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Abstract

The construction of canonical forms for linear systems
has been studied extensively. Here we give a sys-
tematic method to relate polynomial and first-order
canonical forms to each other. The discussion is car-
ried out on three levels, corresponding to transfer
functions, behaviors, and homogeneous behaviors.

1 Introduction

Canonical forms for linear systems and the global
structure of the family of linear systems of a given
McMillan degree have been studied extensively in the
past, see for instance [1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12].
One of the main motivations for this study has been
to obtain parametrizations that can be used in sys-
tem identification procedures. We refer to Chapter 2
of the well-known book by Hannan and Deistler [13]
for an exposition of the relevant issues.

To summarize briefly, a canonical form is a pre-
scription that assigns to each class of observation-
ally equivalent system representations exactly one el-
ement of this class. A parametrization is a mapping
that establishes a one-to-one correspondence between
equivalence classes on the one hand and parameter
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vectors on the other hand. Often such a parametriza-
tion is obtained from a canonical form. Alternatively
one can work with overlapping charts by parametriz-
ing suitable subsets of the class of all classes of obser-
vationally equivalent representations. Whether one
works with canonical forms or with charts, an impor-
tant issue is presented by the degeneration phenom-
ena associated with the approach of a boundary of
validity of a chosen parametrization.

In this paper we discuss some of the above issues
from the perspective that is offered by the behavioral
theory of J.C. Willems [14] in connection with the
associated realization theory developed by Kuijper
and Schumacher [15], and the extensions to homoge-
neous representations as studied by Ravi and Rosen-
thal [16]. In particular we shall discuss the various
forms of equivalence that may be distinguished from
a behavioral point of view, both in the polynomial
framework and in the setting of first-order represen-
tations.

This discussion is stated in the general framework
in which the external variables are not distinguished
in inputs and outputs; from the point of view of
identification, the presence of a (causal) input-output
structure may be viewed as one possible piece of a
priori information. Then we shall show how poly-
nomial and first-order descriptions may be related to
each other in a very simple and direct way. We ap-
ply the realization theory to link together polynomial



and first-order canonical forms at the various levels
of equivalence.

2 Equivalence notions

The behavioral theory as developed by J.C. Willems
[14] offers a systematic way to discuss equivalence
and minimality of system representations, as follows.
Given a representation that in some way specifies a
system of differential or difference equations, one can
assign to this representation the set of all solutions
in some chosen function class; this set of solutions is
called the behavior associated with the given repre-
sentation. Two representations of a given type are
called equivalent if they generate the same behavior.

Among all equivalent representations of a given be-
havior, one may distinguish those that are minimal in
an appropriate sense (minimal numbers of equations
and auxiliary variables); one may hope to describe the
equivalence of minimal representations in an effective
way, for instance by means of a group action.

The above approach to defining equivalence of rep-
resentations of a given type does not lead to a unique
result however. This is due to the fact that the
method depends on the choice of a function class (or
a unfversum, in the terminology of Willems). Al-
though the choice of a different function class does
not necessarily lead to a new notion of equivalence, it
is not true that all choices lead to the same notion.
We now discuss this in more detail for linear time-
invariant systems, using each time both polynomial
and first-order representations. The latter will always
be taken of the form

cGz = Fz
w = Hz (1)

where o is shift or differentiation, z(t) denotes a
vector of auxiliary variables, and w(t) is the vector
of external variables; F' and G are matrices of size
nx(n+m), and H has size (p+m) x (n+m). This was
called the ‘pencil form’ in [15]. Other first-order rep-
resentations that treat all external variables alike are
possible (in particular the form o Kz + Lz + Mw = 0)
and would give rise to a similar development. We
shall consider polynomial ‘kernel’ or ‘AR’ representa-
tions of the form

P(oyw = 0 (2)

where P is a polynomial matrix of size p X (p + m).
We shall consider three notions of equivalence
which seem to be main ones that can be made to

appear by a suitable choice of ‘universum’, although
they are certainly not the only ones.

