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A Controllability Test for General First-order
Representations*

U. HELMKE{, J. ROSENTHAL% and J. M. SCHUMACHERS

A rank test for controllability is presented that applies directly to implicit
linear systems. The test is similar to the well-known Kalman test for
controllability of standard state-space systems.
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Abstract—We derive a new controllability rank test for
general first-order representations. The criterion generalizes
the well-known controllability rank test for linear input-state
systems as well as a controllability rank test by Mertzios et al.
for descriptor systems. © 1997 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

As is well known (see e.g. Willems, 1991;
Aplevich, 1991; Kuijper, 1994), the following is a
general form for linear time-invariant dynamical
systems:

Kox + Lx + Mw =0, ()

where K, L and M are matrices of sizes
(n+p)xn, (n+p)Xn and (n+p)X(m+p)
respectively. (We follow the notation of Kuijper
(1994), and therefore denote the parameter
matrices for this representation by (K, L, M)
rather than (E, F, G).) Specifically, Proposition
VIL.3 of Willems (1991) states that a system with
latent variables x and manifest variables w, over
the time azis 7Z, is a linear time-invariant
complete state-space dynamical system if and
only if it can be represented in the form (1), with
o denoting the shift. In the continuous-time case
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one should interpret ¢ as differentiation. It has
been shown by various transformation algo-
rithms that all of the behaviors that are
represented by any of the forms used in linear
system theory (including matrix fraction descrip-
tions, implicit systems etc.) also admit a
representation of the form (1), with appropriate
identification of variables; for instance, the
external variable w usually denotes a vector
consisting of inputs and outputs. In that case the
number of inputs is given by m and the number
of outputs by p. Although there are various
equally general first-order representations be-
sides (1) (see in particular Kuijper (1994) for the
extensive discussion of the relations between
these representations), the form (1) appears to
be particularly suitable for a controllability test
as discussed in this paper.

Properties such as observability and con-
trollability can of course be expressed in terms of
the matrices K, L and M. In particular (Willems,
1991; Proposition VII.11(v)), (1) is a minimal
representation of a controllable external be-
havior if and only if the following two conditions
hold:

(1) AK+ pL has full column rank for all
(A, u) e C\{(0, 0));

(ii) [AK + wL |M| has full row rank for all
(A, m) e C{(0, 0)}.

Condition (i) is the observability condition,
whereas (ii) is the controllability condition;
one readily verifies that these conditions do
indeed reduce to the usual ones for the
standard state-space case, which is obtained

by taking
-A 0
. M=
[—C] [I

1 o-

Under some circumstances, one may, however,
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want to avoid the transformation to standard
state-space form. For instance, when the entries
of the matrices in the representation (1) are
parameter-dependent, different routes to arrive
at the standard state-space representation may
have to be followed for different parameter
values, so that an unattractive case-by-case
analysis would be required. Moreover, below we
shall develop the controllability criterion for
generalized representations that may not even be
similarity-equivalent to a standard state-space
system.

Actually there are several ways to obtain an
algebraic test that is capable of deciding whether
a generalized state-space system of the form (1)
is controllable. One possibility is the computa-
tion of all (n+p) X (n+p) full-size minors of
the pencil [Ak+pul [M], followed by the
application of a classical ‘multiresultant’ test due
to Macaulay (1903). A controllability rank test
different from that presented here is due to
Lomadze (1990) (see also Ravi and Rosenthal,
1995); this test involves a matrix of size
n(n+p)Xn(n—1+mXp). The distinguishing
feature of the test that we shall present in this
paper is that it calls for checking that a certain
matrix with n rows has full row rank; moreover,
the column space of this matrix can be
interpreted as a reachability space (see Section
6), and for this reason we call if the reachability
matrix of (1). Our test is therefore a direct
generalization of the classical Kalman rank test
for controllability of standard state-space sys-
tems. A first step in this direction has already
been taken by Mertzios et al. (1988) (see also
Helmke, 1993), who developed a Kalman-type
test that applies to systems of the form (1) with
p = 0; the present paper generalizes this work to
the situation in which p is not necessarily zero.

