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Residue Formulas for Meromorphic Matrices

J.M. Schumacher

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In the analysis of the vibrations of mechanical systems, it is not only important
to compute the resonance frequencies, but also to find the so-called "participa-
tion matrices” which govern the distribution of the energy over the various
resonance modes. These matrices appear as residue matrices for certain mero-
morphic matrix-valued functions (transfer matrices from forces to displace-
ments), the poles of which correspond to the resonance frequencies. Also,
these poles are simple as a consequence of the law of conservation of energy.
So the problem comes down to the computation of the residue at a simple pole
of a meromorphic matrix. This matrix is in general not given through its
entries, but rather as the inverse of another matrix or as a fraction of holo-
morphic matrices. Extending earlier results of Lancaster and of Gohberg and
Sigal, we work out a convenient residue formula for matrices in fractional form.
Several variants will be discussed as well. In all versions, one constructs a
~normalizing matrix” which is invertible if and only if the pole one considers is
simple, and one writes down a formula for the residue which features the
inverse of the normalizing matrix. Proofs are based on the "local Smith form”
for meromorphic matrices. The normalizing matrix can also be used in stability
tests, and we show an application of this.

1. INTRODUCTION
Let Y (M) be a matrix whose entries are meromorphic functions of A. By expanding each

entry in a Laurent series around a given point a, we get a Laurent series development
for Y(A\):

YO = Y_,A—a)" 4 - +Y_,(A—a)”' +
+Y +Y,(A—a) + - . (1.1

The matrix Y _, is called the residue of Y(A) at a. We say that Y has a simple pole at a
if A—a)Y (A) is analytic in a neighborhood of a. The purpose of the present paper is to
obtain convenient formulas for the computation of the residue of Y at a simple pole
under certain assumptions on the way that this matrix function is given.

This problem is directly motivated by enginecring applications. For a very simple
example of this, consider the equations of a vibrating string with forces and displace-
meats at both ends being of interest. (The electrical analog of this would be the lossless
transmission line.) The equations are as follows:

al 32
¥ w(x,t) = O w(x,t) (1.2)

—%W(O,t) = F\() (1.3)
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2wl = R0 (14)
w(0,0) = yi(1) (1.5)
w(l,7) = ya(1) (1.6)

For this system, we determine a matrix that relates the amplitudes of the forces to the
amplitudes of the displacements under the assumption that the system is in harmonic
motion at frequency w. We set

w(x,t) = wo(x)e'™ .7

Fi)| _ [Fuo| i 1O _ Pro] i

F@| = |Fa|* Lz(’)] . [Yzo] i ¢%
The equations (1.2-6) then lead to

wi(x) = —w wo(x) 1.9

Fp| _ |—w(0)

Fa| = [%(l)] (1.10)

be] = [ =

From (1.9), we get

wo(x) = a ™' sinwx + bcoswx , (1.12)

where &' sinwx is taken as an analytic function of w for every x, so that its value at
© =0 is simply x. Using (1.10) and (1.11), one now expresses the force and displace-
ment amplitudes in terms of the parameters a and b:

Fyo 1 0 a

[Fm] = |—cosw wsinw [b] (1L13)
o] 0 1 a
»| [w"sinw cosw| |b (1.149)

Eliminating the parameters a and b, one obtains the “admittance matrix” Y (w):

0 1 1 (I
Y(w)= w 'sinw cosw| |—cosw wsinw| - (1.15)

Notice that the admittance matrix appears as a fraction of two analytic matrices.
This representation of the relation between forces and displacements at both ends of a
string is known among mechanical engineers as the "dynamic direct-stiffness method”
(cf. [4], Ch.20). Of course, in system-theoretic terms the matrix Y (w) is just the transfer
matrix from the forces to the displacements. The fact that it is a symmetric matrix
which is even as a function of w is no surprisc since the considered system (1.2-6) is
time-reversible Hamiltonian (cf. [17]). The symmetry with respect to the transverse diag-
onal reflects the left-right symmetry of the system. The poles of the admittance matrix
correspond to the “natural frequencies” of the system (no force input). As a
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consequence of the law of conservation of energy, all poles are real and simple.

