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In this paper we characterize the inherent integration structure of affine nonlinear 
systems through a set of indices called-in analogy with existing terminology for 
linear systems-the orders of the zeros at infinity. We show that our definition 
encompasses earlier characterizations due to Hirschorn and Isidori. The discus­
sfon is entirely local in nature, so that we arc able to use recent results in the 
'geometric approach' to nonlinear system theory. 

1. Introduction 

PERHAPS a suitable way to describe the basic difference between the fields known 
as 'mathematical system theory' and 'dynamical systems' would be the following. 
Both fields are concerned with sets of differential (or difference) equations. 
However, in the theory of dynamical systems one is interested in the relations that 
these equations specify between parameters on one hand and functions on the 
other; whereas the system theorist is interested primarily in the relations between 
functions among each other. 

In this view, the most elementary object of study in mathematical system theory 
is the relation between two real-valued time functions, one of which is the 
derivative of the other. It is customary to call the first function the 'output' and 
the second function the 'input', so that the relation between the two functions is 
taken in the direction in which it has a smoothing effect. The single-step 
integration can be turned into a multiple-step integration by putting several stages 
in series, and after applying feedback and adding interconnections with other such 
systems (perhaps nonlinear, and with the introduction of constraints) one may be 
left with a highly complex model. The question arises, to what extent the basic 
building block of a single-step integration is still recognizable in a complex 
system. Is there a way to relate a given system uniquely to an uncoupled set of 
series connections of simple integrators? 
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The problem of defining an 'inherent integration structure' for the class of 
linear systems has been studied by Hautus in [8]. For this class of systems one can 
profitably use the Laplace transform. The single-step integrator is transformed 
into the function s-1

, which is characterized by the fact that it has a first-order 
zero at infinity. More generally, it was shown in [81 that classical results from 
algebra allow the definition of a set of zeros at infinity, each with a specified 
order, for any rational matrix. It is then reasonable to identify this 'zero structure 
at infinity' with the sought-after inherent integration structure of the system. 
Because the analysis in [8] is based on the Laplace transform, it is not evident 
how to extend it to nonlinear systems. However, in a study of the invertibility 
problem for nonlinear systems [11], Hirschorn used a nonlinear version of 
Silverman's 'Structure Algorithm' [27] to define a set of indices which can be 
viewed as a representation of the inherent integration structure. Isidori [12, 13] 
has been able to define a 'formal zero structure at infinity' based on a certain 
formal power series representation for nonlinear systems. Isidori's definition, 
however, is tied to the class of 'input-output linearizable systems'. The class of 
systems considered by Hirschorn is somewhat larger, but he still needs a restric­
tive assumption to make sure that his indices are well defined. (Details of this are 
discussed in Section 4.) 

In the present paper, we propose a definition of 'zeros at infinity' which is 
applicable to the full class of affine nonlinear systems. It would be too much to 
expect that the inherent integration structure of nonlinear systems could be 
expressed globally by a set of constants, and so we shall restrict ourselves to open 
subsets of the state manifold where certain regularity assumptions hold. We shall 
show that our definition leads to the same inherent integration structure as follows 
from Hirschorn's indices in the cases where these indices are well-defined. Since 
Isidori's definition of integration structure is the same as Hirschorn's (see Remark 
5.4 in [12]) it will follow that our definition also encompasses the one given by 
Isidori. 

The same definition has also been introduced in [23] where it was applied to 
give constructive necessary and sufficient conditions for the solvability of an 
input-output decoupling problem for nonlinear systems. It has also been used in 
[2] where the application was to a model-matching problem. 

The structure of the present paper is as follows. We first review the linear 
situation in Section 2 where we also introduce an apparently new and convenient 
definition for the zeros at infinity of a linear system. Then in Section 3 the 
necessary material is given which leads to our definition of zeros at infinity for 
nonlinear systems. The connection with Hirschom's indices is made in Section 4, 
with some technical arguments being placed in an Appendix. Conclusions follow 
in Section 5. 

2. Zeros at infinity for linear systems 

For single-input single-output systems, a quantity of obvious importance is the 
difference of the degrees of the denominator and the numerator of the transfer 
function, which is called the 'order of the zero at infinity' in the theory of rational 
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functions. For instance, this quantity determines the number of poles that go off 
to infinity with increasing gain, according to root-locus analysis. In model­
following problems it is clear that there will exist a proper function g1(s) such that 
gh)g1(s) = g3(s) only if the order of the zero at infinity of g3(s) equals or exceeds 
that of g2(s). It is also quite obvious that the inverse of a transfer function g(s) 
will have a polynomial part of degree equal to the order of the zero at infinity of 
g(s). 

