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Impulsive-Smooth Behavior in Multimode Systems 

Part I: State-space and Polynomial Representations* 

A. H. W. (TON) GEERTSt and J. M. SCHUMACHERS 

We study first-order and polynomial representations of impulsive-smooth 
behavior in multimode systems. 
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Abstmet-A ‘switched’ or ‘multimode’ system is one that 
can switch between various modes of operation. We consider 
here switched systems in which the modes of operation are 
characterized as linear finite-dimensional systems, not 
necessarily all of the same McMillan degree. When a switch 
occurs from one of the modes to another of lower McMillan 
degree, the state space collapses and an impulse may result, 
followed by a smooth evolution under the new regime. This 
paper is concerned with the description of such impulsive- 
smooth behavior on a typical interval. We propose an 
algebraic framework, modeled on the class of impulsive- 
smooth distributions as defined by Hautus. Both state-space 
and polynomial representations are considered, and we 
discuss transformations between the two forms. Copyright 0 
1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In this paper, we shall be concerned with some 
aspects of ‘switched’ or ‘multimode’ systems. In 
general, a multimode system may be defined as 
one that may switch, either by external or by 
internal causes, between a finite number of 
possible modes of operation. Such systems occur 
very frequently. Examples include 

l electrical circuits incorporating switches (note 
that an ideal diode may be seen as a 
current-controlled switch); 

l mechanical linkages; the different modes may 
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relate for instance to contact forces being 
active or not (for a simple example, see 
Brockett, 1984); 

l hydraulic systems; here valves take the place 
of switches. 

Switching is an important part of many 
practical control systems. Stagewise gain schedu- 
ling can be considered as an example; one may 
also think of the gear shifting in motor vehicles. 
There are applications in which control is 
exerted exclusively through switching, such as in 
power electronics (Verghese et al., 1986). Note 
also that sliding mode control (Utkin, 1977; 
Zinober, 1994) is based on switching. Multimode 
systems can be viewed as a class of hybrid 
systems (cf. e.g. Brockett, 1993); indeed, they 
combine logic with dynamics, and the switching 
can be viewed as a timed discrete-event process 
that influences a continuous-time system. It is 
easy to think of situations in which the switching 
is influenced by the dynamics; diodes in electrical 
networks provide an example of this. 

Multimode systems give rise to a number of 
interesting modeling problems. In this paper, 
which is the first part of two, we shall be 
concerned with situations in which switches take 
place between modes of operation that can be 
described as finite-dimensional linear time- 
invariant systems, resulting in what might be 
called a ‘piecewise-linear system’ (cf. Brockett, 
1984). In particular, we shall be concerned with 
the description of the dynamics in the case where 
not all of the constituent systems are of the same 
McMillan degree. When a switch takes place 
from one of the modes to another of a lower 
degree, there is an instantaneous collapse of the 
state space, and an impulse may occur. Clearly, a 
description in terms of smooth functions would 
not be satisfactory in such situations. Here we 
shall work with a space of generalized functions 
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that is large enough to cover impulses of 
arbitrary order at isolated instants, yet small 
enough to allow a fairly algebraic treatment. 
This space is based on the class of impulsive- 
smooth distributions introduced by Hautus 
(1976). Following the lead of Willems (1991). 
our aim will be to describe the ‘behavior’ of a 
multimode system by specifying the set of 
trajectories of external variables. We shall 
consider both state-space and polynomial 
representations. 

Our emphasis in this paper will be on the 
description of the dynamics on a typical interval 
between switches, including the jump phenom- 
ena that may occur at the beginning of such an 
interval. This is intended to become part of a 
larger study of multimodal systems. Of course, to 
give a complete description of a multimodal 
system, one needs to specify not only the 
dynamics on intervals between switches, but also 
the conditions under which transitions from one 
mode to another will occur. and the rules that 
determine the selection of the new mode. These 
are major modeling issues, which conceivably 
will require different solutions in different 
problem areas. For a proposal in the context of 
autonomous linear and Hamiltonian systems see 
van der Schaft and Schumacher (1995). The 
particular framework of distributions with point 
support together with smooth functions on an 
interval has been used before in studies of the 
various notions of observability, controllability 
and consistency that one may define for singular 
systems (see e.g. Geerts, 1993b; ijz@dtran and 
Haliloglu, 1993); here we shall concentrate on 
minimal representations. As may be expected, 
the notions mentioned above play a role in the 
description of minimality conditions, quite like 
they do for smooth systems described by 
standard state-space systems. It should be 
stressed that this paper concentrates on model- 
ing (representation of dynamics) rather than 
control, and in particular we do not address such 
issues as the elimination of impulses through 
feedback. 

The present Part I is organized as follows. In 
the next section, we consider a simple example 
to motivate the development, and we introduce 
the mathematical framework that we shall use. A 
proposal for a formal specification of piecewise- 
linear systems is made in Section 3. Then we 
concentrate on the description of the behavior 
on a typical interval between switches. First- 
order representations are discussed in Section 4, 
and polynomial representations follow in Section 
5. The conclusions are summarized in Section 6. 
In Part II (Geerts and Schumacher 1996), we 
focus on minimality of representations, and 

obtain a state-space isomorphism theorem for 
impulsive-smooth behaviors. 

In this paper, the following terms will be used 
interchangeably for rational matrices M(s): M(s) 
has full generic column rank/has full column 
rank as a rational matrix/is left invertible (as a 
rational matrix). Also, the following terms will 
be used interchangeably for polynomial matrices: 
M(s) has full column rank for all s E @/is 
left-unimodular. The following facts are well 
known: a polynomial matrix M(s) has a 
polynomial left inverse if and only if M(s) is 
left-unimodular; a proper rational matrix M(s) 
has a proper rational left inverse if and only if 
the constant matrix M(x) has full column rank. 
Similar remarks hold with ‘column’ replaced by 
‘row’ and ‘left’ by ‘right’. 

