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Abstract This paper deals with a class of dynamical systems obtained from inter-
connecting linear systems with static set-valued relations. We first show that such
an interconnection can be described by a differential inclusions with a maximal
monotone set-valued mappings when the underlying linear system is passive and the
static relation is maximal monotone. Based on the classical results on such differential
inclusions, we conclude that such interconnections are well-posed in the sense of exis-
tence and uniqueness of solutions. Finally, we investigate conditions which guarantee
well-posedness but are weaker than passivity.
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1 Introduction

It is a true pleasure for us to contribute an article to this special issue in honor of
Jong-Shi Pang on the occasion of his 60th birthday. In the last decade, we had the
privilege to develop a fruitful research collaboration with Jong-Shi on the so-called
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398 M. K. Camlibel, J. M. Schumacher

linear complementarity systems, combining notions/tools from systems theory and
mathematical programming. This paper builds upon and expands further some of the
ideas that came about from our collaboration with Jong-Shi.

Variational inequalities were introduced by Stampacchia in 1964 [1] as a tool in the
study of elliptic partial differential equations, and have since been recognized as instru-
mental in a large class of optimization and equilibrium problems. Applications range
from elastoplasticity to traffic and from electrical networks to mathematical finance;
see for instance [2,3]. The role of maximal monotonicity in the context of variational
inequalities, as a sufficient condition for well-behavedness, can be compared to the
role of convexity in optimization problems. Maximal monotone mappings were intro-
duced in 1961 by Minty [4], who had already earlier applied the notion of monotone
relations in an abstract formulation for electrical networks of nonlinear resistors [5].
Extensions to dynamic problemswere undertaken in the samedecade; intimate connec-
tions between semigroups of nonlinear contractions andmaximal monotonemappings
were established by Crandall and Pazy [6] and further developed by Brézis [7].

The development of the theory of semigroups of nonlinear contractions took place
in the classical context of dynamics given by a closed system of (partial) differential
equations. Engineers have long appreciated the power of open (input-output) dynam-
ical systems as a device for modeling as well as for analysis. It comes naturally in
many applications in the engineering sciences, as well as in biology and economics, to
look at a dynamical system as a composite of smaller systems which are connected by
the specification of relations between certain variables associated to the subsystems.
These variables may be referred to as “inputs” and “outputs”, or more generally as
“connecting variables” since the suggestion of unidirectionality that comes with the
input/output terminology is not always appropriate. Systems equipped with connect-
ing variables in this sense may be simply referred to as “open dynamical systems”.
Early contributions were made in the 1930’s in the field of electrical engineering by
among others Nyquist and Bode, and the field has received intensive study ever since
the pioneeringwork ofKalman around 1960 and the associated successes in theApollo
space program and in many other applications.

Within the class of open dynamical systems, linear time-invariant systems play a
special role as a prime example and as a first breeding ground of ideas that are later
developed in wider contexts. More or less similarly, linear complementarity problems
[8] take a special position among variational inequalities. Dynamical systems that
arise as interconnections of linear time-invariant systems and linear complementarity
problems came under investigation in the 1990’s under the name “linear complemen-
tarity systems” [9,10]. Part of the motivation came from the fact that these systems
can be looked at as a particular class of systems with mixed continuous and dis-
crete state variables, also called “multimodal systems” or “hybrid systems”. More
generally, differential variational inequalities were studied by Pang and Stewart [11].
Linear time-invariant systems together with static relations described by set-valued
mappings have been used extensively. An incomplete inventory includes electrical
networks with switching elements as in power converters [12–16], linear relay sys-
tems [17,18], piecewise linear systems [19], and projected dynamical systems [20,21];
see also [22–24] for further examples and [25,26] for numerical analysis of maximal
monotone differential inclusions.
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Linear passive systems and maximal monotone mappings 399

The history of linear time-invariant systems connected to static (nonlinear) relations
in fact goes back a long way. This way of describing a dynamical system has been used
intensively as a tool in stability analysis within the context of so-called Lur’e systems;
see [27] for a survey. The notion of passivity (also known as dissipativity) plays an
important role in this theory. The term is used here as a description of a characteristic of
an open dynamical system, and is motivated by the notion of stored energy in electrical
networks and in many other applications in physics. The term “dissipativity” is used as
well in the context of maximal monotone mappings; in fact, in their paper cited above
[6], Crandall and Pazy use the term “dissipative set” in place of “maximal monotone
mapping”. This already indicates that there are strong conceptual relations between
the notions of passivity and maximal monotonicity. Indeed, passive complementarity
systems present themselves as a natural class of dynamical systems [28].

In this paper, our goal is to establish the well-posedness (in the sense of existence
and uniqueness of solutions) for systems that arise as interconnections of passive linear
time-invariant systems and maximal monotone mappings. Our proof strategy relies
on a reduction to the classical case of a closed dynamical system. To achieve this, we
present a new result in the spirit of preservation ofmaximalmonotonicity under certain
operations. Such results are known to be often nontrivial; even the questionwhether the
sum of two maximal monotone mappings is again maximal monotone does not have a
straightforward answer (cf. [29, Section 12.F]).Moreoverweprovide a “pole-shifting”
technique, which is analogous to a well-known method in the classical theory, to
extend the results to a larger class of systems. The well-posedness of interconnections
of linear passive systems with maximal monotone mappings has been studied before
by Brogliato [30]. In the cited paper, well-posedness is proved under some additional
conditions, which were later partially removed in [31,32]. Here we obtain the result
without imposing additional conditions.

The paper is organized as follows. In Sect. 2, we quickly review tools from convex
analysis and systems theory that will be extensively employed in the paper. The class
of systems the paper deals with will be introduced in Sect. 3. This will be followed by
the main results in Sect. 4. Finally, the paper closes with the conclusions in Sect. 5.

2 Preliminaries

The following notational conventions will be in force throughout the paper. We
denote the set of real numbers by R, nonnegative real numbers by R+, n-vectors of
real numbers by R

n , and n × m real-valued matrices by R
n×m . The set of locally

absolutely continuous, locally integrable, and locally square integrable functions
defined from R+ to R

n are denoted, respectively, by ACloc(R+, R
n), L1,loc(R+, R

n),
and L2,loc(R+, R

n).
To denote the scalar product of two vectors x , y ∈ R

n , we sometimes use the
notation 〈x, y〉 := xT y where xT denotes the transpose of x . The Euclidean norm of

a vector x is denoted by ‖x‖ := (xT x)
1
2 . For a subspace ofW of R

n ,W⊥ denotes the
orthogonal subspace, that is {y ∈ R

n | 〈x, y〉 = 0 for all x ∈ W}.
We say that a (not necessarily symmetric)matrixM ∈ R

n×n is positive semi-definite
if xT Mx � 0 for all x ∈ R

n . We sometimes write M � 0 meaning that M is positive
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400 M. K. Camlibel, J. M. Schumacher

semi-definite. Also, we say that M is positive definite if it is positive semi-definite and
xT Mx = 0 implies that x = 0.