In this very simple example, one could compute the residues by computing the
entries of Y (w) separately and using the standard rules for the computation of residues
for scalar functions. However, for large structures this becomes hardly an attractive
way of doing the computation. One would like to use a method which is adapted to the
form in which the admittance matrix appears.

In [13], Lancaster has given a residue formula for the case in which Y () = Z(w)~!,
and Z(w) is a polynomial matrix (cf. also the more recent work [6], p.64). In the
engineering literature, Lancaster’s formula has been used also in situations where Z (w)
is not polynomial but rational or even meromorphic (cf. [8,12,15]). The techniques of
[13] and [6] are not readily adapted to these more general situations; moreover, as we
shall see, the use of Lancaster’s formula in the more general context is not always possi-
ble. In this paper, we use methods similar to those of [5] in order to prove residue for-
mulas for meromorphic matrices appearing in various forms (and that are not neces-
sarily square). We may note that, if Y(s) is a strictly proper rational matrix function
having only simple poles, then knowledge of the poles and the corresponding residues
means that one can write down the partial fraction expansion of Y(s), and this is prac-
tically equivalent to finding a state-space realization for Y. The use of the partial frac-
tion expansion for computing realizations has been suggested in [16}, and was recom-
mended as a numerically robust procedure in [18]. Of course, it is a classical observa-
tion that the inverse Laplace transform can be computed in a convenient way by using
the partial fraction expansion.

The organization of the paper is as follows. We start with some algebraic prelim-
inaries in Section 2. Next, we discuss what can be said about the residue of Y at a
under the assumption that Y is available through its inverse. Although we de obtain a
residue formula, it will appear that this formula is not quite satisfactory. Another direc-
tion in which Lancaster’s work may be generalized is given by coprime factorization.
This is considered in section 4, and it turns out that it is possible (as in Lancaster’s for-
mula) to determine the residue by calculating the derivative at a of a matrix that is
analytic in a neighborhood of a, plus some operations on constant matrices. We also
get criteria for the pole at a to be simple. Such criteria can be used in stability tests,
and we show an application of this in Section 5.

2. PRELIMINARIES
Let @ be a region of the complex plane, which will be fixed throughout the discussion
below. In most applications, one will have = C. Let a be a point in 2. We let F
denote the field of meromorphic functions on £, and we write R, for the subset of F
consisting of functions that are analytic in a neighborhood af a. In other words, feF
belongs to R, if and only if f does not have a pole at a. It is straightforward to verify
that R, is a ring, and it is also easily seen that R, is in fact a principal ideal domain,
the ideals being of the form A\ —a)*R,, k>0. The set of p X m-matrices with elements
in F (resp. R,) will be denoted by FP*™ (resp. RE*™).

The situation we have here is a particular instance of the following set-up. Let R be
a commutative ring, and let D and E be multiplicative subsets of R such that D CE. A
matrix U with elements in the factor ring R / D is said to be D-unimodular if it has an
inverse with elements in R /D. Matrices N and M with elements in the factor ring
R /E are said to be D-equivalent if there exist D-unimodular matrices U and ¥ such
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that M = UNV. The key result in this context is the following.

THEOREM 2.1 In the situation described above, suppose that R / D is a principal ideal
domain. Then every matrix over R / E is D-equivalent to a matrix of the form

A0
N = [o 0] @.1)

where A = diag (h,, - - * ,h,) and the elements h; may be chosen such that h; ., / h;€R.