2. A BEHAVIORAL FRAMEWORK FOR PIECEWISE 
LINEAR SYSTEMS 

A simple example of a multimode system in 
which switching takes place between modes of 
different McMillan degrees is the electrical 
network in Fig. 1. As external variables, we 
might for instance take the current i and the 
voltage V at the terminals. The ‘behavior’ of the 
system, in Willems’ terminology, is the set of 
compatible trajectories of these variables. Of 
course, we want to describe the behavior by 
means of equations. On the open intervals 
between switches, the evolution may clearly be 
given by means of differential equations as usual. 
Specifically, for intervals on which the switch is 
open the equations relating V(t) and i(t) can be 
written in ‘pencil’ form (cf. Kuijper and 
Schumacher, 1990) as 

i,(t) = $Z3(f)T 
I 

i*(f) = -& z*(t), 
2 

V(f) = z,(t), 
(1) 

i(r) = z&h 

where the z, are ‘internal’ or ‘auxiliary’ variables; 
in particular, z*(t) denotes the charge stored in 

0 I 
Fig. 1. A multimode system. 
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Cz. For intervals on which the switch is closed, 
the equations are 

ii(t) = 
-1 

WC1 + G) 
z;(t) + & z;(t), 

V(t) = z;(t), (2) 
i(t) = z;(t). 

where the z,! are auxiliary variables. These are 
the two modes of the overall system; clearly, 
their McMillan degrees do not agree. At the 
closing of the switch, there is a collapse from a 
two-dimensional to a one-dimensional state 
space. It is possible to embed the smaller state 
space in the larger one, and certainly in this case 
there is a natural way to do so; still, to describe 
the exact behavior, one needs ‘jump relations’ 
(Brockett, 1984) that tell how the state will jump 
from some position in the larger space to a 
corresponding position in the subspace. Just like 
the differential equations describing the system, 
the jump relations have to be obtained either 
from identification or from physical principles. In 
the case of the circuit of Fig. 1, the law of 
conservation of charge leads to the following 
transition relation for a closing of the switch at 
time to (Desoer and Kuh, 1969, p. 98): 

z;(to’) = * Z,(G) + 
1 2 

* Z*(G), (3) 
1 2 

where the variable on the left-hand side refers to 
(2) and the variables on the right-hand side refer 
to (1). 

The behavioral framework, as described for 
instance in Willems (1991), requires first of all 
the construction of a uniuersum of which the 
to-be-described behaviors are subsets. If one 
wants to hold on to a simple description in terms 
of ideal elements for examples such as the 
above, it is clear that one cannot make do with a 
universum consisting of continuous functions. 
The example shows that jumps have to be 
allowed, and in general one may even have delta 
functions or higher-order impulses at switching 
instants. This calls for a distributional 
framework. On the other hand, it would be 
worthwhile to limit the set of considered 
distributions so as to make a fairly algebraic 
treatment possible. Below we shall describe a 
framework that allows impulses of arbitrary 
order at isolated (switching) points but that 
assumes smooth behavior between those points. 
Moreover, we shall describe a calculus that 
allows one to write down equations that are valid 
on a semi-open interval [to, t,). By connecting 
these intervals, one obtains a complete descrip- 
tion of the evolution of the real-valued variables 

in the system. The choice of intervals that are 
closed on the left-hand side and open on the 
right-hand side is arbitrary from a mathematical 
point of view; an analogous theory could be 
developed using intervals of the form (to, t,]. 
Physically speaking, however, one may argue 
that the impulses that occur in the mathematical 
description are idealizations of (very) fast 
behavior that occurs after a switch has been 
closed, which makes it more natural to work 
with left-closed and right-open intervals. 

Since our calculus will be based on the theory 
of impulsive-smooth distributions (Hautus, 
1976; Hautus and Silverman, 1983), let us first 
quickly recall the main points from this theory. 
Let % denote the space of test functions with 
upper-bounded support, and let 9; denote the 
dual space of distributions on 5%. With the 
convolution * as multiplication, 9: is a 
commutative algebra over [w with unit element S, 
defined by (S, 4) = 4(O) (4 E 5&-). It is con- 
venient to apply the notational conventions 
associated with multiplication to the operation of 
convolution on 5%:; in particular, aa (a E Iw) is 
then denoted by a and fg stands for f * g. 

The space of locally integrable functions with 
lower-bounded support can be embedded as a 
subspace in g!+ by the standard identification 
(u, 4) = .f”_, u(t)q+(t) dt. A smooth distribution 
is defined as one that arises in this way from a 
function u that is zero on (- 03, 0) and smooth on 
[0, co), meaning that u(t) is arbitrarily often 
differentiable on (0,~) and is such that 
lim f lo #j(t) exists for all k 20. The space of 
smooth distributions will be denoted by 
%&,(O, a). For u E %&(O, CQ), the function ri is 
defined by C(t) = 0 (t < 0), C(t) = (du/dt)(t) 
(t > 0). Obviously the mapping u w ri is a linear 
mapping that takes Y&,(0, 03) into itself. On 
%&,(O, m), we also introduce the linear functional 
u H u(O’), defined by u(O+) = lim, I ,, u(t). 

A second subspace of C@d: is the space 
%‘p_imp(O) of purely impulsive distributions, which 
is defined as the linear space generated by S and 
its derivatives. If the first derivative of S is 
denoted by p, the kth derivative is simply pk if 
we write convolution as multiplication, so that 
the general form of an element of %‘p_im,(O) is 
C;=&pk, ck E R. 

