jy- for all £ > ¢*. We gether with the complementarity conditions (9), and suppose
finally note that all index sets defined here of course depetitht (18) has uniform relative degree Let o € R™ be such
on xzg; we suppress this dependence, however, to allevidiat
the notation.

The problem DCP is a generalization of thenlinear com-
plementarity problenfNCP) (see for instance [4]), which can
be formulated as follows: given a smooth functisin R* —

(o), -+, L h(wo)) = 0 (19)

(with componentwise interpretation of the lexicographic in-
. equality) and such that all principal minors of the decoupling
R", find k-vectorsy andu such thaty = F'(z,u),y > 0,u > magiy LoL ™ h(zo) at zo are positive. For suchr, the

0, and ?.JT“ = 0. For this reason the term "dynamic COmpledynamic complementarity problem DCP has for eacly a
mentarity problem” as used above seems natural. Apologigs ition (0, y5), (u®
) ) )

u®,- -+, u*)) which can be found by
are due, however, to Chen and Mandelbaum who have u

X , ing a sequence of LCP’s. Moreover, this solution is unique,
the same term in [3] to denote a different although reIate,.:g(Cept for the values of with i ¢ Joandj> ¢ — p.
problem. i

) , ) Proof: It follows from the special form of (18) and the
Computational methods for the NCP form a highly activgyiform relative degree assumption that the equations of the

research subject (see [10] for a survey), due to the MaREp il take the following form, in which thes,;’s denote

applications in particular in equilibrium programming. Thgnetions that can be computed explicitly [cf. (11)] from the
DCP is a generalized and parameterized form of the NCP, gé\gen functions/, g;, and h:
a PR A2 "

given the fact that the latter problem is already considere ' '

major computatiqnal challenge, one may wonder Whe'ther they’ =Ljfh(a:0) (j=0,---,p=1)
apprqaph taken in the previous parggraphg can be viewed as; =¢j($o,u0, Y LgL/}—lh(xo)uj (j > 0.
promising from a computational point of view. Fortunately;

it turns out that under fairly mild assumptions the DCP can (20)

be reduced to a series lifiear complementarity problems. In From this and (19) it is already obvious that the claim of
the context of mechanical systems this idea was first used 0% theorem holds fof = 0.. .- p— 1. We now continue

Lotstedt [12]. The ,LCP can be formuigted as fO||OWS. by induction and so we carry out the proof assuming that
kF;iobI_em LCP: Given a vectorg € R and a matrixM € ,°5 ) and that the claim in the theorem holds for DeR
R**% find k-vectorsy andw such that 1). A solution ((4°, -+, 4%), (. - - - ,u)) of DCP(¢) can be
constructed as follows. The componegidor j = 0,---,/—1
T andw’ forj =0,---,#/—p—1 must be taken from the solution
y=gq¢+Mu, y20, w20, yu=0. (17) g4 DCP(/—1) by the nesting property. In this way one satisfies
automatically all equations of DGP) except for the last one,

which is
The LCP has been studied extensively, in particular because
of its applications in game theory and mathematical proy* :d)g_,,(azo,uo,---,uz_”_l)+LgL;_1h(a:0)uZ_”. (21)

gramming. A wealth of theoretical results and computational
methods has been collected in [4]. The main result that will He
used here is the following: the LCP a7 has a unique solgtion ot = 24 + Dut=", (22)
(y,w) for all ¢ if and only if all principal minors of the matrix

M are positive [16], [4, Th. 3.3.7]. (Given a matrix of Note that the vector’ depends only on the components of
sizek x k and two nonempty subsefsandJ of {1,---,k} the solution of DCP¥ — 1) that are uniquely determined; the
of equal cardinality, thé/, J)-minor of M is the determinant matrix D is the decoupling matrix aty. In addition to (22),

of the square submatri’/;; := (m;;)icr,jes. The principal the complementarity conditions of DCA have to be satisfied;
minors are those with = J [9, p. 2].) after eliminating all conditions that are satisfied automatically

simplify the notation, we abbreviate this as
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by building the solution from the one that was obtained from Proof: Let W be a neighborhood o%, such that all

DCP(/ — 1), this leaves us with the conditions principal minors of the matrixD(z) := LgL’}_lh(a:) are
. . nonzero for allz € W, and consider for any index sdt
yi =0 (P€ ) the equations
uTh =0 (i€ Jiy) (23)
T =f(z)+ ()
and f(=z) ;9( )
_ _ 0=hi(z), el 30
W20, W0, =0 (i€ Kiy). wh  e€ 0