The proof of this is essentially standard (cf., for instance, [3}, [9], [20]). In our setting,
R is the ring of analytic functions on @, D is the set of all elements of R that are
nonzero at a, and E is the set of all elements that are not identically zero on . Instead
of D-unimodular, we shall say locally unimodular (at ) and we will leave out the refer-
ence to the specific point a on most occasions, since the point will be fixed throughout
the discussion. Because of the simple ideal structure of R /D = R,, the special form
(2.1), which will be called the local Smith form (at a), can be taken such that

b =@Q-at (=10 23)
and d,<d,< - - - <d,. This particular appearance of the local Smith form will be used
extensively below. The form was used earlier, for instance in [5] (p.607) and in [19]; if
one deals with rational matrices, it can also be used with a = co, replacing A—a by A
[7). The local Smith form of a meromorphic matrix is relatively easy to compute (cf. [7]
and [10], p.139); nevertheless, it contains much more information than the residue does,
and so it should be easier to compute the latter. We shall only use the local Smith form
for proofs, for which it is, in fact, a most convenient tool.

Often, "local” properties of meromorphic matrices can be expressed in terms of con-
stant matrices. In fact, the situation could be interpreted as a special case of reduction
to the space of maximal ideals, as explained in [20}, Section 8.1. Of course, the ring R,
has just a single maximal ideal, generated by the function A—a. Whatever approach one
takes, it is easy to prove results such as the following.

LEMMA 2.2 A matrix UeR™*™ is unimodular if and only if U (a)eC™™™ is invertible.

We now consider coprimeness in the sense of the local ring R,. Given NeRy*™, a
matrix PeR7*™ is said to be a right factor of N if there exists NeRE*™ such that
N = NP. Two matrices N, €eRZ*™ and N, eR{*™ are said to be locally right coprime (at
a) if all their common right factors are locally unimodular. The following characteriza-
tion of this concept is classical (see [14], p-35).

PROPOSITION 2.3 Two matrices N, €REX™ and N, eR&™™ are right coprime if and only
if there exist matrices GeR™* and HeRT*9 such that GN, + HNy = I,
The proof in [14] shows that, in fact, the following is true.

PROPOSITION 2.4 Two matrices N, € REX™ and N,eR{*™ are right coprime if and only
if there exist unimodular matrices SeR$*V*¢+9 and TeRT*™ such that

fl -

The characterization of Prop. 2.3 can be read in terms of left invertibility, and hence
there is a translation in terms of constant matrices (20, Thm. 8.1.12)).
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COROLLARY 2.5 Two matrices N, €R.*™ and N, €R1*™ are right ime i
e sps 2€R] ight coprime if and only

N (a) +¢)Xm
[N ;(a)] ecte (2.5)
is full column rank.

Of course, one can also define left factors and left coprimeness for pairs of matrices

having an equal number of rows, and the above results can be duplicated; i
sl i et plicated; we won’t

A locally right coprime factorization (at a) of a matrix Y € FP*" is a representation of
Y in the form

Y = ND~! (2.6)
where N eRE*™, DeRT>™, the matrices N and D are right coprime, and D is invertible

as an f:lemcm of F™*™. We will now display a particular locally coprime factorization
that will turn out to be useful. Using Thm.2.1, we can write

A0
Y=SOOT 2.7

where S and T are'locally unimodular matrices, and A is as described in (2.3). Now, we
can split the negative powers of (A —a) off from the nonnegative powers:

A-() O
Wi 5

A_Q) = digg[A-a)", - - ,A—a)*), d;< -+ <d,<0 29)
A, Q) = diag[A—a)*"', - -+ ,A—a)*), 0<dy, < - <d,. (2.10)
Using the notation of (2.7-10), define
I 0 0
N=5S[|0A, 0 @11)
000
@a>)'o o
D=T"'| 0 I 0 (2.12)
0 0 I

lt‘ is easily verified that Y = ND ™! is a right coprime factorization of Y at a. The
dimension of the matrix A_ in (2.7) will be called the total pole multiplicity of Y at a.

One also defines left coprime factorizations Y = D~'N. A left coprime factorization
for Y can be obtained by forming a right coprime factorization for Y’ and taking tran-
sposes. of course, every statement about right coprime matrices has an analog for left
coprime matrices.