The direct sum of V&,(0, CQ) and %+mp(O) is 
denoted by %$m,(O, w), and is called the space of 
impulsive-smooth distributions. This space is a 
subalgebra of 9 :. For a distribution u E 
%&,&O, ~0) with decomposition u = Up-imp + u,, in 
impulsive and smooth parts, we have the 
fundamental formula 

PU =PUp_imp + U,,(O+) + is,. (4) 
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The convolution equation pu = au + u,, (a E IR) 
generalizes the pair consisting of the differential 
equation zi = au and the initial condition 
u(O) = uO, in the sense that the solution u of the 
convolution equation corresponds via the stan- 
dard identification to the solution of the 
differential equation that satisfies u(O+) = u(,. A 
similar correspondence exists also for systems of 
linear differential and algebraic equations, as we 
shall see below (cf. also Geerts, 1993b). 

The class of distributions as introduced by 
Schwartz is a wide one, and the set of 
impulsive-smooth distributions is only a small 
subclass of it. This limited class might in fact be 
introduced in a more algebraic way. For this 
purpose, let %(O, ~0) denote the set of all 
real-valued C”-functions on (0, ~0) all of whose 
derivatives have left-hand limits at 0, and let (as 
usual) R[p] denote the ring of polynomials in p 
with real coefficients. The set of vectors with 
entries in the product R[p] X %(O, m) obviously 
has the structure of a linear space over R, and 
we can make it into an R[p]-module by defining 
multiplication by p by the formula (4). This 
framework is sufficient for models based on 
linear vector differential equations with constant 
coefficients. Note that {R[p] X ‘?2(0, @J)}~ with 
multiplication by p as defined by (4) is 
isomorphic as an R[p]-module to %‘&,(O, m):= 

[%np(03 m)l”. 

Motivated by this development, let us now set 
up an analogous framework on a half-open 
interval. Consider t,,t, E R U {-m, +m} with 

to<tl, and denote by %(t,, t,) the set of 
restrictions of C”(R) functions to (to, t,). If 
to> -a, the linear space {R[p] X %(t,,, tl)}k can 
be equipped with an R[p]-module structure by 
using (4) to define multiplication by p, and we 
shall denote the space {R[p] X %(t,,, t,)Ik by 
%&,(t,, t,). To cover the case to = -m, we set 
U&,(-Y t,) = (ek(-=, t,), and understand 
multiplication by p as ordinary differentiation. 
For impulsive-smooth distributions on an 
interval (to, t,) with values in a vector space Z, 
we shall also use the notation Ce,mp(tot t,; Z). 

The space %&,(to, t,) will be used below to 
construct a ‘universum’ in the sense of Willems 
(1991) for the purpose of describing behaviors of 
piece-wise linear multimode systems. First, 
however, we need to introduce some notation 
and terminology related to the discrete aspects 
of multimode systems. Let us introduce a set Y 
of functions that indicate switching times. 

Definition 2.1. A function t from B to the 
extended real line l&I* = R U {-cc, +s} is called a 
timing if it is strictly increasing in the sense that 

(i) forallk,if-m<r(k)<+wthenr(k-l)< 
r(k) < r(k + 1); 

(ii) limk,, r(k) = +x and limk__, r(k) = -=. 

The set of all timings will be denoted by Y. Two 
timings r, and r2 will be said to be equivalent if 
there exists an 1 E Iz such that r,(k) = r,(k + I) 
for all k. The set of switching instants associated 
with a timing r is 

T(r) = {t E R ( 3k E Z s . t . t = z(k)} (5) 

and the collection of intervals bounded by 
switches is 

l(r) = (0, > t2) I t , E RU{-a}, t2 E Ru{=}, 

3k E Z s.t. t, = z(k), tz = z(k + l)}. (6) 

Note that the number of switching instants can 
be either finite (even zero) or infinite. The 
definition is such that the set of switching 
instants can have no limit points, although no a 
priori lower bound is imposed on the distance 
between two switching instants, and in fact a 
nonzero lower bound does not necessarily exist 
for a given timing. It is easily seen that two 
timings define the same set of switching instants 
if and only if they are equivalent. By gluing 
together spaces of the form ie,,,(tl, t2), we 
obtain a space of vector-valued ‘switched 
functions’ on R: 

%&$R r) = I1 %&l, tz). (7) 
(r,.r_?)el(s) 

For an element w of this space, its component on 
the interval (t,, t2) will be denoted by w I,,.[?. The 
union of the spaces %&,(lR; r) for all timings r, 
given by 

provides a convenient universum in which we 
can now describe specific behaviors of piecewise- 
linear systems. 

3. FORMAL SPECIFICATION 

In this section we propose a specification of 
the class of (finite-dimensional, time-invariant) 
piecewise-linear systems in terms of a particular 
class of representations. First of all, we need a 
vector space W in which the external variables 
take their values, as in Willems (1991). The 
vector w of external variables contains both 
inputs and outputs; since causality relations may 
vary from one constituent system to another, it 
seems preferable not to introduce any labeling of 
the external variables in order to distinguish 
inputs and outputs. To model the switching from 
one constituent system to another, we use a 
graph I consisting of a finite set of vertices V 
and a set of directed edges E c V X V. Attached 
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to each vertex u there is a continuous system in 
first-order representation, given by a tuple of 
linear spaces and linear mappings 2, = 
(Z,, X,;F,, G,, H,) with &:Z,-+X,, G”:Z,-, 
XV, H,: Z,+ W. For each given interval (?i, f2), 
the representation specifies a set of behavioral 
equations (in ‘pencil’ form; cf. Kuijper and 
Schumacher, 1990): 

PI, GZ = F,z + Xin, 

w = Hvz, 
(9) 

where pr, denotes the operator p defined by (4) 
with the time 0 replaced by the time tl. If 
t, = -m, p,, denotes ordinary differentiation, and 
Xi” vanishes. The ft.& behavior on an interval 
(t,, t2) associated with the representation 2, is 
the set 

at(fl 9 t2; 2”) = {(Z, w7 Xim Xcmt) E %mp(tl P l2; Z) 

x %n&, k!; W) x X” x X”l 

(9) holds, and x,,~ = G,z(t;)}. (10) 

For each edge e = (vi, u2), there is a linear 
mapping J,: XV, +X,, that determines the 
transition relations. 