By duality, the proposed controllability test
can also be interpreted as an observability test.
As such, it applies to systems of the form

Goz = Fz,

3
w=Hz, )

where F, G and H are matrices of sizes
nX{n+m), nX{n+m) and g X (n +m) res-
pectively. We emphasize that systems of the
form (3) (sometimes called the ‘pencil form")
have the same description power for smooth
behaviors as the representation (1). The pencil
form has been used recently in an investigation
of ‘impulsive-smooth’ behaviors (Geerts and
Schumacher, 1996a, b), which allow solutions in
a space of generalized functions. Because
solutions are allowed in a larger space than
usual, the resulting minimality conditions are

weaker than the standard ones. In fact, the
following conditions for minimality are given by
Geerts and Schumacher (1996b, Theorem 4.2):

(1) AG + uF has full row rank for some
(A, ) e C{(0, O)):

AG F
o [0
(A, ) e CH(0, 0)}.

] has full column rank for all

Condition (ii) is the observability condition,
whereas condition (i) might be called an
admissibility condition. The set of triples
(F, G, H) satisfying conditions (i) and (ii),
considered modulo similarity equivalence, has
the interesting property of being a smooth and
compact projective variety (Strgmme, 1987;
Lomadze, 1990; Helmke, 1993; Ravi and
Rosenthal, 1995). Obviously the observability
condition (ii) for systems in pencil form is
related by duality to the controllability condition
for systems in the form (1), and so after simple
transposition the controllability test that will be
derived below can also be used to test for
observability of a triple (F,G,H) in the
representation (3).

With an eye towards applications in coding
theory. we shall work in this paper over a
general base field F. This implies that the field of
complex numbers, as the algebraic closure of R,
is replaced by the algebraic closure of F, which
will be denoted by F. All the standard results
from the algebraic theory of linear systems go
through (see e.g. Kalman er al., 1969, Chap. 10),
and will be used without comment. In particular,
a triple (K, L, M) will be said to be controllable
if [AK+puL|M] has full row rank for all
(A 1) € F\{(0, 0)}.

The use of the term ‘controllability’ as above
15 actually not quite appropriate in a discrete-
time context, where one should rather speak of
‘reachability’. We shall, however, still speak of a
‘controllability test’, since this terminology
appears to be standard. By way of a concession
to the discrete-time terminology, the matrix on
which the test is based will be called a
reachability matrix, and actually we shall show
below (in a discrete-time setting) that the
columns of this matrix do in fact span the
reachable space.

2. PRELIMINARIES

The purpose of this section is to review some
definitions and results on adjoints of matrices.
Given an n X n matrix A, the adjoint of A (see
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e.g. Wedderburn, 1934, p. 7) is the n X n matrix
defined as

adjA:=((~1)" det A,)7-1. @)

7

Here det A,, denotes the (n — 1) X (n — 1) minor
of A defined by omitting the kth row and /th
column from A. The adjoint of a 1 X 1 matrix is
always 1. The following are some basic
properties of the adjoint:

A(adj A) = (adj A)A = (det A), (5)
(see Wedderburn, 1934, p. 7);
adj (A4,4;) = (adj Az)(adj A,) (6)

(see Wedderburn, 1934, p. 66). Directly from the
definition, we have, for scalar ¢,

adj (tA) = "' adj A. )

We now derive some lemmas that will be needed
below. The first of these is actually a special case
of the result of Mertzios er al. (1988); we include
a proof that shows the relation to the standard
controllability test.

Lemma 2.1. Let AeF” and B e ™" be
given. The pair (A, B) is controllable if and only
if there is no nonzero constant vector £ € [ such
that £"{adj (Al — A)}B € F[A] is the zero polyno-
mial in the indeterminate A.

Proof. Write

{adj (A — A)}B = 2 T

i=1
and

det(A/—A)=X"+a, A" '+.. . +a

ne

Clearly, we have ¢&™{adj(Al—A)}B =0 if and
only if ET,=0 for all i=1,...,n Thus it
remains to prove that the pair (A, B) is control-
lable if and only if the matrix [I'}| ... |[,]
has full row rank. As a consequence of (5), we
have

(Al — A) 2 ;A" ={det (Al — A)}B

i=1

=A"B+a, A" 'B+...+a,B.