1. Transfer equivalence. This is maybe the most stan-
dard and classical notion of equivalence; it says that
two linear input-output representations are equiva-
lent if their transfer functions coincide. This can be
applied either to polynomial representations

[D(@) -N@)][¥] =0

(with transfer function D~!(s)N(s)) or to standard
state space representations. Formulated in this way
it seems that transfer equivalence depends on a given
i/o structure. However, there is also a behavioral
definition. which arises by taking the quadratically
summable sequences as a universum. One can show
that two polynomial matrices P and P’ of full row
rank which generate the same £5 behavior are related
by a nonsingular rational matrix F' such that P’ =
FP; restricted to representations of the form P =
[D N, this comes down to transfer equivalence. For
pencil representations (1), it can be shown that these
are a minimal representation of their associated £
behavior if and only if the triple (F, G, H) satisfies
the following requirements:

(i) 8G — tF has full row rank for all (s,t) # (0, 0);
(it) ["’GEtF] has full column rank for all (s, ¢) # (0,0).

Moreover, two minimal representations (¥, G, H) and
(F',G',H') represent the same f£s-behavior if and
only if there exist nonsingular matrices S and T such
that (F',G',H") = (SFT-},SGT~',HT'). Spe-
cialized to the case of standard state space systems
(G=[I0], F=[A|B],H=[9 T1), all this comes
down to the usual controllability and observability
requirements, and to the standard state space iso-
morphism. The continuous-time theory is completely
analogous. For more information on f3/L, systems,
see [17, 18].

2. DBehavioral equivalence. Although all notions of
equivalence that we discuss can be motivated from
a behavioral point of view, we shall call ‘behavioral
equivalence’ the one that occurs most frequently in
the behavioral approach as developed by Willems.
In the discrete-time context, this equivalence comes
from considering as a universum all sequences on Z 4
(a slightly different notion occurs when considering
sequences on Z). In continuous time, the same no-
tion of equivalence comes from employing the C'*°
functions or various other classes of functions or gen-
eralized functions. The equivalence that is induced



for polynomial representations is the following: two
polynomial matrices P and P’ of full row rank are
behaviorally equivalent if and only if there exists a
unimodular matrix U such that P’ = UP. A pen-
cil representation is a minimal representation in the
sense of behavioral equivalence if and only if

(i) G has full row rank;

(i) [*“5*F] has full column rank for all (s, t) # (0, 0).

3. Homogeneous equivalence. In a study [19, 20] of so-
called impulsive-smooth behaviors which are defined
on Ry, a notion of equivalence was discovered for
pencil representations that is even weaker than be-
havioral equivalence, so that certain representations
that would be called equivalent in the (smooth) be-
havioral framework are no longer equivalent in the
impulsive-smooth sense. The ensuing notion of mini-
mality is the following. A triple (¥, G, H) is minimal
in the impulsive-smooth sense if and only if

(i) sG — tF has full row rank for some (and hence
almost all) (s,t) # (0,0);

(i) [’G;ItF] has full column rank for all (s, ¢) # (0,0).

Moreover, it turns out that there is a natural one-to-
one relation between the equivalence classes that are
so defined and the equivalence classes of full rank ho-
mogeneous polynomial matrices modulo left multipli-
cation by homogeneous unimodular matrices [16, 22].
The suggested behavioral interpretation for homoge-
neous polynomial matrices is given in [23], where in
particular discrete-time homogeneous behaviors are
defined.

In each of the three cases mentioned above, the set of
equivalence classes that one obtains (described either
in polynomial or in first-order terms) carries natu-
rally the structure of a smooth manifold of dimen-
sion n{(m + p) + mp; moreover, the manifold that is
obtained from transfer equivalence is densely embed-
ded in the one obtained from behavioral equivalence,
which is in its turn densely embedded in the mani-
fold of homogeneous systems. A very important fact
about the latter manifold is that it is not only smooth
but also compact [21, 24, 16], which makes it a natu-
ral setting for the study of the occurrences that from
the point of view of the smaller manifolds would be
called ‘degeneration phenomena’. In the sequel we
will denote this manifold with Hp .

It is in no way implied here that the above three
notions of equivalence are the only ones that could

be derived from the behavioral approach. Still other
function or sequence classes may be used and will
give rise to different equivalence notions which may
be relevant for particular purposes. For instance the
rather small class of fixed-period sequences plays a
role in the study of cyclic codes [25]. Another variant
of interest is to use stochastic processes rather than
vector-valued sequences [26].

3 Some realization theory

We now describe a realization theory that enables one
to establish a close relation between polynomial and
first-order representations; as will be shown in the
next section, this relationship is close enough to al-
low in a certain sense the ‘transfer’ of canonical forms
between these two types of representations. This real-
ization theory has its roots in the work of Fuhrmann
[27, 28], was lifted to the behavioral level by Kuij-
per and Schumacher [15], and was further extended
to the homogeneous level by Ravi and Rosenthal [22]
building on the work of Strgmme in algebraic geom-
etry [21]. A more algorithmic approach to the ho-
mogeneous realization was recently developed by the
authors [23]; here we present a further streamlining.
It should be noted that it is straightforward to spe-
cialize the homogeneous realization algorithm to the
‘behavioral’ and ‘transfer’ cases.