The next lemma shows to what extent coprime factorizations and corresponding
"Bé&out factors” (as in Prop. 2.3) are unique.

LEMMA 26 Let Y = ND~' and Y=l.)_llz’ be a right and a left coprime




102 J.M. Schumacher

factorization, respectively, of Y€ FF*™. Let GeR7™™ and HeR7™P be such that
GD + HN = 1, (2.13)

Suppose now that Y=D 'Nisalsoa left coprime factorization, and that &ER:‘X'" and
H eRTP are matrices that satisfy

GD + HN = 1I,, (2.14)
Then there exist matrices E € RE*P and F € RT*?, with E unimodular, such that

D =ED,N = EN (2.15)

G = G—FN, H = H+FD. (2.16)

ProoF It follows from the "left’ version of Prop.2.3 that there exist matrices C.?eRﬂ"P
and H e RT*? such that

DG+ NH =1, .17
Using (2.13), (2.17), and the equality ND~' = D' N, we get
G H\I[p -H I, —GH+HG
|5 3 %)

= ¢ 2.18
N G 0 5 e
It is clear that the matrix on the right hand side in this equation is unimodular, and it
follows that the two square matrices on the left must also be unimodular. Now, let G,
H, N and D be as in the statement of the lemma. From (2.18), we then have

A L A

R

This means that there exist matrices FeR?>? and E e R,*P such that

G H|[G H™ [
i~ L . : 220
-N D] [—N b [0 ;] a0
Moreover, E must be unimodular because the left hand side of the equation is unimo-
dular. Multiplying out the inverse, we find (2.15) and (2.16).

The result in (2.15) is standard (see, for instance, [9) (p.441) or [3] (p.60)). An alter-
native version of the uniqueness result on the Bézout factors can be found in [20]

(Lemma 4.1.32).

3. FORMULA BASED ON THE INVERSE

In this section, we suppose that Y(A)e F™ *m is invertible, and we want to find a for-
mula which expresses the residue at a simple pole in terms of the inverse. First, let us
introduce some notation. We let RT denote the free module of rank m over R,, and we
define ¢,: RT —C™ to be the evaluation map at a:

¢(f) = f(@) (feRT). @a.n
The inverse of Y (A) will be denoted by Z(A). We define
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N.(Z) = {feR7 | Zfeker ¢, ). 3.2

It is casily seen that N,(Z) is a submodule of R7, and consequently ¢,N,(Z) is a sub-
space of C™. We are now ready to formulate the main results of this section:

THEOREM 3.1 Assume that Y(A) € F™*™ is invertible, with inverse Z(\). Let Cg be a
matrix over R, such that ¢,Cy is a basis matrix for $,N,(Z). Let C;, be a matrix over

R, such that ¢,C}, is a basis matrix for $,N,(Z'). Under these conditions, the following
holds.

1. The constant matrix M(C,,CR) defined by

A—a

M(CL,CR) = lim':—)\[CL(’\)Z MCrM)] (33)

is square. Its dimension is ‘equal to the total pole multiplicity of Y at &, and its rank
equals the multiplicity of the first order pole of Y at a

2. The pole of Y at a is simple if and only if the matrix M(C_,CR) is invertible, and in
this case the residue is given by

Res(Y;a) = Cr(@) M(Cy,Cr)™' Cr(a). 34

REMARK. It follows from the theorem that, in the case of a simple pole, there exist
matrices Cp and C,, satisfying the conditions of the theorem, such that
Res(Y;a) = Cr(a)Cp(a). This has been shown earlier in [5] (Thm.7.1) (extending still
carlier results in [10]), where, in fact, a much more general situation was considered,
involving operator-valued (rather than matrix-valued) functions of A, and dealing with
the complete principal part at an arbitrary pole rather than just at a simple pole. How-
ever, the normalizing matrix M(C,,Cg) was not given in [5).

