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In the analysis of the vibrations of mechanical systems, it is not only important 
to compute the resonance frequencies, but also to find the so-called "participa-
tion matrices' which govern the distribution of the energy over the various 
resonance modes. These matrices appear as residue matrices for certain mero­
morphic matrix-valued functions (transfer matrices from forces to displace-
ments), the pol es of which correspond to the resonance frequencies. Also, 
these poles are simple as a consequence of the law of conservation of energy. 
So the probfem comes down to the computation of the residue at a simple pole 
of a meromorphic matrix. This matrix is in general not given through its 
enfries, but rather as the inverse of another matrix or as a fraction of holo-
morphic matrices. Extending earlier results of Lancaster and of Gohberg and 
Sigal, we work out a convenient residue formula for matrices in fractional form. 
Several variants will be discussed as well. In all versions, one constructs a 
"normalizing matrix" which is invertible if and only if the pole one considers is 
simple, and one writes down a formula for the residue which features the 
inverse of the normalizing matrix. Proofs are based on the "local Smith form" 
for meromorphic matrices. The normalizing matrix can also be used in stability 
tests, and we show an application of this. 

1. I N T R O D U C T I O N 

Let y(X) be a matrix whose entries are meromorphic functions of X. By expanding each 
entry in a Laurent series around a given point a, we get a Laurent series development 
for y(X): 

y(X) = Y-r(\-ayr + • • • + y _ , ( X - o r ' + 
+ y 0 + y , ( x - a ) + • • • ( ï . i ) 

The matrix K_ | is called the residue of V(X) at o. We say that Y has a simple pole at a 
if (X—a)y(X) is analytic in a neighborhood of o. The purpose of the present paper is to 
obtain convenient formulas for the computation of the residue of Y at a simple pole 
under certain assumptions on the way that this matrix function is given. 

This problcm is directly motivated by engineering appheations. For a vcry simple 
examplc of this, consider the equations of a vibrating string with forces and displace-
ments at both ends being of interest. (The elcctrical analog of this would be the lossless 
transmission line.) The equations are as follows: 

^ " ( 0 , 0 = F,(») (1.3) 

a ^-w(x , f ) = (1.2) 
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-^H>(1,0 = F 2(») (1.4) 

> i ( 0 > I 0 

ƒ 2 0 

The equations (1.2-6) then lead to 

>"o(*) - - « 2 H - O ( J C ) 

w(P,0 = ƒ , ( « ) (1-5) 

For this system, we determine a matrix that relates the amplitudes of the forces to the 
amplitudes of the displacements under the assumption that the system is in harmonie 
motion at frequency u. We set 

w(x,t) = tvo^y"" (1-7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

From (1.9), we get 

W0(x) = a a~l sinax + bcosux , (1-1*) 

where t»~l sinux is taken as an analytic function of u for every x, so that its value at 
u = 0 is simply x. Using (1.10) and (1.11), one now expresses the force and displace­
ment amplitudes in tenns of the parameters a and b: 

(1.13) 

(1.14) 

-H-o(O) 
F* "MD 

WO) 
»o(l) 

Fio- 1 0 
Fx —cosw a> sin u b 

> 1 0 0 1 a 

ƒ 2 0 t > - 1 sin« COS fa) b 

Eiirninating the parameters a and b, one obtains the "admittance matrix" Y(u): 

1 » 
1 

cos u 
1 

-cosu 
0 

usinu (1.15) 

Notice that the admittance matrix appears as a fraction of two analytic matrices. 
This representation of the relation between forces and displacements at both ends of a 
string is known among mechanica] engineers as the "dynamic direct-stiffness method" 
(cf. [4], Ch.20). Of course, in system-theoretic tenns the matrix Y'w) is just the transfer 
matrix from the forces to the displacements. The fact that it is a symmetrie matrix 
which is even as a function of u is no surprise since the considered system (1.2-6) is 
time-reversible Hamiltonian (cf. [17]). The symmetry with respect to the transverse diag-
onal refiects the left-right symmetry of the system. The pol es of the admittance matrix 
correspond to the "natural frequencies" of the system (no force input). As a 
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consequence of the law of conservation of energy, al] poles are real and simple. 
In this very simple example, one could compute the residues by computing the 

entries of Y(u) separately and using the Standard rul es for the computation of residues 
for scalar functions. However, for large structures this becomes hardly an attractive 
way of doing the computation. One would like to use a method which is adapted to the 
form in which the admittance matrix appears. 