It is of interest to extend this concept to the multivariable case. Classically, the 
finite zeros of a rational matrix are defined through the Smith-McMillan canonical 
form (used in (15 ) to define the orders of the poles of a rational matrix, and in 
(25) to define the orders of the zeros). It is then possible to define zeros at infinity 
via an arbitrary Mobius transformation taking the point at infinity to some finite 
point in the complex plane (this was done in [15J for poles, and in (25] also for 
zeros). So, one says that a transfer matrix G(s) has l zeros at infinity of respective 
orders n1, .•. , nt if the matrix G(s):= G(1/s) has l zeros of orders n1, ... , ni at 0, 
i.e. if the elements s'\ . .. , s"' appear in the numerators on the diagonal in the 
Smith-McMillan canonical form of G(s). 

Another direction was taken by Hautus [8] and Morse [19]. They showed that a 
canonical form can be given for rational matrices under left and right transforma­
tion by 'bicausal' matrices (i.e. proper matrices that have a proper inverse), 
although they did not use this term, which has become standard since [9]. This 
canonical form is determined by the dimensions of the given matrix and by a set 
of indices called the 'order indices' by Hautus, who was explicitly motivated by 
the idea of extending the scalar concept of 'order' (difference of denominator and 
numerator degrees) to the multivariable case. Morse ([19], p. 68) noted that these 
canonical indices also occur as one of the lists of invariants under a certain group 
of transformations of linear systems, which he had identified in earlier work [18]. 
Hautus [8] showed that the 'order indices' are related in a simple way to the 
indices obtained by Silverman in his study [27] of the inversion problem for linear 
multivariable systems, and he also recovered a result of Singh [31] which relates 
these indices, in turn, to the ranks of certain Toeplitz matrices defined by Sain and 
Massey in their treatment [26] of the inversion problem. The relation with the 
zeros at infinity as defined by Rosenbrock [25], however, was not made explicit in 
[8] and [19J. The definition of zeros at infinity through bicausal matrices is now 
accepted generally. It reads as follows. 

DEFINITION A transfer matrix G(s) is said to have l zeros at infinity, of orders 
ni. ... , n1 respectively, if there exist bicausal matrices M(s) and N(s) such that 

[
D(s) o] M(s)G(s)N(s) == 

0 0 
(2.1) 

with 

D(s) = diag (s-"', ... , s-"1). (2.2) 

Of course, one has to show that such bicausal matrices always exist, and that the 
indices n1 , •. • , n1 are uniquely defined. A simple direct proof of this can be found 
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in [8]. The relation between this definition and the one given by Rosenbrock was 
established perhaps for the first time in the work of Verghese [36]; see also [37] 
for a survey of various ways to extract the pole-zero structure of a rational matrix 
at an arbitrary point in the extended complex plane. The pole-zero structure 
extraction problem had been studied using Toeplitz matrices by Vandewalle and 
Dewilde [33], who defined, in that paper, a zero of an invertible rational matrix 
simply as a pole of its inverse. The procedure can be generalized to singular 
matrices and applied to the point at infinity, in which case the Sain-Massey form 
is recovered; see (34 ]. 

Yet other equivalent definitions can be given of zeros at infinity ·for linear 
systems. There is close connection between the zeros at infinity of G(s) = 
C(sI - Ar1 B + D and the infinite elementary divisors of the associated singular 
matrix pencil 

-[sI-A -BJ P(s)- C D (2.3) 

as defined by Kronecker (see [7 ], Ch. XII). In fact, due to insufficient coordination 
of history, the orders of the infinite elementary divisors are equal to the orders of 
the infinite zeros plus one. The relation with the Kronecker theory was noted by 
Thorp [32]; cf. also [18]. It was already proposed by Rosenbrock ([25], p. 132) to 
say that a rational matrix G(s) has a zero at infinity if every minor of a given 
order k tends to zero as s - co, For ways of finding the zeros at infinity from the 
minors of the transfer matrix or of the associated system matrix, see 
[36, 37, 38, 3]. As to applications of the concept of zeros at infinity, the impor­
tance of Morse's 'list I4 ' of invariants for multivariable root-locus theory was 
noted by Owens in (24). The relevance of the concept for system inversion is quite 
obvious from the development sketched above. In particular, if a system is 
invertible, then the orders of its zeros at infinity are precisely the degrees of the 
differentiators that are needed to construct the inverse (36). Infinite zeros are also 
important in the typically multivariable problem of input-output decoupling [35, 
4, 5, 6]. For use of zeros at infinity in the model-following problem, see [16] and 
(17]. 