PrROOF Of course, the matrices Cx and C, are not determined uniquely by the
requirements of the theorem. First of all, we note that if we add to Cx a matrix Hg
with columns in N,(Z) (M ker¢,, then the result still satisfies the requirements. The
same is true if we right multiply Cx by an invertible constant matrix Gz. On the other
bhand, suppose that both Cx and Cy satisfy the requirements of the theorem. Then there
must exist an invertible constant matrix Gy such that Cr(a) = Cg(a)Gg, because Cr(a)
and af"(a) arc basis matrices for the same subspace. The columns of the matrix

Hy = Cg—CgGy will then belong to N,(Z) (M ker¢,. So we can conclude that the
nonuniqueness in Cx and C, is described by a transformation group which involves
two invertible constant matrices Gy and G, and two matrices Hy and H, over R,,
such that the columns of both Hg and Hj belong to N,(Z) (") ker¢,, and which acts as
follows:

CR - ék = CRGR + HR (35)

CL— C.=C,G, +H,. (3.6)
Note that

tim-d-C, WZQH) = 0 &)

by the product rule of differentiation, since both C;(A)Z(A) and Hz(A) vanish at a.
Repeated use of the rule shows that the effect of the transformation group on
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M(C.,Cp) is
M(CL,Cr) = GLM(C,Cg)Gpg- (3.8)

This shows that the dimension and the rank of M(C.,Cg) are invariants under the
transformation group (3.5-6). We can therefore evaluate these two numbers for any par-
ticular value of Cx and C;. We select suitable values in the following way. Because
Y ()) is invertible, the local Smith form of Y(A) reduces to (cf. (2.7-10)):

A_A) O
YO = SO [ o s m} TO)- (39)
It is easily verified that we can take
1,
Cx®) = SO H,qm = L TR (3.10)

where k is the dimension of A_(}), i.e., the total pole multiplicity of Y at a. For this
selection of Ck and C;, we get (cf. (2.9)):

M _d e 00
€LC = 5 @-®| = o 3.1

where q is the multiplicity of the first-order pole of Y at a. The statements under 1. of
the theorem now follow immediately. It is also a direct consequence that Y has a simple
pole at a if and only if M(C,,Cy) is invertible, and so it remains to verify the residue
formula (3.4).

From (3.5), (3.6) and (3.8), we see that the right hand side of (3.4) is an invariant
under the transformation group described above. Therefore, it suffices to verify (3.4) for
the particular selection (3.10) of Cz and C,. In the case of a simple pole, (3.11) gives
M(CL,CR) =] and so

I, 0
Cr(@M(C,Cp)™' Cul@) = S(a) [(; 0] T(a) = Res(Y;a). (3.12)

The final equality follows because, in the case of a simple pole, the matrix A_(A) in
(3.9) equals A\ —a) ™' I,.. The proof is complete.

REMARK. The problem that Thm.3.1 leaves us with is, how to compute Cy and C;
(without doing something that is equivalent to already computing the residue). It should

be noted that it is not allowed, in general, to simplify the formula (3.4) by replacing Cg

and C, in the expression for M(C.,Cg) by their limit values. To see this, consider the
following example:

pjY o=
YQ) = EN [—x 2)\2]' (3.13)
This corresponds to
1 [ A
ZM) = YAl (3.19)

We are interested in the pole at A=0. It is easily verified that one can take
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1
Cr) = [_A] 'CLA) =1 —A) (3.15)

Calculation shows that M (C.,Cg) = 1. On the other hand, one has

d 1 22 Al 1
il—lo‘é)_di 1 O]I A 1llo = 2. (3.16)

One casily sees that this phenomenon is caused by the fact that Z(M) has a pole at
A =0. In general, if Z(\) is analytic in a neighborhood of a, then it may be shown that
it is allowed to replace C;, and Cg by their limit values in (3.3), and, moreover, in this
case the constant matrices Cg(a) and C(a) may be constructed directly as basis
matrices for the right and left null spaces, respectively, of Z(a). This will follow as a
special case of the result of the next section.