In [13], Lancaster has given a residue formula for the case in which Y(w) = Z(u)" ', 
and Z(t>) is a polynomial matrix (cf. also the more recent work [6], p.64). In the 
engineering literature, Lancaster's formula has been used also in situations where Z(u) 
is not polynomial but rationa! or even meromorphic (cf. [8,12,15]). The techniques of 
[13] and [6] are not readily adapted to these more genera! situations; moreover, as we 
shall see, the use of Lancaster's formula in the more genera] context is not always possi-
ble. In this paper, we use methods similar to those of [5] in order to prove residue for­
mulas for meromorphic matrices appearing in various forms (and that are not neces-
sarily square). We may note that, if Y's) is a stricüy proper rationa] matrix function 
ha ving only simple poles, then knowledge of the poles and the corresponding residues 
means that one can write down the partial fraction expansion of Y(s), and this is prac-
tically equivalent to finding a state-space realization for Y. The use of the partial frac­
tion expansion for computing realizations has been suggested in [16], and was recom-
mended as a numerically robust procedure in [18]. Of course, it is a classical observa-
tion that the inverse Laplace transform can be computed in a convenient way by using 
the partial fraction expansion. 

The organization of the paper is as follows. We start with some algebraic prelim-
inaries in Section 2. Next, we discuss what can be said about the residue of V at a 
under the assumption that Y is available through its inverse. Although we de obtain a 
residue formula, it will appear that this formula is not quite satisfactory. Another direc-
tion in which Lancaster's work may be generalized is given by coprime factorization. 
This is considered in section 4, and it tums out that it is possible (as in Lancaster's for­
mula) to determine the residue by calculating the derivative at a of a matrix that is 
analytic in a neighborhood of a, plus some operations on constant matrices. We also 
get criteria for the pole at a to be simple. Such criteria can be used in stability tests, 
and we show an application of this in Section 5. 

2. PRELIMTNARIES 
Let Q be a region of the complex plane, which will be fixed throughout the discussion 
below. In most appücations, one will have 0 = C. Let a be a point in Q. We let F 
denote the field of meromorphic functions on 0, and we write R„ for the subset of F 
consisting of functions that are analytic in a neighborhood af a. In other words, feF 
belongs to R. if and only if ƒ does not have a pole at o. It is straightforward to verify 
that Ra is a ring, and it is also easily seen that Ra is in fact a principal ideal domain, 
the ideals being of the form (X — afR., k>0. The set of p Xm-matrices with elements 
in F(resp. R„) will be denoted by F?Xm (resp. « S X m ) . 

The situation we have here is a particular instance of the following set-up. Let R be 
a oommutative ring, and let D and £ be multiplicative subsets of R such that DCE. A 
matrix U with elements in the factor ring R / D is said to be D-unimodular if it has an 
inverse with elements in R / D. Matrices N and M with elements in the factor ring 
R / E are said to be D-equivaleni if there exist D-unimodular matrices U and V such 
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that M - UNV. The key result in this context is the following. 

THEOREM 2.1 In the situation described above, suppose that R / D is a principal ideal 
domain. Then every matrix over R / E is D-equivalent to a matrix of the form 

U ol 
(2.1) N = 0 0 

where A = diag(hu • • • ,hr) and the elements hj may be chosen such that hJ + i /hjeR. 