2.1 Convex sets

To a large extent, we follow the notation of the book [29] in the context of convex
analysis. We quickly recall concepts/notation which are often employed throughout
the paper.

Let S ⊆ R
n be a set. We denote its closure, interior, and relative interior by cl(S),

int(S), rint(S), respectively. Its horizon cone S∞ is defined by S∞ := {x | ∃ xν ∈
S, λν ↓ 0 such that λνxν → x}. When S is convex, NS(x) denotes the normal
cone to S at x . For a linear map L : R

m → R
n , we denote its kernel and image by

ker L and im L , respectively. By L−1(S), we denote the inverse image of the set S
under L .

For the sake of completeness, we collect some well-known facts on convex sets in
the following proposition.

Proposition 1 Let X ∈ R
n be a convex set. The following statements hold:

1. If X is nonempty then
(a) rint(X) is nonempty and convex,
(b) cl(rint(X)) = cl(X) and rint(cl(X)) = rint(X),
(c) X∞ is a closed convex cone,
(d) (cl(X))∞ = X∞.

2. Let L : R
m → R

n be a linear map. Then,
(a) If rint(X) ∩ im(L) 
= ∅ then L−1(rint(X)) = rint(L−1(X)) and L−1(cl(X))

= cl(L−1(X)).
(b) L(X∞) ⊆ (LX)∞ and L(X∞) = (LX)∞ whenever X is closed and ker L ∩

X∞ = {0}.
(c) If X is closed with L−1(X) 
= ∅ then NL−1(X)(x) = LT NX (Lx) for all

x ∈ L−1(X).

2.2 Maximal monotone set-valued mappings

Let F : R
n ⇒ R

n be a set-valued mapping, that is F(x) ⊆ R
n for each x ∈ R

n . We
define its domain, image, and graph, respectively, as follows:

dom(F) = {x | F(x) 
= ∅}
im(F) = {y | there exists x such that y ∈ F(x)}

graph(F) = {(x, y) | y ∈ F(x)}.

The inverse mapping F−1 : R
n ⇒ R

n is defined by F−1(y) = {x | y ∈ F(x)}.
Throughout the paper, we are interested in the so-called maximal monotone set-

valued mappings. A set valued-mapping F : R
m ⇒ R

m is said to be monotone if

〈x1 − x2, y1 − y2〉 � 0 (1)
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Linear passive systems and maximal monotone mappings 401

for all (xi , yi ) ∈ graph(F). It is said to be maximal monotone if no enlargement of
its graph is possible in R

n × R
n without destroying monotonicity. We refer to [7] and

[29] for detailed treatment of maximal monotone mappings.
A particular class of maximal monotone mappings is formed by the subgradi-

ent mappings associated with (possibly discontinuous) extended-real valued convex
functions. Indeed, it is well-known that the subgradient mapping of a proper, lower
semicontinuous convex function ismaximalmonotone [29,Thm. 12.17].Whenm = 1,
every maximal monotone mapping is such a subgradient mapping [29, Ex. 12.26].
However, not every maximal monotone mapping corresponds to a subgradient map-
ping in higher dimensions.

Typically, verifying monotonicity is much easier than verifying maximal
monotonicity. Among various characterizations of maximal monotonicity (e.g.
Minty’s classical theorem [29, Thm. 12.12]), the following will be in use later.

Proposition 2 ([33]) A set-valued mapping F : R
m ⇒ R

m is maximal monotone if,
and only if, it satisfies the following conditions:

1. F is monotone,
2. there exists a convex set SF such that SF ⊆ dom(F) ⊆ cl(SF ),
3. F(ξ) is convex for all ξ ∈ dom(F),
4. cl(dom(F)) is convex and (F(ξ))∞ = Ncl(dom(F))(ξ) for all ξ ∈ dom(F),
5. graph(F) is closed.

2.3 Differential inclusions

Differential inclusions will play a major role in the rest of the paper. Consider a
differential inclusion of the form

ẋ(t) ∈ F(x(t)) + u(t) (2)

where x , u ∈ R
n and F : R

n ⇒ R
n is a set-valued mapping. We say that a function

x ∈ ACloc(R+, R
n) is a solution of (2) for the initial condition x0 and a function

u ∈ L1,loc(R+, R
m) if x(0) = x0 and (2) is satisfied for almost all t � 0.

In particular, we are interested in differential inclusions with maximal monotone
set-valued mappings. The following theorem summarizes the classical existence and
uniqueness results for the solutions of such differential inclusions.

Theorem 1 Consider the differential inclusion

ẋ(t) ∈ μx(t) − F(x(t)) + u(t) (3)

where x, u ∈ R
n and F : R

n ⇒ R
n is a maximal monotone set-valued mapping.

For each μ � 0, there exists a unique solution of the differential inclusion (3) for the
initial condition x0 ∈ cl(dom(F)) and locally integrable function u.

Proof If dom(F) = ∅, there is nothing to prove. Suppose that dom(F) 
= ∅. If
int(dom(F)) 
= ∅, the assertion follows from [7, Thm. 3.4, Prop. 3.8 and Thm. 3.17].
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402 M. K. Camlibel, J. M. Schumacher

In case int(dom(F)) = ∅, we employ a dimension-reduction argument inspired by
[29, proof of Thm. 12.41]. Let X be the affine hull of dom(F). Since X is an affine
set, there exist a vector ξ ∈ R

n and a subspace W ⊆ R
n such that X = ξ + W . Let

T1 ∈ R
n×n1 and T2 ∈ R

n×n2 be matrices such that their columns form bases for W
and W⊥, respectively. One can choose these matrices in such a way that the matrix
T = [T1 T2

]
is an orthogonal matrix, that is T T T = I . Define F̂(x̂) := T T F(T x̂+ξ)

for all x̂ ∈ R
n . Consider the differential inclusion

˙̂x(t) ∈ μx̂(t) − F̂(x̂(t)) + û(t). (4)

Note that x is a solution of (3) for the initial condition x0 and the function u if and
only if x̂(t) := T T

(
x(t) − ξ

)
is a solution of (4) for the initial condition T T (x0 − ξ)

and function û(t) := T T
(
u(t) + μξ

)
. Therefore, it suffices to prove the claim for the

differential inclusion (4). Since dom(F) 
= ∅, statement 2 of Proposition 2 implies
that rint(dom(F)) 
= ∅. Then, it follows from [29, Thm. 12.43] that F̂ is a maximal
monotone. Note that dom(F̂) = T T

(
dom(F) − ξ

)
. Therefore, we have

dom(F̂) = T T ( dom(F) − ξ
) ⊆

[
T T
1

T T
2

]

W ⊆ im

[
I
0

]
. (5)

It follows from Proposition 2 that

im

[
0
I

]
= ( im

[
I
0

] )⊥ ⊆ Ncl(dom(F̂))
(x) = (F̂(x))∞

for all x ∈ cl(dom(F̂)). This implies that

F̂(x) + im

[
0
I

]
= F̂(x) (6)

for all x ∈ dom(F̂). Let x̂ be partitioned accordingly as x̂ = col(x̂1, x̂2). It follows
from (5) that x̂ ∈ dom(F̂) only if x̂2 = 0. Define

F̂1(x̂1) = {ŷ1 ∈ R
n1 | there exists ŷ2 such that col(ŷ1, ŷ2) ∈ F̂(col(x̂1, 0))}.