4, FORMULA BASED ON COPRIME FACTORIZATION

In this section, we develop formulas for the residue at a simple pole, based on the avai-
lability of coprime factorizations. Several versions will be presented, each of which has
its own merits.

THEOREM 4.1 Suppose that YQA) = NA)DQ)™" and Y(N) = D(\)"'N(A) are right and
left coprime factorizations, respectively, of Y €FF*™ at o Define

PQ) = DOONQ) = NQO)DQ). @.1)
Also, let Tx be a full column rank matrix such that
imTg = ker D(a) 42)

and let i‘,_ be a full row rank matrix such that
ker T, = im D(a). 43)

Under these conditions, the following holds.

1. The matrix Ty P'(a)Ty is square. Its dimension is equal to the total pole multiplicity of
Y at o, and its rank equals the multiplicity of the first-order pole of Yata

2. The pole of Y at a is simple if and only oif the matrix T, P'(«)Ty is invertible, and in
this case the residue is given by

Res(Y;0) = N(@TTLP@Tx] " TLN(@). @4
3. Moreover, for a simple pole at a one has

ker Res(Y ;a) = im D (a) @.5)

imRes(Y;a) = ker D(a). (4.6)

PrOOF We divide the proof in three parts corresponding to the three claims in the
theorem. .

Claim 1. It is clear that the matrix P€R{™™ and the constant matrices Tg and T,
are not determined uniquely by Y. This is due to the nonuniqueness of left and right
coprime factorizations, and to the fact that a matrix is only determined by (4.2) up to
nonsingular transformations from the right, and by (4.3) up to nonsingular
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transformations from the left. One can define a transformation group by which all tri-
ples (P,Tg,T,) are related to eachother. As is seen from Lemma 2.6, the action of the

transformation group is specified by two unimodular matrices U and U and two inverti-
ble constant matrices M and M, in the following way:

P P=UPU @7
Tp = Ty = U(a)"' TxM (438)
i‘L b d 7‘,_ = ili’Ll-l(a)" (49)

To determine the behavior of the matrix i’,_P’(a)TR under the action of the transfor-
mation group, we first note that

P'(a) = U(a)P(a)U(a) + U'(a)P(a)U(a) + U(a)P (a)U'(a). (4.10)

Multiplying this from the left by T, =MT,U(e)"' and _from the right by
Tp = U(a) 'TxM, and using the fact that T,P(a) = T, D(@)N(a)=0 and
P(a)Tgr = N(a)D(a)Tg = 0, we find

T P(@)Tx = MT P'()Tp M. @.11)

This shows that the size and the rank of the matrix iLI’(a)TR are invariants under the
transformation group defined above. So it suffices to compute these quantities for a par-
ticular selection of P(A), Tx, and T,. We take the right coprime factorization given in

(2.11-12), and the left factorization that can, in an obvious way, be defined similarly.
This leads to

@' o 0
PQ) = 0 A of 4.12)
0 0 o0

For Ty and i‘,_, we can take

Il .
o= (0| = [1,k 0 0] 4.13)

where k is the dimension of the matrix A_(}), i.., the total pole multiplicity of Y at a.
Then the matrix T; P’(a)T is a k X k-matrix, and an easy computation shows that, in
fact,

- _d - = 00
TP@T =500 = o @.14)

where ¢ is the multiplicity of the first-order pole of Y at a. This completes the first part
of the proof.
Claim 2. It is immediate from the above that Y has a simple pole at « if and only if

the matrix T; P(a)Tx is invertible. To verify the residue formula, we extend the
transformation group defined above with its action on N (a) and N(a):

N(a) -» N(a) = N(a)U(a) (4.15)
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N(a) - N(a) = U(a)N(a)- (4.16)

It is now a straightforward matter to see that the right hand side of (4.4) is an invariant
under the transformation group. To prove that it does indeed represent the residue of Y
at a, we compute its value for the particular selection of matrices that was also used
above. In the case of a simple pole, (4.14) gives T, P'(a)Tx = I and so we find

N@TT,P(@)TR] ' T N(a) =

L, 0 0] I, 0 0
= S(@)|0 As(a) 0| |O[[Z 0 0) [0 A,(a) Of T(a) =
0 o0 of]|O 0 0 o
= Res(Y;a). 4.17)

Claim 3. Again, the formula (4.5) is proved by noting that both sides do not depend
on the selection of a particular coprime factorization, and that equality holds (as is seen
by inspection) for the factorization displayed in (2.11-12). For (4.6), it’s the same story.