We shall now present still another way of defining the zeros at infinity, which, 
although straightforward, seems to be new. The main virtue of this definition for 
our purposes is that it leads naturally to a state-space characterization, which will 
be the basis for our generalization of the concept to nonlinear systems. Let !R'Q{s) 
denote the set of proper rational m-vector functions with real coefficients. For 
f EIR0(s), we can define its value <f>(J) at infinity: · 

<f> (f) = lim f (s) (f e!R'Q(s)). (2.4) 
.t--

The set R0(s) can be considered as a module over the ring of proper rational 
functions IR0(s). Note that every submodule of IR0 (s) is mapped by <P onto a linear 
subspace of IR"'. In particular, it is easily verified that, for any p x m rational 
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matrix G(s) and any integer k, the following set is a submodule of !R0(s): 

.M:k(G):={fe~'Q(s): skG(s)f(s)elRS(s)}. (2.5) 

So we can define a sequence of nonnegative integers pk associated with G by 
writing 

(2.6) 

For instance, p1 is the number of independent functions in IR'Q(s) that are mapped 
by G to functions that have a zero of first or higher order at infinity, 'indepen­
dent' being taken in the sense of independent first elements in the Taylor series 
development around infinity. We shall call pk 'the number of zeros at infinity of 
G(s) that have order <l!:k'. This leads us to define, for a given rational matrix 
G(s), the 'number of zeros of order k' which we shall denote by {k> as follows: 

(2.7) 

It is not hard to see tha~ this definition leads to the same result as the standard 
one, which was given above. Indeed, the numbers pk. are clearly invariant under 
left and right multiplication of G by bicausal matrices. So it is sufficient to verify 
the equivalence of the two definitions for matrices that have the form of the 
right-hand side of (2.1), and, for such matrices, the equivalence is seen by 
inspection. 

An advantage of the definition that we just proposed is that it does not depend 
on the calculation of a special form. Also, it shows that the orders of the zeros at 
infinity are related to the dimensions of certain subspaces of !Rm (the input space), 
and we shall now proceed. to give the precise form of this relation in state-space 
terms. So, suppose that G(s) is a strictly proper rational matrix, appearing as the 
transfer matrix of a given linear system 1;(A, B, C): 

G(s)= C(sI-A)-1B (2.8) 

(minimality of the state-space representation is not assumed). The expansion of 
G(s) around infinity is then given by 

G(s) = CBs-1+ CABs-2 + · · ·. 

Any f e !R0 (s) can also be expanded around infinity: 

f(s) = fo+ f1s-1 + f2s-2+ · · · . 

One will have skG(s)f(s)eJRg(s) for k"'1= 1, if and only if 

J[fo ]=[OJ. 
o L ! 

(2.9) 

(2.10) 

(2.11) 
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We can write this more compactly by introducing 

D1c= [ 0 0 

0

], 
CB ·. 

~A"-2B . . : . . CB 

(2.12) 

1.~[n (2.13) 

Using thls notation, we get 

p" ==dim{f0e11r: 3f1c-1 s.t. [q<~iB (2.14) 

= dim{/oe llr: C1c-1Bf0 eim D1c-J 

=dim [c;.:1(imD1c-i) nirn B ]+dim ker B. 

The quantity dim ker B is of little importance; it is often assumed that inputs are 
independent, and in this case one would have dim ker B = 0. In any case, it is an 
amount which does not depend on k so that its effect on {1c will be nil. The linear 
space Ck'~1(im D1c-i) is a subspace of the state space?£. We did not actually define 
C01(im D0) in (2.12), but it is seen from (2.14) that to be consistent one should 
take C01(im D0) = 1£. From (2.12), one sees that the matrices C1c and D1c could be 
defined recursively via 

(2.15) 

and this strongly suggests that it should also be possible to give a recursive 
definition for the sequence of subspaces C;1(im D1c). In fact, a result of Silverman 
([28], p. 356) shows how to do this. We state the result and include a short proof 
for completeness. 

LEMMA 2.1 Let G(s) be a strictly proper rational matrix represented by (2.8) . 
Define a sequence of subspaces Y" of the state space ge in the following way: 

yo=?£ 

v1c+1 = A - 1cv1c +im B) nker c. 
Under these conditions, one has 

(2.16) 

(2.17) 

(2.18) 

for all k;;;;:: 0, where the left-hand side is defined by (2.12) for k ~ 1, and equality 
holds for k = 0 by definition. 

Proof. The proof is by induction, and the first step has already been taken. 
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Suppose now that (2.18) holds for a given k. Then 

yk+1 ={x e.t': Cx = O and 3u s.t. Ax+ B u e Yk} 

= {x e.t': 3u, uk s.t. [c~A]x + [c~B ~J(~] = [~]} 
= Ck'!.1Cim D k+l). (2.19) 

Of course, the algorithm (2.16-17) is the well known 'Y*-algorithm' ((39], p. 91). 
It produces a nonincreasing sequence of subspaces which must converge in a finite 
number of steps to a limit subspace denoted by Y*. Combining (2.7), (2.14), and 
(2.18) now leads immediately to a formula for the number of zeros at infinity of a 
given order k ~ 1 in terms of the subspaces Y": 

'"=dim (Y"-1 nim B)-dim ('Jl'k nim B). (2.20) 

This formula will be extended to the nonlinear situation in the next section. The 
connection (2.20) between the sequence (dim CV" nim B)) and the orders of the 
zeros at infinity has been given earlier, in a less direct way, by Malabre [16]. It is 
straightforward to extend the characterization we have given for a system 
!(A, B, C, D) with direct feedthrough. One then uses the generalized form of the 
'Jl'*-algorithm as presented by Anderson in [l], and the role o.f im B is taken over 
by B(ker D), but with these modifications the end result (2.20) is stiU the same. 