Due to (5), there exists ξ̂1 such that col(ξ̂1, 0) ∈ rint(dom(F̂)). Then, it follows from
[29, Exercise 12.46] that F̂1 is maximal monotone. Due to (6), we have

F̂(col(x̂1, x̂2)) =
{
F̂1(x̂1) × R

n2 if x̂1 ∈ dom(F̂1) and x̂2 = 0

∅ otherwise.
(7)

This means that dom(F̂) = dom(F̂1) × {0}. Note that by construction int(dom(F̂1))
is non-empty. Let û be partitioned accordingly as û = col(û1, û2).
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Then, the differential inclusion

˙̂x1(t) ∈ μx̂1(t) − F̂1(x̂(t)) + û1(t)

admits a unique solution x̂1 for each initial condition x̂10 ∈ cl(dom(F̂1)) and locally
integrable û1. Together with (7), this implies that col(x̂1(t), 0) is a solution of (4).
In other words, for each μ � 0 there exists of the differential inclusion (4) for each
x̂0 ∈ dom(F̂) and integrable function û. Uniqueness readily follows from maximal
monotonicity of F̂ . ��

2.4 Linear passive systems

A linear system Σ(A, B,C, D)

ẋ(t) = Ax(t) + Bz(t) (8a)

w(t) = Cx(t) + Dz(t) (8b)

is said to be passive, if there exists a nonnegative-valued storage function V : R
n →

R+ such that the dissipation inequality

V (x(t1)) +
∫ t2

t1
zT (τ )w(τ) dτ � V (x(t2)) (9)

is satisfied for all 0 � t1 � t2 and for all trajectories (z, x, w) ∈ L2,loc(R+, R
m) ×

ACloc(R+, R
n) × L2,loc(R+, R

m) of the system (8).
The classicalKalman-Yakubovich-Popov lemma states that the system (8) is passive

if, and only if, the linear matrix inequalities

K = KT � 0

[
AT K + K A K B − CT

BT K − C −(DT + D)

]
� 0 (10)

admits a solution K . Moreover, V (x) = 1
2 x

T K x defines a storage function in case K
is a solution the linear matrix inequalities (10).

In the following proposition, we summarize some of the consequences of passivity
that will be used later. To formulate these consequences, we need to introduce some
notation. For a subspace W ⊆ R

n and a linear mapping A ∈ R
n×n , we denote the

largest A-invariant subspace that is contained inW by 〈W | A〉. It is well-known (see
e.g. [34]) that 〈W | A〉 = W ∩ A−1W ∩ · · · ∩ A−n+1W .

Proposition 3 If Σ(A, B,C, D) is passive with the storage function x �→ 1
2 x

T K x
then the following statements hold:

1. D is positive semi-definite,
2. (K B − CT ) ker(D + DT ) = {0},
3. (BT K − C) ker(AT K + K A) = {0},
4. ker K is A-invariant, i.e. x ∈ ker K implies that Ax ∈ ker K,
5. ker K ⊆ 〈kerC | A〉.
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3 Linear systems coupled to relations

Consider the linear system

ẋ(t) = Ax(t) + Bz(t) + u(t) (11a)

w(t) = Cx(t) + Dz(t) (11b)

where x ∈ R
n is the state, u ∈ R

n is the input, and (z, w) ∈ R
m+m are the external

variables that satisfy

(− z(t), w(t)
) ∈ graph(M) (11c)

for some set-valued map M : R
m ⇒ R

m .
By solving z from the relations (11b) and (11c), we obtain the differential inclusion

ẋ(t) ∈ −H(x(t)) + u(t) (12)

where

H(x) = −Ax + B(M + D)−1(Cx) (13)

and

dom(H) = C−1( im(M + D)
)
. (14)

In the sequel, we will be interested in the existence and uniqueness of solutions for
(12) when the linear system Σ(A, B,C, D) is a passive system and M is maximal
monotone. First, two examples of systems of the form (11) are in order.

Example 1 Consider the diode bridge circuit depicted in Fig. 1. This circuit consists
of two linear resistors with resistances R1 > 0 and R2 > 0, one linear capacitor with

+
−u

R1 L
x1

D1

−

+

vD1

iD1

D3

−

+

vD3

iD3

D2

−

+

vD2

iD2

D4

−

+

vD4

iD4

C

+

−
x2 R2

Fig. 1 Diode bridge circuit
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capacitance C > 0, one linear inductor with inductance L > 0, one voltage source
u, and four ideal diodes Di with i = 1, 2, 3, 4. One can derive the governing circuit
equations in the form of (11) as follows:

[
ẋ1
ẋ2

]
=
[
− R1

L 0
0 − 1

R2C

][
x1
x2

]
+
[
0 1

L − 1
L 0

1
C 0 0 1

C

]
⎡

⎢⎢
⎣

iD1

vD2

vD3

iD4

⎤

⎥⎥
⎦+

[
1
L

0

]

u (15a)

⎡

⎢⎢
⎣

vD1

iD2

iD3

vD4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1
1 0

−1 0
0 1

⎤

⎥⎥
⎦

[
x1
x2

]
+

⎡

⎢⎢
⎣

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

iD1

vD2

vD3

iD4

⎤

⎥⎥
⎦ (15b)

⎛

⎜⎜
⎝−

⎡

⎢⎢
⎣

iD1

vD2

vD3

iD4

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

vD1

iD2

iD3

vD4

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠ ∈ {(z, w) ∈ R

2 | 0 � z, w � 0, zw = 0}4. (15c)

Here x1 is the current through the inductor, x2 is the voltage across the capacitor and
(vDi , iDi ) is the voltage-current pair associated to the diode Di . It can be verified that
the linear system (15a)–(15b) is passive with the storage function x �→ 1

2 x
T K x where

K =
[
L 0
0 C

]

and the set {(z, w) ∈ R
2 | 0 � z, w � 0, zw = 0}4 is the graph of the maximal

monotone set-valued mapping M defined as

M(z) =
{

{w ∈ R
4 | w � 0 and zTw = 0} if z � 0,

∅ otherwise

where the inequalities must be understood componentwise.