By equating coefficients, one obtains

T |T2] ... |T.)=(B|AB| ... |A"'B)
1 al ... a,_1
0 / . :
X : a;I . (8)
0 ... 0 1

Obviously the transformation in (8) is invertible,

and so the matrix [, | ... |T,_;] has full row

rank if and only if [B| ... |A" 'B] has full
row rank. But this is of course just the standard
controllability test. |

The following lemma is given for matrices
over a general field K; we shall use it later in the
case where K =F(s), the field of rational
functions with coefficients in [.

Lemma 2.2. Let D and N be matrices over a
field IK, of sizes p X p and p X m respectively. If
¢ is a p-vector such that [¢'|0] belongs to the
row span of [D | N] then

£7(adj D)N = 0. 9)

If D is a nonsingular then the reverse implication
holds as well.

Proof. The first claim follows from the relation

(adj D)N ]
—(det D)

which is immediate from (5). If D is nonsingular
then (9) implies that ¢'D"'N=0, and so
[£7]0] = n"[D | N) with n" = ¢'D 7. |

o ¥

Lemma 23. Let AcF"™ and BeF"™™ be
given. If there exists a nonzero vector x € [*
such that x"A =0 and x"B =0 then (adj A)B =
0.

Proof. The matrix A must be singular. If its rank
is less than » — 1 then adj A = 0, and so certainly
(adjA)B =0. Assume now that rank A=n — 1.
Because (adjA)A =(detA)I=0, all rows of
adj A must be scalar multiples of the row vector
x", and therefore (adj A)B = 0. g

Let X e PP*"*” be a matrix with more
columns than rows. Let $(p, m + p) denote the
set of all multi-indices a = (a;y, ..., a,) e ¥ of
integers satisfying 1 <o, <...<a,=m +p. For
aef(p,m+p) let X, denote the pXp
submatrix of X formed by the a;th,...,a,th
columns of X. Let a':={1, ..., m + p}\a denote
the complementary index of o and let X,
denote the associated p X m submatrix of X.

Lemma 2.4, Let X e Frrim*e), Then
(adj X, )X, =0 for all @« € $(p, m +p) if and
only if rank X <p.

Proof. To prove the necessity part, let us
suppose that rank X =p. There exists a e
F(p,m+p) such that the submatrix X, is
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invertible. Without loss of generality, we may
assume that a=(1,...,p) and X =[I,|B]. If
(adj X)X, =0 for all a e $(p,m+p) then
B=0. Now consider the multi-index pg:=
d,...,p—1,p+1). Then

0 ... 0
adj Xz =| : P
0 ... 1

and hence (adj X)X, 0, which is a contradic-
tion. The sufficiency part is immediate from the
preceding lemma. O

3. THE CONTROLLABILITY TEST

Consider behaviors represented by
Kox + Lx + Mw =0, (10)

where K, L e F"*P*" apnd M g Flroxm+p)
(n>0, m>0, p=0). The system will be called
‘admissible’ if the rank condition

rank (AK + uL)=n (11)

holds for some (A, ) e F?. This condition is
implied by various forms of observability
(Willems, 1991, p. 270). Recall that, in the
behavioral setting of Willems (1991), a minimal
representation does not necessarily generate a
controllable behavior. It is shown (see Willems,
1991, Proposition VIL.11} that a minimal
representation of the form (10) determines a
controllable behavior if and only if the rank
condition

rank (AK + L |M]=n+p (12)

holds for all (A, ) € F2\{(0, 0)}, or equivalently
if [K | M| has full row rank and [AK + L | M] has
full row rank for all A e F. Motivated by the
application to the formulation of an observability
test for pencil-form descriptions of impulsive—
smooth behaviors, as discussed in Section 1, we
shall here work under the assumption of
admissibility, which is implied by but does not
imply minimality.

For p =0 a Kalman-type controllability matrix
for the system (10) was introduced by Mertzios
et al. (1988); see also Helmke (1993). It has been
shown that the system is controllable if and only
if the associated controllability matrix has full
rank. Here we seek to extend that construction
to the general case, where p is arbitrary.