The proof of this is essentially Standard (cf., for instance, [3], [9], [20]). In our setting, 
R is the ring of analytic functions on ü, D is the set of all elements of R that are 
nonzero at a, and E is the set of all elements that are not identically zero on ft. Instead 
of D-unimodular, we shall say locally unimodular (at a) and we will leave out the refer-
ence to the specific point a on most occasions, since the point will be fixed throughout 
the discussion. Bccause of the simple ideal structure of R / D = R„, the special form 
(2.1), which will be called the local Smith form (at a), can be taken such that 

hj = (X-a)"' (/ = !, • • • , ! • ) (2.3) 

and d, <<f 2 < - - - <dr. This particular appearance of the local Smith form will be used 
extensively below. The form was used earlier, for instance in [5] (p.607) and in [19]; if 
one deals with rationa] matrices, it can also be used with a — cc, replacing X — a by X - ' 
[7). The local Smith form of a meromorphic matrix is relatively easy to compute (cf. [7] 
and [10], p.139); nevertheless, it contains much more information than the residue does, 
and so it should be easier to compute the latter. We shall only use the local Smith form 
for proofs, for which it is, in fact, a most convenient tooi. 

Of ten, "local" propertjes of meromorphic matrices can be expressed in tenns of con­
stant matrices. In fact, the situation could be interpreted as a special case of reduction 
to the space of maximal ideals, as explained in [20], Section 8.1. Of course, the ring Re 

has just a single maxima! ideal, generated by the function X — a. Whatever approach one 
takes, it is easy to prove results such as the following. 

LEMMA 2.2 A matrix U eR" x" is unimodular if and only if U(O)EC" X M is invertible. 

We now consider coprimeness in the sense of the local ring R„. Given NeR{Xm, a 
matrix PeR?*" is said to be a right factor of N if there exists NeR{Xm such that 
N = NP. Two matrices NxeR?*" and N2eRl*m are said to be locally right coprime (at 
er) if all their common right factors are locally unimodular. The following characteriza-
tion of this concept is classical (see [14], p.35). 

PROPOSITION 2.3 Two matrices N^Rf*" and N2eRlXm are right coprime if and only 
if there exist matrices GeR"XF and HeR"xi such that GNt + HN2 = I m -

The proof in [14] shows that, in fact, the following is true. 

PROPOSITION 2.4 Two matrices Nt e / { ; X m and 7V 2e/{» x '" are right coprime if and only 
if there exist unimodular matrices Se /{<f+«>x<?+«> and TeR™Xm such that 

T. (2.4) 

The characterization of Prop. 2.3 can be read in tenns of left invertibüity, and hence 
there is a translation in tenns of constant matrices ([20, Thm. 8.1.12]). 

Ni I m 

= S 0 
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CoROIXARY 2.5 Two matrices Tv*, eRPx" and N2eRlXm are right coprime if and only 
if the matrix 

6 £ ( f + , ) X m 
(2.5) 

is full column rank. 

Of course, one can also define left factors and left coprimeness for pairs of matrices 
having an equal number of rows, and the above results can be duplicated; we won't 
spell this out. 

A locally right coprime factorization (at a) of a matrix YeP""" is a representation of 
Y in the form 

Y = ND~' (2.6) 
where Ne/j;x", DeR?*", the matrices N and D are right coprime, and D is invertible 
as an element of Fm*m. We will now display a particular locally coprime factorization 
that will turn out to be useful. Using Thm.2.1, we can write 

TA 0] 
0 0 T (27) 

where S and T are locally unimodular matrices, and A is as described in (2.3). Now, we 
can split the negative powers of (X-a ) off from the nonnegative powers: 

[A_(X) 0 

S 0 A + (X) 

A_(X) = diag[(\-a?\

A + (X) = diag[<\-af", 

Using the notation of (2.7-10), define 

I 0 0 

N = S 0 A^ 0 

0 0 0 

( A _ ) - ' 0 0 
0 / 0 
0 0 7 

. (X-o)*] , dt< ••• <dk<0 

• ,(K~af], 0<dk + l*i • • • <d,. 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

It is easily verified that Y = ND~[ is a right coprime factorization of Y at a. The 
dimension of the matrix A_ in (2.7) will be called the total pole multiplicity of y at o. 

One also dennes left coprime factorizations Y = D~]N. A left coprime factorization 
for Y can be obtained by forming a right coprime factorization for Y' and taking tran­
sposes. Of course, every statement about right coprime matrices has an analog for left 
coprime matrices. 