Remark 1 As noted above, subdifferentials of convex functions generate maximal
monotone operators, but not all maximal monotone operators are of this form. In
fact it was shown by Rockafellar [35, Thm.B] that a maximal monotone operator is
the subdifferential of a proper convex lower semicontinuous mapping if and only if it
satisfies the property of cyclic monotonicity. An example of a mapping that is maximal
monotone but not cyclically monotone is the linear mapping M from R

2 to R
2 defined

by

M =
[
0 −1
1 0

]

(cf. [36, Example 2.23]). The matrix above defines the voltage-current relationship
of a gyrator [37]. Interconnections of linear passive electrical networks with gyrators,
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406 M. K. Camlibel, J. M. Schumacher

rather than with diodes as in the example above, therefore provide examples of linear
passive systems coupled to maximal monotone mappings that are not subdifferentials.

Example 2 A simple deterministic queueing model with continuous flows may be
constructed as follows. Consider n servers working in parallel for a single user. The
cost of using server j is proportional to the queue length associated to this server; this
quantity in turn is determined by the load that has been placed on the server previously
and on the processing speed of the server, which we will here assume to be constant.
Loads and queue lengths cannot be negative. The total load is distributed by the user
among the servers according to the Wardrop principle, which means that no load is
placed on servers when there are other servers which have lower cost. The total load
is chosen by the user as a non-increasing function of the realized cost. Introduce the
following notation:

c j processing speed of j-th server
x j (t) queue length of j-th server at time t
v j (t) auxiliary variable relating to nonnegativity of queue lengths
y j (t) auxiliary variable relating to nonnegativity of queue lengths
e j (t) cost of j-th server at time t in excess of realized (i.e. minimal) cost
k j positive proportionality constant linking queue length to cost
� j (t) load placed on server j at time t
s(t) total load at time t
a(t) realized cost at time t
f (·) constitutive relation linking realized cost to total load.

We can then write equations as follows:

ẋ(t) = � j (t) − c j + v j (t) (16a)

y j (t) = k j x j (t) (16b)

e j (t) = k j x j (t) − a(t) (16c)

s(t) =∑n
j=1� j (t) (16d)

0 � y j (t) ⊥ v j (t) � 0 (16e)

0 � e j (t) ⊥ � j (t) � 0 (16f)

s(t) = f (a(t)). (16g)

The equations (16a) and (16e) together ensure that queue lengths are indeed always
nonnegative; the Wardrop principle is expressed by (16f). The relations (16a–16d)
above can be written in vector form as follows, with K := diag(k1, . . . , kn):

ẋ = 0 · x + [ I I 0 ]
⎡

⎣
v

�

a

⎤

⎦− c (17a)

⎡

⎣
y
e
s

⎤

⎦ =
⎡

⎣
K
K
0

⎤

⎦ x +
⎡

⎣
0 0 0
0 0 −11
0 11T 0

⎤

⎦

⎡

⎣
v

�

a

⎤

⎦ . (17b)
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The relations (16e–16g) constitute the negative of a maximal monotone set-valued
mapping, while the linear input-output system given by (17) is passive (even con-
servative) with respect to the storage function x �→ 1

2 x
T K x . The example can be

generalized in several ways, for instance to situations with multiple users.

4 Main results

Maximal monotonicity of the set-valued mapping H as defined in (13) will play a key
role in our development. The following theorem asserts that H is maximal monotone
if the underlying linear system is passive and the set-valued mapping M is maximal
monotone.

Theorem 2 Suppose that

i. Σ(A, B,C, D) is passive with the storage function x �→ 1
2 x

T x,
ii. M is maximal monotone, and
iii. imC ∩ rint(im(M + D)) 
= ∅.

Then, the set-valued mapping H defined in (13) is maximal monotone.

Proof The proof is based on the application of Proposition 2 to H .

1. H is monotone:
Take x1, x2 ∈ dom(H) = C−1(im(M +D)) 
= ∅ and let yi ∈ H(xi ) for i = 1, 2.
Then,

〈x1 − x2, y1 − y2〉 = 〈x1 − x2,−A(x1 − x2) + B(z1 − z2)〉 (18)

where zi ∈ (M + D)−1(Cxi ) for i = 1, 2. Since Σ(A, B,C, D) is passive with
the positive definite storage function x �→ 1

2 x
T x , we have

[−AT − A B − CT

BT − C D + DT

]
� 0. (19)

This would imply

[−AT − A −B + CT

−BT + C D + DT

]
=
[
I 0
0 −I

] [−AT − A B − CT

BT − C D + DT

] [
I 0
0 −I

]
� 0.

(20)

Therefore, it follows from (18) that

〈x1 − x2, y1 − y2〉 � 〈z1 − z2,C(x1 − x2) − D(z1 − z2)〉. (21)

From zi ∈ (M + D)−1(Cxi ), we get Cxi − Dzi ∈ M(zi ). Since M is monotone,
we have

〈z1 − z2,C(x1 − x2) − D(z1 − z2)〉 � 0. (22)

Then, it follows from (21) that H is monotone.
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2. there exists a convex set SH such that SH ⊆ dom(H) ⊆ cl(SH ):
Let P = (M + D)−1. Since Σ(A, B,C, D) is passive, it follows from (10) that
D is positive semi-definite and hence induces a maximal monotone single-valued
mappingwhose domain is the entireR

m . Then, [29, Cor. 12.44] implies thatM+D
ismaximalmonotone and [29, Ex. 12.8] implies that P ismaximalmonotone. Note
that dom(P) = im(M + D). Due to Proposition 2, there exists a convex set SP
such that

SP ⊆ dom(P) ⊆ cl(SP ). (23)

Moreover, it follows from [29, Thm. 12.41] that one can take SP = rint(cl(dom
(P))). Since dom(H) = C−1(dom(P)), it follows from (23) that

C−1(SP ) ⊆ dom(H) ⊆ C−1(cl(SP )). (24)

Define SH = C−1(SP ). Since SP is convex, so is SH . It follows from statement 1
of Proposition 1 that SP = rint(dom(P)). As imC ∩ rint(im(M + D)) 
= ∅ and
rint(im(M + D)) = rint(dom(P)) = SP , statement 2 of Proposition 1 implies
that C−1(cl(SP )) = cl(C−1(SP )) = cl(SH ). Consequently, we get

SH ⊆ dom(H) ⊆ cl(SH ). (25)

from (24).
3. H(ξ) is convex for all ξ ∈ dom(H):

Due to Proposition 2, (M +D)−1(Cξ) is a convex set for all ξ ∈ dom(H). Hence,
so is H(ξ) = −Aξ + B(M + D)−1(Cξ).