For any multi-index a=(a,,...,a,)€
F(p,m+p) let M, denote the (n+p)Xp
submatrix of M formed by selecting the a,th,
asth,...,a,th columns of M. Let a':=
{1,...,m +ph\a denote the complementary
index and let M, denote the associated

(n +p)Xm submatrix of M. Given any (n +
p) X p submatrix M, of M, write

R.(A, )
Sa(A, p)

where R, (A, u) and S,(A, u) are formed by the
first n and last p rows of adj(AK + uL |M,)
respectively; thus R, (A, p) has size n X (n +p)
and S,(A, n) has size p X (n+p). From the
identity

adj [tAK +tul | M,]

[t""] 0
0 ri

we obtain that R,(A, u) and S,(A, u) are

matrices of homogeneous polynomials in (A, )

of degrees n—1 and n respectively. So, in
particular,

adj [AK + pL | M,]= [ ] . (13)

] adj [AK + uL | M,),

n—1
Ra(A’ ’“L)Ma = 2 riaA[/"’n_]Wi (14)
i=0

for n Xm matrices I',, i=0,...,n—1. The
reachability matrix of (K, L, M) is defined as the

+.
matrix of size n Xnm(m p) obtained by
p

putting all matrices I',, (i=0,...,n—1; a €
F#(p, m + p)) next to each other;
R(K, L, M)

::[(F0a| 1Fn*1,0)|a Eﬂ(p7m+p)]

(15)

We can now state our main result.

Theorem 3.1. An admissible system (K, L, M) is
controllable if and only if

rank (K, L, M) =n.

4. TRANSFORMATIONS

It will be convenient in the proof of the
theorem to make use of various transformations
on the triple (K, L, M) that do not affect the
controllability properties. We begin by studying
similarity transformations. Clearly, if 7 and § are
invertible matrices then the triple (K, L, M) is
controllable if and only if (TKS™', TLS™', TM)
is. The effect of such transformations on the
matrix Z(K, L, M) is described as follows.

Lemma 41.Let T and S be invertible
(n+p)X(n+p) and nXn matrices respec-
tively. Then

R(TKS™', TLS ™', TM)
= (det T)(det ) 'SR(K, L, M). (16)
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Proof. For any a € $(p, m + p)
(adj [A\TKS ™' + uTLS™' | TM,)TM,,.

- {adj (T[AK + L | M,,][S_l 0])}TMQ,

0 I
=<adj [So (I)D
X (adj [AK + uL | M,])(det T)M,..

The result follows from the identity

adj[s(;l 2]=[(det3)_ls (detg)‘ll]' =

Remark 4.2. The transformations considered
above are the natural transformations of system
equivalence; the matrix S corresponds to a
change of basis in state space, whereas the
matrix T gives an invertible linear transforma-
tion of the system equations. Even in the
generalized context of impulsive-smooth be-
haviors, the same transformation group is
obtained (see Geerts and Schumacher, 1996b,
Theorem 4.1). The above proof shows that the
row space generated by R(K, L, M) is invariant
under system equivalence. The same proof
shows that the matrix #(K, L, M) that is formed
from the coefficients of S,(A, u)M,., in analogy
with (15), is transformed as follows:

P(TKS™', TLS™', TM)
= (det T)(det §)" 'K, L, M).

It follows that the entries of ¥(K, L, M) are
determined up to one multiplicative constant, or
in other words that ¥#(K, L, M) is a ‘projective
invariant’.

Apart from the similarity transformations, we
shall also use the so-called ‘scaling transforma-
tions’ that are defined as follows. For any
invertible 2 X 2-matrix

Q= [‘C’ Z] e GL,(F)

write
(Ko, Lo):=(@K +bL, cK +dL).

Note that these transformations actually involve
not only rescaling of time, but also rotation; for
instance, K and L are interchanged (correspond-
ing to time reversal in the discrete-time inter-

1
It
0

is immediate from the characterization (12) that
the triple (K, L, M) is controllable if and only if

. . 0
pretation) by the transformation Q = [1

(Kq, Lo, M) is. To see how the controllability
matrix %#(K, L, M) changes under the scaling
transformations, note that

AaK + bl) + u(cK +dL)

=(aA +cu)K + (bA+du)L,
so that the effect of R, (A, n) of replacing (K, L)
by (aK + bL, cK + dL) is the same as replacing
(A, ) by (aA+cu, bA+du). Let us first

consider what the effect of such a transformation
is on a scalar homogeneous polynomial