3. Zeros at infinity for nonlinear systems 

We consider an affine nonlinear system given locally by 
m 

x (t ) = A [x (t) ]+ L B,f x(t)]Ui(t), 

y(t) = C[x(t)], 

(3.1) 

(3.2) 

where the vector x denotes local coordinates of a smooth n-dimensional manifold 
.J,t. The smooth vector fields A , B 1' .• . , B,,. are defined on .J,/,, Ui : R+-+ IR are 
piecewise smooth input functions (i = l , .. . , m), and C is a surjective submersion 
of .J,t onto a smooth p-dimensional manifold K. A sequence of distributions on .Al 
is defined in the following way (cf. (14, 20]). 

yo= T .J,t, (3.3) 

Here we denote 

.1o=span (B 1, ..• , B m), .1 =span (A, B , ... , Bm), 

.1-1~ ={X e V(.Al) : [.1, X] c ~} 

for any distribution ~. with 

[.1, X] = {[Y, X] : Y eA}. 

The following are basic properties of the distributions "V k. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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PRoPosmoN 3.1 The distributions yk (k ~ O) defined by (3.3-4) satisfy the 
following conditions. 

(a) y1t+1 c yr. for all k :;;i: O; 
(b) "V1 is involutive for all 1c ;;;. 0. 

Proof. (a) Clearly, ¥ 1 = ker C* c T.dl::::: Y0
• Now suppose that y1t c y1t-1

; then 

ylc+l= ker c* n..1-1(..:io+ yk) 

c ker C* n'1-1 (..:1 0 + y1t-1)::::: Y1<.. (3.8) 

(b) This part of the proof also uses induction. First, Y 0 =T.Al is clearly 
involutive. Suppose that y1t-i is involutive. By part (a) we may write, instead of 
(3.4), 

(3.9) 

Now, choose arbitrary vector fields X 1 and X 2 from y1t_ Then it is clear that 
[Xi. X2J e yie-1 because both X 1 and X2 belong to y1<.-i, and y1<.-i is involutive 
by assumption. It remains to show that (..:1, [Xi. X:J] c ..:10 + y1<-1

, or equivalently 
[A, [X1, X:JJ e ..:10+ y1<.+t and [Bh [X1, X2.1] E .cio + y1<.-t for i = 1, ... , m. To this 
end, we use the Jacobi identity: 

[A, [Xl., X21J = - [X1, (X2, A]]- [X2, [A, X1JJ 

e[X1, ..:10+ y1t-1]+[X2,..:10+ yr.-1
] 

c[X1,..1.J+[X1, y1o-1]+[X2, y1<.-1] 

c..1.o+ 'f/'1<.-1. 

(3.10) 

In the final step, we again used the assumed involutivity of yk-i, plus the result 
of part (a). Finally, we have likewise 

[Bu [X1, X21l =-(Xu [X2, B,]l-[X2' [B1, X1ll 
c.10 +V"+t (i=l, ... ,m). 0 (3.11) 

Remark. Part (b) of the above proposition is an improvement of Theorem 4.1 of 
[20]. 

When specialized to linear systems, the algorithm (3.3-4) coincides with the one 
given in (2.16-17). This would suggest a definition of zeros at infinity for the 
nonlinear system (3.1-2) in analogy with (2.20), but of course there is in general 
no reason to expect that the distributions Y 1<. n A 0, although they are defined 
throughout .M, will have constant dimension on M. As a first step, it seems best to 
satisfy ourselves with assumptions which are at least valid on open parts of Al, and 
so we shall assume that 

dim (Y" n ..10) =constant (3.12) 

for all k ;;::o 0. (For analytic systems, this assumption will even hold on an open and 
dense submanifold of .dl.) Then we define, as in [23], the zero structure at infinity 
in complete analogy with (2.20); the system (3.1-2) js said to have {1<. zeros at 
infinity of order k (~1) where 

{1<. =dim (y1<.-i n..10)-dirn ('Jl'1t n '10). (3.13) 
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Of course, the similarity to the linear definition is in itself no guarantee that the 
zeros at infinity as we just defined them really express the 'inherent integration 
structure' of a nonlinear system. The relevance of the concept can only be 
established through showing its usefulness in applications and its relation to other 
concepts. As to applications, we refer to [23] where the above definition is used 
for a study of the input~utput decoupling problem, and to [2] where the concept 
is applied to a model-matching problem. In this paper, we shall concentrate on 
the relation between our definition of 'zeros at infinity' and Hfrschorn's definition 
[11} of 'invertibility indices'. The two concepts turn out to be very closely related, 
which is no surprise since Hirschorn's result is based on a nonlinear version of 
Silverman's 'Structure Algorithm', which is well knpwn to be closely related to the 
zero structure at infinity (29]. It should be emphasized that Hirschorn's definition 
applies to a smaller class of systems than does ours ; the difference will be made 
clear in the next section. A still smaller class of nonlinear systems is considered by 
Isidori in (12]. Very interestingly, it turns out that for this class of systems the 
zeros at infinity can be obtained from a certain formal power series, taking the 
place of the transfer function in the linear analysis (cf. [8]). The approach in (12] 
again draws heavily on the nonlinear version of Silverman's algorithm, and, as 
noted in the paper itself, the structure at infinity defined there does not deviate 
from Hirschorn's definition. 