4. cl(dom(H)) is convex and (H(ξ))∞ = Ncl(dom(H))(ξ) for all ξ ∈ dom(H):
It follows from (25) that

cl(dom(H)) = cl(SH ) (26)

Since SH is convex, so is cl(dom(H)). We know from [29, Ex. 3.12] that

(H(ξ))∞ = (BP(Cξ))∞ (27)

for all ξ ∈ dom(H). We claim that

(BP(Cξ))∞ = (CT P(Cξ))∞ (28)

for all ξ ∈ dom(H). To prove this, let ζB ∈ (BP(Cξ))∞ for some ξ ∈ dom(H).
Then, there exist sequences ζ ν

B and λν such that

ζ ν
B ∈ BP(Cξ) (29a)

λν → 0 as ν → ∞ (29b)

λνζ ν
B → ζB . (29c)
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From 29a–29c, we know that for all ν

ζ ν
B = Bην (30)

for some ην ∈ P(Cξ). Thus, we get

Cξ ∈ P−1(ην) = (M + D)ην. (31)

This means that

Cξ − Dην ∈ M(ην). (32)

For each ν1 and ν2, one gets

(ην1 − ην2)T [(Cξ − Dην1) − (Cξ − Dην2)] � 0 (33)

as M is maximal monotone. This would yield

(ην1 − ην2)T D(ην1 − ην2) � 0. (34)

Since D is positive semi-definite due to passivity, we get ην1 −ην2 ∈ ker(D+DT ),
i.e.

(D + DT )ην1 = (D + DT )ην2 . (35)

Then, one can find η̃ such that for all ν

ην = η̃ + η̄ν (36)

for some η̄ν ∈ ker(D + DT ). Define

ζ ν
C = CT ην. (37)

Note that

ζ ν
C ∈ CT P(Cξ) (38)

and

ζ ν
C − ζ ν

B = (CT − B)η̃ (39)

since Bv = CT v whenever v ∈ ker(D + DT ) due to the second statement of
Proposition 3 and K = I . Clearly,

λνζ ν
C → ζB . (40)
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Consequently, ζB ∈ (CT P(Cξ))∞, i.e.,

(BP(Cξ))∞ ⊆ (CT P(Cξ))∞. (41)

The same arguments are still valid if we swap B and CT . Therefore, (28) holds.
From (27), we get

(H(ξ))∞ = (CT P(Cξ))∞ (42)

Now, we have

(H(ξ))∞ = (CT P(Cξ))∞ (43)

⊇ CT (P(Cξ))∞ [from 2b of Proposition 1] (44)

= CT Ncl(dom(P))(Cξ) [from 4 of Proposition 2] (45)

= NC−1(cl(dom(P)))(ξ) [from 2c of Proposition 1]. (46)

To show the reverse inclusion, let ζ ∈ (H(ξ))∞. From (42), we know that there
exist sequences ζ ν , λν such that

ζ ν ∈ CT P(Cξ) (47a)

λν → 0 as ν → ∞ (47b)

λνζ ν → ζ. (47c)

Let ην be such that ην ∈ P(Cξ) and ζ ν = CT ην . Also let η̄ ∈ P(C ξ̄ ) for some
ξ̄ ∈ dom(H) = C−1(cl(dom(P))). From maximal monotonicity of P , we have

0 � 〈η̄ − ην,C(ξ̄ − ξ)〉 = 〈CT (η̄ − ην), ξ̄ − ξ 〉. (48)

By multiplying λν and taking the limit as λν tends to zero, we get

〈ζ, ξ̄ − ξ 〉 � 0. (49)

Thus, ζ ∈ NC−1(cl(dom(P)))(ξ), i.e.,

(H(ξ))∞ ⊆ NC−1(cl(dom(P)))(ξ). (50)

5. graph(H) is closed:
Let (xν, yν) be a convergent sequence in graph(H). Then, for each ν there exists
zν ∈ (M + D)−1(Cxν) such that yν = −Axν + Bzν . Let

lim
ν→∞ (xν,−Axν + Bzν) = (ξ,−Aξ + Bζ ). (51)

It is enough to show that (ξ,−Aξ + Bζ ) ∈ graph(H). To do so, let W be the
smallest subspace that contains im(M + D) = dom((M + D)−1). It follows from
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maximal monotonicity of (M + D)−1 that for each ν

z + zν ∈ (M + D)−1(Cxν) (52)

holds for any z ∈ W⊥. Now, let zν = zν1 + zν2 where z
ν
1 ∈ ker B ∩ W⊥ and

zν2 ∈ (ker B ∩ W⊥)⊥ = im BT + W. (53)

Note that

Bzν = Bzν2 . (54)

From (52), we have zν2 ∈ (M + D)−1(Cxν). In view of (51) and (54), it is
enough to show that the sequence zν2 is bounded. On the contrary, suppose that z

ν
2

is unbounded. Without loss of generality, we can assume that the sequence
zν2‖zν2‖

converges. Define

ζ∞ = lim
ν→∞

zν2
‖zν2‖

. (55)

It follows from (51) and (54) that

lim
ν→∞ Bzν2 = Bζ. (56)

Thus, we get

ζ∞ ∈ ker B. (57)

Due to passivity with K = I and monotonicity of (M + D)−1, we have

〈xν − x,−A(xν − x) + B(zν2 − z)〉 � 〈zν2 − z,C(xν − x) − D(zν2 − z)〉 � 0

(58)

for all z ∈ (M + D)−1(Cx) with x ∈ dom(H). By dividing by ‖zν2‖2 and taking
the limit as ν tends to infinity, we obtain

〈ζ∞, Dζ∞〉 � 0. (59)

Since D is positive semi-definite due to the first statement of Proposition 3, this
results in

ζ∞ ∈ ker(D + DT ). (60)

Then, it follows from (57), K = I , and the second statement of Proposition 3 that

ζ∞ ∈ kerCT . (61)
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Let η ∈ im(M + D) and ζ ∈ (M + D)−1(η). From monotonicity of (M + D)−1,
we have

〈
zν2 − ζ

‖zν2‖
Cxν − η

〉
� 0. (62)

Taking the limit as ν tends to infinity, we obtain

〈ζ∞,Cx − η〉 = 〈ζ∞,−η〉 � 0. (63)

This means that the hyperplane span({ζ∞})⊥ separates the sets imC and im(M +
D). Since imC = rint(imC) and imC ∩ rint(im(M + D)) 
= ∅, it follows from
[38, Thm. 11.3] that imC and im(M+D) cannot be properly separated. Therefore,
both imC and im(M+D)must be contained in the hyperplane span({ζ∞})⊥. Since
W is the smallest subspace that contains im(M + D), we get W ⊆ span({ζ∞})⊥
which implies ζ∞ ∈ W⊥. Together with (57), we get

ζ∞ ∈ ker B ∩ W⊥.

In view of (53) and (55), this yields ζ∞ = 0. This, however, clearly contradicts
with (55) which implies ‖ζ∞‖ = 1. Therefore, ‖zν2‖ must be bounded.

Then, it follows from Proposition 2 that H is maximal monotone. ��
Remark 2 It is well-known that maximal monotonicity is preserved under certain
operations such as addition [29, Cor. 12.44] and piecewise affine transformations [29,
Thm. 12.43]. None of these results immediately imply that the set-valued mapping
H of the form (13) is maximal monotone when Σ(A, B,C, D) is passive and M is
maximal monotone. As such, Theorem 2 can be considered as a particular result on
maximal monotonicity preserving operations.