The next lemma shows to what extent coprime factorizations and conesponding 
"Bezout factors" (as in Prop. 2.3) are unique. ' 

LEMMA 2.6 Let Y = ND~' and Y = D N be a right and a left coprime 
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factorization, respectively, ofYeFpXm. Let G eR"Xm andHeRmXp be such that 

GD+HN = ƒ„. (2.13) 

Suppose now that Y = D 'N is abo a left coprime factorization, and that GeR"Xm and 
HeR"XF are matrices that satisfy 

GD + HN = lm. (2.14) 

Then there exist matrices EeR^1" and FeR2Xp, with E unimodular, such that 

D = ED,N = EN (2.15) 

G = G — FN, H = H+FD. (2.16) 

PROOF It follows from the 'left' version of Prop.2.3 that there exist matrices GeRpaXp 

and W e / C * ' such that 

DG + NH 

Using (2.13), (2.17), and the equality ND' 

c H D -ti 
- A f b N G 

D N, we get 

-GH + HG 

(2.17) 

(2.18) 

I t is clear that the matrix on the right hand side in this equation is unimodular, and it 
follows that the two square matrices on the left must also be unimodular. Now, let G, 
H, N and D be as in the statement of the lemma. From (2.18), we then have 

(2.19) 
G H G H - ï G H D I * 

—N D -N b 0 -N b N 0 

This means that there exist matrices F e ü r x ' and E&RC such that 

G H G H - 1 /„ F 

-N b -N b 0 E (2.20) 

Moreover, E must be unimodular because the left hand side of the equation is unimo­
dular. Multiplying out the inverse, we find (2.15) and (2.16). 

The result in (2.15) is Standard (see, for instance, (9] (p.441) or [3] (p.60)). An alter-
native version of the uniqueness result on the Bezout factors can be found in [20] 
(Lemma 4.1.32). 

3. FORMULA BASED ON THE INVERSE 
In this section, we suppose that Y(\)<=FmXm is invertible, and we want to find a for­
mula which expresses the residue at a simple pole in tenns of the inverse. First, let us 
introducé some notation. We let R™ denote the free module of rank m over Re, and we 
define <t>„: R" ->C" to be the evaluation map at o: 

* . < ƒ ) = / ( « ) ifeVl (31> 
The inverse of Y(X) will be denoted by Z(X). We define 
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AT.(Z) = { /e /C | Z/eker-fc,}. (3.2) 

It is easily seen that N„(Z) is a submodule of Rm, and consequently ^„^„(Z) is a sub-
spacc of Cm. We are now rcady to fonnulate the main results of this section: 

THEOREM 3.1 Assume that Y(X)eFmXm is invertible, with inverse Z(k). Let CR be a 
matrix over R„ such that <f>ACK is a basis matrix for <f>ANA(Z). Let CL be a matrix over 
R„ such that <t>eCL is a basis matrix for ^>0/V„(Z'). Under these conditions, the following 
holds. 
1. 77ie constant matrix M(CL,CR) defined by 

M(CL,CR) = \^-4-\CL(\)Z(\)CR(\)] (3.3) 
x-« aA 

is square. Its dimension is 'equal to the total pole multiplicity of Y at a, and its rank 
equals the multiplicity of the first order pole ofYata. 

2. The pole of Y at a is simple if and only if the matrix M(CL,CR) is invertible, and in 
this case the residue is given by 

Res<y;a) = CR(o.)M(CL,CRr' Q(o) . (3.4) 

REMARK. It follows from the theorem that, in the case of a simple pole, there exist 
matrices CR and CL, satisfying the conditions of the theorem, such that 
Res(y;a) = CR(a)CL(a). This has been shown earlier in [5] (Thm.7.1) (extending stül 
earlier results in [10]), where, in fact, a much more genera] situation was considered, 
involving operator-valued (rather than matrix-valued) functions of X, and dealing with 
the complete principal part at an arbitrary pole rather than just at a simple pole. How-
ever, the normalizing matrix M(CL,CR) was not given in [5]. 