Formally then, a piecewise-linear system (in 
first-order representation) is a four-tuple 
(I’, Z,J, W) where W is a finite-dimensional 
vector space, r = (V, E) is a directed graph, Z is 
a mapping assigning to each u E V a tuple of 
linear spaces and linear mappings Z, = 
(Z,,X,; F,, G,, H,) with Fv:Zv+X,, G,: Z,+ 
X,, H,: Z, + W, and J is a mapping assigning to 
each e = (u,, u2) a linear mapping Je: X,, + XV,. 
The behavior associated to (r, Z,J, W) is 
specified as follows. Consider a signal w in the 
universum Ou, and let r denote its associated 
timing (which is unique up to equivalence). The 
signal w belongs to .B(r, Z, 1, W) if for each 
switching point t E T(r) there is an edge e(t) 
together with ‘matching vectors’ Xi”(t) and 
x&t), and for each interval (t,, t2) E Z(z) there 
is a vertex u(t,, f2), such that the following 
conditions hold: 

(i) for all t,, t2, t3 such that both (t,, f2) and 
(t2, t3) belong to Z(r), we have e(t,) = 

(u(t1, f2h 4f2> f3)k 

(ii) for each (tl, f2) E Z(r), there is a z E 
%&,(t,, fZ; Z) such that (9) holds with 
xin = xin(tl) if tl> -m and Xi” = 0 otherwise, 

and GA;) = xAt2); 

(iii) for all t E T(r), we have Xin(t) = Ject+Jf). 

The first condition specifies that a transition 
from vertex u1 to vertex u2 can only take place if 
there is a directed edge in r connecting u1 and 
u2. The second condition describes the behavior 
on the intervals between switches, and the third 
gives the transition relations. 

For example, the behavior of the circuit in Fig. 
1 can be represented as follows. The graph P 
consists of two vertices 0 and 1 and two edges 
(0,l) and (l,O). The systems associated with the 
vertices are given by 

Go= 
1 

0 

F0 = 

and 

0 0 1 10’ 

0 
1 

c, 
-1 

RC2 
0 

G, = [l 01, 
1 - 1 C,+C, ’ 

j&z ’ ’ [ 1 0 1 

respectively. The transition relations are given 

by 
J ~- 

[ 

CI RC2 

(O.‘)= c,+c, 1 c,+c, ’ 

J (1,0) = 

1 (11) 

(12) 

(13) 

In this example, we took the real-valued 
variables current and voltage as external 
variables. In other applications, it may be of 
interest to consider also or only discrete-valued 
variables (positions of the switches) as external; 
this would bring us close to the point of view 
from which hybrid systems are studied in 
computer science (cf. e.g. Maler et al., 1991; 
Nicollin et al., 1991). In the models studied in 
computer science, however, one does not usually 
consider continuous inputs. 

Our main object of study in this paper will be 
the specification of the impulsive-smooth dyna- 
mics on a typical interval. We aim in particular 
at finding necessary and sufficient conditions for 
minimality of first-order representations of 
impulsive-smooth behaviors on a semi-open 
interval, and at determining the relation between 
equivalent representations. We shall consider 
polynomial representations as well; these will be 
useful as a technical tool, but are also interesting 
by themselves. 

Remark 3.1. It should be noted that the role of 
the ‘matching vectors’ in the transition relations 
may have an impact on the formulation of the 
notion of minimality. This is already seen in the 
example given above. The equations that we 
wrote down for intervals on which the switch is 
open are nonminimal from the point of view of 
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describing the current/voltage relation at the 
external port, since the variable zz in (l), which 
is the voltage V, across the second capacitor, 
evolves autonomously; nevertheless, the value of 
V, is important when a switch occurs, since the 
transition relations depend on it (see (3)). 
Therefore one might argue that one is not 
allowed to remove the equation for V, from the 
system’s description. On the other hand, the 
value of V, at a time r2 when the switch is closed 
is determined completely by the initial data at 
the preceding time t, when the switch was 
opened and by the length of the interval (t,, I?), 
so that one might still remove the autonomous 
part were one to allow the transition relation to 
depend not only on z(fz) but also on Xin(tl) and 
the time difference t? - t,. We shall not address 
these modeling issues here, but simply define 
minimality in terms of the external variables. A 
safe but possibly conservative way to ensure that 
this also suffices to describe the matching 
conditions is to include among the external 
variables all variables that play a role in the 
transition relations. 

4. FIRST-ORDER REPRESENTATIONS 

In this paper, we are mainly concerned with 
the description of impulsive-smooth behavior on 
a typical switching interval [tin, r,,,). We shall 
assume from now on that such an interval has 
been fixed, and specific reference to the points I,,, 

and t,,, will be avoided as much as possible to 
ease the notation. On this interval, we are 
concerned with one system of the form (9), and 
so we shall also drop the index u. Therefore, we 
shall consider impulsive-smooth behaviors that 
can be described as follows. 

Definition 4.1. For a matrix triple (F, G, H) 
(F, G E (WnxPf+rn), H E Ryx@+“‘), we define 

B(F, G, H) 

= {w E %q, 1 32 E V$;;. Xc, E R” s.t. 

pGz = Fz +x,,, w = Hz}. (14) 

Since we allow arbitrary redundancy at this 
stage, the integer m may be negative, but it will 
be shown later that in minimal representations m 
must be nonnegative. The following statement is 
immediately seen to be true. 