With a homogeneous polynomial matrix P(s,t) of
size p x ¢ and of row degrees vy, -+, v,, We can asso-
ciate the R-linear space of p-vectors whose i-th entry
is a homogeneous polynomial of degree v; — 1, or is
zero if v; = 0. Obviously the dimension of this space,
which we shall denote by X,,,is n:= Y°F_ v;. We de-
fine the canonical basis matriz X (s,t) as the matrix
of size p X n given by

gvi—l .. gl 0 0 «v¢ =00 0
0 0 g2l
: . 0
0 t"p_l

The basis of the realization theory is the following
proposition.

Proposition 1 The triple (F,G,H) is a realization
of the homogeneous polynomial matriz P(s,t), in the
sense that their associated homogeneous behaviors are
the same, if the equality

[sG—tF
m

" ] = ker[—X(s,t) | P(s,t)] (3)



holds for almost all (s,t) # (0,0).

One can show that the minimality properties for
pencil representations of homogeneous behaviors are
automatically satisfied if the condition in the proposi-
tion holds and the number of columns of the matrices
F, G, and H is n + m, and we shall only consider so-
lutions of this type. Now note that the equation

X601 Pen [ ] =0 @

which is implied by (3) can also be written as

F
[EX(s,t) | —sX(s,t) | P(s,t)] | G
H

I
=

(5)

Note also that left multiplication by the matrix
[tX(s,t) | —sX(s,t) | P(s,t)] of a constant vector
of length 2n 4+ m + p produces a vector with en-
tries that are homogeneous polynomials of degrees
Vi,...,Vp. So this matrix can be viewed as a lin-
ear mapping from (2n + m + p)-dimensional linear
space to the space of all such vectors, which has
dimension (»y + 1)+ -+ (¥p+1) = n+p. As
it is easily established that the induced mapping is
surjective, it follows that it must have an (n + m)-
dimensional kernel. Consequently, any matrix whose
column space spans this kernel presents a solution to
the minimal realization problem. The right action on
minimal triples, (F,G,H) — (FT7Y,GT,HT™1),
clearly corresponds to the nonuniqueness in the choice
of a basis matrix for the kernel. The left action
taking (F,G, H) to (SF,SG, H) corresponds to the
nonuniqueness in the choice of a basis matrix for the
space X,. '

To translate this realization procedure to the level
of behavioral equivalence, it suffices to consider poly-
nomial matrices in row proper form and to set t =1
in the above procedure. For transfer equivalence, one
should use left coprime polynomial matrices in row
proper form. In both situations one will then auto-
matically obtain the appropriate minimality proper-
ties for the first-order realizations.

4 Canonical forms

The realization theory of the preceding section al-
lows us to establish a link between polynomial and
first-order canonical forms. Let us first suppose that
we have some canonical form for homogeneous poly-
nomial matrices under the corresponding action of

homogeneous unimodular matrices. Given P(s,t)
in canonical form, the corresponding canonical basis
matrix is of course uniquely defined and in this way
we eliminate the left action on the associated realiza-
tions. To eliminate the right action, we can use any
method to uniquely define a column basis matrix for a
given subspace; for instance one may use the column
echelon form, associated with the standard Schubert
cell decomposition of the Grassmannian. In this way
a canonical form for (F, G, H) triples (satisfying the
‘homogeneous’ minimality conditions) under similar-
ity action is obtained. In case one works on the ‘be-
havioral’ level essentially the same procedure applies,
provided that one uses row proper canonical forms for
polynomial matrices.

An attractive feature of the approach sketched here
can be that the problem of constructing canonical
forms for (F,G, H) triples under left and right simi-
larity is split into the (presumably smaller) problems
of finding canonical forms for polynomial matrices un-
der the left unimodular action and for full column
rank matrices under right similarity. For the same
reason it would seem less attractive to invert the pro-
cedure and generate canonical forms for polynomial
matrices from canonical forms for (F,G, H) triples,
although this is possible in principle.