PROOF Of course, the matrices CR and CL are not determined uniquely by the 
requirements of the theorem. First of all, we note that if we add to CR a matrix HR 

with columns in N,(Z) p ] ker^,,, then the result still satisfies the requirements. The 
same is true if we right multiply CR by an invertible constant matrix GR. On the other 
hand, suppose that both CR and CR satisfy the requirements of the theorem. Then there 
must exist an invertible constant matrix GR such that CR(a) = CR(a)GR, because CR(a) 
and CR(a) are basis matrices for the same subspace. The columns of the matrix 

HR = CR — CRGR will then belong to NA(Z) (~) ker4>„. So we can conclude that the 
nonuniqueness in CR and CL is described by a transformation group which involves 
two invertible constant matrices GR and GL and two matrices HR and H, over Ra, 
such that the columns of both HR and H'L belong to NA(Z) ker<(>„, and which acts as 
follows: 

CR - CR = CRGR + HR (3.5) 

Q -» CL = CLGL + HL. (3.6) 

Note that 

hm-^rlCLm(\)HR(\)] = 0 (3.7) 

by the product rule of differentiation, since both C/.(X)Z(X) and HR(K) vanish at a. 
Repeated use of the rule shows that the effect of the transformation group on 
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M(CL,CR) is 

M(CL,CR) = GLM(CL,CR)GR- (3.8) 

This shows that the dimension and the rank of M(CL,CR) are invariants under the 
transformation group (3.5-6). We can therefore evaluate these two numbers for any par­
ticular value of C„ and CL. We select suitable values in the following way. Because 
Y(K) is invertible, the local Smith form of Y(\) reduces to (cf. (2.7-10)): 

[A_(X) 0 
7"(X)- (3.9) Y(X) = S(X) 0 A + (X) 

It is easily verified that we can take 

CR(K) = S(A) .Cz.(X) = [ƒ* 0]T(X) (3.10) 

where k is the dimension of A_(X), i.e., the total pole multiplicity of Y at o. For this 
selection of CR and CL, we get (cf. (2.9)): 

^ ( C t , Q ) = ^ ( A _ ( X ) - ' ) j ^ = [J °] (3.11) 

where q is the multiplicity of the first-order pole of Y at a. The statements under 1. of 
the theorem now follow immediately. It is also a direct consequence that Y has a simple 
pole at a if and only if Af (CL,CR) is invertible, and so it remains to verify the residue 
formula (3.4). 

From (3.5), (3.6) and (3.8), we see that the right hand side of (3.4) is an invariant 
under the transformation group described above. Therefore, it suffices to verify (3.4) for 
the particular selection (3.10) of CR and CL. In the case of a simple pole, (3.11) gjves 
M(CL,CR) = I and so 

CR(a)M'CL,CRr]CL(a) = S'a) 0 0 T(a) = Res( Y;a}. (3.12) 

The final equality follows because, in the case of a simple pole, the matrix A_(X) in 
(3.9) equals (X — a)~ ' I k . The proof is complete. 

REMARK. The problcm that Thm.3.1 leaves us with is, how to compute CR and CL 

(without doing something that is equivalent to already computing the residue). It should 
be noted that it is not allowed, in general, to simplify the formula (3.4) by replacing CR 

and CL in the expression for M(CL,CR) by their limit values. To see this, consider the 
following example: 

1 -XI 
(3.13) Y(K) = t 

This corresponds to 

Z ( X ) = f 

-X 2X2 

2XJ 

X (3.14) 

We are interested in the pole at X = 0. It is easily verified that one can take 
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C„(X) •C t(X) = [ l - X ] 

Calculation shows that M(CL,CR) = 1. On the other hand, one has 

hm — 
x~o d\ 

[1 0] 
2X2 

X = 2. 

(3.15) 

(3.16) 

One easily secs that this phenomenon is ca used by the fact that Z(X) has a pole at 
X = 0. In general, if Z(X) is analytic in a neighborhood of a, then it may be shown that 
it is allowed to replace CL and CR by their limit values in (3.3), and, moreover, in this 
case the constant matrices CR(a) and CL(a) may be constructed directly as basis 
matrices for the right and left null spaces, respectively, of Z(a). This will follow as a 
special case of the result of the next section. 

4. FORMULA BASED ON COPRIME FACTORIZATION 
In this section, we develop formulas for the residue at a simple pole, based on the avai-
lability of coprime factorizations. Several versions will be presented, each of which has 
its own merits. 