Finally let us remark that for a general nonlinear system given locally by 
i = / (x, u), y = g(x, u), one can still use the above definition by passing to the 
so-called 'extended system' (22). This is explained in [23 ]. 

4. Relation to the Hirschorn algorithm 

The 'structure algorithm' of Silverman (27 J has been generalized by Hirschorn 
[11] {cf. also (30 ]) to the class of affine nonlinear systems. Essentially, the 
algorithm consists of a series of transformations; in each step, the outputs are 
rearranged in such a way that as many of them as possible do not . depend 
explicitly on any of the inputs, and these outputs are then differentiated, after 
which the procedure is repeated. In the nonlinear case, the transformations that 
have to be performed on the outputs will in general be state-dependent, and this 
leads to considerable complications . We shall now describe the algorithm more 
precisely. Our version of the algorithm leaves more freedom in the output 
transformations than the original version of [11]; the difference will be explained 
as we proceed. Let an affine control system be given as in Section 3: 

m 

i (t) = A[x(t}]+ L B1[ x (t)Ju1(t}, x (O) = x0 EA<., 

y(t)= C(x(t)] 

We call this 'system (O)', and we write 

zo(t) = y(t), C0 =C. 

(4.1} 

(4.2) 

In order to proceed recursively, let k be a nonnegative integer. We let R1c (x) and 
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R.k (x) be matrices, depending smoothly on x, such that 

{[ 
i>~(x) ) . } 

ker R1c.(x) ==span Ln,Ck(x) : z = 1, ..• , m , (4.3) 

where D Hx) and C"'(x) are defined recursively by (4.5)-(4.7) below, and the 
matrix Rk (x) is defined by 

(4.4) 

is invertible for all x. (It is assumed that such matrices exist, i.e. that the 
distribution appearing on the right-hand side in (4.3) has constant dimension. See 
the remarks in Section 3; cf. also [11].) Now, we define 

- k+1 - C (x 
[ 

-k ) J 
C (x)=Rrc(x) LACk(x) , (4.5) 

(i == 1, ... , m), (4.6) 

A k+l [ (;k(x ) J 
C (x) == Rk(x) LACk(x) . {4.7) 

Finally, we define 'system k + 1' by 
m 

.i(t)= A [x(t)J+ L B1[x(t)]14(t), (4.8) 

4.1 Remarks 

(i) It is understood that some of the vectors and matrices defined here may be 
empty, i.e. do not appear in the above expressions. In particular, this is always 
true for C0 and D? (i = 1, .. . , m). Note that the algorithm becomes ineffective 
when Rk has become empty. 

(ii) One way of obtaining the matrices Rk(x) and Rk(x) is the following. Form 
the matrix Mk(x): 

[ 

k - k ] " D 1(x) ... D 111 (x) 
M (x) = A k A,. . 

L8 ,C (x) ... L.e,,.C (x) 
(4.9) 

Under the assumptions we have made, the rank of M"(x) is a constant, say rk+t· 

We also assume that it is possible to select rk+l rows from Mk(x) that are linearly 
independent for all x. Let Ek be an elementary matrix which brings these rows to 
the first rk.+i positions: 

E Mt<.( ) = [M~(x)] 
k x M~(x) (4.10) 

2 
' 
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where M~(x) is rk+i x m and has full row rank. The rows of M~(x) depena 
linearly on those of Mt(x), so there exists a matrix Fk(x ) (depending smoothly on 
x ) such that 

(4.11) 

We can now take 

ft,.(x)=[I O]Ek, (4.12) 

(iii) In [11], Hirschorn allows only matrices Rk(x) that are constructed as in the 
previous remark. For example, if an affine system is given (on a suitable open 
subset of IR3

) by the equations 

X1(t) == X3(t) U1(t) + U2(t), X2(t) = X2(t) + uit), 

Y1(t) = X1(t)2+ X3(t)2, 

then the matrix M 0 (x) is found to be 

M
0
(x) = [~ ~::J. (4.14) 

The procedure of Remark (ii) leads to either one of the following two pos­
sibilities : 

On the other hand, we also allow, for instance, 

Ro(x) = [ l O ] . 
-x2 X1 

(4.16) 

4.2 Discussion of the Algorithm (4.1-8) 

For the rest of Section 4 we consider the situation in which a sequence of 
systems has been produced by the algorithm. The sequence is determined by the 
original system (4.1) and by the consecutive row-transformation matrices 
R 0 , R1, ••• , Roc-t· We introduce a derived sequence of distributions ~k (k = 
1, ... , a): 

'ik ={Z EV(Al): LzL~Ri(x) = 0, Le No, j ENo, o~ l + j ~k-2} {4.17) 

(where we understand ~ 1 = T.Al). Note that the distributions ~" are involutive and 
that they form a nonincreasing sequence. An.other simple property is the follow­
ing Lemma. 