-1

p(A, w)= 2 pAu"', p;eF,

=0

of degree n—1 in the variables A and pu.
Carrying out the transformation (A, u)+~ (aA +
cp, bA + dp) results in a linear transformation of
the coefficients p,, ..., p,_;. For instance, for
n=3,

2
> piar + cu) (bA +dp) ™
i=0

= (d’py + cdp, + )’
+ {2bdp, + (ad + bc)p, + 2acpJAp
+ (b%py + adp, + a’p )\~

Thus the new coefficients are expressed in terms
of the old ones by

d? 2bd b?
[ﬁo|ﬁ1|ﬁ2]=[Po|P1lP2] cd ad+bc ab
¢t 2ac 4t

We denote the n Xn transformation matrix
obtained in this way by 7,(£2); so for instance it
follows from the above that

b d? 2bd b?

a

‘c3([c d])= cd ad+bc ab
¢ 2ac  a*

Since 7,(Q)7,(Q") =1, the matrices 7,(Q) are
nonsingular. Now consider a homogeneous
polynomial matrix T(A, p) =302 TAu” 17
whose coefficients I'; have size nXm. The
transformation (A, w)~—> (aA + cu, bA +dp) has
an entrywise effect on I'(A, u), and may
therefore expressed in terms of the coefficients
by

[Fo] ... [Fod=[To| ... Lo He(@®L,
where ® denotes the Kronecker product.
Finally this transformation applies blockwise to
the matrix %R(K, L, M), where the blocks

correspond to the selections «, and so we have
proved the following.

Lemma 4.3. For each invertible 2 X 2 matrix Q
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there exists an invertible n X # matrix 7,(Q2) such
that

%(KQJ LQ’ M)
= R(K, L, M{I»er, ®(1,(Q)® 1)} (17)

Remark 4.4. In particular, it follows that the
subspace of [" spanned by the columns of
R(K,L,M) is invariant under scaling
transformations.

Finally, we note that both the property of
controllability and the rank of the reachability
matrix are invariant under transformations of the
type (K,L,M)— (K, L, MP), where P is an
invertible matrix. Such transformations can be
interpreted as changes of basis in the space of
external variables. Actually we shall only use
transformations P that are permutation matrices;
these correspond to just renumbering the
external variables.

S. PROOF OF THE MAIN RESULT

In this section we prove Theorem 3.1. We first
show the sufficiency of the stated condition for
controllability. Suppose that the reachability
matrix R(K, L, M) has rank n. This immediately
implies that the matrix [AK + uL | M] must have
full row rank for some (A, u) # (0, 0), because
otherwise it follows from Lemma 2.4 that
(adj [AK + uL | M, )M, =0 for all (A, ) and
all a so that R(K, L, M) is identically zero.
Consequently, [AK + uL | M] has full row rank
for almost all (A, u). By assumption, we also
have that AK + ul has full column rank for
almost all (A, ), so that certainly there will be
points (A, ) where [AK +uL|M] and AK +
wL both have full rank. Because both con-
trollability and the rank of (K, L, M) are
invariant under scaling transformations, we may
assume that this happens at (A, u)=(1,0). so
that in this case K has full column rank and
[K|M] has full row rank. Permuting the
columns of M if necessary, we may write
M =[M,|M;] in such a way that the matrix
[K | M\] is invertible. Now using the invariance
under similarity action (from the left), we may
left-multiply by the inverse of [K | M,] and end
up with K, L and M in the following
‘output-nulling’ (Weiland 1991) form:

ol =[] w2

Clearly. the matrix [AK + uL | M] has full row
rank for all (A, u)#(0,0) if and only if the
matrix [A/ - A |B] has full row rank for all
A e F; that is to say, if and only if the pair
(A, B) is controllable.

Assume now that (A, B) is not controllable;
we want to prove that in this case the matrix
R(K, L, M) cannot have full row rank. By
Lemma 2.1, there exists a nonzero vector ¢ such
that £™{adj(AI—A)}B=0. It follows from
Lemma 2.2 that there exists a vector g(A) such
that [£7|0] =g"(A)[AI — A | B]. By the special
form of the matrices K, L and M, this implies
that

[€7]0]0]=[g"(A) [ O][AK + L | Mo | M)

for all selections a. It follows from Lemma 2.2
that

[€7|0)(adj [AK + L | M,])M,- =0

and consequently
n—1
£ Y TWA =0
i=0

for all a. This implies that £'T,, =0 for all i and
all @, so that £'R(K, L, M) =0.