REMARK 1. It is true in general (whether a is a simple pole or not) that the sub-
spaces im D (a) and ker D(a) are uniquely determined by Y. We could call ker D(a) the
right modal subspace of Y at a, and the row space of left null vectors of D(a) could be
termed the left modal subspace of Y at a. If YQA) = (AT —A)™', where A eC™*™, then a
is a pole of Y if and only if « is an eigenvalue of 4, and the right and left modal sub-

spaces of Y at « are equal to the right and left eigenspaces of 4 corresponding to the
cigenvalue a.

REMARK 2. Suppose that Y(A) = (Z(\))"' and Z(A) does not have a pole_at a. In
this case, right and left locally coprime factorizations are_given by N(A) = NQA) =1,
D@A)=DQA)=Z(\). We get PA)=Z(\), and Ty and T, are determined as basis
matrices for the right and left null space of Z(a), respectively. The residue formula
becomes

Res(Y;a) = TRITLZ'(a)TR]"'T}. (4.18)

This formula is applicable in particular when Z(A) is a polynomial matrix, and for this
case the result was given by Lancaster ([13], pp.60-65; see also [6], p.64).

REMARK 3. Suppose that Y(A\)e F™*™ is symmetric. If in this case Y = ND ' is a
right coprime factorization, then a left coprime factorization is obtained simply by tak-
ing D = D', N = N'. The matrix function P is equal to D'N = N'D, so we see that P
is symmetric. If Ty satisfies (4.2) then it is clear that (4.3) is satisfied by T, = T. The
residue formula (4.4) becomes

Res(Y;a) = N(a)Tr[TeP'(@)Tg] "' TRN'(a). 4.19)

We see that the residue is symmetric, as, of course, it should be.

One may ask whether it is possible to give a residue formula which more clearly
reflects the properties (4.5) and (4.6). In other words, suppose that we define matrices
Ty and T}, having full column rank and full row rank respectively, such that

im Ty = ker D(a) (4.20)
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ker T, = im D(a). (421

Can we then find a residue formula which has Ty on the left and 7, on the right? It
turns out that this is possible, but of course the normalizing matrix has to be adjusted.

THEOREM 4.2 Suppose that Y = ND™' and Y = D™ 'Nare right and left locally coprime
factorizations, respectively, of YeFP*™. Define Ty and Ty as in (4.21-22). Let GeC™ "
and HeC™? be such that

GD(a)+ HN (o) = I, (4.22)

(Such matrices exist by Cor.2.5). Under these conditions, the matrix T, D'(«)HTy is
square, with its dimension being equal to the total pole multiplicity of Y at a, and its rank
to the multiplicity of the_first order pole of Y at a. The pole of Y at a is simple if and only
if the matrix T, D'(«)HTy, is invertible, and in this case the residue is given by

Res(Y;a) = Tx[T D/(Q)HTR]™'Ty. (4.23)
ProOF The invariance of the proposed formula follows in the same way as in the previ-

ous proof. The correctness of our claims is then again established by looking at the spe-
cial factorization (2.11-12), and using the following selections for T, Tg, G and H:

I,
T, =, 0 0]T(a), Tx=S()|0 (4.24)
0
000 I, 00
G=1000|T@, H=|0 0 0|5 '@ (4.25)
00171 000

where k is the total pole multiplicity of Y at a. Our conclusions now follow by
straightforward computation.