LEMMA 4.1 If Z E 'i"+1 then [Z, A ] e 'ik. 

Proof. For O~l+j~k-2 we compute: 

Lcz.AJVAR1 (x)=LzIJ,t1Ri(x)-LALzL~R1(x)=O. 0 (4.18) 
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The following result will turn out to be of crucial importance. Recall the algorithm 
(3.3-4). 

THEOREM 4.2 Suppose that .10 c °'"'-1
. Then, for all k e{l, ... , a}, 

k-1 

~knYk=~kn n kerc~. 
1-0 

(4.19) 

The proof of this theorem is somewhat technical, and we relegate it to the 
Appendix. For linear systems and for single-output nonlinear systems, the trans­
formation matrices Rk can be chosen constant, and then we have '$1< = T.dt for all 
k. So, in these cases, one obtains 

k.-1 

yrc = n ker C! (4.20) 
i-0 

which gives us a convenient way of computing Yk. Unfortunately, simple exam­
ples show that (4.20) does not necessarily hold for multi-output nonlinear 
systems. For linear systems, the relation (4.20) appears (in dual form) in [10] (p. 
387). An easy consequence of Theorem 4.2 is the following. 

COROll.ARY 4.3 Suppose that .10 c ~"'. Then, for all k e{l, ... , a}, 

k-1 

.1on yk =Lion n ker c~. (4.21) 
1-0 

Proof. If .&0 c~°'. then .d0c-€k for all ke{l, ... ,a} since the sequence (~k) is 
nonincreasing. So we obtain (4.21) by intersecting both sides of (4.19) with 
..10. D 

This allows us to establish the correspondence between the zeros at infinity, as 
defined in the previous section, and the 'invertibility indices' defined in [ 11] by 

rk =dim span (Dt .. . , D;,.) (k = 1, .. . , a). (4.22) 

We shall use another characterization of these indices. We still work with respect 
to a fixed sequence of row-transformation matrices. 

LEMMA 4.4 For k e {1, ... , a}, we have 

( 

k-1 ) '"- = m-dim .don n ker c~ . 
1=0 

(4.23) 

Proof. We shall show that the relation 

m 

L D~(xhi(x) = 0 (4.24) 
1~1 

holds, for smooth functions y,(x), if and only if 
m k-1 

L B,(x)'\li(x)e n ker C!(x). (4.25) 
(sl l~O 

This is equivalent to the statement of the lemma. The proof is by induction on k. 
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For k = 1, we have D~ = L11iC (i == 1, ... , m), and the equivalence of (4.24) and 
(4.25) is trivial. Now suppose that the equivalence holds for some given le 
{l, ... , ex -1}. First, let ')'1(x) (i = 1, ... , m) be smooth functions such that (4.24) 
is satisfied with k = l + 1. By (4.6), this means that 

- I 

R1 (x) 1~1 [L~t~~~)J 'Y1 (x)== O. (4.26) 

But we also have (see (4.3)) 

A "' [ Df (x) ] 
R,(x ) 1~1 LB,C 1(x) 'Y1(x) = 0. (4.27) 

Using the invertibility of Rk(x ), we obtain two results: 
m 

L D l(xh(x)= O, (4.28) 
i - 1 

f B,(x}y1(x) e ker C!(x). (4.29) 
1-1 

An appeal to the induction assumption now completes the first half of the proof. 
Next, suppose that 'Y1(x) (i = 1, ... , m) are smooth functions such that (4.25) is 
satisfied with k = l + 1. Then it follows from the induction assumption that 

"'[LD~(x) J .L CA k( ) 'Y1(x ) = 0. 
•- 1 B, X 

(4.30) 

The desired result is now obtained by letting R1c act on this, and by using (4.6) O 

As they are defined in (4.22), the invertibility indices rk depend on the selection 
of row-transformation matrices Rk· It is not difficult to find examples where 
different choices of the matrices RI< lead to different values of the indices rk. 
However, it is shown in [11] that the r1c are determined uniquely if the condition 

(4.31) 

holds. Indeed, we see immediately from Corollary 4.3 and Lem.ma 4.4 that this 
conclusion remains true even under the relaxed restrictions that we have put on 
the matrices R1c, and that we have the following explicit expression for the 
invertibility indices '1r. in terms of the original system parameters. 