Lemma 4.2. If S and T are invertible nonsingu- 
lar matrices then 9l(SFT, SGT, HT) = 

%(F, G, H). 

The representation (14) is derived from the 
‘pencil’ form that was proposed for smooth 

linear systems in Kuijper and Schumacher 
(1990). It deviates from the more standard (cf. 
e.g. Doetsch, 1974; Cobb, 1982; Geerts, 1993a) 
descriptor representation 

pEx = Ax + Bu + ExO, 

y=Cx+Du 
(15) 

in two respects. Firstly, the descriptor represen- 
tation puts inputs and outputs on an unequal 
footing, whereas we have chosen to treat all 
external variables alike at least a priori. It may 
be noted that, in the most general case (sE -A 
not necessarily invertible and possibly non- 
square), there is from the equations no incentive 
to treat inputs and outputs asymmetrically. 
Secondly, rewriting the above equations in the 
‘external variable’ form via the usual 
transformations 

G= [E 01, F= [A B], H= [; ‘:I (16) 

leads in the first instance to a representation of 
the following type, which we shall refer to as the 
‘conventional’ representation. 

Definition 4.3. For a matrix triple (F, G, H) (F, 
G E ~Xh+r~f), H E [W@(“+m)), we define 

&(F, G, H) = {w E %$,,, 13~ E %g;, 

z,, E R” + ‘?’ s.t. pGz = Fz + Gz”, w = Hz}. (17) 

The expressive power of both representations is 
the same, as the following proposition shows. 

Proposition 4.4. For every triple (F, G, H) as 
above, there exists a triple (F, G‘, A) such that 
?8(F, G’, ii) = %‘JF, G, H), and vice versa. 

Proof: Let F,G: Z-t X and H: Z-, W be given. 
Denote x = im G and .? = F-‘[imG]. Then 
both F and G map _?! into 2. For p and G, take 
the induced mappings from 2 into x’; and for A, 
take the restriction of H to 2. We now have to 
show that %(P, G, fi) = ?&(F, G, H). 

First, take w E ?$(F‘, G, A). Then there exist 
an impulsive-smooth z E ~i~,(F-‘[im G]) and a 
vector x(, E im G such that pez = i?z +x0 and 
w = Z&. If we now write xg = Gzo then 
pGz = Fz + Gz,, and w = Hz, so that w E 
&(F, G, H). For the reverse inclusion, take 
w E $?&(F, G, H). Then there exist z and z. such 
that pGz = Fz + Gzo, and w = Hz. But it follows 
from the first equation that z actually takes 
values in F-‘[im G], so that we have w E 
%[F, G, A). 

Conversely, suppose that we start with a pencil 
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representation LZ = .L%(F,,, Gr,, HI). A conven- 
tional representation is then obtained by taking 

F= 
41 fi2 

[ 1 
G=,’ 

9 
22 

11 (312 
F ] 

0 0’ 
(18) 

I-I = WI H21, 

where G12 is any matrix such that [G1, G12] has 
full row rank, F22 is any matrix of full column 
rank, and F12 and H2 are any matrices of the 
appropriate dimensions. To see this, note that 
the equations for the conventional representa- 
tion as just defined are of the form 

PG,z, + pG222 = 41~1 + 42~2 

+ G,z,O + G2z20, (19) 

0 = 6222, (20) 

w = H,z, + H2z2. (21) 

Because F22 was taken to be of full column rank, 
(20) is equivalent to z2 = 0, and so (19)-(21) are 
equivalent to 

PGIZI = fi,z, + G~z,o + G12z20, (22) 

w = H,z,. (23) 

Finally note that since [Grl G12] has full row 
rank, it is possible for any given x0 to find zlo and 
z20 such that Gllzlo + G12~20 =x0. Cl 

To obtain a representation in conventional 
form in the way described in the proof, one may 
for instance take Gr2 = I and F22 = Z, but in this 
way one may introduce more variables and 
equations than is strictly necessary. 

To compare the distributional framework with 
the more standard framework of differential 
equations, let us consider the ‘smooth’ behaviors 
that might be associated to a triple (F, G, H) in 
one of the following two ways. 

Definition 4.5. For a matrix triple (F, G, H) (F, 
G E Rnx@‘+m), H E Rqx(n+m)), we define 

Bd’S(F, G, H) = {w E %‘:,,, I3z E %;;;, 

x0 E IR” s.t. pGz = Fz +x0, w = Hz}. (24) 

Definition 4.6. For a matrix triple (F, G, H) (F, 
G E Rnx(n+m), H E Rqxcn+m), we define 

.%Is’s(F, G, H) = {w E ‘Z:,,, 132 E %:;m, 

x0 E R” s.t. pGz = Fz + x0, w = Hz}. (25) 

The relation between the smooth and the 
impulsive-smooth behavior is given as follows. 

Proposition 4.7. For any triple (F, G, H), we 
have 

2@‘“(F, G, H) = p(F, G, H) 

= B(F, G, H) il S’:,,,. (26) 

Proof. (Cf. (Geerts 1993a, Lemma 2.5).) It is 
clear that .93”‘“(F, G, H) c .c@‘“(F, G, H) = 

WF, G, H) n KS,, so that it only remains to 
prove the inclusion B(F, G, H) n %‘&, = 
93s’s(F, G, H). Take w E 93(F, G, H) fl %&,, and 
let z E %z’p” and x0 E R” be such that pGz = 

Fz + xc,, w = Hz. Write z as the sum of an 
impulsive part Zp_imp = Efzozkpk and a smooth 
part z,. The equation pGz = Fz + x0 now reads 

2 Gzkpk+’ + Gz,,(tic,) = k$o FZkPk + -%t (27) 
k=O 

Gi,, = Fz,,. w 

We already know that HZp_imp = 0 because w 
must be smooth, and so it follows that the pair 

(z,ln, Fzo + x0) produces the same w as does the 
pair (z, x0). Consequently, w is in %“/“(F, G, H). 