The choice of a canonical representation for (n +
m)-dimensional subspaces of (2n+m+p)-dimensional
linear space may be influenced by a priori informa-
tion. A prime example is provided by the causal
input-output structure for systems under behavioral
equivalence. The presence of an input-output struc-
ture means in pencil representations that there is a
subdivision of the (m+p) X (n+m) matrix H into an
m X (n+m)-matrix H, and a p x (n +m) matrix H,.
Moreover, causality corresponds to the invertibility of
the (n 4+ m) x (n + m)-matrix [I?“] In other words,
the causal i/o structure indicates an invertible sub-
matrix in the constant matrix appearing in (5), and
an obvious normalization would be to set this matrix
equal to the identity. This leads to a realization in
the form

Feuis, c=uo 2= ]g 7] ®
which is of course recognized as the standard state
space form. Moreover, one easily verifies that the
above normalization reduces the left and right simi-
larity actions on triples (F, G, H) to the standard sim-
ilarity action on quadruples (4, B,C, D). Moreover,
we see that in this way we get a direct connection
between row proper polynomial canonical forms and



canonical forms for the (A, B, C, D)-tuples that de-
termine a standard state space representation. These
connections have of course been studied before (see
for instance the extensive discussion in [29, Ch.6]),
but we believe that even in the classical case our ap-
proach via the choice of a canonical basis matrix helps
to systematize. We conclude this section with two ex-
amples.

Example 2 Consider systems with n = 2, p = 1,
and m = 0; since there are no inputs we are in the
‘autonomous’ case. On the behavioral level we may
normalize realizations (F, G, H) by setting G = I and
in this case it is more common to write A rather than
F, and C rather than H. The obvious normalization

for the polynomial description is of the form s?—as—b
and then the canonical basis matrix produces
a 1
a=lss] e=mm @

which is the observer canonical form. The same works
of course for any n and so we reproduce a standard
canonical form. The same example may also be done
on the homogeneous level; we leave this for the reader
to work out.

Example 3 We consider the set H3, of homoge-
neous systems P(s,t) having input number m = 2,
output number p = 2, and McMillan degree n = 2.
There are two cases to be considered:

a) Assume that P(s,t) has row indices 13 = v5 = 1.
Without loss of generality we will assume that P(s,t)
has the following canonical form:

8+ byt bot azs + byt a4s + bat (8)
dit s+dot c3s+dst cgs+dst )’

where a;, b;,c;,d; are real numbers. Note that the
set of numbers representable in the form (8) forms a
dense cell of dimension 12 in the manifold ’Hg,z.

The canonical basis matrix X (s,t) is in this case

X(s,t):[(l) fl’]

Using the identity (5) one readily computes for every
system representable in the form (8) a canonical first
order representation given through:

[ —b1 —by —bs —by ]

-—dl —d2 —-da —d4

F 1 0 as a4
-G— 2 0 1 C3 Cyq
T 1 0 0 0
0 1 0 0
0 0 1 0

o 0o o 1 |

b) Assume now that P(s,t) has row indices v; = 0
and v = 2. Without loss of generality we will assume
that P(s,t) has the following canonical form:

1 as as a4
0 s24costtdat? bzsi4castidst?  bys?eysttdyt?
(9)

In this case the canonical basis matrix X(s,t) is

X(s,t):[o ‘t)]

8

Using again the identity (5) one readily computes a
canonical first order representation given through:

1 —C2 —C3 —C4 1
0 —dy —-ds —d4
0 1 bs by
L 1 0 0 0
G =
T 0 —a3 —az —a4
0 1 0 0
0 o0 1 0
| 0 O 0 1

5 Conclusions

The behavioral approach provides a framework in
which the structure of all linear systems of a given
McMillan degree can be profitably studied. It is cru-
cial to distinguish several levels of equivalence which
correspond to different but closely related manifolds.
On each level of equivalence, one has both polynomial
and first-order representations. A simple realization
method was shown which enables one to relate these
two types of representations in such a way that a
transfer of canonical forms becomes possible, and this
was illustrated in an example. Among the many top-
ics for further research, we would like to mention the
following. (i) A convenient method for constructing
canonical forms for i/o systems under transfer equiva-
lence is to construct a mapping from an object that is
already in one-to-one correspondence with the equiv-
alence classes (the transfer function) to a specific ele-
ment of the equivalence class. One might try to do the
same on the behavioral and the homogeneous level,
replacing the transfer function by the behavior. (ii)
The realization method that we discussed is suitable
for transferring canonical forms but unfortunately not
for transferring charts, since it is tied intimately to
the row indices (Kronecker indices). Other realiza-
tion methods need to be designed which do allow the
transfer of charts. )
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