THEOREM 4.1 Suppose that Y(\) = N(\)D(X)-) and Y(K) = 3(X) _ I/V(X) are right and 
left coprime factorizations, respectively, of YeFf x™ at a. Define 

P(X) = D'\)N(K) = N(\)D(\). (4.1) 

Also, let TR be a full column rank matrix such that 

iraTg = ker/J(o) (4.2) 

and let TL be a full row rank matrix such that 

kafL = im/3(o). (4.3) 

Under these conditions, the following holds. 
1. 77ie matrix fLF'a)TR is square. Its dimension is equal to the total pole multiplicity of 

Y at a, and its rank equals the multiplicity of the first-order pole ofYata. 
2. 77ie pole of Y at a is simple if and only oif the matrix TLF(a)TR is invertible, and in 

this case the residue is given by 

Res(y ;o) = N'a)TRlfLn«)TRr1 TLN'a). (4.4) 

3. Moreover, for a simple pole at a one has 

kerRes<y;a) = im/)(o) (4.5) 

imRes(y;a) = kerf>(a). (4.6) 

PROOF We divide the proof in three parts corresponding to the three claims in the 
theorem. 

Claim 1. It is clear that the matrix ? E Ü " x " and the constant matrices TR and TL 

are not determined uniquely by y. This is due to the nonuniqueness of left and right 
coprime factorizations, and to the fact that a matrix is only determined by (4.2) up to 
nonsingular transformations from the right, and by (4.3) up to nonsingular 
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transformations from the left. One can define a transformation group by which all tri­
ples (P,TR,TL) are related to eachotheT. As is seen from Lemma 2.6, the action of the 
transformation group is spccified by two unimodular matrices U and U and two inverti­
ble constant matrices M and M, in the following way: 

(4.7) 

(4.8) 

(4.9) 

P -> P = UPU 

TL->TL=MTLÜ(a)-]. 

To determine the behavior of the matrix TLP'(a)TR under the action of the transfor­
mation group, we first note that 

P'(a) = U'a)P''a)U(a) + U'(a)P'a)U(a) + (/(o)/1 (a)f/(a). (4.10) 

Multiplying this from the left by TL=MTLU(a)~x and from the right by 
7> = U(al~'TRM, and using the fact that fLP(a)=fLb(a)N(a) = 0 and 
P(.a)TR = N(a)D(a)TR = 0, we find 

W « = MTLF(a)TRM. (4.11) 

This shows that the size and the rank of the matrix TLP'(a)TR are invariants under the 
transformation group defined above. So it suffices to compute these quantities for a par­
ticular selection of P(X), TR, and TL. We take the right coprime factorization given in 
(2.11-12), and the left factorization that can, in an obvious way, be defined similarly. 
This leads to 

J»(A) = 
( A - ( A ) r 

0 

0 

0 

A + (X) 

0 

For TR and TL, we can take 

T. = T, = \l 0 oj 

(4.12) 

(4.13) 

where k is the dimension of the matrix A_(X), i.e., the total pole multiplicity of Y at a. 
Then the matrix TLP'(a)TR is a k XA:-matrix, and an easy computation shows that, in 
fact, 

ro oi 
0 I. (4.14) 

where q is the multipücity of the first-order pole of Y at o. This completes the first part 
of the proof. 

Claim 2. It is immediate from the above that y has a simple pole at o if and only if 
the matrix TLF{a)TR is invertible. To verify the residue formula, we extend the 
transformation group defined above with its action on N(a) and A'(a): 

N(a) -> N(a) = N(a)U(a) (4.15) 
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N(a) -+ N'a) = U(a)N'a)- (4.16) 

It is now a straightforward matter to see that the right hand side of (4.4) is an invariant 
under the transformation group. To prove that it does indeed represent the residue of Y 
at a, we compute its value for the particular selection of matrices that was also used 
above. In the case of a simple pole, (4.14) gives TLF(a)TR = I and so we find 

N(a)TMlTLf(a)TK)-lTLN(a) = 

h 0 0 /* h 0 0 
S(a) 0 A + (a ) 0 0 [/* 0 0] 0 A + (a ) 0 

0 0 0 [0 0 0 0 

T(a) 

Res(y;a). (4.17) 

Claim 3. Again, the formula (4.5) is proved by noting that both sides do not depend 
on the selection of a particular coprime factorization, and that equality holds (as is seen 
by inspection) for the factorization displayed in (2.11-12). For (4.6), it's the same story. 