III 

5. POLYNOMIAL REPRESENTATIONS 

Until now, we have considered first-order 
expressions in p. Since p is a linear operator 
mapping the space of impulsive-smooth dis- 
tributions %‘imp into itself, one can also consider 
polynomials in p. To describe the action of a 
polynomial in p on an element of (eimp, we need 
to introduce a certain shift operator on 
polynomials. For r(s) = rksk + . . . + rls + r,, we 
define 

(m)(s) = ‘6) - do) = r Sk-l + 
k . . . + r2s + rl. s 

(29) 

Lemma 5.1. For r(s) E R[s] and w = Wp_imp + 

W _ we have 

r(p)w = r(P)w+&P) 

+ kz, (~“r)Ww $-“(tz) + r( -f)wsm. (30) 

Note that the summation is actually finite, since 
ukr = 0 for all sufficiently large k. The proof of 
the lemma is a straightforward induction with 
respect to the degree of r, and will be omitted. It 
is also straightforward, although somewhat 
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tedious, to verify the following (cf. Hautus, 1976, 
Theorem 3.7). 

Lemma 5.2. The mapping r(~)~r(p) from 1w[s] 
to the ring of linear operators mapping %imp into 
itself is a ring homomorphism. 

A number of useful properties of the space 
~ieimp are discussed (in a slightly different formal 
context) in Hautus (1976) and Geerts (1993a). 
We shall in particular need the fact that every 
rational function f(s) determines uniquely a 
linear operator f(p) mapping %imp into itself, 
and that the set of operators obtained in this way 
is isomorphic as a field to the field of rational 
functions W(s). To give an example (cf. Hautus, 
1976, Theorem 3.11), for u E DB and u = 

up-imp + usm E %mp7 with up-imp(p)=ru(P) (r&> a 

poiynomial), the purely impulsive part of 
w = (p - a)-‘~ E %imp is Wp_imp = r,(p), where 
the polynomial r,,, is determined by 

rw(s) = 
r”(s) - r”(a) 

s-a ’ 
(31) 

whereas the smooth part coincides on (tin, tout) 
with the solution x of the initial-value problem 

1 = ax + u,,, x(0) = r”(a). (32) 

In an approach that makes more use of 
distribution theory than we do here, and which 
therefore allows one to put a ring structure on 
~ieimp rather than only a module structure, one 
may also look at the operator f(p) as the 
operation of convolution by a ‘fractional 
impulse’ (Geerts, 1993a). 

Of course, it is possible to extend what has 
been said above to the vector/matrix case in the 
obvious way. In particular, every rational matrix 
R(s) of size p X q determines a linear mapping 
R(p) from %f,, to U&,. A number of 
elementary properties of mappings of this type 
follow as in Geerts (1993a, Corollary 2.4); in 
particular, the mapping R(p) from %‘?,, to %?$,,, 
is surjective/injective/invertible if and only if the 
rational matrix R(s) has full row rank/has full 
column rank/is nonsingular. For a matrix 
R(s) E Wx4(s), the kernel and image of the 
associated mapping R(p) from %&, to %‘&, will 
be denoted by ker R(p) and imR(p) respec- 
tively; so ker R(p) (the ‘solution space’) is a 
subspace of %ef,,, and imR(p) is a subspace of 

%,,. We shall need the following results 
concerning such subspaces; the converses of 
these results are also true, but will not be used 
below. 

Lemma 5.3. If R,(s) E W~xq(s) and R*(S) E 
Iwpzxy(s) satisfy ker R,(s) = ker R*(S) then ker 

R,(P) = ker R,(P). 

Proof: If ker R,(s) = ker R*(S) then there exist 
rational matrices X,(s) and X,(s) such that 

R,(s) = X,(s)R&) and R2(s) = X,(s)R,(s). It 
follows from this that ker R,(p) = ker R,(p). Cl 

Lemma 5.4. If R,(s) E lWxy’(s) and R&) E 
Wxyz(s) satisfy im R,(s) = im R2(s) then 
im R,(p) = im R,(p). 

Proof The proof is similar to the one above. 0 

Lemma 5.5. If R(s) E lWxq(s) and T(s) E 
lPxr(s) satisfy ker R(s) = im T(s) then ker 
R(p) = im T(p). 

Proof If w = T(p)u for some u then clearly 
R(p)w = 0, since R(s)T(s) = 0, so im T(p) c 
ker R(p). Conversely, suppose that R(p)w = 0. 
By the previous lemmas, we may assume without 
loss of generality that R(s) has full row rank and 
that T(s) has full column rank. We can then 
choose matrices R(s) and p(s) such that 

[;$(s) F(s)] = [; ;I. (33) 

Define 

(34) 

Then 

u’ = [T(P) %+I[;] = T(P)% (35) 

so that we also have ker R(p) c im T(p). Cl 

We now introduce polynomial representations 
for impulsive-smooth behaviors in the following 
way. 

Definition 5.6. Let R(s) E rWpxq[s] and V(s) E 
W’x”[s]. We define 

%R, V) = {w I R(P) w E spa% V(P)}. (36) 

The relation to first-order representations is as 
follows. 

Lemma 5.7. If one has 

im = ker [ - V(s) R(s)] (37) 

as an equality between rational vector spaces 
then B(F, G, H) = 93(R, V). 