(24) describing the dynamics in modé. Since the submatrix
Dividing up (22) in three parts corresponding to the indegéf(fi 'S k:nve:r)’té)bli onw, It. foIIowsi (§ee for mSt.anC? [15,
sets Jy—1, I,—1, and K,_;, and dropping all indexes and™~"" ]) that (30) has a unique solution & starting from

subindexes that depend @rio further alleviate the notational @Y initial condition inW N V7, where
burden, we get '

Yr 21 Dy Dry Dk | |ur
vy | =z |+ |Dur Dy Dyk | |us |- is the “consistent manifold” of modé. As a consequence of
YK 2K Digr Dy Dxx | |ux

the analyticity assumptions, these solutions Idhare real-

By (23), we have to take; = 0 anduy = 0. We see that analytic [14, Corollary 1.8.11]. ;
the remaining components have to be chosen such that thEOF indexes: € I~ we must haveL%hi(zo) = 0 for

following equations are satisfied: j=0,1,---,p—1;80xg € V,.. Denote the solution in mode
1+ starting fromzg by (z(-), y(:), u(-)). From the uniqueness
0 =27+ Dyur + Drgug (25) properties of solutions of DCP (see Theorem 3.1), it follows
Yy =25+ Dyrur + Dyxuk (26) that
YK =2k + DKIU/I + DKKU/K- (27)

il i{y§j>(0) =0forallj>0

Moreover, the complementarity conditions that follow from (ui(0),%;(0),--+) = 0

(24) must hold e { ui(0) = 0for all j > 0
(yi(o)v yi(o)v T ) -0

c > - > Ly = 0. ) .
yr 2 0, ug >0, Yrux =0 (28) i € K- :>u51)(0) =0, yi(J)(O) =0for all j > 0.

By assumption, the determinant &f;; is positive and hence So. b Wicity. th ist 0 (tak I h
nonzero so that; can be solved in terms aff andu g from 0, by analyticity, there exists ar> 0 (taken small enoug

(25). Inserting the result in (27) leads to the equation to guarantee that(t) € W for ¢ € [0, ¢]) such that

yx =2k — DxrDi}zr + (Dxx — Dx1Dit Dir)uge. (29) i € Iy- = y;(t) = 0andw;(t) > 0for ¢ € [0, ¢,
The ab _ X i I i u;(t)>01or t € (0,¢)

e above equation together with the complementary condi- )
tions (28) cogstitutes agstandard LCP. Fror|?1 our ass};mption 1€ Jp = uilt) = 0 andy,(t) 2 Ofort € [0, ],
that all principal minors ofD are positive, it follows that the yi(t)>0fort € (0,¢)
same property is true foDyx — DKID;}DIK, since this t € K¢ = y:(t) = 0andu;(t) =0fort € [0, ¢].
matrix is a Schur complement of a principal submatrix/of
[17]. From [4, Th. 3.3.7] (as quoted above), it then follows thatlence (18) and (19) have a smooth solution which is unique
the LCP (28) and (29) has a unique solution. This determingsmode,- and in fact takes place in every modlesuch that
yx andug; then finallyw; andy, follow from (25) and (26). 1,. ¢ 1 c I,, U K.
The components;; for j >/ — p must vanish for indexes  Now  suppose there is another smooth — solution
such that(y?, ---,vf) = 0. So the uniqueness of solutions $%(),a(),5(-) (in some model) with initial condition

as described in the t_heorem st.at(.ament. . As noted above, the solution is real-analytic. From the
The result above is algebraic in nature. We now return {3 . .

differential equations. u(n’l)queness (p)roperty of(iolutlons (()f) DCP it follows that
Theorem 3.2: Assume that the functiong, g;, and A g(0) = y(0) a.m.d f“ 0) = u¥ (0)~ for all j, and

appearing in (18) are analytic. Under the conditions dperefore by analyticityy(t) = y(¢) and a(t) = wu(t) for

Theorem 3.1, there exists an>0 such that (18) and (19) ¢ € [0,¢]. It also follows thatl;. C I C I U K.

has a smooth solution with initial conditiom, on [0,¢]. ~ Example 3.3—Mechanical Systems with Unilateral Con-