For the necessity part of the proof, we have to
show that the reachability matrix (K, L, M)
has full row rank if the matrix [AK + uL | M]
has full rank for all (A, u) # (0, 0). By a suitable
scaling transformation, we may assume that K, L
and M are in the form (18); the full-rank
condition then implies that the pair (A, B) is
controllable. We now choose a particular
selection @, namely the one for which

we[l) el )

After some calculation, we find
(adj [AK + L | M,))M,,

~ _[ {adj (Al — A)}B
" Lc{adj (A — A)}B + {det (Al — A)}D

If R(K, L, M) were not of full row rank then
there would exist a nonzero constant vector §
such that £¢"®R(K, L, M)=0. From the above,
this would imply in particular that ¢"{adj (M —
A)NB =0. But we know from Lemma 2.1 that
this contradicts the controllability of (A, B). The
proof is complete. O

. o)

Remark 5.1. If p=0 then the set #(p,m +p)
contains just one element, and the controllability
matrix R(K,L,M) can be written as
(To| ... |T..y]. where the T are the
coefficients of {adj (AK + uL)}M. This is the
controllability test of Mertzios et al. As we have
seen in the proof of Lemma 2.1, in the ‘classical’
case (K, L, M) = (I, A, B) this is just a similarity
transformation away from Kalman's con-
trollability criterion.
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Remark 5.2. The calculation of the coefficients
of adj[AK + pL | M,] can be carried out by an
adaptation of Leverrier’s algorithm due to
Mertzios (1984).

6. THE REACHABLE SPACE

In this section we provide a dynamic
interpretation of the matrix %(K, L, M) that also
will justify the name reachability matrix. We
shall restrict ourselves to discrete-time systems,
so the system dynamics is given by

Kx; i+ Lx, + Mw,=0. (20)

Definition 6.1. A state vector £ is said to be a
reachable state if there exists a sequence of states

=l el |ieZ}
having the property that

(i) at most finitely many vectors x; e X are
nonzero;

(ii) there is a set of external variables such that
(20) is satisfied for all t € Z;

(iii) £ € =.

The set of all reachable states is denoted by
R(K, L, M).

The set R(K, L, M) can also be characterized
in the following way: ¥ € &(K, L, M) if and only
if there is a vector polynomial

k-1
x(A)= 2, x; A e F'[A]
i=0
having £ as one of its coefficients and a vector
polynomial

w(d) = §k‘, WAl e F7P[A]

=0

such that

[AK+L[M][X(A)]

i) = (1)

Note that this last equation can also be written
componentwise in the form

K 0 oM 0 ... ... 0
L K o Mo :
0 L ofl: I
R ¢ M 0
0 ... 0 Lo 0 M
X0
x| 1l =0, (22
.0
W

The following lemma is now a simple conse-
quence of the description (21).
linear

Lemma 62. R(K, L, M)cF" is a

subspace.

It is also clear from the description (21) that
R(K, L, M) is invariant under transformation of
the system equation and under change of basis in
the external variables, ie. we have for
T eGL,,, and U € GL,,,, that

R(TK, TL, TMU ) =R(K, L, M). (23)

The next lemma states that &(K, L, M) is also
invariant under scaling transformations.

Lemma 6.3. For each invertible 2 X 2 matrix Q
one has

R(Kg, Lo, M) = R(K, L, M). (24)

Proof. For every fixed positive integer &k
consider the set of homogeneous polynomial
vectors x(A, )= J x; A 17" whose coeffi-
cients x; satisfy (22) for some set of external
variables w;. The transformation (A, )+ (aA +
cu, bA + dp) has an entrywise effect on x(A, w),
and may be expressed as in the proof of Lemma
4.3 through

[fo] ... |Fa]l=[x0] --. | X 1](T(2)).

But this establishes the invariance. a

We are now in a position to establish the
connection between the subspace (K, L, M) of
reachable states and the reachability matrix
R(K, L, M) as introduced in (15).

Theorem 6.4. The vector space (K, L, M) of
reachable states is equal to the column space of
the reachability matrix, i.e.