ProoJ Suppose w E CB(F, G, H), so that there 
exists an impulsive-smooth z and a constant 
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vector x0 such that pGz = Fz + x0 and w = Hz. 
By Lemma 5.5, we then have 

Eim PG-F 
[ 1 H = ker [-V(P) R(P)] (38) 

so that R(p)w = V(p)xo, and consequently 
w E 4B(R, V). The reverse inclusion is obtained 
by reversing this reasoning. 0 

Not every pair of polynomial matrices 
(R(s), V(s)) is such that ker [-V(s) R(s)] may 
be written in the special form appearing on the 
left-hand side of (37). To describe a class of pairs 
that do have this property, we need the following 
definitions. The first of these is from Kuijper and 
Schumacher (1990), and builds on the work of 
Fuhrrnann (1981). 

Definition 5.8. For a polynomial matrix Z?(s) E 
BBpx4[s], define 

for some strictly proper g(s)}. (39) 

This space of polynomials is associated with the 
‘smooth’ part of the behavior (as will be shown 
more explicitly in Part II). We now introduce 
spaces of polynomials that are related to the 
‘impulsive’ part. 

Definition 5.9. An R-linear subspace of Rk[s] 
will be called shift-invariant if it is closed under 
the operation c+: f(s) w [f(s) - f(O)]/s. A poly- 
nomial matrix L(s) will be called a minimal 
impulse generator if its columns are independent 
over R and span, L(s) is shift-invariant. 

Example 5.10. The space span, {s*, s, 1) is 
shift-invariant; the space span, {s3, s, 1) is not. 

De@ition 5.11. A pair of polynomial matrices 
(R(s), V(s)) E Wxq[s] X Rpx”[s] is called eligible 
if the following conditions hold: 

(i) L;V$s) R(s)] has full row rank for all 
9 

(ii) R(s) has full row rank as a rational matrix; 

(iii) the columns of V(s) are linearly indepen- 
dent over R; 

(iv) spanR V(s) = X, + R(s) span, T(s), where 
T(s) is a minimal impulse generator. 

Lemma 5.12. Let (R(s), V(s)) be an eligible 
pair. If U(s) is unimodular and S is a nonsingular 

constant matrix then the pair (U(s)R(s), 
U(s)V(s)S) is also eligible, and B(UR, WS) = 

%R, V). 

Proof. This is immediate from the definitions. 
Note in particular that XuR = UX, if II is 
unimodular. cl 

Remark 5.13. Other transformations that will 
not affect the set of solutions to the equations 
R(p)w = V(p)xo are the following: left multi- 
plication of V(s) and R(s) by a nonsingular 
rational matrix, addition of zero rows to both 
V(s) and R(s), and right multiplication of V(s) 
by a constant matrix of full row rank. It follows 
from Theorem 5.15 below that every pair of 
polynomial matrices (R, V) that can be obtained 
from an eligible pair by a sequence of operations 
of the types just mentioned is such that 
SI(R, V) = S(F, G, H) for some triple of con- 
stant matrices (F, G, H). It seems likely that the 
converse statement is also true, but we do not 
prove this here. 

We next show that minimal impulse genera- 
tors have a first-order representation. 

Lemma 5.14. A polynomial matrix L(s) E 
Wx”[s] is a minimal impulse generator if and 
only if there exist matrices H E BBpx” and 
G E IV” such that G is nilpotent, ker 

[ 1 ; = m and L(s) = H(sG - I)-‘. Moreover, 

this representation is unique. 

Proof. Let L(s) be a minimal impulse generator. 
Then there exists a matrix G E Rgxg such that 
(@L)(s) = [L(s) - L(O)]/8 = L(s)G. The matrix 
G is uniquely determined, because the columns 
of L(s) are linearly independent. Since 
L(s)Gk = (akL)(s) = 0 for sufficiently large k, 
the matrix G is nilpotent. We have L(s) = 
L(0) + sL(s)G, and hence L(s) = -L(O)(sG - 
I)-’ = H(sG -I)-‘, with H = -L(O). Finally, if 
x is such that both GX = 0 and Hx = 0 then 
L(s)x = [sL(s)G + H]x = 0 so x = 0. 

Conversely, suppose that G and H are 
matrices as in the statement of the lemma. 
Because G is nilpotent, the matrix (SC - I)-’ is 
polynomial, so L(s) = H(sG - I)-’ is indeed a 
polynomial matrix. Moreover, this matrix sat- 
isfies [L(s) - L(O)]/s = [H(sG - I)-’ + HI/s = 
H(sG - I)-‘G. To show that the columns of 
L(s) are independent over R, suppose there 
were a nonzero constant vector x such that 
H(sG - I)-‘x = 0. Then there would exist a 
polynomial vector y(s) = yksk + . . . + y. with 
yk # 0 such that (sG - Z)y(s) =x. This equation 
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implies Gyk = 0, whereas we also have Hyk = 0, 
because Hy(s) = H(sG - I)-‘x = 0. Because of 
the assumption ker G fl ker H = {0}, we have a 
contradiction. q 

We now show that eligible pairs are such that 
the relation (37) holds for some triple (F, G, H) 
of constant matrices. The next result may be 
seen as a realization theorem. 

Theorem 5.15. For every eligible pair 
(R(s), V(s)), there exists a matrix triple 
(F, G, H) such that %(R, V) = .%(F, G, H). 

Proot Let R(s) have size p X q. The construc- 
tion in the proof of Kuijper and Schumacher 
(1990, Theorem 4.2) produces a triple 
(F,, G,, H,) of constant matrices and a polyno- 
mial matrix V,(s) such that 

[-v,(s) R(s)][SG; “1 = 0, (40) 
1 

and 

(i) 

(ii) 

(iii) 

the following properties hold: 

4 and G, have size nsm X (n,, X m), where 
n,,:=dimX, and m:=q-p, and H1 has 
size q X (nsm + m); 

span, V,(s) = XK; 

G, has full row rank, ker 
G, 

[ 1 
H = (01, and 

I 

[“‘L ‘1 is left-unimodular. 