REMARK 1. It is true_in general (whether a is a simple pole or not) that the sub-
spaces imZ)(o) and ker£>(o) are uniquely determined by y. We could cal] kerD(a) the 
right modal subspace of Y at a, and the row space of left nul! vectors of D(a) could be 
termed the left modal subspace of y at a. If Y(X) = (XI—A)~\e A e C m * ' \n a 
is a pole of Y if and only if a is an eigenvalue of A, and the right and left modal sub-
spaces of y at a are equal to the right and left eigenspaces of A corresponding to the 
eigenvalue a. 

REMARK 2. Suppose that Y(k) = (Z(X)) _ 1 and Z(X) does not have a poleat a. In 
this casê  right and left locally coprime factorizations are given by ./V(X) = N(\) --1, 
D(X) = D(A) = Z(X). We get P'X) = Z(K), and 7"* and TL are determined as basis 
matrices for the right and left null space of Z(a), respectively. The residue formula 
becomes 

Res(y;a) = TR[Ti_Z'(a)TR]~' TL. (4.18) 

This formula is applicable in particular when Z(X) is a polynomial matrix, and for this 
case the result was given by Lancaster ([13], pp.60-65; see also [6], p.64). 

REMARK 3. Suppose that Y(\)eFm*m is symmetrie. If in this case Y = ND'1 is a 
right coprime factorization, then a left coprime factorization is obtained simply by tak­
ing D = D', N = N'. The matrix function P is equal to D'N = N'D, so we see that P 
is symmetrie. If 7"„ satisfies (4.2) then it is clear that (4.3) is satisfied by TL = TR. The 
residue formula (4.4) becomes 

(4.19) Res<y;a) = N (a)TR\TRn«)TRVTRN'(a). 

We see that the residue is symmetrie, as, of course, it should be. 
One may ask whetheT it is possible to give a residue formula which more clearly 

reflects the propertjes (4.5) and (4.6). In other words, suppose that we define matrices 
TR and TL, ha ving full column rank and full row rank respectively, such that 

im7"„ = kei D(a) (4.20) 
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kerr L = im D(a). (4.21) 

Can we then find a residue formula which has TR on the left and TL on the right? It 
turns out that this is possible, but of course the normalizing matrix has to be adjusted. 

THEOREM 4.2 Suppose that Y = ND "1 and Y = ï> N are right and left locally coprime 
factorizations, respectively, of YeFpXm. Define ÏR and TL as in (4.21-22). Ut G e C m X m 

and /feC 1 "*' be such that 

GD(a) + HN(a) = I m (4.22) 

(Such matrices exist by Cor.2.5). Under these conditions, the matrix TLD,(a)HTR is 
square, with its dimension being equal to the total pole multiplicity of Y at a, and its rank 
to the multiplicity of theJirst order pole of Y at a. The pole of Y al ais simple if and only 
if the matrix TL&(a)HTR is invertible, and in this case the residue is given by 

Res(y;a) = TR[TLD''a)HTR]~lTL. (4.23) 

PROOF The invariance of the proposed formula follows in the same way as in the previ-
ous proof. The correctness of our claims is then again established by looking at the spe­
cial factorization (2.11-12), and using the following selections for TL, TR, G and H: 

A l 
TL = [Ik 0 0 ] 7 » , fM = S(a) (4.24) 

G = 
0 0 0 h 0 0 
0 0 0 7 » , H = 0 0 0 
0 0 I 0 0 0 

(4.25) 

where k is the total pole multiphcity of Y at a. Our conclusions now follow by 
straightforward computation. 