Moreover, this solution is unique and corresponds to amsjraints: Mechanical systems with unilateral constraints can

mode such thatl;s C I C Ip- U K. be represented as semi-explicit complementarity systems (cf.
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[18]) positive, then well-posedness follows. Note that the condition
of D(z) having positive principal minors corresponds to an
._0H R" R" additional positivity condition on the storage functidf In
7= ap (ap), 7R pe fact, it can be checked that forlimear system withquadratic
] OH R .  9CT N storage functionV (x), the decoupling matrixD(z) will be
p=- a—q(qvp) - a—q.(CI)Jr a—q(Q)% u€eR positive definite if V(z)>0 for # # 0. Hence, a linear
L passive electrical network containing ideal diodes is always
y=C(g), yeR (32) well-posed
y>0, u>0, y'u=0 (33)
where (8H /dp),(0H/dq), etc., denote column vectors of
partial derivatives. The vectoks and p contain position and IV. A FREQUENCY-DOMAIN METHOD
momentum variables respectively, the Hamiltonfd(y, p) i |n this section we shall consider the case in which we

Furthermore,Q(q) >0 _is the column _vector of unilat- feedthrough termDu(t), so that (18) is replaced by
eral (geometric) constraints, and > 0 is the vector of

Lagrange multipliers producing the constraint force vector #(t) = Az(t) + Bu(t)

(0CT /8q)(q)u. The conditiony’+ = 0 corresponds to the y(t) = Ca(t) + Duft). (39)

fact that theith component of the constraint force vector can be

only nonzero if theth constraint is active, that is@;(q) = 0.  Linear complementarity modeling applies, for instance, to
Assume that (32) is real-analytic and that the unilateralectrical networks with linear elements and diodes to certain

constraints aréndependentthat is mechanical systems made up of masses and linear springs
20T (or rotational inertias and corresponding elasticity) and to
rank——(q) = k, for all ¢ with C(q) > 0. (34) the Hamiltonian equations for linear-quadratic optimal control
dq problems with linear inequality constraints (cf. also [18] and
Since the Hamiltonian is of the form (kinetic energy pluétll)- In the linear case, the equations of the DCP become
potential energy) -1
_ I = CA'zg+ Y CA™'V" By + D/ j >0). (40
H(q,p) = 50" M~ (@)p + V(a) Y ’ ; 2040
M(q)=M"(q)>0 (35)

The dynamic complementarity problem with these equations

where M (q) is the generalized mass matrix, it follows that thavill be denoted by LDCP and the truncated versions by
system (32) has uniform relative degree two with decouplitd?CP(£). It has been shown in [7] that LDGP) can be

matrix looked at as a special case of the Generalized Linear Com-
o9CT T 90T plementarity Problem (GLCP) [5] and of the Extended Linear
D(q) = {_(q)} MY (q9)—=—(q). (36) Complementarity Problem (ELCP) [6].
dq 9 A special feature of the linear setting is that it allows a

Hence, fromM (q) > 0 and (35) it follows thatD(q) is positive frequency-domain approach to the mode selection problem. To
definitefor all ¢ with C(g) > 0. Since the principal minors See this, note that to a strictly proper rational vector function
of a positive definite matrix are all positive, all conditiong/(s) we can associate the coefficients of its power series
of Theorems 3.1 and 3.2 are satisfied, and we establish wépansion around infinity
posedness as in [12]. 0 1 L 2 9 _3

Example 3.4—Passive Systen8ystem (18) is calleghas- y(s) =y s™ Hys T HyTsT 4
sive (see [20]) if there exists a functioW(x) > 0 (a storage

function) such that and, as is easily verified, the lexicographic nonnegativity

condition (3°,4*,---) = 0 is equivalent to the condition
LyV(z) <0 y(s) >0 for all sufficiently larges. (41)
Lgiv(x) = hi(x), i=1--k. (37)

) N Moreover, when two strictly proper functiongs) and u(s)
Let us assume the following nondegeneracy condition on thg related via

storage functionV:
8) = C(sI — A7l + (D + C(sI — A" Bu(s) (42
onklLy Ly V(s y(s) = C(sI = A)™Lzo + (D + C(sI — A)" Blu(s) (42)
for all z with A(z) > 0. (38) then, as is again easily verified, the corresponding coefficients
(y°, %, --+) and (u°,u!,---) are related in exactly the same
SinceL, h; = Ly, L, V it follows that the system has uniformway as in the LDCP. We are therefore motivated to con-
relative degree one, with decoupling matdX(x) given by sider the following problem, which we shall call tinational
the matrix in (38). If the principal minors oD(x) are all complementarity problenRCP).
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Problem RCP: Let matricesA, B, C, D of sizesn X n,n x
k,k x n, and k x k, respectively, be given. Define rational
matrix functionsT'(s) of sizek x n and G(s) of sizek x k
by T(s) = C(sI — A)~! andG(s) = C(s] — A)~*B + D.
For givenzo, find strictly proper rational functiong(s) and
u(s) such that the equality