By replacing the given matrix V(s) with one of 
the same linear span if necessary. we may 
assume that V(s) = [V,(s) V,(s)]. where V,(s) = 
R(s)T(s) and T(s) is a minimal impulse 
generator. Let np_,mp denote the number of 
columns of V,(s). By the previous lemma, we 
may write T(s) = H2(sG2 - I)-‘, where G1 is 
nilpotent and ker GZ II ker Hz = (0); note that H2 
has size q X np_l,np. By construction, we have 

[-v,(s) -v,(s) R(s)1 

x rG;’ sG;;l]=O, 

So if we define 

F=; ;, 
I 1 

G= Gi 0 [ 1 0 G,’ 

H= [H, H,], 
we have 

im c ker [-V(s) R(s)]. 

(41) 

(42) 

(43) 

To prove equality, it suffices to show that the 
dimensions of the two subspaces are equal. The 
matrix appearing on the left has full column rank 
by property (iii) above and by the fact that 
SC, - I is nonsingular; its number of columns is 
n Lm + np-lmp + m. The matrix [-V(s) R(s)] has p 
rows and nsm + np_,mp + q columns, and it has full 
row rank because R(s) has full row rank. Since 

m=q-p, the equality of the dimensions is 
established, and the proof is complete by Lemma 
5.7. 0 

It will be shown in Part II of this paper that, 
conversely, for every matrix triple (F, G, H) 
there exists an eligible pair (R(s), V(s)) such 
that %‘(F, G, H) = B(R, V). 

Remark 5.16. The realization that has been 
constructed in the proof above enjoys a number 
of special properties. First of all, from the fact 
that G, has full row rank, it follows that the 
matrix 

SC, - F, 0 sG-F= 
0 SC,-I 1 

has full row rank as a rational matrix. Secondly, 
suppose that 

for some constant vector 
Xl 

[ 1 and some s. 
X2 

Because SC? - I is invertible for all s, the 
component x2 must be zero, and the left- 

unimodularity of then implies that 

also x, vanishes. This shows that 

left-unimodular. Thirdly, we can also show that 
G 

ker = (0). Indeed, suppose that H x = 0 
[ 1 

for some constant vector x. From the equality 
[R(s)H - V(s)(sG - F)]x = 0, it then follows 
that V(s)Fx = 0, which implies that Fx = 0, since 
the columns of V(s) are linearly independent. 

But then x =o, and so x = 0. 

The three properties that we have established 
will be shown in Part II to characterize 
minimality of representations of the form (14). 
So the proof actually gives the construction of a 
minimal first-order representation corresponding 
to an eligible pair (R(s), V(s)). 
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Remark 5.17. Of course it is also possible to get 
a conventional representation (i.e. one of the 
form (17)) for an eligible pair (R(s), u(s)), by 
applying the corresponding construction in the 
proof of Proposition 4.4. 

6. CONCLUSIONS 

We have presented an approach to the 
modeling of linear multimode systems, based on 
the behavioral framework of Willems and the 
functional setting of the class of impulsive 
distributions as introduced by Hautus. The 
approach will, in particular, be appropriate in 
cases where transitions between different modes 
are not always smooth; such behavior is to be 
expected when the dynamics corresponding to 
various modes do not all have the same 
McMillan degree. We have proposed a specifica- 
tion in first-order form for finite-dimensional 
time-invariant piecewise-linear behaviors. Such a 
specification consists of a description of the 
system’s behavior in a particular mode on an 
interval between switches, together with jump 
conditions that describe the transitions from one 
mode to another. 

A detailed analysis has been made of possible 
descriptions of the behavior between switches, 
taking into account the possibility of impulsive 
behavior at the switching instant. Two types of 
first-order representations have been studied: 
one motivated by the standard approach to 
singular systems in which the initial condition is 
always located in the same subspace as the state 
derivative, and one in which this requirement 
need not hold, so that in fact it might be 
preferable to speak about ‘initial data’ rather 
than about an initial condition in the sense of 
differential equations. The first type we have 
called the conventional form, and the second 
type the pencil form after a similar representa- 
tion used in Kuijper and Schumacher (1990). We 
have shown that the two representation types 
have the same descriptive power (that is, they 
describe the same class of behaviors), by 
explicitly transforming conventional representa- 
tions into pencil representations and vice versa. 
While there is thus no distinction between the 
two representations from the point of view of 
expressive power, it might be said that pencil 
representations are in general more economical 
than conventional representations in the sense 
that the number of variables and equations is 
generally less. 

Besides first-order representations, we have 
also considered polynomial representations of 
impulsive-smooth behavior. Such representa- 

tions are convenient in a mathematical analysis 
of minimality conditions, as will be shown more 
extensively in Part II; but they also hold an 
interest of their own, since system properties can 
often be expressed most concisely in terms of a 
polynomial representation. We have defined 
polynomial representations of impulsive-smooth 
behaviors by using a pair of polynomial matrices, 
which should be in a very specific relation to 
each other in order to make sure that the 
corresponding behavior can also be represented 
in first-order form. This relation is specified in 
the notion of eligibility (Definition 5.11). 

The emphasis in this paper has been on the 
representation of behavior on intervals between 
switches, including a possible impulse at the 
switching instant. Jump conditions have only 
been discussed insofar as they are needed in the 
specification of the full piecewise-linear be- 
havior. Certainly there is more to be said about 
the relation between jump conditions and mode 
dynamics; this issue is addressed in van der 
Schaft and Schumacher (1995). The analysis of 
representations of impulsive-smooth behaviors 
given here is not complete, in the sense that we 
have not discussed yet under what conditions 
representations are minimal, and how minimal 
representations of the same behavior are related 
to each other. That task will be taken up in Part 
II, in which, in particular, we obtain a 
state-space isomorphism theorem for pencil 
representations. 
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