The formula (4.24) is 'right-handed'; one could apply it to Y' and take the transpose 
of the resulting formula to get a corresponding 'left-handed' version. The only point 
where the left coprime factorization enters in the proposition is through the definition 
(4.21). But even this could be eliminated, because what is actually needed is only 
kerD(o), and it is seen from Lemma 2.6 that if [P Q] is a basis matrix for the row 
space of left null vectors of [N'(a) D'(a)Y, then kerD(o) is determined as kerg. In this 
way, one obtains a residue formula that is based only on a right coprime factorization. 
This may be an advantage in tenns of computation. Note that what is actually needed 
to determine the "H" and "Q" matrices is the reduction of [D'a)' N(a)'f to [Im Of by 
elementary row operations: 

(4.26) 

One can avoid doing row operations, however, by using the formula of the following 
corollary, which will close this section. This formula is probably in general the most 
convenient for computational purposes. 
COROLLARY 4.3 Suppose that Y=ND~l is a right coprime factorization of YsFpXm. 
Write k = dimkerZ>(a). Let TReCmXt be a full column rank matrix satisfying 

G H \D(a) L 
r Q N(a) 0 
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D(a)TR = 0, and let TLeCiXm be a full row rank matrix such that TLD(a) = 0. Under 
these conditions, the following conclusions hold: 
1. 77ie total pole multiplicity of Y at a is equal to k. The multiplicity of the first order pole 

of Y at ais equal to the rank of the matrix TLD4'a)TR eC* x k . 
2. The pole of Y at a is simple if and only if the matrix TLD'(a)TR is invertible. In this 

case, the residue is given by 

Res(y ;a) = N (a^T^a)^]'1TL. (4.27) 

PROOF The proof can be given along the same lines that have been used above. 
Altematively, one may apply Proposition 4.2 by showing that N(a)TR quahfies as a 
"fR" matrix. 

REMARK 4. Another way to derive (4.35) would be the following: first apply (4.19) to 
compute the residue of the matrix function Z>~' at o, and then multiply by N'a) to 
obtain the residue of Y = ND~l. This is conect, provided that one shows that Y has a 
simple pole at a if and only if Z>~' has a simple pole at a. This property is indeed a 
consequence of coprimeness and has, in fact, been shown in the corollary, since the cri-
terion given under 2. depends only on D. 

5. APPLICATION AS A STABILITY TEST 
It has already been noted that our results can also be used in stability tests. Indeed, for 
stability (in the sense of Lyapunov) one should have that all poles are in the open left 
half plane or on the imaginary axis, and in the latter case they should be simple - which 
is what can be tested by looking at the normalizing matrix. To show an application of 
this idea, let us re-derive a classical result on stability. 

Suppose we have matrices A eC" x " and C e C x " . Then it is a Standard result that 
the matrix A is stable in the Lyapunov sense if there exists a self-adjoint, strictly posi-
tive definite matrix PeC" X n such that 

A'P + PA = -CC (5.1) 

Let us now see how to prove this from the theory presented above. Let / i be an eigen­
value of A and let x eC" be a conesponding eigenvector. From (5.1), we have 

x'A'Px + x'PAx = -x'C'Cx (5.2) 

which leads to 

(2Keii)(x'Px) = -x'C'Cx < 0 (5.3) 

and hence Re/i<0, because x'Px>0. It remains to show that u is a simple eigenvalue 
if its real part is zero. 

So, suppose Re>i = 0, and let TR be a basis matrix for kerfji/ — A). It follows from 
any of the criteria derived above that p. will be a simple pole of the matrix function 
Y'K) = (XI —A)~' (and hence a simple eigenvalue of A) if and only if we can find a 
basis matrix TL for the row space of left null vectors of pJ — A such that TLTR is inver­
tible. As in (5.2-3), we find 

-rRCCTR = (2Rcp)rRPTR = 0 (5.4) 

which implies, of course, 
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CTR = 0. (5.5) 

Therefore, multiplying (5.1) from the right by TR, we get 

(A'+ ,Ü)PTR = 0. (5.6) 

Since Ji = — j i , taking adjoints leads to 

rKP(pJ-A) = 0. (5.7) 

This shows that we can take TL = TRP. Obviously, TLTR = TRPTR is nonsingular and 
so our test shows that we have, indeed, stability. 
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