CoROll.ARY 4.5 Suppose that L10 ct:"'. Then the indices '" defined in ( 4.22) satisfy 

r1c = m -dim (..d0 c 'V1c). (4.32) 

It is shown in [11] that the system (4.1) is left invertible if there exists an a eN 
such that ..d0 c t:"' and ra. =dim L10 • In [21], it was shown that (4.1) is left invertible 
if and only if the largest local controllability distribution contained in ker C* is the 
zero distribution. Corollary 4.5 enables us to clarify, to a certain extent, the 
relation between these two mvertibility results. The problem with the criterion of 
[21] is that there is no procedure available to verjfy whether the largest local 
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controllability distribution inker C* is zero. We do have a method, however, to 
find out if the largest regular local controllability distribution inker C* is zero; in 
fact, this is equivalent to the condition .10 n Jr*= 0 (see [21]). Let a be such that 
Y"' = "V*; then it follows from Hirschorn's result and from Corollary 4.5 that this 
condition is not only necessary but also sufficient if matrices R1e can be found (in 
Hirschorn's way, as described in Remark (ii) of Section 4.1) such that ..10 c: ~°'. 
Apparently, in this situation it suffices to consider only regular (rather than 
arbitrary) local controllability distributions. This observation leaves room for 
several conjectures, but we shall not pursue these now. Finally, we formulate the 
explicit connection between the zeros at infinity, as defined in Section 3, and the 
invertibility indices, as defined in [11]. The proof is immediate from Corollary 4.5. 

THEOREM 4.6 Suppose that the system (4.1) has been transformed a times through 
the algorithm (4.2-8), and that the corresponding row-transformati.on matrices Rk 
are such that A0 c:~"' (cf. (4.17)). Let r,. be defined by (4.22) for k;;;iol, and set 
r0 = 0. Then, for each k ;;:i: 1, the number of zeros a.t infinity of order k is given by 

(4.33) 

Conversely, one also has 

(4.34) 

5. Conclusions 

In the effort to untangle the inherent integration structure of nonlinear systems, 
we have made some progress by proposing a definition of zeros at infinity for a 
large class of nonlinear systems, 'and by showing that this definition is compatible 
with the ones given earlier by Hirschorn and Isidori. The main advantage of our 
definition is its large scope, and the fact that it immediately shows that the orders 
of the zeros at infinity are feedback invariants. The advantage of Isidori's 
definition is that it enables one to make a connection with alternative system 
descriptions, notably via a formal power series whfoh corresponds to the expan­
sion around infinity of the transfer matrix in the linear case. However, this only 
goes for a restricted class of systems. What one would like to see is an interpreta­
tion of the inherent integration structure in more direct dynamical terms, at the 
level of generality that was used in this paper. This remains work for the future. 
An intriguing question in another direction is whether it is possible to say 
anything useful about zeros at infinity, not in local but in global tenns. 
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Appendix 

Our aim in this appendix is to prove Theorem 4.2. To keep the notation 
compact, we shall suppress indication of the x-dependence of matrices, functions, 
etc. We assume the convention that matrix multiplication has priority over 
differentiation, i.e. if Z is a vector field and R and S are matrices of compatible 
sizes, then the expression Lz.RS is always read as Lz(RS) (and not as (LzR)S). If 
Z and R are such that LzR = 0, the product rule of differentiation becomes 

(A.O) 

where the right-hand side is read as R(LzS), of course. This 'commuting' 
property will be used often. Finally we emphasize once more that we work with 
respect to a fixed sequence of row-transformation matrices R0 , .•• , R.-i. which 
have been formed according to the rules in the algorithm. We start by proving a 
lemma. 

LEMMA Al Let k e {1, ... , a}. For vector fields Z satisfying 

LzR1 ==0 (O~l~k-2) (A.1) 
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and 

Lzc1 =0 co.,;;l~k-1), (A.2) 

the following holds true. Smooth functions 'Y1, ... , 'Ym satisfy 

m k-1 

[Z, A]- L B1'Y1 E n ker c~ 
1-1 i • O ' 

(A.3) 

if and only if 

[ 
(;k-1 ] m [ f)k-1 ] 

Lz LAcr.:-1 = i~1 La,tr.:-1 'Yi· 
(A.4) 

Moreover, for i e{l, ... , m}, smooth functions 'Yl> •.• , 'Ym satisfy 

m k-1 
[Z, Bi]- L B1'Y1 E n ker C! 

1-1 1-0 
(A.5) 

if and only if 

[ 
n~-1 ] m r .D~-1 ] 

Lz La.tr.:-1 = 1~1 LLBtck-1 'Yi· (A.6) 

Proof. The proof is by induction. For k = l, the first part of the statement says 
that if z E ker c~ ( = ker C*), then smooth functions 'Yi. •. . ' I'm satisfy 

"' 
[Z, A]- L B1'Yi E ker c* 

1-1 

if and only if 
m 

LzLAC= L y,LBtC. 
f • l 

This is obviously true, if we note that 

Lcz.A1C=LzLAC-LALzC=LzLAC 

and 

m 

L 'Y1Ls.C = LrB,y,C. 
f ml 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

Now suppose that the first part of the statement is true for some given k e 
{1, ... , a-1}. Let Z satisfy Lz.R1 = O (O~l ~k-1) and LzC1 =O (O~ l ~ k), and 
assume first that 'Yi. .. . , 'Ym are such that 

[ c1c ] "' [ iJ~ ] 
Lz LACL = 1~1 Ls/:1< 'Yt· (A.11) 

Inserting (4.5) and (4.6) in the top line of (A.11) we obtain 

_ [ (:k-1 J _ m [ f)~-1 J 
LzRk- 1 L (:k-1 = Rk-1 L: L c~ 1c:-1 ,,,. 