R(K, L, My=colsp R(K, L, M).  (25)

Proof. First note that the column space of
R(K, L, M) is certainly invariant under per-
mutation of the external variables. After possible
transformations in the internal variables and in
the scaling variables and after a possible
permutation of the external variables, we can
therefore assume that K, L, and M have the
special form (18). One readily verifies that in this
situation R(K, L, M) is exactly the classical
reachability space

colsp[B|AB| ... |A"'B]. (26)

It therefore follows from the identity (19) that
R(K, L, M) ccolsp R(K, L, M). On the other
hand, it follows from the sufficiency part of the
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main proof in Section 5 that any vector in the
left kernel of (26) is also in the left kernel of
R(K, L, M). But this establishes the proof. O

7. EXAMPLES

In this section we illustrate the theory by two
examples. To illustrate that our test also detects
lack of controllability ‘at infinity’ (i.e. the matrix
[K | M] has less than full row rank), we first
consider a simple example in which this occurs.

Example 7.1. Consider the system given by the
parameter matrices

[1 0
k=0 1]
[0 0
0 1
L=| -1 )
L1 -1
1 0
M=]|0 1
[0 0

In a continuous-time setting, these parameters
correspond to equations X; = —x,—w,, X, =
x,—w, and x; =x,. Choosing an input/output
assignment, for instance by setting u =w, and
¥y =w,, and eliminating the algebraic constraint,
leads to a standard state-space description in the
form X=-x-u, y=2x+u However, the
differential-algebraic description above also
covers impulsive modes that may occur when the
constraint x; = x, did not exist for all time but is
activated at some instant, for instance by the
turning of a switch. A controllability test ‘at
infinity’ is meaningful in connection with such
impulsive modes.

In the above example the set $(p,m +p)=
#(1,2) has just two elements. Denoting the
columns of M by M, and M,, we get

adj [AK + uL | M|]
[ 0 — i -1
- 0 K K )
| 2= dp pitap pl A
adj [AK + uL | My
M 0 %
= N 0 —A
Lu?=Ap wl+ A p?+ A2

As predicted by the theory, the first two rows of
the resulting matrices have degree 1 and the
third rows have degree 2. Denoting the degree-1

parts by R (A, p) and R,(A, p) respectively, we
compute
Rl(/\x M)Mzz li_“‘jlv RZ(Ax M’)MIZI:IL]
—p ®
The reachability matrix is now formed from the
coefficients in the expressions above:
-1 010
RK, L, M)= [ ] .
( ) -1 010

Obviously this matrix does not have full row
rank, and so the test does indeed show that the
triple (K, L, M) is not controllable.

In the second example we take the binary field
F,={0,1} as our base field; this is a common
choice in coding theory. In the context of coding,
the set of w-trajectories that satisfy a description
of the form Kx,,, + Lx, + Mw, =0 can be looked
at as the set of all possible code messages, and in
this way the matrices K, L and M specify a
particular code. One may obtain such matrices
from a state-space realization of some encoding
device given in polynomial form, but recently
methods have been advocated that aim at a
direct design of the parameter matrices (Rosen-
thal er al., 1996). In this context, a lack of
controllability indicates that a reduction of the
state vector is possible. It should be noted that,
in contrast to the case in which the base field is
R, in the finite-field case controllability is not
generic, in the sense that when the parameter
matrices are selected ‘at random’ there is a
positive probability that the resulting system is
not controllable.

Example 7.2. Consider the binary base field
F=F,={0,1} and let a collection of code
messages be described by the matrices K, L and
M given by

A w 0] 0 1

At A 01 1

[AK + pL | M):= 0 Alo 0
A o ow| 1 1

Calculation (over [F,) as above shows that the
reachability matrix as defined in (15) is given by

110110
RKLM=10 11 011
011011

Obviously this matrix does not have full rank,

and according to Theorem 6.4 the reachable
space R(K, L, M) is spanned by the vectors

1 0
0,11
0 0
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8. CONCLUSIONS

We have presented a rank test for con-
trollability of behaviors described by equations
of the form Kox + Lx + Mw = 0; similarly, the
dual form leads to an observability test for
systems in pencil form. The test is in the spirit of
Kalman’s classical controllability condition; it
requires checking that a certain matrix with »
rows has full row rank. Moreover, the column
span of this matrix has the interpretation of a
reachable space.
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