Well-posedness of systems of the form (11) and their variants has been addressed in
several papers [30,31,39–41] for linear passive (or passive-like) systems and maximal
monotone mappings. However, the relevant results appeared in these papers require
extra conditions on the linear system and/or the maximal monotone mapping. The
following theorem provides conditions for the existence and uniqueness of solutions
to the differential inclusion (12) when the linear system Σ(A, B,C, D) is passive
and the set-valued map M is maximal monotone without requiring any additional
conditions.

Theorem 3 Suppose that

i. Σ(A, B,C, D) is passive with the storage function x �→ 1
2 x

T K x where K is
positive definite,

ii. M is maximal monotone, and
iii. imC ∩ rint(im(M + D)) 
= ∅.

Then, for each initial condition x0 such that Cx0 ∈ cl(im(M + D)) and locally
integrable function u, the differential inclusion (12) admits a unique solution.
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Proof By hypothesis, Σ(A, B,C, D) is passive with a positive definite storage func-
tion x �→ 1

2 x
T K x . By defining x̃ = K−1/2x , we can rewrite the differential inclusion

(12) as

˙̃x(t) ∈ −H̃(x̃(t)) + ũ(t) (64)

where

H̃(x) = − Ãx + B̃(M + D)−1(C̃ x̃)

dom(H̃) = C̃−1(im(M + D))

( Ã, B̃, C̃, ũ) = (K 1/2AK−1/2, K 1/2B,CK−1/2, K 1/2u).

Clearly, x �→ K−1/2x is a bijection between the solutions of (12) and those of (64).
Furthermore, it can be easily verified that Σ( Ã, B̃, C̃, D) is passive with the storage
function x �→ 1

2 x
T x . As such, we can assume, without loss of generality, x �→ 1

2 x
T x

is a positive definite storage function for the system Σ(A, B,C, D).
Then, it follows fromTheorem 2 that H is maximal monotone. Therefore, the claim

follows from Theorem 1 with μ = 0. ��
Remark 3 Theorem 3 recovers Lemma 1 of [30] as a special case: u = 0, D = 0, M
is the subgradient of a convex lower semicontinuous function, (A, B,C) is a minimal
triple, andΣ(A, B,C, D) has a strictly positive real transfer matrix (a stronger notion
than passivity).

Remark 4 In order to apply Theorem 3 to Example 1, note thatΣ(A, B,C, D) consti-
tutes a passive system as discussed in the example. Clearly, M is maximal monotone.
Finally, it follows from [8, Cor.3.8.10] that im(M + D) = R+ × R × R × R+. As
such, we have

imC ∩ rint(im(M + D)) =

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢⎢
⎣

α

β

−β

α

⎤

⎥⎥
⎦ | α > 0 and β ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

= ∅.

Next, we present two extensions of Theorem 3. The first one deals with systems
which are not passive themselves but can be made passive by shifting the eigenvalues
of the matrix A.

Corollary 1 Suppose that

i. Σ(A − α I, B,C, D) is passive for some α � 0 with the storage function x �→
1
2 x

T K x where K is positive definite,
ii. M is maximal monotone, and
iii. imC ∩ rint(im(M + D)) 
= ∅.

Then, the differential inclusion (12) admits a unique solution for each initial condition
x0 such that Cx0 ∈ cl(im(M + D)) and locally integrable function u.

Proof The proof readily follows from Theorems 2 and 1 with μ = α. ��
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Remark 5 In case D is positive semi-definite and there exists a positive definite matrix
K such that K B = CT , one can always find a positive number α such that Σ(A −
α I, B,C, D) is passive. As such, Theorem 2 of [31] can be recovered as a special case
from Corollary 1.

The second extension dealswith the case of positive semi-definite storage functions.
To formulate this result, we need to introduce some nomenclature. For a maximal
monotone set-valuedmapping F , the element ofminimal normof F(x)will be denoted
by Fo(x).

Corollary 2 Suppose that

i. Σ(A − α I, B,C, D) is passive for some α � 0,
ii. M is maximal monotone,
iii. imC ∩ rint(im(M + D)) 
= ∅, and
iv. there exists a positive real number α such that

‖((M + D)−1)o(w)‖ � α(1 + ‖w‖) (65)

for all w ∈ im(M + D).

Then, the differential inclusion (12) admits a solution for each initial condition x0
such that Cx0 ∈ cl(im(M + D)) and locally integrable function u. Moreover, if x and
x̃ are two solutions for the same initial condition and locally integrable function u
then K x = K x̃.

Proof When K is positive definite, Corollary 1 readily implies the claim. Suppose
that K is positive semi-definite but not positive definite. Then, one can change the
coordinates in such a way that

K =
[
I 0
0 0

]
.

Suppose that A, B, and C matrices are given by

A =
[
A11 A12
A21 A22

]
B =

[
B1
B2

]
CT =

[
CT
1

CT
2

]

accordingly to the partition of K . Then, the linear matrix inequalities (10) imply that
A12 = 0,C2 = 0, andΣ(A11−α I, B1,C1, D) is passivewith positive definite storage
function x1 �→ 1

2 x
T
1 x1. Note that the differential inclusion (12) is given by

ẋ1(t) ∈ A11x1(t) − B1(M + D)−1(C1x1(t)) + u1(t) (66)

ẋ2(t) ∈ A21x1(t) + A22x2(t) − B2(M + D)−1(C1x1(t)) + u2(t). (67)

in the new coordinates. Also note that

dom(H) =
{[

ξ1
ξ2

]
|C1ξ1 ∈ im(M + D)

}
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and imC = imC1 in the new coordinates. Then, it follows from Corollary 1 that the
differential inclusion (66) admits a unique solution for each initial condition x10 and
locally integrable function u1. Since x1 is locally absolutely continuous, it follows from
(65) that the function t �→ (

(M + D)−1
)o

(C1x1(t)) is locally integrable. Hence, the
differential inclusion (67) admits a solution for each initial condition x20 and locally
integrable function u2. Therefore, we proved the existence of solutions as claimed.
The rest follows from the uniqueness of x1. ��

In general, checking the existence of an α � 0 such that Σ(A − α I, B,C, D) is
passive amounts to checking the feasibility of the matrix inequalities

α � 0 K = KT � 0

[
AT K + K A − 2αK K B − CT

BT K − C −(DT + D)

]
� 0. (68)

Note that these matrix inequalities do not constitute linear matrix inequalities and
cannot be verified easily. However, the particular structure of these matrix inequalities
lead to easily verifiable algebraic necessary and sufficient conditions for their feasi-
bility. To present these conditions, we need to introduce some notation. For a matrix
A ∈ R

n×n and two subspaces V , W ⊆ R
n , we define

T(A,V,W) = {T ⊆ R
n | T is a subspace, A(T ∩ V) ⊆ T , and W ⊆ T }.