The formula (4.24) is 'right-handed’; one could apply it to Y’ and take the transpose
of the resulting formula to get a corresponding 'left-handed’ version. The only point
where the left coprime factorization enters in the proposition is through the definition
(4.21). But even this could be eliminated, because what is actually needed is only
ker D(a), and it is seen from Lemma 2.6 that if [P_Q] is a basis matrix for the row
space of left null vectors of [N'(a) D'(a)Y, then ker D(a) is determined as ker Q. In this
way, one obtains a residue formula that is based only on a right coprime factorization.
This may be an advantage in terms of computation. Note that what is actually needed
to determine the ”H” and ”Q” matrices is the reduction of [D(a)’ N(a)'Y to [, O} by
elementary row operations:

G H| [D(a)] _ 1,
P ol Iv@| = o] (4.26)
One can avoid doing row operations, however, by using the formula of the following

corollary, which will close this section. This formula is probably in general the most
convenient for computational purposes.

COROLLARY 4.3 Suppose that Y=ND~' is a right coprime factorization of YeFr ™
Write k = dimkerD(a). Let TgeC™ * be a full column rank matrix satisfying
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D(a)Tg =0, and let T, eC**™ be a full row rank matrix such that T, D(«)=0. Under

these conditions, the following conclusions hold:

1. The total pole multiplicity of Y at a is equal to k. The multiplicity of the first order pole
of Y at a is equal to the rank of the matrix T) D’(a)T €C***.

2. The pole of Y at a is simple if and only if the matrix T, D'(a)Ty is invertible. In this
case, the residue is given by

Res(Y;a) = N(a)T[T,D'(e)Tr] ' T 427

ProOF The proof can be given along the same lines that have been used above.
Alternatively, one may apply Proposition 4.2 by showing that N(«)T qualifies as a
”TR” matrix.

REMARK 4. Another way to derive (4.35) would be the following: first apply (4.19) to
compute the residue of the matrix function D~' at «, and then multiply by N (a) to
obtain the residue of Y=ND . This is correct, provided that one shows that Y has a
simple pole at a if and only if D' has a simple pole at a. This property is indeed a
consequence of coprimeness and has, in fact, been shown in the corollary, since the cri-
terion given under 2. depends only on D.

5. APPLICATION AS A STABILITY TEST
It has already been noted that our results can also be used in stability tests. Indeed, for
stability (in the sense of Lyapunov) one should have that all poles are in the open left
half plane or on the imaginary axis, and in the latter case they should be simple - which
is what can be tested by looking at the normalizing matrix. To show an application of
this idea, let us re-derive a classical result on stability.

Suppose we have matrices A €C"*" and CeC’*". Then it is a standard result that
the matrix A is stable in the Lyapunov sense if there exists a self-adjoint, strictly posi-
tive definite matrix PeC"*" such that

A'P+PA = —C'C 5.1)

Let us now see how to prove this from the theory presented above. Let p be an eigen-
value of 4 and let xeC" be a corresponding eigenvector. From (5.1), we have

x'A'Px + x"PAx = —x"C"'Cx 5.2)
which leads to
(2Rep)x*Px) = —x"C'Cx <0 (5.3)

and hence Rep<0, because x* Px>0. It remains to show that g is a simple eigenvalue
if its real part is zero.

So, suppose Rep =0, and let Ty be a basis matrix for ker (W —A). It follows from
any of the criteria derived above that p will be a simple pole of the matrix function
Y(\)= (I —A)"" (and hence a simple eigenvalue of A) if and only if we can find a
basis matrix T, for the row space of left null vectors of u —A such that T; T is inver-
tible. As in (5.2-3), we find

—T}C'CTr = QRep)TRPT =0 (5.4)

which implies, of course,
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CTR=0.

(5.5)
Therefore, multiplying (5.1) from the right by Ty, we get
(A4° + uPTR = 0. (5.6)
Since p = —p, taking adjoints leads to
TRP(W —A) = 0. (5.7)

This shows that we can take T = TR P. Obviously, T, Ty = TxPTy is nonsingular and
so our test shows that we have, indeed, stability.
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