A 1-1 B1 

(A,12) 
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Note that 

(A.13) 

From (4.3) we have 

A m [ f)k-1 ] 

Rk-1 L L {:k+l 'YI = o. 
l•l B1 

(A.14) 

Therefore we can write (cf. (A.11)) 

(A.15) 

(A.16) 

Since Rk-t is invertible we may cancel it on both sides. The induction assumption 
then shows that 

m k-1 

[Z, AJ-L B1Y1E n kerC~. (A.17) 
i•l (mQ 

Now, the bottom line in (A.11) reads 

(A.18) 

Using the fact that L2 Ck = 0 this gives us 
m 
~ Ak 

[Z, A]- L.. B;'Y1 E ker c* (A.19) 
1~1 

which is just what we needed to complete this part of the proof. Now assume that 
'Y;, •.• , 'Ym are such that 

m m 
~ A{ 

[Z, A] - L.. B;'Y1 e n ker C*. (A.20) 
•-1 l=l 

Then 

(A.21) 

where we used (4.5), the equality LzR1t.-l = 0 (which implies, of course, 
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LzRre-i = O), the induction assumption, and (4.6). Moreover 

(A.22) 

since we have given that LzC" = 0 and (A.20) holds. Combining (A.21) and 
(A.22) we see that the first statement of the lemma has been proved. The proof of 
the second part of the lemma is similar. 0 

We can now proceed to the proof of the theorem. 

Proof (of Theorem 4.2). We first show that 

k-1 

-i" n n ker c! c: yk (A.23) 
1-0 

for k = 1, ... , a. To do this we apply induction. For k = 1 the statement is true by 
definition. Now suppose that (A.23) holds for some given k e {1, ... , a -1}. Let 
Z E V(,;f,l) be such that 

le A 

z E ""+1n n ker C!. (A.24) 
1-0 

From the induction assumption it follows immediately that Z e Y", and so it 
remains to show that [Z, A] E y1c + A0 and [Z, B1] e y1c +Ao for each i e 
{l, ... , m}. First note that 

(A.25) 

By (4.3) this means that there exist smooth functions y, (i = 1, ... , m) such 
that 

[ 
{:k-l J m [ i)~-1 J 

LzL CA k-1 = L L c~ k-1 'YI· 
A 1=1 B1 

(A.26) 

By Lemma A.1 this is equivalent to 

m k-1 

[Z, A] - L B1'Y1 E n ker C!. (A.27) 
1-1 1-0 

As noted in Lemma 4.1 it follows from Z E ~1e+t that [Z, A] e ~". Also the 
assumption ..:10 c: 'i"'-1 implies 

(A.28) 

Therefore we can apply the induction assumption to the vector field [Z, A]-
L~t B1'Y1> to the effect that · 

m 

[Z, AI- L B1'Yi E Y". (A.29) 
1-1 
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Of course, this implies that 

[Z, A] e Y"+.10. (A.30) 

Next, we also have 

(A.31) 

So again there exist functions 'Yi (i = 1, ... , m) such that 

(A.32) 

which means that 

(A.33) 

Because Z e i"+1 c t;i<, .10 c ~". and ~k is involutive, we can apply the induction 
assumption and conclude that 

(A.34) 

Since this holds for all i E{l, . . . , m} we have shown that Z E Y"+1, and the first 
part of the proof is completed. 

Next we have to prove that 

k-1 

~"nY"c n kerC! 
1-0 

(A.35) 

for all k e{l, ... , a}. Again we proceed by induction. For k = 1, the statement is 
true by definition. Now suppose that (A.35) holds for some given k e 
{l, ... , a -1}, and let Z be such that 

(A.36) 

Because '€k+t n Y"-!;1 c ~" n Y" it follows immediately from the induction as­
sumption that 

k.-1 

Z e n ker C~ 
i-0 

(A.37) 

and so it remains to show that LzC1< - 0. Because Z E Y"+1 we have [Z, A] e 
y1t +Ao, and so there exist functions 'Y; (i = 1, ... , m) such that 

"' [Z, AJ - L B i'Yt E Y"'. (A.38) 

By the assumptions, we also have 

m 

[Z, AJ - I B 1'Yi E ~". (A.39) 
l•l 
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So we can apply the induction assumption and conclude that 
m lc - 1 

[Z, A]-~ B1"{1 e n ker C~. (A.40) 
1-0 i-0 

By Lem.ma A.1 this is equivalent to 

(A.41) 

We now compute: 

The proof is complete. 0 