Subspaces satisfying the property above have been studied in geometric linear control
theory under the name of conditioned invariant subspaces (see e.g. [34]). It is well-
known that the set T(A,V,W) is closed under subspace intersection. As such, there
always exists a minimal element, say T ∗(A,V,W) such that

T ∗(A,V,W) ⊆ T for all T ∈ T(A,V,W).

Moreover, one can devise a subspace algorithm (see e.g. [34]) which would return the
minimal subspace in a finite number of steps for a given triple (A,V,W).

The following lemma on positive semi-definite solutions of matrix equations, taken
partly from [42], will be needed in the proof of the theorem below.

Lemma 1 If the equation Y K = X, where Y and X are given matrices, has a sym-
metric and positive semi-definite solution, then the general form of such solutions
is

K = XT (XY T )−X + (I − Y−Y
)
U
(
I − Y−Y

)T (69)

where U is an arbitrary symmetric and positive semi-definite matrix, and Z− denotes
a generalized inverse of the matrix Z, i.e. Z Z−Z = Z. For the solution as given
above, we have

ker K = ker X ∩ ker
(
U (I − Y−Y )T

)
. (70)
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Proof The first part of the lemma is given by [42, Thm. 2.2]. Now, let K = KT � 0 be
as in (69). Under the conditions of the lemma we have rank XY T = rank X as noted
in the proof of the cited theorem, and consequently ker Y XT = ker XT . It follows that
the subspaces im XT and ker Y intersect trivially. This implies that

ker K = ker XT (XY T )−X ∩ ker
(
U (I − Y−Y )T

)
. (71)

The generalized inverse (XY T )− can be taken to be symmetric and positive semi-
definite as noted in [42], which entails ker XT (XY T )−X = ker(XY T )−X . Moreover,
since rank XY T = rank X , any element of the column span of X can be written
in the form XY T v. Since (XY T )−XY T v = 0 implies XY T v = 0, it follows that
ker(XY T )−X = ker X and (70) is shown. ��

Now, we are in a position to provide necessary and sufficient conditions for the
feasibility of the matrix inequalities (68).

Theorem 4 Let E ∈ R
m×p be a full column rank matrix such that im E = ker(D +

DT ). Then, the following statements are equivalent:

1. There exists α � 0 such that Σ(A − α I, B,C, D) is passive.
2. The following conditions hold:

(a) D is positive semi-definite,
(b) im ETCBE = im ETC,
(c) ETCBE is symmetric and positive semi-definite,
(d) A

(
ker ETC ∩ T ∗(A, ker ETC, im BE)

) ⊆ ker ETC, and
(e) ker ETC ∩ T ∗(A, ker ETC, im BE) ⊆ kerC.

1 ⇒ 2: The condition 2a readily follows from Proposition 3. Let K be a solution
of the matrix inequalities (68). Proposition 3 implies that K BE = CT E . Then, [42,
Thm. 2.2] implies that the conditions 2b and 2c hold and K must be of the form (69)
where X = ETC , Y = ET BT . Since ker K is A-invariant due to Proposition 3, we
have in view of the lemma above

A
(
ker ETC ∩ ker

(
U (I − Y−Y )T

)) ⊆ ker ETC. (72)

Since ker(I − Z−Z)T = im ZT for any matrix Z and any generalized inverse Z− of
Z , we have ker(I − Y−Y )T = im Y T = im BE and hence

im BE ⊆ ker
(
U (I − Y−Y )T

)
. (73)

The subspace inclusions (72) and (73) imply that

ker
(
U (I − Y−Y )T

) ∈ T(A, ker ETC, im BE). (74)

Therefore, T ∗(A, ker ETC, im BE) ⊆ ker
(
U (I − Y−Y )T

)
. Then, the condition 2d

follows from (72). Since ker K ⊆ kerC due to Proposition 3, the condition 2e follows
from (70).
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2 ⇒ 1: We first prove that there exists a symmetric positive semi-definite matrix
K such that

i. K BE = CT E ,
ii. ker K is A-invariant, and
iii. ker K ⊆ kerC .

Existence of a symmetric and positive semi-definite matrix K satisfying the condition
(i) follows from [42, Thm. 2.2] together with the relations 2b and 2c. Moreover, [42,
Thm. 2.2] implies that any such matrix K must be of the form (69). Since im BE ⊆
T ∗(A, ker ETC, im BE) and ker(I − Y−Y )T = im Y T = im BE , there exists a
matrix N such that

ker
(
N (I − Y−Y )T

) = T ∗(A, ker ETC, im BE). (75)

Let U = NT N . Clearly, U is symmetric and positive semi-definite. Note that

ker
(
U (I − Y−Y )T

) = ker
(
N (I − Y−Y )T

)
. (76)

Then, it follows from (70) that

ker K = ker ETC ∩ T ∗(A, ker ETC, im BE). (77)

On the one hand, we have

A ker K ⊆ T ∗(A, ker ETC, im BE) (78)

from the definition of T ∗(A, ker ETC, im BE). On the other hand, we have

A ker K ⊆ ker ETC (79)

from the condition 2d. The last two inclusions imply that this choice ofU and hence K
satisfies the condition (ii) whereas the condition 2e readily implies that (iii) is satisfied
as well. The last step of the proof is to show that there exists a real number α � 0 such
that

[
AT K + K A − 2αK K B − CT

BT K − C −(DT + D)

]
� 0. (80)

To this end, we can assume, without loss of generality, that the matrices A, K , B, C ,
and D + DT are of the forms

A =
[
A11 0
A21 A22

]
K =

[
K1 0
0 0

]

B =
[
B11 B12
B21 B22

]
C =

[
C11 0
C21 0

]
D + DT =

[
D1 0
0 0

]
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where Ai j ∈ R
ni×n j , K1 ∈ R

n1×n1 , Bi j ∈ R
ni×m j , Ci j ∈ R

mi×n j , D1 ∈ R
m1×m1 ,

n1 + n2 = n, m1 +m2 = m, and both K1 and D1 are symmetric and positive definite
matrices. Note that the structure of A and C follows from the conditions (ii) and (iii).
Also note that the condition (i) boils down to K1B12 = CT

21. Then, we have

[
AT K + K A − 2αK K B − CT

BT K − C −(DT + D)

]

=

⎡

⎢⎢
⎣

AT
11K1 + K1A11 − 2αK1 0 K1B11 − CT

11 0
0 0 0 0

BT
11K1 − C11 0 −D1 0

0 0 0 0

⎤

⎥⎥
⎦ . (81)

It follows from positive definiteness of both K1 and D1 that there exists α � 0 such
that (80) holds. ��

5 Concluding remarks

In this paper, we have shown that the interconnection of a linear system with a static
set-valued relation is well-posed in the sense of existence and uniqueness of solutions
whenever the underlying linear system is passive and the static relation is maximal
monotone. Similar well-posedness results have already appeared in the literature with
extra conditions on the linear systems as well as the static relations. Removing those
extra conditions requires employing a completely different set of arguments (and hence
tools). Based on the recent characterisations of maximal monotonicity, we have shown
that such interconnections can be represented by differential inclusions with maximal
monotone set-valued mappings. As such, the classical well-posedness results for such
differential inclusions can be immediately applied to the class of systems at the hand.
As it has already been observed in the literature earlier, well-posedness results can
be established under weaker requirements on the linear system than passivity. One
such particular property is the so-called passivity by pole shifting. As a side result,
we have also provided geometric necessary and sufficient conditions for passivity by
pole shifting.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. Comptes rendus hebdo-
madaires des séances de l’Académie des sciences 258, 4413–4416 (1964)

2. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic Press, New York (1980)

123



Linear passive systems and maximal monotone mappings 419

3. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems.
Springer, New York (2003)

4. Minty, G.J.: On the maximal domain of a “monotone” function. Mich. Math. J. 8, 135–137 (1961)
5. Minty, G.J.: Monotone networks. Proc. R. Soc. Lond. Ser. A 257, 194–212 (1960)
6. Crandall, M.G., Pazy, A.: Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal.

3, 376–418 (1969)
7. Brézis, H.: Operateurs Maximaux Monotones. North-Holland, Amsterdam (1973)
8. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston

(1992)
9. van der Schaft, A.J., Schumacher, J.M.: Complementarity modelling of hybrid systems. IEEE Trans.

Autom. Control 43(4), 483–490 (1998)
10. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity systems. SIAM J. Appl.

Math. 60(4), 1234–1269 (2000)
11. Pang, J.S., Stewart, D.E.: Differential variational inequalities. Math. Program. 113(2), 345–424 (2008)
12. Heemels, W.P.M.H., Camlibel, M.K., Schumacher, J.M.: On the dynamic analysis of piecewise-linear

networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 315–327 (2002)
13. Camlibel, M.K., Heemels, W.P.M.H., van der Schaft, A.J., Schumacher, J.M.: Switched networks and

complementarity. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(8), 1036–1046 (2003)
14. Vasca, F., Iannelli, L., Camlibel, M.K., Frasca, R.: A new perspective for modeling power electronics

converters: complementarity framework. IEEE Trans. Power Electron. 24(2), 456–468 (2009)
15. Addi,K., Brogliato, B., Goeleven,D.:A qualitativemathematical analysis of a class of linear variational

inequalities via semi-complementarity problems: applications in electronics. Math. Programm. 126(1),
31–67 (2011)

16. Adly, S., Outrata, J.V.: Qualitative stability of a class of non-monotone variational inclusions. Appli-
cation in electronics. J. Convex Anal. 20(1), 43–66 (2013)

17. Lootsma, Y.J., van der Schaft, A.J., Camlibel, M.K.: Uniqueness of solutions of relay systems. Auto-
matica 35(3), 467–478 (1999)

18. Pogromsky, A.Y., Heemels, W.P.M.H., Nijmeijer, H.: On solution concepts and well-posedness of
linear relay systems. Automatica 39, 2139–2147 (2003)

19. Camlibel, M.K., Schumacher, J.M.: Existence and uniqueness of solutions for a class of piecewise
linear dynamical systems. Linear Algebra Appl. 351–352, 147–184 (2002)

20. Nagurney, A., Zhang, D.: ProjectedDynamical Systems andVariational Inequalities with Applications.
Springer, New York (1995)

21. Heemels,W.P.M.H., Schumacher, J.M.,Weiland, S.: Projected dynamical systems in a complementarity
framework. Oper. Res. Lett. 27, 83–91 (2000)

22. Schumacher, J.M.: Complementarity systems in optimization. Math. Program. Ser. B 101, 263–295
(2004)

23. Stewart, D.E.: Dynamics with Inequalities. Impacts and Hard Constraints. SIAM, Philadelphia (2011)
24. Camlibel,M.K., Iannelli, L., Vasca, F.: Passivity and complementarity.Math. Program.A 145, 531–563

(2014)
25. Bastien, J., Schatzman, M.: Numerical precision for differential inclusions with uniqueness. ESAIM

Math. Model. Numer. Anal. 36, 427–460 (2002)
26. Bastien, J.: Convergence order of implicit Euler numerical scheme for maximal monotone differential

inclusions. Zeitschrift für Angewandte Mathematik und Physik 64(4), 955–966 (2013)
27. Liberzon,M.R.: Essays on the absolute stability theory. Autom. Remote Control 67, 1610–1644 (2006)
28. Camlibel, M.K., Heemels, W.P.M.H., Schumacher, J.M.: On linear passive complementarity systems.

Eur. J. Control 8(3), 220–237 (2002)
29. Rockafellar, R.T.,Wets, J.B.: Variational Analysis, A Series of Comprehensive Studies inMathematics,

vol. 317. Springer, Berlin (1998)
30. Brogliato, B.: Absolute stability and the Lagrange–Dirichlet theorem with monotone multivalued

mappings. Syst. Control Lett. 51, 343–353 (2004)
31. Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued

Lur’e dynamical systems. Nonlinear Anal. Theory Methods Appl. 74(1), 195–212 (2011)
32. Brogliato, B., Goeleven, D.: Existence and uniqueness of solutions and stability of nonsmooth multi-

valued Lur’e dynamical systems. J. Convex Anal. 20(3), 881–900 (2013)
33. Löhne, A.: A characterization of maximal monotone operators. Set-valued Anal. 16, 693–700 (2008)

123



420 M. K. Camlibel, J. M. Schumacher

34. Trentelman, H.L., Stoorvogel, A.A., Hautus, M.L.J.: Control Theory for Linear Systems. Springer,
London (2001)

35. Rockafellar, R.T.: On themaximalmonotonicity of subdifferentialmappings. Pac. J.Math. 33, 209–216
(1970)

36. Phelps, R.R.: Lectures on maximal monotone operators. Extr. Math. 12, 193–230 (1997)
37. Tellegen, B.D.H.: The gyrator, a new electric network element. Philips Res. Rep. 3, 81–101 (1948)
38. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, New Jersey (1970)
39. Goeleven, D., Brogliato, B.: Stability and instability matrices for linear evolution variational inequal-

ities. IEEE Trans. Autom. Control 49(4), 521–534 (2004)
40. Adly, S., Goeleven, D.: A stability theory for second-order nonsmooth dynamical systems with appli-

cation to friction problems. Journal de Mathematiques Pures et Appliquees 83(1), 17–51 (2004)
41. Brogliato, B., Goeleven, D.: The Krakovskii-LaSalle invariance principle for a class of unilateral

dynamical systems. Math. Control Signals Syst. 17(1), 57–76 (2005)
42. Khatri, C.G., Mitra, S.K.: Hermitian and nonnegative definite solutions of linear matrix equations.

SIAM J. Appl. Math. 31, 579–585 (1976)

123