y(s) = T(s)wo + G(s)u(s) (43)

holds, and there exists aspy € R such that for alls > sg
we have

y(5) 20,  u(s) 20,  y(s)Tu(s)=0. (44)
A formal proof of the equivalence of RCP and LDCP is give
in [11]. Here we shall only present an example to illustrate t
convenience of using RCP. Consider the following equatio
(cf. [18]) in whichz; andxs denote the positions of two unit
masses connected by springs to each other and to a wall,
motion of the first mass being constrained by a stop:

Z1(t) = =221 (t) + w2 (t) + u(t)
Zo(t) = 21(t) — z2(t)
y(t) ==1(t)
y(t) 20, w(t) >0,  y(t)u(t)=0.  (45)

This gives rise to the following equations:

(82 +2)x1 =29 +u + 230 + 5T10

(2 + D)x2 =21 + 40 + ST20

in which the vector(z1g, 20, 30, 240) represents an initial
condition. The variablec; can be eliminated by multiplying
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this schedule, complicated as it may seem, does correspond to
physical intuition. In [11] it is shown that the selection rule
based on RCP leads for mechanical systems to the same results
as projection according to the kinetic metric as described in
[13].

V. CONCLUSIONS

The interaction of discrete and continuous elements can lead
to extremely complex models. One way of overcoming the
potential complexity is by the introduction of what one might
call “formalisms,” that is, sets of high-level rules that allow
a compact specification of the dynamics of a hybrid system.
The use of formalisms also will help the development of theory
Yince it adds structure to the rather wide notion of a “hybrid

|1‘§/stem.”

NSin this paper we have discussed a formalism which we
have called thecomplementarity formalismin our previous
[Sla’foer [18], we have shown that this formalism is suited, e.g.,
for mechanical systems with unilateral constraints, electrical
networks with diodes, and the Hamiltonian equations for
optimal control problems with state inequality constraints. In
the present paper we have also shown that switching control
schemes can be represented within this formalism. Moreover,
from results on the representation of piecewise linear sets [8],
[19] it follows that all continuous-time systems with elements
having arbitrary piecewise linear characteristics can be written
as complementarity systems. This includes control systems
with relays and saturation or mechanical systems subject to
Coulomb friction.

The central problem considered in this paper is to derive
conditions for uniqueness of smooth continuations. We have
solved this problem for complementarity systems in semi-

the first equation by? +1 and then using the second equatiorexplicit form, using methods from input—output systems theory

Sincey = z;, we obtain

(s*+3s2 + 1)y

=[s(s* +1),s,5°+1,1] e | T (s2+1u. (46)

L40

For each fixeds there is an associatestalar LCP, which
leads to the following rules for the selection of a mod

corresponding to the given initial conditions. Since at th

instant of collisionzp = 0 always, the selection problem is

dominated first by the sign afsg. If this sign is positive, then

the mode with inactive constraint will be selected, whereas
the mode with active constraint will be selected (and will give

rise to an impulsive solution) if the sign is negative.zHy
vanishes, then the highest power ofs associated withoq

and so it will be the sign of this quantity that will determine

which mode is chosen. Again, if the sign 9§, is positive,

then the mode with inactive constraint will be selected, and
the sign is negative, then the other mode will be selected.
alsozsg = 0, then the sign ofr4q becomes decisive. Finally
if x40 vanishes as well, then the system is at rest, a situati
which is in accordance with the constrained mode as well

and the theory of the LCP. The extension of these results to
general complementarity systems is presently under investiga-
tion. It should be clear though that the well-posedness issue
concerns more than just unigueness of smooth continuations.
One has to specify reinitialization rules, and one has to
verify uniqueness of jumps and to guarantee that only a finite
number of jumps can occur at a given instant. Haear
complementarity systems these problems are addressed in [11].
A related basic issue concerns ttability propertiesof com-
Blementarity systems and their use in the design of switching
Control schemes. Furthermore, the inclusion of inputs and
outputs within the formalism and their use for the control of
complementarity systems calls for investigation.
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